Merge tag 'hsi-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[deliverable/linux.git] / drivers / mtd / nand / diskonchip.c
1 /*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/io.h>
28
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
35
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39 #endif
40
41 static unsigned long doc_locations[] __initdata = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else
50 0xc8000, 0xca000, 0xcc000, 0xce000,
51 0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 0xd8000, 0xda000, 0xdc000, 0xde000,
53 0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif
56 #endif
57 0xffffffff };
58
59 static struct mtd_info *doclist = NULL;
60
61 struct doc_priv {
62 void __iomem *virtadr;
63 unsigned long physadr;
64 u_char ChipID;
65 u_char CDSNControl;
66 int chips_per_floor; /* The number of chips detected on each floor */
67 int curfloor;
68 int curchip;
69 int mh0_page;
70 int mh1_page;
71 struct mtd_info *nextdoc;
72
73 /* Handle the last stage of initialization (BBT scan, partitioning) */
74 int (*late_init)(struct mtd_info *mtd);
75 };
76
77 /* This is the ecc value computed by the HW ecc generator upon writing an empty
78 page, one with all 0xff for data. */
79 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
80
81 #define INFTL_BBT_RESERVED_BLOCKS 4
82
83 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
84 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
85 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
86
87 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
88 unsigned int bitmask);
89 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
90
91 static int debug = 0;
92 module_param(debug, int, 0);
93
94 static int try_dword = 1;
95 module_param(try_dword, int, 0);
96
97 static int no_ecc_failures = 0;
98 module_param(no_ecc_failures, int, 0);
99
100 static int no_autopart = 0;
101 module_param(no_autopart, int, 0);
102
103 static int show_firmware_partition = 0;
104 module_param(show_firmware_partition, int, 0);
105
106 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
107 static int inftl_bbt_write = 1;
108 #else
109 static int inftl_bbt_write = 0;
110 #endif
111 module_param(inftl_bbt_write, int, 0);
112
113 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
114 module_param(doc_config_location, ulong, 0);
115 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
116
117 /* Sector size for HW ECC */
118 #define SECTOR_SIZE 512
119 /* The sector bytes are packed into NB_DATA 10 bit words */
120 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
121 /* Number of roots */
122 #define NROOTS 4
123 /* First consective root */
124 #define FCR 510
125 /* Number of symbols */
126 #define NN 1023
127
128 /* the Reed Solomon control structure */
129 static struct rs_control *rs_decoder;
130
131 /*
132 * The HW decoder in the DoC ASIC's provides us a error syndrome,
133 * which we must convert to a standard syndrome usable by the generic
134 * Reed-Solomon library code.
135 *
136 * Fabrice Bellard figured this out in the old docecc code. I added
137 * some comments, improved a minor bit and converted it to make use
138 * of the generic Reed-Solomon library. tglx
139 */
140 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
141 {
142 int i, j, nerr, errpos[8];
143 uint8_t parity;
144 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
145
146 memset(syn, 0, sizeof(syn));
147 /* Convert the ecc bytes into words */
148 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
149 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
150 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
151 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
152 parity = ecc[1];
153
154 /* Initialize the syndrome buffer */
155 for (i = 0; i < NROOTS; i++)
156 s[i] = ds[0];
157 /*
158 * Evaluate
159 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
160 * where x = alpha^(FCR + i)
161 */
162 for (j = 1; j < NROOTS; j++) {
163 if (ds[j] == 0)
164 continue;
165 tmp = rs->index_of[ds[j]];
166 for (i = 0; i < NROOTS; i++)
167 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
168 }
169
170 /* Calc syn[i] = s[i] / alpha^(v + i) */
171 for (i = 0; i < NROOTS; i++) {
172 if (s[i])
173 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
174 }
175 /* Call the decoder library */
176 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
177
178 /* Incorrectable errors ? */
179 if (nerr < 0)
180 return nerr;
181
182 /*
183 * Correct the errors. The bitpositions are a bit of magic,
184 * but they are given by the design of the de/encoder circuit
185 * in the DoC ASIC's.
186 */
187 for (i = 0; i < nerr; i++) {
188 int index, bitpos, pos = 1015 - errpos[i];
189 uint8_t val;
190 if (pos >= NB_DATA && pos < 1019)
191 continue;
192 if (pos < NB_DATA) {
193 /* extract bit position (MSB first) */
194 pos = 10 * (NB_DATA - 1 - pos) - 6;
195 /* now correct the following 10 bits. At most two bytes
196 can be modified since pos is even */
197 index = (pos >> 3) ^ 1;
198 bitpos = pos & 7;
199 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
200 val = (uint8_t) (errval[i] >> (2 + bitpos));
201 parity ^= val;
202 if (index < SECTOR_SIZE)
203 data[index] ^= val;
204 }
205 index = ((pos >> 3) + 1) ^ 1;
206 bitpos = (bitpos + 10) & 7;
207 if (bitpos == 0)
208 bitpos = 8;
209 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
210 val = (uint8_t) (errval[i] << (8 - bitpos));
211 parity ^= val;
212 if (index < SECTOR_SIZE)
213 data[index] ^= val;
214 }
215 }
216 }
217 /* If the parity is wrong, no rescue possible */
218 return parity ? -EBADMSG : nerr;
219 }
220
221 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
222 {
223 volatile char dummy;
224 int i;
225
226 for (i = 0; i < cycles; i++) {
227 if (DoC_is_Millennium(doc))
228 dummy = ReadDOC(doc->virtadr, NOP);
229 else if (DoC_is_MillenniumPlus(doc))
230 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
231 else
232 dummy = ReadDOC(doc->virtadr, DOCStatus);
233 }
234
235 }
236
237 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
238
239 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
