mtd: spelling, capitalization, uniformity
[deliverable/linux.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
36
37 #include <mach/nand.h>
38 #include <mach/aemif.h>
39
40 /*
41 * This is a device driver for the NAND flash controller found on the
42 * various DaVinci family chips. It handles up to four SoC chipselects,
43 * and some flavors of secondary chipselect (e.g. based on A12) as used
44 * with multichip packages.
45 *
46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47 * available on chips like the DM355 and OMAP-L137 and needed with the
48 * more error-prone MLC NAND chips.
49 *
50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51 * outputs in a "wire-AND" configuration, with no per-chip signals.
52 */
53 struct davinci_nand_info {
54 struct mtd_info mtd;
55 struct nand_chip chip;
56 struct nand_ecclayout ecclayout;
57
58 struct device *dev;
59 struct clk *clk;
60
61 bool is_readmode;
62
63 void __iomem *base;
64 void __iomem *vaddr;
65
66 uint32_t ioaddr;
67 uint32_t current_cs;
68
69 uint32_t mask_chipsel;
70 uint32_t mask_ale;
71 uint32_t mask_cle;
72
73 uint32_t core_chipsel;
74
75 struct davinci_aemif_timing *timing;
76 };
77
78 static DEFINE_SPINLOCK(davinci_nand_lock);
79 static bool ecc4_busy;
80
81 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
82
83
84 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
85 int offset)
86 {
87 return __raw_readl(info->base + offset);
88 }
89
90 static inline void davinci_nand_writel(struct davinci_nand_info *info,
91 int offset, unsigned long value)
92 {
93 __raw_writel(value, info->base + offset);
94 }
95
96 /*----------------------------------------------------------------------*/
97
98 /*
99 * Access to hardware control lines: ALE, CLE, secondary chipselect.
100 */
101
102 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
103 unsigned int ctrl)
104 {
105 struct davinci_nand_info *info = to_davinci_nand(mtd);
106 uint32_t addr = info->current_cs;
107 struct nand_chip *nand = mtd->priv;
108
109 /* Did the control lines change? */
110 if (ctrl & NAND_CTRL_CHANGE) {
111 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
112 addr |= info->mask_cle;
113 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
114 addr |= info->mask_ale;
115
116 nand->IO_ADDR_W = (void __iomem __force *)addr;
117 }
118
119 if (cmd != NAND_CMD_NONE)
120 iowrite8(cmd, nand->IO_ADDR_W);
121 }
122
123 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
124 {
125 struct davinci_nand_info *info = to_davinci_nand(mtd);
126 uint32_t addr = info->ioaddr;
127
128 /* maybe kick in a second chipselect */
129 if (chip > 0)
130 addr |= info->mask_chipsel;
131 info->current_cs = addr;
132
133 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
134 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
135 }
136
137 /*----------------------------------------------------------------------*/
138
139 /*
140 * 1-bit hardware ECC ... context maintained for each core chipselect
141 */
142
143 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
144 {
145 struct davinci_nand_info *info = to_davinci_nand(mtd);
146
147 return davinci_nand_readl(info, NANDF1ECC_OFFSET
148 + 4 * info->core_chipsel);
149 }
150
151 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
152 {
153 struct davinci_nand_info *info;
154 uint32_t nandcfr;
155 unsigned long flags;
156
157 info = to_davinci_nand(mtd);
158
159 /* Reset ECC hardware */
160 nand_davinci_readecc_1bit(mtd);
161
162 spin_lock_irqsave(&davinci_nand_lock, flags);
163
164 /* Restart ECC hardware */
165 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
166 nandcfr |= BIT(8 + info->core_chipsel);
167 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
168
169 spin_unlock_irqrestore(&davinci_nand_lock, flags);
170 }
171
172 /*
173 * Read hardware ECC value and pack into three bytes
174 */
175 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
176 const u_char *dat, u_char *ecc_code)
177 {
178 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
179 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
