mtd: eLBC NAND: remove elbc_fcm_ctrl->oob_poi
[deliverable/linux.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2 *
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
4 *
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40
41 #include <asm/io.h>
42 #include <asm/fsl_lbc.h>
43
44 #define MAX_BANKS 8
45 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
46 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
47
48 /* mtd information per set */
49
50 struct fsl_elbc_mtd {
51 struct mtd_info mtd;
52 struct nand_chip chip;
53 struct fsl_lbc_ctrl *ctrl;
54
55 struct device *dev;
56 int bank; /* Chip select bank number */
57 u8 __iomem *vbase; /* Chip select base virtual address */
58 int page_size; /* NAND page size (0=512, 1=2048) */
59 unsigned int fmr; /* FCM Flash Mode Register value */
60 };
61
62 /* Freescale eLBC FCM controller information */
63
64 struct fsl_elbc_fcm_ctrl {
65 struct nand_hw_control controller;
66 struct fsl_elbc_mtd *chips[MAX_BANKS];
67
68 u8 __iomem *addr; /* Address of assigned FCM buffer */
69 unsigned int page; /* Last page written to / read from */
70 unsigned int read_bytes; /* Number of bytes read during command */
71 unsigned int column; /* Saved column from SEQIN */
72 unsigned int index; /* Pointer to next byte to 'read' */
73 unsigned int status; /* status read from LTESR after last op */
74 unsigned int mdr; /* UPM/FCM Data Register value */
75 unsigned int use_mdr; /* Non zero if the MDR is to be set */
76 unsigned int oob; /* Non zero if operating on OOB data */
77 unsigned int counter; /* counter for the initializations */
78 };
79
80 /* These map to the positions used by the FCM hardware ECC generator */
81
82 /* Small Page FLASH with FMR[ECCM] = 0 */
83 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
84 .eccbytes = 3,
85 .eccpos = {6, 7, 8},
86 .oobfree = { {0, 5}, {9, 7} },
87 };
88
89 /* Small Page FLASH with FMR[ECCM] = 1 */
90 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
91 .eccbytes = 3,
92 .eccpos = {8, 9, 10},
93 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
94 };
95
96 /* Large Page FLASH with FMR[ECCM] = 0 */
97 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
98 .eccbytes = 12,
99 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
100 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
101 };
102
103 /* Large Page FLASH with FMR[ECCM] = 1 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
105 .eccbytes = 12,
106 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
107 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
108 };
109
110 /*
111 * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
112 * 1, so we have to adjust bad block pattern. This pattern should be used for
113 * x8 chips only. So far hardware does not support x16 chips anyway.
114 */
115 static u8 scan_ff_pattern[] = { 0xff, };
116
117 static struct nand_bbt_descr largepage_memorybased = {
118 .options = 0,
119 .offs = 0,
120 .len = 1,
121 .pattern = scan_ff_pattern,
122 };
123
124 /*
125 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
126 * interfere with ECC positions, that's why we implement our own descriptors.