240 static int _DoC_WaitReady(struct doc_priv *doc)
241 {
242 void __iomem *docptr = doc->virtadr;
243 unsigned long timeo = jiffies + (HZ * 10);
244
245 if (debug)
246 printk("_DoC_WaitReady...\n");
247 /* Out-of-line routine to wait for chip response */
248 if (DoC_is_MillenniumPlus(doc)) {
249 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
250 if (time_after(jiffies, timeo)) {
251 printk("_DoC_WaitReady timed out.\n");
252 return -EIO;
253 }
254 udelay(1);
255 cond_resched();
256 }
257 } else {
258 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
259 if (time_after(jiffies, timeo)) {
260 printk("_DoC_WaitReady timed out.\n");
261 return -EIO;
262 }
263 udelay(1);
264 cond_resched();
265 }
266 }
267
268 return 0;
269 }
270
271 static inline int DoC_WaitReady(struct doc_priv *doc)
272 {
273 void __iomem *docptr = doc->virtadr;
274 int ret = 0;
275
276 if (DoC_is_MillenniumPlus(doc)) {
277 DoC_Delay(doc, 4);
278
279 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
280 /* Call the out-of-line routine to wait */
281 ret = _DoC_WaitReady(doc);
282 } else {
283 DoC_Delay(doc, 4);
284
285 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
286 /* Call the out-of-line routine to wait */
287 ret = _DoC_WaitReady(doc);
288 DoC_Delay(doc, 2);
289 }
290
291 if (debug)
292 printk("DoC_WaitReady OK\n");
293 return ret;
294 }
295
296 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
297 {
298 struct nand_chip *this = mtd_to_nand(mtd);
299 struct doc_priv *doc = nand_get_controller_data(this);
300 void __iomem *docptr = doc->virtadr;
301
302 if (debug)
303 printk("write_byte %02x\n", datum);
304 WriteDOC(datum, docptr, CDSNSlowIO);
305 WriteDOC(datum, docptr, 2k_CDSN_IO);
306 }
307
308 static u_char doc2000_read_byte(struct mtd_info *mtd)
309 {
310 struct nand_chip *this = mtd_to_nand(mtd);
311 struct doc_priv *doc = nand_get_controller_data(this);
312 void __iomem *docptr = doc->virtadr;
313 u_char ret;
314
315 ReadDOC(docptr, CDSNSlowIO);
316 DoC_Delay(doc, 2);
317 ret = ReadDOC(docptr, 2k_CDSN_IO);
318 if (debug)
319 printk("read_byte returns %02x\n", ret);
320 return ret;
321 }
322
323 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
324 {
325 struct nand_chip *this = mtd_to_nand(mtd);
326 struct doc_priv *doc = nand_get_controller_data(this);
327 void __iomem *docptr = doc->virtadr;
328 int i;
329 if (debug)
330 printk("writebuf of %d bytes: ", len);
331 for (i = 0; i < len; i++) {
332 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
333 if (debug && i < 16)
334 printk("%02x ", buf[i]);
335 }
336 if (debug)
337 printk("\n");
338 }
339
340 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
341 {
342 struct nand_chip *this = mtd_to_nand(mtd);
343 struct doc_priv *doc = nand_get_controller_data(this);
344 void __iomem *docptr = doc->virtadr;
345 int i;
346
347 if (debug)
348 printk("readbuf of %d bytes: ", len);
349
350 for (i = 0; i < len; i++) {
351 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
352 }
353 }
354
355 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
356 {
357 struct nand_chip *this = mtd_to_nand(mtd);
358 struct doc_priv *doc = nand_get_controller_data(this);
359 void __iomem *docptr = doc->virtadr;
360 int i;
361
362 if (debug)
363 printk("readbuf_dword of %d bytes: ", len);
364
365 if (unlikely((((unsigned long)buf) | len) & 3)) {
366 for (i = 0; i < len; i++) {
367 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
368 }
369 } else {
370 for (i = 0; i < len; i += 4) {
371 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
372 }
373 }
374 }
375
376 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
377 {
378 struct nand_chip *this = mtd_to_nand(mtd);
379 struct doc_priv *doc = nand_get_controller_data(this);
380 uint16_t ret;
381
382 doc200x_select_chip(mtd, nr);
383 doc200x_hwcontrol(mtd, NAND_CMD_READID,
384 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
385 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
386 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
387
388 /* We can't use dev_ready here, but at least we wait for the
389 * command to complete
390 */
391 udelay(50);
392
393 ret = this->read_byte(mtd) << 8;
394 ret |= this->read_byte(mtd);
395
396 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
397 /* First chip probe. See if we get same results by 32-bit access */
398 union {
399 uint32_t dword;
400 uint8_t byte[4];
401 } ident;
402 void __iomem *docptr = doc->virtadr;
403
404 doc200x_hwcontrol(mtd, NAND_CMD_READID,
405 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
406 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
407 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
408 NAND_NCE | NAND_CTRL_CHANGE);
409
410 udelay(50);
411
412 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
413 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
414 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
415 this->read_buf = &doc2000_readbuf_dword;
416 }
417 }
418
419 return ret;
420 }
421
422 static void __init doc2000_count_chips(struct mtd_info *mtd)
423 {
424 struct nand_chip *this = mtd_to_nand(mtd);
425 struct doc_priv *doc = nand_get_controller_data(this);
426 uint16_t mfrid;
427 int i;
428
429 /* Max 4 chips per floor on DiskOnChip 2000 */
430 doc->chips_per_floor = 4;
431
432 /* Find out what the first chip is */
433 mfrid = doc200x_ident_chip(mtd, 0);
434
435 /* Find how many chips in each floor. */
436 for (i = 1; i < 4; i++) {
437 if (doc200x_ident_chip(mtd, i) != mfrid)
438 break;
439 }
440 doc->chips_per_floor = i;
441 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
442 }
443
444 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
445 {
446 struct doc_priv *doc = nand_get_controller_data(this);
447
448 int status;
449
450 DoC_WaitReady(doc);
451 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
452 DoC_WaitReady(doc);
453 status = (int)this->read_byte(mtd);
454
455 return status;
456 }
457
458 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
459 {
460 struct nand_chip *this = mtd_to_nand(mtd);
461 struct doc_priv *doc = nand_get_controller_data(this);