180
181 /* invert so that erased block ecc is correct */
182 ecc24 = ~ecc24;
183 ecc_code[0] = (u_char)(ecc24);
184 ecc_code[1] = (u_char)(ecc24 >> 8);
185 ecc_code[2] = (u_char)(ecc24 >> 16);
186
187 return 0;
188 }
189
190 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
191 u_char *read_ecc, u_char *calc_ecc)
192 {
193 struct nand_chip *chip = mtd->priv;
194 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
195 (read_ecc[2] << 16);
196 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
197 (calc_ecc[2] << 16);
198 uint32_t diff = eccCalc ^ eccNand;
199
200 if (diff) {
201 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
202 /* Correctable error */
203 if ((diff >> (12 + 3)) < chip->ecc.size) {
204 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
205 return 1;
206 } else {
207 return -1;
208 }
209 } else if (!(diff & (diff - 1))) {
210 /* Single bit ECC error in the ECC itself,
211 * nothing to fix */
212 return 1;
213 } else {
214 /* Uncorrectable error */
215 return -1;
216 }
217
218 }
219 return 0;
220 }
221
222 /*----------------------------------------------------------------------*/
223
224 /*
225 * 4-bit hardware ECC ... context maintained over entire AEMIF
226 *
227 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
228 * since that forces use of a problematic "infix OOB" layout.
229 * Among other things, it trashes manufacturer bad block markers.
230 * Also, and specific to this hardware, it ECC-protects the "prepad"
231 * in the OOB ... while having ECC protection for parts of OOB would
232 * seem useful, the current MTD stack sometimes wants to update the
233 * OOB without recomputing ECC.
234 */
235
236 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
237 {
238 struct davinci_nand_info *info = to_davinci_nand(mtd);
239 unsigned long flags;
240 u32 val;
241
242 spin_lock_irqsave(&davinci_nand_lock, flags);
243
244 /* Start 4-bit ECC calculation for read/write */
245 val = davinci_nand_readl(info, NANDFCR_OFFSET);
246 val &= ~(0x03 << 4);
247 val |= (info->core_chipsel << 4) | BIT(12);
248 davinci_nand_writel(info, NANDFCR_OFFSET, val);
249
250 info->is_readmode = (mode == NAND_ECC_READ);
251
252 spin_unlock_irqrestore(&davinci_nand_lock, flags);
253 }
254
255 /* Read raw ECC code after writing to NAND. */
256 static void
257 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
258 {
259 const u32 mask = 0x03ff03ff;
260
261 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
262 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
263 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
264 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
265 }
266
267 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
268 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
269 const u_char *dat, u_char *ecc_code)
270 {
271 struct davinci_nand_info *info = to_davinci_nand(mtd);
272 u32 raw_ecc[4], *p;
273 unsigned i;
274
275 /* After a read, terminate ECC calculation by a dummy read
276 * of some 4-bit ECC register. ECC covers everything that
277 * was read; correct() just uses the hardware state, so
278 * ecc_code is not needed.
279 */
280 if (info->is_readmode) {
281 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
282 return 0;
283 }
284
285 /* Pack eight raw 10-bit ecc values into ten bytes, making
286 * two passes which each convert four values (in upper and
287 * lower halves of two 32-bit words) into five bytes. The
288 * ROM boot loader uses this same packing scheme.
289 */
290 nand_davinci_readecc_4bit(info, raw_ecc);
291 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
292 *ecc_code++ = p[0] & 0xff;
293 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
294 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
295 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
296 *ecc_code++ = (p[1] >> 18) & 0xff;
297 }
298
299 return 0;
300 }
301
302 /* Correct up to 4 bits in data we just read, using state left in the
303 * hardware plus the ecc_code computed when it was first written.