127 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
128 */
129 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
130 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
131
132 static struct nand_bbt_descr bbt_main_descr = {
133 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
134 NAND_BBT_2BIT | NAND_BBT_VERSION,
135 .offs = 11,
136 .len = 4,
137 .veroffs = 15,
138 .maxblocks = 4,
139 .pattern = bbt_pattern,
140 };
141
142 static struct nand_bbt_descr bbt_mirror_descr = {
143 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
144 NAND_BBT_2BIT | NAND_BBT_VERSION,
145 .offs = 11,
146 .len = 4,
147 .veroffs = 15,
148 .maxblocks = 4,
149 .pattern = mirror_pattern,
150 };
151
152 /*=================================*/
153
154 /*
155 * Set up the FCM hardware block and page address fields, and the fcm
156 * structure addr field to point to the correct FCM buffer in memory
157 */
158 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
159 {
160 struct nand_chip *chip = mtd->priv;
161 struct fsl_elbc_mtd *priv = chip->priv;
162 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
163 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
164 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
165 int buf_num;
166
167 elbc_fcm_ctrl->page = page_addr;
168
169 out_be32(&lbc->fbar,
170 page_addr >> (chip->phys_erase_shift - chip->page_shift));
171
172 if (priv->page_size) {
173 out_be32(&lbc->fpar,
174 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
175 (oob ? FPAR_LP_MS : 0) | column);
176 buf_num = (page_addr & 1) << 2;
177 } else {
178 out_be32(&lbc->fpar,
179 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
180 (oob ? FPAR_SP_MS : 0) | column);
181 buf_num = page_addr & 7;
182 }
183
184 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
185 elbc_fcm_ctrl->index = column;
186
187 /* for OOB data point to the second half of the buffer */
188 if (oob)
189 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
190
191 dev_vdbg(priv->dev, "set_addr: bank=%d, "
192 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
193 "index %x, pes %d ps %d\n",
194 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
195 elbc_fcm_ctrl->index,
196 chip->phys_erase_shift, chip->page_shift);
197 }
198
199 /*
200 * execute FCM command and wait for it to complete
201 */
202 static int fsl_elbc_run_command(struct mtd_info *mtd)
203 {
204 struct nand_chip *chip = mtd->priv;
205 struct fsl_elbc_mtd *priv = chip->priv;
206 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
207 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
208 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
209
210 /* Setup the FMR[OP] to execute without write protection */
211 out_be32(&lbc->fmr, priv->fmr | 3);
212 if (elbc_fcm_ctrl->use_mdr)
213 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
214
215 dev_vdbg(priv->dev,
216 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
217 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
218 dev_vdbg(priv->dev,
219 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
220 "fbcr=%08x bank=%d\n",
221 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
222 in_be32(&lbc->fbcr), priv->bank);
223
224 ctrl->irq_status = 0;
225 /* execute special operation */
226 out_be32(&lbc->lsor, priv->bank);
227
228 /* wait for FCM complete flag or timeout */
229 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
230 FCM_TIMEOUT_MSECS * HZ/1000);
231 elbc_fcm_ctrl->status = ctrl->irq_status;
232 /* store mdr value in case it was needed */
233 if (elbc_fcm_ctrl->use_mdr)
234 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
235
236 elbc_fcm_ctrl->use_mdr = 0;
237
238 if (elbc_fcm_ctrl->status != LTESR_CC) {
239 dev_info(priv->dev,
240 "command failed: fir %x fcr %x status %x mdr %x\n",
241 in_be32(&lbc->fir), in_be32(&lbc->fcr),
242 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
243 return -EIO;
244 }
245
246 return 0;
247 }
248
249 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
250 {
251 struct fsl_elbc_mtd *priv = chip->priv;
252 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
253 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
254
255 if (priv->page_size) {
256 out_be32(&lbc->fir,
257 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
258 (FIR_OP_CA << FIR_OP1_SHIFT) |
259 (FIR_OP_PA << FIR_OP2_SHIFT) |
260 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
261 (FIR_OP_RBW << FIR_OP4_SHIFT));
262
263 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
264 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
265 } else {
266 out_be32(&lbc->fir,
267 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
268 (FIR_OP_CA << FIR_OP1_SHIFT) |
269 (FIR_OP_PA << FIR_OP2_SHIFT) |
270 (FIR_OP_RBW << FIR_OP3_SHIFT));
271
272 if (oob)
273 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
274 else
275 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
276 }
277 }
278
279 /* cmdfunc send commands to the FCM */
280 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
281 int column, int page_addr)
282 {
283 struct nand_chip *chip = mtd->priv;
284 struct fsl_elbc_mtd *priv = chip->priv;