462 void __iomem *docptr = doc->virtadr;
463
464 WriteDOC(datum, docptr, CDSNSlowIO);
465 WriteDOC(datum, docptr, Mil_CDSN_IO);
466 WriteDOC(datum, docptr, WritePipeTerm);
467 }
468
469 static u_char doc2001_read_byte(struct mtd_info *mtd)
470 {
471 struct nand_chip *this = mtd_to_nand(mtd);
472 struct doc_priv *doc = nand_get_controller_data(this);
473 void __iomem *docptr = doc->virtadr;
474
475 //ReadDOC(docptr, CDSNSlowIO);
476 /* 11.4.5 -- delay twice to allow extended length cycle */
477 DoC_Delay(doc, 2);
478 ReadDOC(docptr, ReadPipeInit);
479 //return ReadDOC(docptr, Mil_CDSN_IO);
480 return ReadDOC(docptr, LastDataRead);
481 }
482
483 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
484 {
485 struct nand_chip *this = mtd_to_nand(mtd);
486 struct doc_priv *doc = nand_get_controller_data(this);
487 void __iomem *docptr = doc->virtadr;
488 int i;
489
490 for (i = 0; i < len; i++)
491 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
492 /* Terminate write pipeline */
493 WriteDOC(0x00, docptr, WritePipeTerm);
494 }
495
496 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
497 {
498 struct nand_chip *this = mtd_to_nand(mtd);
499 struct doc_priv *doc = nand_get_controller_data(this);
500 void __iomem *docptr = doc->virtadr;
501 int i;
502
503 /* Start read pipeline */
504 ReadDOC(docptr, ReadPipeInit);
505
506 for (i = 0; i < len - 1; i++)
507 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
508
509 /* Terminate read pipeline */
510 buf[i] = ReadDOC(docptr, LastDataRead);
511 }
512
513 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
514 {
515 struct nand_chip *this = mtd_to_nand(mtd);
516 struct doc_priv *doc = nand_get_controller_data(this);
517 void __iomem *docptr = doc->virtadr;
518 u_char ret;
519
520 ReadDOC(docptr, Mplus_ReadPipeInit);
521 ReadDOC(docptr, Mplus_ReadPipeInit);
522 ret = ReadDOC(docptr, Mplus_LastDataRead);
523 if (debug)
524 printk("read_byte returns %02x\n", ret);
525 return ret;
526 }
527
528 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
529 {
530 struct nand_chip *this = mtd_to_nand(mtd);
531 struct doc_priv *doc = nand_get_controller_data(this);
532 void __iomem *docptr = doc->virtadr;
533 int i;
534
535 if (debug)
536 printk("writebuf of %d bytes: ", len);
537 for (i = 0; i < len; i++) {
538 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
539 if (debug && i < 16)
540 printk("%02x ", buf[i]);
541 }
542 if (debug)
543 printk("\n");
544 }
545
546 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
547 {
548 struct nand_chip *this = mtd_to_nand(mtd);
549 struct doc_priv *doc = nand_get_controller_data(this);
550 void __iomem *docptr = doc->virtadr;
551 int i;
552
553 if (debug)
554 printk("readbuf of %d bytes: ", len);
555
556 /* Start read pipeline */
557 ReadDOC(docptr, Mplus_ReadPipeInit);
558 ReadDOC(docptr, Mplus_ReadPipeInit);
559
560 for (i = 0; i < len - 2; i++) {
561 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
562 if (debug && i < 16)
563 printk("%02x ", buf[i]);
564 }
565
566 /* Terminate read pipeline */
567 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
568 if (debug && i < 16)
569 printk("%02x ", buf[len - 2]);
570 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
571 if (debug && i < 16)
572 printk("%02x ", buf[len - 1]);
573 if (debug)
574 printk("\n");
575 }
576
577 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
578 {
579 struct nand_chip *this = mtd_to_nand(mtd);
580 struct doc_priv *doc = nand_get_controller_data(this);
581 void __iomem *docptr = doc->virtadr;
582 int floor = 0;
583
584 if (debug)
585 printk("select chip (%d)\n", chip);
586
587 if (chip == -1) {
588 /* Disable flash internally */
589 WriteDOC(0, docptr, Mplus_FlashSelect);
590 return;
591 }
592
593 floor = chip / doc->chips_per_floor;
594 chip -= (floor * doc->chips_per_floor);
595
596 /* Assert ChipEnable and deassert WriteProtect */
597 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
598 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
599
600 doc->curchip = chip;
601 doc->curfloor = floor;
602 }
603
604 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
605 {
606 struct nand_chip *this = mtd_to_nand(mtd);
607 struct doc_priv *doc = nand_get_controller_data(this);
608 void __iomem *docptr = doc->virtadr;
609 int floor = 0;
610
611 if (debug)
612 printk("select chip (%d)\n", chip);
613
614 if (chip == -1)
615 return;
616
617 floor = chip / doc->chips_per_floor;
618 chip -= (floor * doc->chips_per_floor);
619
620 /* 11.4.4 -- deassert CE before changing chip */
621 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
622
623 WriteDOC(floor, docptr, FloorSelect);
624 WriteDOC(chip, docptr, CDSNDeviceSelect);
625
626 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
627
628 doc->curchip = chip;
629 doc->curfloor = floor;
630 }
631
632 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
633
634 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
635 unsigned int ctrl)
636 {
637 struct nand_chip *this = mtd_to_nand(mtd);
638 struct doc_priv *doc = nand_get_controller_data(this);
639 void __iomem *docptr = doc->virtadr;
640
641 if (ctrl & NAND_CTRL_CHANGE) {
642 doc->CDSNControl &= ~CDSN_CTRL_MSK;
643 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
644 if (debug)
645 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
646 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
647 /* 11.4.3 -- 4 NOPs after CSDNControl write */
648 DoC_Delay(doc, 4);
649 }
650 if (cmd != NAND_CMD_NONE) {
651 if (DoC_is_2000(doc))
652 doc2000_write_byte(mtd, cmd);
653 else
654 doc2001_write_byte(mtd, cmd);
655 }
656 }
657
658 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
659 {
660 struct nand_chip *this = mtd_to_nand(mtd);
661 struct doc_priv *doc = nand_get_controller_data(this);
662 void __iomem *docptr = doc->virtadr;
663
664 /*
665 * Must terminate write pipeline before sending any commands
666 * to the device.
667 */
668 if (command == NAND_CMD_PAGEPROG) {
669 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
670 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
671 }
672
673 /*
674 * Write out the command to the device.