304 */
305 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
306 u_char *data, u_char *ecc_code, u_char *null)
307 {
308 int i;
309 struct davinci_nand_info *info = to_davinci_nand(mtd);
310 unsigned short ecc10[8];
311 unsigned short *ecc16;
312 u32 syndrome[4];
313 u32 ecc_state;
314 unsigned num_errors, corrected;
315 unsigned long timeo;
316
317 /* All bytes 0xff? It's an erased page; ignore its ECC. */
318 for (i = 0; i < 10; i++) {
319 if (ecc_code[i] != 0xff)
320 goto compare;
321 }
322 return 0;
323
324 compare:
325 /* Unpack ten bytes into eight 10 bit values. We know we're
326 * little-endian, and use type punning for less shifting/masking.
327 */
328 if (WARN_ON(0x01 & (unsigned) ecc_code))
329 return -EINVAL;
330 ecc16 = (unsigned short *)ecc_code;
331
332 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
333 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
334 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
335 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
336 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
337 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
338 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
339 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
340
341 /* Tell ECC controller about the expected ECC codes. */
342 for (i = 7; i >= 0; i--)
343 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
344
345 /* Allow time for syndrome calculation ... then read it.
346 * A syndrome of all zeroes 0 means no detected errors.
347 */
348 davinci_nand_readl(info, NANDFSR_OFFSET);
349 nand_davinci_readecc_4bit(info, syndrome);
350 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
351 return 0;
352
353 /*
354 * Clear any previous address calculation by doing a dummy read of an
355 * error address register.
356 */
357 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
358
359 /* Start address calculation, and wait for it to complete.
360 * We _could_ start reading more data while this is working,
361 * to speed up the overall page read.
362 */
363 davinci_nand_writel(info, NANDFCR_OFFSET,
364 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
365
366 /*
367 * ECC_STATE field reads 0x3 (Error correction complete) immediately
368 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
369 * begin trying to poll for the state, you may fall right out of your
370 * loop without any of the correction calculations having taken place.
371 * The recommendation from the hardware team is to initially delay as
372 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
373 * correction state.
374 */
375 timeo = jiffies + usecs_to_jiffies(100);
376 do {
377 ecc_state = (davinci_nand_readl(info,
378 NANDFSR_OFFSET) >> 8) & 0x0f;
379 cpu_relax();
380 } while ((ecc_state < 4) && time_before(jiffies, timeo));
381
382 for (;;) {
383 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
384
385 switch ((fsr >> 8) & 0x0f) {
386 case 0: /* no error, should not happen */
387 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
388 return 0;
389 case 1: /* five or more errors detected */
390 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
391 return -EIO;
392 case 2: /* error addresses computed */
393 case 3:
394 num_errors = 1 + ((fsr >> 16) & 0x03);
395 goto correct;
396 default: /* still working on it */
397 cpu_relax();
398 continue;
399 }
400 }
401
402 correct:
403 /* correct each error */
404 for (i = 0, corrected = 0; i < num_errors; i++) {
405 int error_address, error_value;
406
407 if (i > 1) {
408 error_address = davinci_nand_readl(info,
409 NAND_ERR_ADD2_OFFSET);
410 error_value = davinci_nand_readl(info,
411 NAND_ERR_ERRVAL2_OFFSET);
412 } else {
413 error_address = davinci_nand_readl(info,
414 NAND_ERR_ADD1_OFFSET);
415 error_value = davinci_nand_readl(info,
416 NAND_ERR_ERRVAL1_OFFSET);
417 }
418
419 if (i & 1) {
420 error_address >>= 16;
421 error_value >>= 16;
422 }
423 error_address &= 0x3ff;
424 error_address = (512 + 7) - error_address;
425
426 if (error_address < 512) {
427 data[error_address] ^= error_value;
428 corrected++;
429 }
430 }
431
432 return corrected;
433 }
434
435 /*----------------------------------------------------------------------*/
436
437 /*
438 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
439 * how these chips are normally wired. This translates to both 8 and 16
440 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
441 *
442 * For now we assume that configuration, or any other one which ignores
443 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
444 * and have that transparently morphed into multiple NAND operations.