285 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
286 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
287 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
288
289 elbc_fcm_ctrl->use_mdr = 0;
290
291 /* clear the read buffer */
292 elbc_fcm_ctrl->read_bytes = 0;
293 if (command != NAND_CMD_PAGEPROG)
294 elbc_fcm_ctrl->index = 0;
295
296 switch (command) {
297 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
298 case NAND_CMD_READ1:
299 column += 256;
300
301 /* fall-through */
302 case NAND_CMD_READ0:
303 dev_dbg(priv->dev,
304 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
305 " 0x%x, column: 0x%x.\n", page_addr, column);
306
307
308 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
309 set_addr(mtd, 0, page_addr, 0);
310
311 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
312 elbc_fcm_ctrl->index += column;
313
314 fsl_elbc_do_read(chip, 0);
315 fsl_elbc_run_command(mtd);
316 return;
317
318 /* READOOB reads only the OOB because no ECC is performed. */
319 case NAND_CMD_READOOB:
320 dev_vdbg(priv->dev,
321 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
322 " 0x%x, column: 0x%x.\n", page_addr, column);
323
324 out_be32(&lbc->fbcr, mtd->oobsize - column);
325 set_addr(mtd, column, page_addr, 1);
326
327 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
328
329 fsl_elbc_do_read(chip, 1);
330 fsl_elbc_run_command(mtd);
331 return;
332
333 /* READID must read all 5 possible bytes while CEB is active */
334 case NAND_CMD_READID:
335 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
336
337 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
338 (FIR_OP_UA << FIR_OP1_SHIFT) |
339 (FIR_OP_RBW << FIR_OP2_SHIFT));
340 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
341 /* nand_get_flash_type() reads 8 bytes of entire ID string */
342 out_be32(&lbc->fbcr, 8);
343 elbc_fcm_ctrl->read_bytes = 8;
344 elbc_fcm_ctrl->use_mdr = 1;
345 elbc_fcm_ctrl->mdr = 0;
346
347 set_addr(mtd, 0, 0, 0);
348 fsl_elbc_run_command(mtd);
349 return;
350
351 /* ERASE1 stores the block and page address */
352 case NAND_CMD_ERASE1:
353 dev_vdbg(priv->dev,
354 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
355 "page_addr: 0x%x.\n", page_addr);
356 set_addr(mtd, 0, page_addr, 0);
357 return;
358
359 /* ERASE2 uses the block and page address from ERASE1 */
360 case NAND_CMD_ERASE2:
361 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
362
363 out_be32(&lbc->fir,
364 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
365 (FIR_OP_PA << FIR_OP1_SHIFT) |
366 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
367 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
368 (FIR_OP_RS << FIR_OP4_SHIFT));
369
370 out_be32(&lbc->fcr,
371 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
372 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
373 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
374
375 out_be32(&lbc->fbcr, 0);
376 elbc_fcm_ctrl->read_bytes = 0;
377 elbc_fcm_ctrl->use_mdr = 1;
378
379 fsl_elbc_run_command(mtd);
380 return;
381
382 /* SEQIN sets up the addr buffer and all registers except the length */
383 case NAND_CMD_SEQIN: {
384 __be32 fcr;
385 dev_vdbg(priv->dev,
386 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
387 "page_addr: 0x%x, column: 0x%x.\n",
388 page_addr, column);
389
390 elbc_fcm_ctrl->column = column;
391 elbc_fcm_ctrl->oob = 0;
392 elbc_fcm_ctrl->use_mdr = 1;
393
394 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
395 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
396 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
397
398 if (priv->page_size) {
399 out_be32(&lbc->fir,
400 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
401 (FIR_OP_CA << FIR_OP1_SHIFT) |
402 (FIR_OP_PA << FIR_OP2_SHIFT) |
403 (FIR_OP_WB << FIR_OP3_SHIFT) |
404 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
405 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
406 (FIR_OP_RS << FIR_OP6_SHIFT));
407 } else {
408 out_be32(&lbc->fir,
409 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
410 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
411 (FIR_OP_CA << FIR_OP2_SHIFT) |
412 (FIR_OP_PA << FIR_OP3_SHIFT) |
413 (FIR_OP_WB << FIR_OP4_SHIFT) |
414 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
415 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
416 (FIR_OP_RS << FIR_OP7_SHIFT));
417
418 if (column >= mtd->writesize) {
419 /* OOB area --> READOOB */
420 column -= mtd->writesize;
421 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
422 elbc_fcm_ctrl->oob = 1;
423 } else {
424 WARN_ON(column != 0);
425 /* First 256 bytes --> READ0 */
426 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
427 }
428 }
429
430 out_be32(&lbc->fcr, fcr);
431 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
432 return;
433 }
434
435 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
436 case NAND_CMD_PAGEPROG: {
437 dev_vdbg(priv->dev,
438 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
439 "writing %d bytes.\n", elbc_fcm_ctrl->index);
440
441 /* if the write did not start at 0 or is not a full page
442 * then set the exact length, otherwise use a full page
443 * write so the HW generates the ECC.