675 */
676 if (command == NAND_CMD_SEQIN) {
677 int readcmd;
678
679 if (column >= mtd->writesize) {
680 /* OOB area */
681 column -= mtd->writesize;
682 readcmd = NAND_CMD_READOOB;
683 } else if (column < 256) {
684 /* First 256 bytes --> READ0 */
685 readcmd = NAND_CMD_READ0;
686 } else {
687 column -= 256;
688 readcmd = NAND_CMD_READ1;
689 }
690 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
691 }
692 WriteDOC(command, docptr, Mplus_FlashCmd);
693 WriteDOC(0, docptr, Mplus_WritePipeTerm);
694 WriteDOC(0, docptr, Mplus_WritePipeTerm);
695
696 if (column != -1 || page_addr != -1) {
697 /* Serially input address */
698 if (column != -1) {
699 /* Adjust columns for 16 bit buswidth */
700 if (this->options & NAND_BUSWIDTH_16 &&
701 !nand_opcode_8bits(command))
702 column >>= 1;
703 WriteDOC(column, docptr, Mplus_FlashAddress);
704 }
705 if (page_addr != -1) {
706 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
707 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
708 /* One more address cycle for higher density devices */
709 if (this->chipsize & 0x0c000000) {
710 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
711 printk("high density\n");
712 }
713 }
714 WriteDOC(0, docptr, Mplus_WritePipeTerm);
715 WriteDOC(0, docptr, Mplus_WritePipeTerm);
716 /* deassert ALE */
717 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
718 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
719 WriteDOC(0, docptr, Mplus_FlashControl);
720 }
721
722 /*
723 * program and erase have their own busy handlers
724 * status and sequential in needs no delay
725 */
726 switch (command) {
727
728 case NAND_CMD_PAGEPROG:
729 case NAND_CMD_ERASE1:
730 case NAND_CMD_ERASE2:
731 case NAND_CMD_SEQIN:
732 case NAND_CMD_STATUS:
733 return;
734
735 case NAND_CMD_RESET:
736 if (this->dev_ready)
737 break;
738 udelay(this->chip_delay);
739 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
740 WriteDOC(0, docptr, Mplus_WritePipeTerm);
741 WriteDOC(0, docptr, Mplus_WritePipeTerm);
742 while (!(this->read_byte(mtd) & 0x40)) ;
743 return;
744
745 /* This applies to read commands */
746 default:
747 /*
748 * If we don't have access to the busy pin, we apply the given
749 * command delay
750 */
751 if (!this->dev_ready) {
752 udelay(this->chip_delay);
753 return;
754 }
755 }
756
757 /* Apply this short delay always to ensure that we do wait tWB in
758 * any case on any machine. */
759 ndelay(100);
760 /* wait until command is processed */
761 while (!this->dev_ready(mtd)) ;
762 }
763
764 static int doc200x_dev_ready(struct mtd_info *mtd)
765 {
766 struct nand_chip *this = mtd_to_nand(mtd);
767 struct doc_priv *doc = nand_get_controller_data(this);
768 void __iomem *docptr = doc->virtadr;
769
770 if (DoC_is_MillenniumPlus(doc)) {
771 /* 11.4.2 -- must NOP four times before checking FR/B# */
772 DoC_Delay(doc, 4);
773 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
774 if (debug)
775 printk("not ready\n");
776 return 0;
777 }
778 if (debug)
779 printk("was ready\n");
780 return 1;
781 } else {
782 /* 11.4.2 -- must NOP four times before checking FR/B# */
783 DoC_Delay(doc, 4);
784 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
785 if (debug)
786 printk("not ready\n");
787 return 0;
788 }
789 /* 11.4.2 -- Must NOP twice if it's ready */
790 DoC_Delay(doc, 2);
791 if (debug)
792 printk("was ready\n");
793 return 1;
794 }
795 }
796
797 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
798 {
799 /* This is our last resort if we couldn't find or create a BBT. Just
800 pretend all blocks are good. */
801 return 0;
802 }
803
804 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
805 {
806 struct nand_chip *this = mtd_to_nand(mtd);
807 struct doc_priv *doc = nand_get_controller_data(this);
808 void __iomem *docptr = doc->virtadr;
809
810 /* Prime the ECC engine */
811 switch (mode) {
812 case NAND_ECC_READ:
813 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
814 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
815 break;
816 case NAND_ECC_WRITE:
817 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
818 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
819 break;
820 }
821 }
822
823 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
824 {
825 struct nand_chip *this = mtd_to_nand(mtd);
826 struct doc_priv *doc = nand_get_controller_data(this);
827 void __iomem *docptr = doc->virtadr;
828
829 /* Prime the ECC engine */
830 switch (mode) {
831 case NAND_ECC_READ:
832 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
833 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
834 break;
835 case NAND_ECC_WRITE:
836 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
837 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
838 break;
839 }
840 }
841
842 /* This code is only called on write */
843 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
844 {
845 struct nand_chip *this = mtd_to_nand(mtd);
846 struct doc_priv *doc = nand_get_controller_data(this);
847 void __iomem *docptr = doc->virtadr;
848 int i;
849 int emptymatch = 1;
850
851 /* flush the pipeline */
852 if (DoC_is_2000(doc)) {
853 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
854 WriteDOC(0, docptr, 2k_CDSN_IO);
855 WriteDOC(0, docptr, 2k_CDSN_IO);
856 WriteDOC(0, docptr, 2k_CDSN_IO);
857 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
858 } else if (DoC_is_MillenniumPlus(doc)) {
859 WriteDOC(0, docptr, Mplus_NOP);
860 WriteDOC(0, docptr, Mplus_NOP);
861 WriteDOC(0, docptr, Mplus_NOP);
862 } else {
863 WriteDOC(0, docptr, NOP);
864 WriteDOC(0, docptr, NOP);
865 WriteDOC(0, docptr, NOP);
866 }
867
868 for (i = 0; i < 6; i++) {
869 if (DoC_is_MillenniumPlus(doc))
870 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
871 else
872 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
873 if (ecc_code[i] != empty_write_ecc[i])
874 emptymatch = 0;
875 }
876 if (DoC_is_MillenniumPlus(doc))
877 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
878 else
879 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
880 #if 0
881 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
882 if (emptymatch) {
883 /* Note: this somewhat expensive test should not be triggered
884 often. It could be optimized away by examining the data in
885 the writebuf routine, and remembering the result. */
886 for (i = 0; i < 512; i++) {
887 if (dat[i] == 0xff)
888 continue;
889 emptymatch = 0;
890 break;
891 }
892 }
893 /* If emptymatch still =1, we do have an all-0xff data buffer.