445 */
446 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
447 {
448 struct nand_chip *chip = mtd->priv;
449
450 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
451 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
452 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
453 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
454 else
455 ioread8_rep(chip->IO_ADDR_R, buf, len);
456 }
457
458 static void nand_davinci_write_buf(struct mtd_info *mtd,
459 const uint8_t *buf, int len)
460 {
461 struct nand_chip *chip = mtd->priv;
462
463 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
464 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
465 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
466 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
467 else
468 iowrite8_rep(chip->IO_ADDR_R, buf, len);
469 }
470
471 /*
472 * Check hardware register for wait status. Returns 1 if device is ready,
473 * 0 if it is still busy.
474 */
475 static int nand_davinci_dev_ready(struct mtd_info *mtd)
476 {
477 struct davinci_nand_info *info = to_davinci_nand(mtd);
478
479 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
480 }
481
482 /*----------------------------------------------------------------------*/
483
484 /* An ECC layout for using 4-bit ECC with small-page flash, storing
485 * ten ECC bytes plus the manufacturer's bad block marker byte, and
486 * and not overlapping the default BBT markers.
487 */
488 static struct nand_ecclayout hwecc4_small __initconst = {
489 .eccbytes = 10,
490 .eccpos = { 0, 1, 2, 3, 4,
491 /* offset 5 holds the badblock marker */
492 6, 7,
493 13, 14, 15, },
494 .oobfree = {
495 {.offset = 8, .length = 5, },
496 {.offset = 16, },
497 },
498 };
499
500 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
501 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
502 * and not overlapping the default BBT markers.
503 */
504 static struct nand_ecclayout hwecc4_2048 __initconst = {
505 .eccbytes = 40,
506 .eccpos = {
507 /* at the end of spare sector */
508 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
509 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
510 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
511 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
512 },
513 .oobfree = {
514 /* 2 bytes at offset 0 hold manufacturer badblock markers */
515 {.offset = 2, .length = 22, },
516 /* 5 bytes at offset 8 hold BBT markers */
517 /* 8 bytes at offset 16 hold JFFS2 clean markers */
518 },
519 };
520
521 static int __init nand_davinci_probe(struct platform_device *pdev)
522 {
523 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
524 struct davinci_nand_info *info;
525 struct resource *res1;
526 struct resource *res2;
527 void __iomem *vaddr;
528 void __iomem *base;
529 int ret;
530 uint32_t val;
531 nand_ecc_modes_t ecc_mode;
532
533 /* insist on board-specific configuration */
534 if (!pdata)
535 return -ENODEV;
536
537 /* which external chipselect will we be managing? */
538 if (pdev->id < 0 || pdev->id > 3)
539 return -ENODEV;
540
541 info = kzalloc(sizeof(*info), GFP_KERNEL);
542 if (!info) {
543 dev_err(&pdev->dev, "unable to allocate memory\n");
544 ret = -ENOMEM;
545 goto err_nomem;
546 }
547
548 platform_set_drvdata(pdev, info);
549
550 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
551 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
552 if (!res1 || !res2) {
553 dev_err(&pdev->dev, "resource missing\n");
554 ret = -EINVAL;
555 goto err_nomem;
556 }
557
558 vaddr = ioremap(res1->start, resource_size(res1));
559 base = ioremap(res2->start, resource_size(res2));
560 if (!vaddr || !base) {
561 dev_err(&pdev->dev, "ioremap failed\n");
562 ret = -EINVAL;
563 goto err_ioremap;
564 }
565
566 info->dev = &pdev->dev;
567 info->base = base;
568 info->vaddr = vaddr;
569
570 info->mtd.priv = &info->chip;
571 info->mtd.name = dev_name(&pdev->dev);
572 info->mtd.owner = THIS_MODULE;
573
574 info->mtd.dev.parent = &pdev->dev;
575