444 */
445 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
446 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
447 out_be32(&lbc->fbcr, elbc_fcm_ctrl->index);
448 else
449 out_be32(&lbc->fbcr, 0);
450
451 fsl_elbc_run_command(mtd);
452 return;
453 }
454
455 /* CMD_STATUS must read the status byte while CEB is active */
456 /* Note - it does not wait for the ready line */
457 case NAND_CMD_STATUS:
458 out_be32(&lbc->fir,
459 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
460 (FIR_OP_RBW << FIR_OP1_SHIFT));
461 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
462 out_be32(&lbc->fbcr, 1);
463 set_addr(mtd, 0, 0, 0);
464 elbc_fcm_ctrl->read_bytes = 1;
465
466 fsl_elbc_run_command(mtd);
467
468 /* The chip always seems to report that it is
469 * write-protected, even when it is not.
470 */
471 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
472 return;
473
474 /* RESET without waiting for the ready line */
475 case NAND_CMD_RESET:
476 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
477 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
478 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
479 fsl_elbc_run_command(mtd);
480 return;
481
482 default:
483 dev_err(priv->dev,
484 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
485 command);
486 }
487 }
488
489 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
490 {
491 /* The hardware does not seem to support multiple
492 * chips per bank.
493 */
494 }
495
496 /*
497 * Write buf to the FCM Controller Data Buffer
498 */
499 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
500 {
501 struct nand_chip *chip = mtd->priv;
502 struct fsl_elbc_mtd *priv = chip->priv;
503 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
504 unsigned int bufsize = mtd->writesize + mtd->oobsize;
505
506 if (len <= 0) {
507 dev_err(priv->dev, "write_buf of %d bytes", len);
508 elbc_fcm_ctrl->status = 0;
509 return;
510 }
511
512 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
513 dev_err(priv->dev,
514 "write_buf beyond end of buffer "
515 "(%d requested, %u available)\n",
516 len, bufsize - elbc_fcm_ctrl->index);
517 len = bufsize - elbc_fcm_ctrl->index;
518 }
519
520 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
521 /*
522 * This is workaround for the weird elbc hangs during nand write,
523 * Scott Wood says: "...perhaps difference in how long it takes a
524 * write to make it through the localbus compared to a write to IMMR
525 * is causing problems, and sync isn't helping for some reason."
526 * Reading back the last byte helps though.
527 */
528 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
529
530 elbc_fcm_ctrl->index += len;
531 }
532
533 /*
534 * read a byte from either the FCM hardware buffer if it has any data left
535 * otherwise issue a command to read a single byte.