894 Return all-0xff ecc value instead of the computed one, so
895 it'll look just like a freshly-erased page. */
896 if (emptymatch)
897 memset(ecc_code, 0xff, 6);
898 #endif
899 return 0;
900 }
901
902 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
903 u_char *read_ecc, u_char *isnull)
904 {
905 int i, ret = 0;
906 struct nand_chip *this = mtd_to_nand(mtd);
907 struct doc_priv *doc = nand_get_controller_data(this);
908 void __iomem *docptr = doc->virtadr;
909 uint8_t calc_ecc[6];
910 volatile u_char dummy;
911
912 /* flush the pipeline */
913 if (DoC_is_2000(doc)) {
914 dummy = ReadDOC(docptr, 2k_ECCStatus);
915 dummy = ReadDOC(docptr, 2k_ECCStatus);
916 dummy = ReadDOC(docptr, 2k_ECCStatus);
917 } else if (DoC_is_MillenniumPlus(doc)) {
918 dummy = ReadDOC(docptr, Mplus_ECCConf);
919 dummy = ReadDOC(docptr, Mplus_ECCConf);
920 dummy = ReadDOC(docptr, Mplus_ECCConf);
921 } else {
922 dummy = ReadDOC(docptr, ECCConf);
923 dummy = ReadDOC(docptr, ECCConf);
924 dummy = ReadDOC(docptr, ECCConf);
925 }
926
927 /* Error occurred ? */
928 if (dummy & 0x80) {
929 for (i = 0; i < 6; i++) {
930 if (DoC_is_MillenniumPlus(doc))
931 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
932 else
933 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
934 }
935
936 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
937 if (ret > 0)
938 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
939 }
940 if (DoC_is_MillenniumPlus(doc))
941 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
942 else
943 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
944 if (no_ecc_failures && mtd_is_eccerr(ret)) {
945 printk(KERN_ERR "suppressing ECC failure\n");
946 ret = 0;
947 }
948 return ret;
949 }
950
951 //u_char mydatabuf[528];
952
953 static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
954 struct mtd_oob_region *oobregion)
955 {
956 if (section)
957 return -ERANGE;
958
959 oobregion->offset = 0;
960 oobregion->length = 6;
961
962 return 0;
963 }
964
965 static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
966 struct mtd_oob_region *oobregion)
967 {
968 if (section > 1)
969 return -ERANGE;
970
971 /*
972 * The strange out-of-order free bytes definition is a (possibly
973 * unneeded) attempt to retain compatibility. It used to read:
974 * .oobfree = { {8, 8} }
975 * Since that leaves two bytes unusable, it was changed. But the
976 * following scheme might affect existing jffs2 installs by moving the
977 * cleanmarker:
978 * .oobfree = { {6, 10} }
979 * jffs2 seems to handle the above gracefully, but the current scheme
980 * seems safer. The only problem with it is that any code retrieving
981 * free bytes position must be able to handle out-of-order segments.
982 */
983 if (!section) {
984 oobregion->offset = 8;
985 oobregion->length = 8;
986 } else {
987 oobregion->offset = 6;
988 oobregion->length = 2;
989 }
990
991 return 0;
992 }
993
994 static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
995 .ecc = doc200x_ooblayout_ecc,
996 .free = doc200x_ooblayout_free,
997 };
998
999 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1000 On successful return, buf will contain a copy of the media header for
1001 further processing. id is the string to scan for, and will presumably be
1002 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1003 header. The page #s of the found media headers are placed in mh0_page and
1004 mh1_page in the DOC private structure. */
1005 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1006 {
1007 struct nand_chip *this = mtd_to_nand(mtd);
1008 struct doc_priv *doc = nand_get_controller_data(this);
1009 unsigned offs;
1010 int ret;
1011 size_t retlen;
1012
1013 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1014 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1015 if (retlen != mtd->writesize)
1016 continue;
1017 if (ret) {
1018 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1019 }
1020 if (memcmp(buf, id, 6))
1021 continue;
1022 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1023 if (doc->mh0_page == -1) {
1024 doc->mh0_page = offs >> this->page_shift;
1025 if (!findmirror)
1026 return 1;
1027 continue;
1028 }
1029 doc->mh1_page = offs >> this->page_shift;
1030 return 2;
1031 }
1032 if (doc->mh0_page == -1) {
1033 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1034 return 0;
1035 }
1036 /* Only one mediaheader was found. We want buf to contain a
1037 mediaheader on return, so we'll have to re-read the one we found. */
1038 offs = doc->mh0_page << this->page_shift;
1039 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1040 if (retlen != mtd->writesize) {
1041 /* Insanity. Give up. */
1042 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1043 return 0;
1044 }
1045 return 1;
1046 }
1047
1048 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1049 {
1050 struct nand_chip *this = mtd_to_nand(mtd);
1051 struct doc_priv *doc = nand_get_controller_data(this);
1052 int ret = 0;
1053 u_char *buf;
1054 struct NFTLMediaHeader *mh;
1055 const unsigned psize = 1 << this->page_shift;
1056 int numparts = 0;
1057 unsigned blocks, maxblocks;
1058 int offs, numheaders;
1059
1060 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1061 if (!buf) {
1062 return 0;
1063 }
1064 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1065 goto out;
1066 mh = (struct NFTLMediaHeader *)buf;
1067
1068 le16_to_cpus(&mh->NumEraseUnits);
1069 le16_to_cpus(&mh->FirstPhysicalEUN);
1070 le32_to_cpus(&mh->FormattedSize);
1071
1072 printk(KERN_INFO " DataOrgID = %s\n"
1073 " NumEraseUnits = %d\n"
1074 " FirstPhysicalEUN = %d\n"
1075 " FormattedSize = %d\n"
1076 " UnitSizeFactor = %d\n",
1077 mh->DataOrgID, mh->NumEraseUnits,
1078 mh->FirstPhysicalEUN, mh->FormattedSize,
1079 mh->UnitSizeFactor);
1080
1081 blocks = mtd->size >> this->phys_erase_shift;
1082 maxblocks = min(32768U, mtd->erasesize - psize);
1083
1084 if (mh->UnitSizeFactor == 0x00) {
1085 /* Auto-determine UnitSizeFactor. The constraints are:
1086 - There can be at most 32768 virtual blocks.
1087 - There can be at most (virtual block size - page size)
1088 virtual blocks (because MediaHeader+BBT must fit in 1).
1089 */
1090 mh->UnitSizeFactor = 0xff;
1091 while (blocks > maxblocks) {
1092 blocks >>= 1;
1093 maxblocks = min(32768U, (maxblocks << 1) + psize);
1094 mh->UnitSizeFactor--;
1095 }
1096 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1097 }
1098
1099 /* NOTE: The lines below modify internal variables of the NAND and MTD
1100 layers; variables with have already been configured by nand_scan.