576 info->chip.IO_ADDR_R = vaddr;
577 info->chip.IO_ADDR_W = vaddr;
578 info->chip.chip_delay = 0;
579 info->chip.select_chip = nand_davinci_select_chip;
580
581 /* options such as NAND_BBT_USE_FLASH */
582 info->chip.bbt_options = pdata->bbt_options;
583 /* options such as 16-bit widths */
584 info->chip.options = pdata->options;
585 info->chip.bbt_td = pdata->bbt_td;
586 info->chip.bbt_md = pdata->bbt_md;
587 info->timing = pdata->timing;
588
589 info->ioaddr = (uint32_t __force) vaddr;
590
591 info->current_cs = info->ioaddr;
592 info->core_chipsel = pdev->id;
593 info->mask_chipsel = pdata->mask_chipsel;
594
595 /* use nandboot-capable ALE/CLE masks by default */
596 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
597 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
598
599 /* Set address of hardware control function */
600 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
601 info->chip.dev_ready = nand_davinci_dev_ready;
602
603 /* Speed up buffer I/O */
604 info->chip.read_buf = nand_davinci_read_buf;
605 info->chip.write_buf = nand_davinci_write_buf;
606
607 /* Use board-specific ECC config */
608 ecc_mode = pdata->ecc_mode;
609
610 ret = -EINVAL;
611 switch (ecc_mode) {
612 case NAND_ECC_NONE:
613 case NAND_ECC_SOFT:
614 pdata->ecc_bits = 0;
615 break;
616 case NAND_ECC_HW:
617 if (pdata->ecc_bits == 4) {
618 /* No sanity checks: CPUs must support this,
619 * and the chips may not use NAND_BUSWIDTH_16.
620 */
621
622 /* No sharing 4-bit hardware between chipselects yet */
623 spin_lock_irq(&davinci_nand_lock);
624 if (ecc4_busy)
625 ret = -EBUSY;
626 else
627 ecc4_busy = true;
628 spin_unlock_irq(&davinci_nand_lock);
629
630 if (ret == -EBUSY)
631 goto err_ecc;
632
633 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
634 info->chip.ecc.correct = nand_davinci_correct_4bit;
635 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
636 info->chip.ecc.bytes = 10;
637 } else {
638 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
639 info->chip.ecc.correct = nand_davinci_correct_1bit;
640 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
641 info->chip.ecc.bytes = 3;
642 }
643 info->chip.ecc.size = 512;
644 break;
645 default:
646 ret = -EINVAL;
647 goto err_ecc;
648 }
649 info->chip.ecc.mode = ecc_mode;
650
651 info->clk = clk_get(&pdev->dev, "aemif");
652 if (IS_ERR(info->clk)) {
653 ret = PTR_ERR(info->clk);
654 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
655 goto err_clk;
656 }
657
658 ret = clk_enable(info->clk);
659 if (ret < 0) {
660 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
661 ret);
662 goto err_clk_enable;
663 }
664
665 /*
666 * Setup Async configuration register in case we did not boot from
667 * NAND and so bootloader did not bother to set it up.
668 */
669 val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
670
671 /* Extended Wait is not valid and Select Strobe mode is not used */
672 val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
673 if (info->chip.options & NAND_BUSWIDTH_16)
674 val |= 0x1;
675
676 davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
677
678 ret = davinci_aemif_setup_timing(info->timing, info->base,
679 info->core_chipsel);
680 if (ret < 0) {
681 dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
682 goto err_timing;
683 }
684
685 spin_lock_irq(&davinci_nand_lock);
686
687 /* put CSxNAND into NAND mode */
688 val = davinci_nand_readl(info, NANDFCR_OFFSET);
689 val |= BIT(info->core_chipsel);
690 davinci_nand_writel(info, NANDFCR_OFFSET, val);
691
692 spin_unlock_irq(&davinci_nand_lock);
693
694 /* Scan to find existence of the device(s) */
695 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
696 if (ret < 0) {
697 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
698 goto err_scan;
699 }
700
701 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
702 * is OK, but it allocates 6 bytes when only 3 are needed (for
703 * each 512 bytes). For the 4-bit HW ECC, that default is not
704 * usable: 10 bytes are needed, not 6.