536 */
537 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
538 {
539 struct nand_chip *chip = mtd->priv;
540 struct fsl_elbc_mtd *priv = chip->priv;
541 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
542
543 /* If there are still bytes in the FCM, then use the next byte. */
544 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
545 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
546
547 dev_err(priv->dev, "read_byte beyond end of buffer\n");
548 return ERR_BYTE;
549 }
550
551 /*
552 * Read from the FCM Controller Data Buffer
553 */
554 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
555 {
556 struct nand_chip *chip = mtd->priv;
557 struct fsl_elbc_mtd *priv = chip->priv;
558 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
559 int avail;
560
561 if (len < 0)
562 return;
563
564 avail = min((unsigned int)len,
565 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
566 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
567 elbc_fcm_ctrl->index += avail;
568
569 if (len > avail)
570 dev_err(priv->dev,
571 "read_buf beyond end of buffer "
572 "(%d requested, %d available)\n",
573 len, avail);
574 }
575
576 /*
577 * Verify buffer against the FCM Controller Data Buffer
578 */
579 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
580 {
581 struct nand_chip *chip = mtd->priv;
582 struct fsl_elbc_mtd *priv = chip->priv;
583 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
584 int i;
585
586 if (len < 0) {
587 dev_err(priv->dev, "write_buf of %d bytes", len);
588 return -EINVAL;
589 }
590
591 if ((unsigned int)len >
592 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index) {
593 dev_err(priv->dev,
594 "verify_buf beyond end of buffer "
595 "(%d requested, %u available)\n",
596 len, elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
597
598 elbc_fcm_ctrl->index = elbc_fcm_ctrl->read_bytes;
599 return -EINVAL;
600 }
601
602 for (i = 0; i < len; i++)
603 if (in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index + i])
604 != buf[i])
605 break;
606
607 elbc_fcm_ctrl->index += len;
608 return i == len && elbc_fcm_ctrl->status == LTESR_CC ? 0 : -EIO;
609 }
610
611 /* This function is called after Program and Erase Operations to
612 * check for success or failure.
613 */
614 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
615 {
616 struct fsl_elbc_mtd *priv = chip->priv;
617 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
618
619 if (elbc_fcm_ctrl->status != LTESR_CC)
620 return NAND_STATUS_FAIL;
621
622 /* The chip always seems to report that it is
623 * write-protected, even when it is not.
624 */
625 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
626 }
627
628 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
629 {
630 struct nand_chip *chip = mtd->priv;
631 struct fsl_elbc_mtd *priv = chip->priv;
632 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
633 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
634 unsigned int al;
635
636 /* calculate FMR Address Length field */
637 al = 0;
638 if (chip->pagemask & 0xffff0000)
639 al++;
640 if (chip->pagemask & 0xff000000)
641 al++;
642
643 /* add to ECCM mode set in fsl_elbc_init */
644 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
645 (al << FMR_AL_SHIFT);
646
647 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
648 chip->numchips);
649 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
650 chip->chipsize);
651 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
652 chip->pagemask);
653 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
654 chip->chip_delay);
655 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
656 chip->badblockpos);
657 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
658 chip->chip_shift);
659 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
660 chip->page_shift);
661 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
662 chip->phys_erase_shift);
663 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
664 chip->ecclayout);
665 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
666 chip->ecc.mode);
667 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
668 chip->ecc.steps);
669 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
670 chip->ecc.bytes);
671 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
672 chip->ecc.total);
673 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
674 chip->ecc.layout);
675 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
676 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
677 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
678 mtd->erasesize);
679 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
680 mtd->writesize);
681 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
682 mtd->oobsize);
683
684 /* adjust Option Register and ECC to match Flash page size */
685 if (mtd->writesize == 512) {
686 priv->page_size = 0;
687 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
688 } else if (mtd->writesize == 2048) {
689 priv->page_size = 1;
690 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
691 /* adjust ecc setup if needed */
692 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
693 BR_DECC_CHK_GEN) {
694 chip->ecc.size = 512;
695 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
696 &fsl_elbc_oob_lp_eccm1 :
697 &fsl_elbc_oob_lp_eccm0;
698 chip->badblock_pattern = &largepage_memorybased;
699 }
700 } else {
701 dev_err(priv->dev,
702 "fsl_elbc_init: page size %d is not supported\n",
703 mtd->writesize);
704 return -1;
705 }
706
707 return 0;
708 }
709
710 static int fsl_elbc_read_page(struct mtd_info *mtd,
711 struct nand_chip *chip,
712 uint8_t *buf,
713 int page)
714 {
715 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
716 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
717
718 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
719 mtd->ecc_stats.failed++;
720
721 return 0;
722 }
723
724 /* ECC will be calculated automatically, and errors will be detected in
725 * waitfunc.