1101 Unfortunately, we didn't know before this point what these values
1102 should be. Thus, this code is somewhat dependent on the exact
1103 implementation of the NAND layer. */
1104 if (mh->UnitSizeFactor != 0xff) {
1105 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1106 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1107 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1108 blocks = mtd->size >> this->bbt_erase_shift;
1109 maxblocks = min(32768U, mtd->erasesize - psize);
1110 }
1111
1112 if (blocks > maxblocks) {
1113 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1114 goto out;
1115 }
1116
1117 /* Skip past the media headers. */
1118 offs = max(doc->mh0_page, doc->mh1_page);
1119 offs <<= this->page_shift;
1120 offs += mtd->erasesize;
1121
1122 if (show_firmware_partition == 1) {
1123 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1124 parts[0].offset = 0;
1125 parts[0].size = offs;
1126 numparts = 1;
1127 }
1128
1129 parts[numparts].name = " DiskOnChip BDTL partition";
1130 parts[numparts].offset = offs;
1131 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1132
1133 offs += parts[numparts].size;
1134 numparts++;
1135
1136 if (offs < mtd->size) {
1137 parts[numparts].name = " DiskOnChip Remainder partition";
1138 parts[numparts].offset = offs;
1139 parts[numparts].size = mtd->size - offs;
1140 numparts++;
1141 }
1142
1143 ret = numparts;
1144 out:
1145 kfree(buf);
1146 return ret;
1147 }
1148
1149 /* This is a stripped-down copy of the code in inftlmount.c */
1150 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1151 {
1152 struct nand_chip *this = mtd_to_nand(mtd);
1153 struct doc_priv *doc = nand_get_controller_data(this);
1154 int ret = 0;
1155 u_char *buf;
1156 struct INFTLMediaHeader *mh;
1157 struct INFTLPartition *ip;
1158 int numparts = 0;
1159 int blocks;
1160 int vshift, lastvunit = 0;
1161 int i;
1162 int end = mtd->size;
1163
1164 if (inftl_bbt_write)
1165 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1166
1167 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1168 if (!buf) {
1169 return 0;
1170 }
1171
1172 if (!find_media_headers(mtd, buf, "BNAND", 0))
1173 goto out;
1174 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1175 mh = (struct INFTLMediaHeader *)buf;
1176
1177 le32_to_cpus(&mh->NoOfBootImageBlocks);
1178 le32_to_cpus(&mh->NoOfBinaryPartitions);
1179 le32_to_cpus(&mh->NoOfBDTLPartitions);
1180 le32_to_cpus(&mh->BlockMultiplierBits);
1181 le32_to_cpus(&mh->FormatFlags);
1182 le32_to_cpus(&mh->PercentUsed);
1183
1184 printk(KERN_INFO " bootRecordID = %s\n"
1185 " NoOfBootImageBlocks = %d\n"
1186 " NoOfBinaryPartitions = %d\n"
1187 " NoOfBDTLPartitions = %d\n"
1188 " BlockMultiplerBits = %d\n"
1189 " FormatFlgs = %d\n"
1190 " OsakVersion = %d.%d.%d.%d\n"
1191 " PercentUsed = %d\n",
1192 mh->bootRecordID, mh->NoOfBootImageBlocks,
1193 mh->NoOfBinaryPartitions,
1194 mh->NoOfBDTLPartitions,
1195 mh->BlockMultiplierBits, mh->FormatFlags,
1196 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1197 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1198 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1199 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1200 mh->PercentUsed);
1201
1202 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1203
1204 blocks = mtd->size >> vshift;
1205 if (blocks > 32768) {
1206 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1207 goto out;
1208 }
1209
1210 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1211 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1212 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1213 goto out;
1214 }
1215
1216 /* Scan the partitions */
1217 for (i = 0; (i < 4); i++) {
1218 ip = &(mh->Partitions[i]);
1219 le32_to_cpus(&ip->virtualUnits);
1220 le32_to_cpus(&ip->firstUnit);
1221 le32_to_cpus(&ip->lastUnit);
1222 le32_to_cpus(&ip->flags);
1223 le32_to_cpus(&ip->spareUnits);
1224 le32_to_cpus(&ip->Reserved0);
1225
1226 printk(KERN_INFO " PARTITION[%d] ->\n"
1227 " virtualUnits = %d\n"
1228 " firstUnit = %d\n"
1229 " lastUnit = %d\n"
1230 " flags = 0x%x\n"
1231 " spareUnits = %d\n",
1232 i, ip->virtualUnits, ip->firstUnit,
1233 ip->lastUnit, ip->flags,
1234 ip->spareUnits);
1235
1236 if ((show_firmware_partition == 1) &&
1237 (i == 0) && (ip->firstUnit > 0)) {
1238 parts[0].name = " DiskOnChip IPL / Media Header partition";
1239 parts[0].offset = 0;
1240 parts[0].size = mtd->erasesize * ip->firstUnit;
1241 numparts = 1;
1242 }
1243
1244 if (ip->flags & INFTL_BINARY)
1245 parts[numparts].name = " DiskOnChip BDK partition";
1246 else
1247 parts[numparts].name = " DiskOnChip BDTL partition";
1248 parts[numparts].offset = ip->firstUnit << vshift;
1249 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1250 numparts++;
1251 if (ip->lastUnit > lastvunit)
1252 lastvunit = ip->lastUnit;
1253 if (ip->flags & INFTL_LAST)
1254 break;
1255 }
1256 lastvunit++;
1257 if ((lastvunit << vshift) < end) {
1258 parts[numparts].name = " DiskOnChip Remainder partition";
1259 parts[numparts].offset = lastvunit << vshift;
1260 parts[numparts].size = end - parts[numparts].offset;
1261 numparts++;
1262 }
1263 ret = numparts;
1264 out:
1265 kfree(buf);
1266 return ret;
1267 }
1268
1269 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1270 {
1271 int ret, numparts;
1272 struct nand_chip *this = mtd_to_nand(mtd);
1273 struct doc_priv *doc = nand_get_controller_data(this);
1274 struct mtd_partition parts[2];
1275
1276 memset((char *)parts, 0, sizeof(parts));
1277 /* On NFTL, we have to find the media headers before we can read the
1278 BBTs, since they're stored in the media header eraseblocks. */
1279 numparts = nftl_partscan(mtd, parts);
1280 if (!numparts)
1281 return -EIO;