705 */
706 if (pdata->ecc_bits == 4) {
707 int chunks = info->mtd.writesize / 512;
708
709 if (!chunks || info->mtd.oobsize < 16) {
710 dev_dbg(&pdev->dev, "too small\n");
711 ret = -EINVAL;
712 goto err_scan;
713 }
714
715 /* For small page chips, preserve the manufacturer's
716 * badblock marking data ... and make sure a flash BBT
717 * table marker fits in the free bytes.
718 */
719 if (chunks == 1) {
720 info->ecclayout = hwecc4_small;
721 info->ecclayout.oobfree[1].length =
722 info->mtd.oobsize - 16;
723 goto syndrome_done;
724 }
725 if (chunks == 4) {
726 info->ecclayout = hwecc4_2048;
727 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
728 goto syndrome_done;
729 }
730
731 /* 4KiB page chips are not yet supported. The eccpos from
732 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
733 * breaks userspace ioctl interface with mtd-utils. Once we
734 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
735 * for the 4KiB page chips.
736 *
737 * TODO: Note that nand_ecclayout has now been expanded and can
738 * hold plenty of OOB entries.
739 */
740 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
741 "for 4KiB-page NAND\n");
742 ret = -EIO;
743 goto err_scan;
744
745 syndrome_done:
746 info->chip.ecc.layout = &info->ecclayout;
747 }
748
749 ret = nand_scan_tail(&info->mtd);
750 if (ret < 0)
751 goto err_scan;
752
753 ret = mtd_device_parse_register(&info->mtd, NULL, 0,
754 pdata->parts, pdata->nr_parts);
755
756 if (ret < 0)
757 goto err_scan;
758
759 val = davinci_nand_readl(info, NRCSR_OFFSET);
760 dev_info(&pdev->dev, "controller rev. %d.%d\n",
761 (val >> 8) & 0xff, val & 0xff);
762
763 return 0;
764
765 err_scan:
766 err_timing:
767 clk_disable(info->clk);
768
769 err_clk_enable:
770 clk_put(info->clk);
771
772 spin_lock_irq(&davinci_nand_lock);
773 if (ecc_mode == NAND_ECC_HW_SYNDROME)
774 ecc4_busy = false;
775 spin_unlock_irq(&davinci_nand_lock);
776
777 err_ecc:
778 err_clk:
779 err_ioremap:
780 if (base)
781 iounmap(base);
782 if (vaddr)
783 iounmap(vaddr);
784
785 err_nomem:
786 kfree(info);
787 return ret;
788 }
789
790 static int __exit nand_davinci_remove(struct platform_device *pdev)
791 {
792 struct davinci_nand_info *info = platform_get_drvdata(pdev);
793
794 spin_lock_irq(&davinci_nand_lock);
795 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
796 ecc4_busy = false;
797 spin_unlock_irq(&davinci_nand_lock);
798
799 iounmap(info->base);
800 iounmap(info->vaddr);
801
802 nand_release(&info->mtd);
803
804 clk_disable(info->clk);
805 clk_put(info->clk);
806
807 kfree(info);
808
809 return 0;
810 }
811
812 static struct platform_driver nand_davinci_driver = {
813 .remove = __exit_p(nand_davinci_remove),
814 .driver = {
815 .name = "davinci_nand",
816 },
817 };
818 MODULE_ALIAS("platform:davinci_nand");
819
820 static int __init nand_davinci_init(void)
821 {
822 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
823 }
824 module_init(nand_davinci_init);
825
826 static void __exit nand_davinci_exit(void)
827 {
828 platform_driver_unregister(&nand_davinci_driver);
829 }
830 module_exit(nand_davinci_exit);
831
832 MODULE_LICENSE("GPL");
833 MODULE_AUTHOR("Texas Instruments");
834 MODULE_DESCRIPTION("Davinci NAND flash driver");
835
This page took 0.063923 seconds and 5 git commands to generate.