1282 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1283 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1284 NAND_BBT_VERSION;
1285 this->bbt_td->veroffs = 7;
1286 this->bbt_td->pages[0] = doc->mh0_page + 1;
1287 if (doc->mh1_page != -1) {
1288 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1289 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1290 NAND_BBT_VERSION;
1291 this->bbt_md->veroffs = 7;
1292 this->bbt_md->pages[0] = doc->mh1_page + 1;
1293 } else {
1294 this->bbt_md = NULL;
1295 }
1296
1297 ret = this->scan_bbt(mtd);
1298 if (ret)
1299 return ret;
1300
1301 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1302 }
1303
1304 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1305 {
1306 int ret, numparts;
1307 struct nand_chip *this = mtd_to_nand(mtd);
1308 struct doc_priv *doc = nand_get_controller_data(this);
1309 struct mtd_partition parts[5];
1310
1311 if (this->numchips > doc->chips_per_floor) {
1312 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1313 return -EIO;
1314 }
1315
1316 if (DoC_is_MillenniumPlus(doc)) {
1317 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1318 if (inftl_bbt_write)
1319 this->bbt_td->options |= NAND_BBT_WRITE;
1320 this->bbt_td->pages[0] = 2;
1321 this->bbt_md = NULL;
1322 } else {
1323 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1324 if (inftl_bbt_write)
1325 this->bbt_td->options |= NAND_BBT_WRITE;
1326 this->bbt_td->offs = 8;
1327 this->bbt_td->len = 8;
1328 this->bbt_td->veroffs = 7;
1329 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1330 this->bbt_td->reserved_block_code = 0x01;
1331 this->bbt_td->pattern = "MSYS_BBT";
1332
1333 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1334 if (inftl_bbt_write)
1335 this->bbt_md->options |= NAND_BBT_WRITE;
1336 this->bbt_md->offs = 8;
1337 this->bbt_md->len = 8;
1338 this->bbt_md->veroffs = 7;
1339 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1340 this->bbt_md->reserved_block_code = 0x01;
1341 this->bbt_md->pattern = "TBB_SYSM";
1342 }
1343
1344 ret = this->scan_bbt(mtd);
1345 if (ret)
1346 return ret;
1347
1348 memset((char *)parts, 0, sizeof(parts));
1349 numparts = inftl_partscan(mtd, parts);
1350 /* At least for now, require the INFTL Media Header. We could probably
1351 do without it for non-INFTL use, since all it gives us is
1352 autopartitioning, but I want to give it more thought. */
1353 if (!numparts)
1354 return -EIO;
1355 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1356 }
1357
1358 static inline int __init doc2000_init(struct mtd_info *mtd)
1359 {
1360 struct nand_chip *this = mtd_to_nand(mtd);
1361 struct doc_priv *doc = nand_get_controller_data(this);
1362
1363 this->read_byte = doc2000_read_byte;
1364 this->write_buf = doc2000_writebuf;
1365 this->read_buf = doc2000_readbuf;
1366 doc->late_init = nftl_scan_bbt;
1367
1368 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1369 doc2000_count_chips(mtd);
1370 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1371 return (4 * doc->chips_per_floor);
1372 }
1373
1374 static inline int __init doc2001_init(struct mtd_info *mtd)
1375 {
1376 struct nand_chip *this = mtd_to_nand(mtd);
1377 struct doc_priv *doc = nand_get_controller_data(this);
1378
1379 this->read_byte = doc2001_read_byte;
1380 this->write_buf = doc2001_writebuf;
1381 this->read_buf = doc2001_readbuf;
1382
1383 ReadDOC(doc->virtadr, ChipID);
1384 ReadDOC(doc->virtadr, ChipID);
1385 ReadDOC(doc->virtadr, ChipID);
1386 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1387 /* It's not a Millennium; it's one of the newer
1388 DiskOnChip 2000 units with a similar ASIC.
1389 Treat it like a Millennium, except that it
1390 can have multiple chips. */
1391 doc2000_count_chips(mtd);
1392 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1393 doc->late_init = inftl_scan_bbt;
1394 return (4 * doc->chips_per_floor);
1395 } else {
1396 /* Bog-standard Millennium */
1397 doc->chips_per_floor = 1;
1398 mtd->name = "DiskOnChip Millennium";
1399 doc->late_init = nftl_scan_bbt;
1400 return 1;
1401 }
1402 }
1403
1404 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1405 {
1406 struct nand_chip *this = mtd_to_nand(mtd);
1407 struct doc_priv *doc = nand_get_controller_data(this);
1408
1409 this->read_byte = doc2001plus_read_byte;
1410 this->write_buf = doc2001plus_writebuf;
1411 this->read_buf = doc2001plus_readbuf;
1412 doc->late_init = inftl_scan_bbt;
1413 this->cmd_ctrl = NULL;
1414 this->select_chip = doc2001plus_select_chip;
1415 this->cmdfunc = doc2001plus_command;
1416 this->ecc.hwctl = doc2001plus_enable_hwecc;
1417
1418 doc->chips_per_floor = 1;
1419 mtd->name = "DiskOnChip Millennium Plus";
1420
1421 return 1;
1422 }
1423
1424 static int __init doc_probe(unsigned long physadr)
1425 {
1426 unsigned char ChipID;
1427 struct mtd_info *mtd;
1428 struct nand_chip *nand;
1429 struct doc_priv *doc;
1430 void __iomem *virtadr;
1431 unsigned char save_control;
1432 unsigned char tmp, tmpb, tmpc;
1433 int reg, len, numchips;
1434 int ret = 0;
1435
1436 if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1437 return -EBUSY;
1438 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1439 if (!virtadr) {
1440 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1441 ret = -EIO;
1442 goto error_ioremap;
1443 }
1444
1445 /* It's not possible to cleanly detect the DiskOnChip - the
1446 * bootup procedure will put the device into reset mode, and
1447 * it's not possible to talk to it without actually writing
1448 * to the DOCControl register. So we store the current contents
1449 * of the DOCControl register's location, in case we later decide
1450 * that it's not a DiskOnChip, and want to put it back how we
1451 * found it.
1452 */
1453 save_control = ReadDOC(virtadr, DOCControl);
1454
1455 /* Reset the DiskOnChip ASIC */
1456 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1457 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1458
1459 /* Enable the DiskOnChip ASIC */
1460 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1461 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1462
1463 ChipID = ReadDOC(virtadr, ChipID);
1464
1465 switch (ChipID) {
1466 case DOC_ChipID_Doc2k:
1467 reg = DoC_2k_ECCStatus;
1468 break;
1469 case DOC_ChipID_DocMil:
1470 reg = DoC_ECCConf;
1471 break;
1472 case DOC_ChipID_DocMilPlus16:
1473 case DOC_ChipID_DocMilPlus32:
1474 case 0:
1475 /* Possible Millennium Plus, need to do more checks */
1476 /* Possibly release from power down mode */
1477 for (tmp = 0; (tmp < 4); tmp++)
1478 ReadDOC(virtadr, Mplus_Power);
1479
1480 /* Reset the Millennium Plus ASIC */
1481 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1482 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1483 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1484
1485 mdelay(1);
1486 /* Enable the Millennium Plus ASIC */
1487 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1488 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1489 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1490 mdelay(1);
1491
1492 ChipID = ReadDOC(virtadr, ChipID);
1493
1494 switch (ChipID) {
1495 case DOC_ChipID_DocMilPlus16:
1496 reg = DoC_Mplus_Toggle;
1497 break;
1498 case DOC_ChipID_DocMilPlus32:
1499 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1500 default:
1501 ret = -ENODEV;
1502 goto notfound;
1503 }
1504 break;
1505
1506 default:
1507 ret = -ENODEV;
1508 goto notfound;
1509 }
1510 /* Check the TOGGLE bit in the ECC register */
1511 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1512 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1513 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1514 if ((tmp == tmpb) || (tmp != tmpc)) {
1515 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1516 ret = -ENODEV;
1517 goto notfound;
1518 }
1519
1520 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1521 unsigned char oldval;
1522 unsigned char newval;
1523 nand = mtd_to_nand(mtd);
1524 doc = nand_get_controller_data(nand);
1525 /* Use the alias resolution register to determine if this is
1526 in fact the same DOC aliased to a new address. If writes
1527 to one chip's alias resolution register change the value on
1528 the other chip, they're the same chip. */
1529 if (ChipID == DOC_ChipID_DocMilPlus16) {
1530 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1531 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1532 } else {
1533 oldval = ReadDOC(doc->virtadr, AliasResolution);
1534 newval = ReadDOC(virtadr, AliasResolution);
1535 }
1536 if (oldval != newval)
1537 continue;
1538 if (ChipID == DOC_ChipID_DocMilPlus16) {
1539 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1540 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1541 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1542 } else {
1543 WriteDOC(~newval, virtadr, AliasResolution);
1544 oldval = ReadDOC(doc->virtadr, AliasResolution);
1545 WriteDOC(newval, virtadr, AliasResolution); // restore it
1546 }
1547 newval = ~newval;
1548 if (oldval == newval) {
1549 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1550 goto notfound;
1551 }
1552 }
1553
1554 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1555
1556 len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
1557 (2 * sizeof(struct nand_bbt_descr));
1558 nand = kzalloc(len, GFP_KERNEL);
1559 if (!nand) {
1560 ret = -ENOMEM;
1561 goto fail;
1562 }
1563
1564 mtd = nand_to_mtd(nand);
1565 doc = (struct doc_priv *) (nand + 1);
1566 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1567 nand->bbt_md = nand->bbt_td + 1;
1568
1569 mtd->owner = THIS_MODULE;
1570 mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
1571
1572 nand_set_controller_data(nand, doc);
1573 nand->select_chip = doc200x_select_chip;
1574 nand->cmd_ctrl = doc200x_hwcontrol;
1575 nand->dev_ready = doc200x_dev_ready;
1576 nand->waitfunc = doc200x_wait;
1577 nand->block_bad = doc200x_block_bad;
1578 nand->ecc.hwctl = doc200x_enable_hwecc;
1579 nand->ecc.calculate = doc200x_calculate_ecc;
1580 nand->ecc.correct = doc200x_correct_data;
1581
1582 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1583 nand->ecc.size = 512;
1584 nand->ecc.bytes = 6;
1585 nand->ecc.strength = 2;
1586 nand->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
1587 nand->bbt_options = NAND_BBT_USE_FLASH;
1588 /* Skip the automatic BBT scan so we can run it manually */
1589 nand->options |= NAND_SKIP_BBTSCAN;
1590
1591 doc->physadr = physadr;
1592 doc->virtadr = virtadr;
1593 doc->ChipID = ChipID;
1594 doc->curfloor = -1;
1595 doc->curchip = -1;
1596 doc->mh0_page = -1;
1597 doc->mh1_page = -1;
1598 doc->nextdoc = doclist;
1599
1600 if (ChipID == DOC_ChipID_Doc2k)
1601 numchips = doc2000_init(mtd);
1602 else if (ChipID == DOC_ChipID_DocMilPlus16)
1603 numchips = doc2001plus_init(mtd);
1604 else
1605 numchips = doc2001_init(mtd);
1606
1607 if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
1608 /* DBB note: i believe nand_release is necessary here, as
1609 buffers may have been allocated in nand_base. Check with
1610 Thomas. FIX ME! */
1611 /* nand_release will call mtd_device_unregister, but we
1612 haven't yet added it. This is handled without incident by
1613 mtd_device_unregister, as far as I can tell. */
1614 nand_release(mtd);
1615 kfree(nand);
1616 goto fail;
1617 }
1618
1619 /* Success! */
1620 doclist = mtd;
1621 return 0;
1622
1623 notfound:
1624 /* Put back the contents of the DOCControl register, in case it's not
1625 actually a DiskOnChip. */
1626 WriteDOC(save_control, virtadr, DOCControl);
1627 fail:
1628 iounmap(virtadr);
1629
1630 error_ioremap:
1631 release_mem_region(physadr, DOC_IOREMAP_LEN);
1632
1633 return ret;
1634 }
1635
1636 static void release_nanddoc(void)
1637 {
1638 struct mtd_info *mtd, *nextmtd;
1639 struct nand_chip *nand;
1640 struct doc_priv *doc;
1641
1642 for (mtd = doclist; mtd; mtd = nextmtd) {
1643 nand = mtd_to_nand(mtd);
1644 doc = nand_get_controller_data(nand);
1645
1646 nextmtd = doc->nextdoc;
1647 nand_release(mtd);
1648 iounmap(doc->virtadr);
1649 release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1650 kfree(nand);
1651 }
1652 }
1653
1654 static int __init init_nanddoc(void)
1655 {
1656 int i, ret = 0;
1657
1658 /* We could create the decoder on demand, if memory is a concern.
1659 * This way we have it handy, if an error happens
1660 *
1661 * Symbolsize is 10 (bits)
1662 * Primitve polynomial is x^10+x^3+1
1663 * first consecutive root is 510
1664 * primitve element to generate roots = 1
1665 * generator polinomial degree = 4
1666 */
1667 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1668 if (!rs_decoder) {
1669 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1670 return -ENOMEM;
1671 }
1672
1673 if (doc_config_location) {
1674 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1675 ret = doc_probe(doc_config_location);
1676 if (ret < 0)
1677 goto outerr;
1678 } else {
1679 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1680 doc_probe(doc_locations[i]);
1681 }
1682 }
1683 /* No banner message any more. Print a message if no DiskOnChip
1684 found, so the user knows we at least tried. */
1685 if (!doclist) {
1686 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1687 ret = -ENODEV;
1688 goto outerr;
1689 }
1690 return 0;
1691 outerr:
1692 free_rs(rs_decoder);
1693 return ret;
1694 }
1695
1696 static void __exit cleanup_nanddoc(void)
1697 {
1698 /* Cleanup the nand/DoC resources */
1699 release_nanddoc();
1700
1701 /* Free the reed solomon resources */
1702 if (rs_decoder) {
1703 free_rs(rs_decoder);
1704 }
1705 }
1706
1707 module_init(init_nanddoc);
1708 module_exit(cleanup_nanddoc);
1709
1710 MODULE_LICENSE("GPL");
1711 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1712 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
This page took 0.104185 seconds and 5 git commands to generate.