726 */
727 static void fsl_elbc_write_page(struct mtd_info *mtd,
728 struct nand_chip *chip,
729 const uint8_t *buf)
730 {
731 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
732 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
733 }
734
735 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
736 {
737 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
738 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
739 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
740 struct nand_chip *chip = &priv->chip;
741
742 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
743
744 /* Fill in fsl_elbc_mtd structure */
745 priv->mtd.priv = chip;
746 priv->mtd.owner = THIS_MODULE;
747
748 /* Set the ECCM according to the settings in bootloader.*/
749 priv->fmr = in_be32(&lbc->fmr) & FMR_ECCM;
750
751 /* fill in nand_chip structure */
752 /* set up function call table */
753 chip->read_byte = fsl_elbc_read_byte;
754 chip->write_buf = fsl_elbc_write_buf;
755 chip->read_buf = fsl_elbc_read_buf;
756 chip->verify_buf = fsl_elbc_verify_buf;
757 chip->select_chip = fsl_elbc_select_chip;
758 chip->cmdfunc = fsl_elbc_cmdfunc;
759 chip->waitfunc = fsl_elbc_wait;
760
761 chip->bbt_td = &bbt_main_descr;
762 chip->bbt_md = &bbt_mirror_descr;
763
764 /* set up nand options */
765 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
766 chip->bbt_options = NAND_BBT_USE_FLASH;
767
768 chip->controller = &elbc_fcm_ctrl->controller;
769 chip->priv = priv;
770
771 chip->ecc.read_page = fsl_elbc_read_page;
772 chip->ecc.write_page = fsl_elbc_write_page;
773
774 /* If CS Base Register selects full hardware ECC then use it */
775 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
776 BR_DECC_CHK_GEN) {
777 chip->ecc.mode = NAND_ECC_HW;
778 /* put in small page settings and adjust later if needed */
779 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
780 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
781 chip->ecc.size = 512;
782 chip->ecc.bytes = 3;
783 } else {
784 /* otherwise fall back to default software ECC */
785 chip->ecc.mode = NAND_ECC_SOFT;
786 }
787
788 return 0;
789 }
790
791 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
792 {
793 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
794 nand_release(&priv->mtd);
795
796 kfree(priv->mtd.name);
797
798 if (priv->vbase)
799 iounmap(priv->vbase);
800
801 elbc_fcm_ctrl->chips[priv->bank] = NULL;
802 kfree(priv);
803 return 0;
804 }
805
806 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
807
808 static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev)
809 {
810 struct fsl_lbc_regs __iomem *lbc;
811 struct fsl_elbc_mtd *priv;
812 struct resource res;
813 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
814 static const char *part_probe_types[]
815 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
816 int ret;
817 int bank;
818 struct device *dev;
819 struct device_node *node = pdev->dev.of_node;
820 struct mtd_part_parser_data ppdata;
821
822 ppdata.of_node = pdev->dev.of_node;
823 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
824 return -ENODEV;
825 lbc = fsl_lbc_ctrl_dev->regs;
826 dev = fsl_lbc_ctrl_dev->dev;
827
828 /* get, allocate and map the memory resource */
829 ret = of_address_to_resource(node, 0, &res);
830 if (ret) {
831 dev_err(dev, "failed to get resource\n");
832 return ret;
833 }
834
835 /* find which chip select it is connected to */
836 for (bank = 0; bank < MAX_BANKS; bank++)
837 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
838 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
839 (in_be32(&lbc->bank[bank].br) &
840 in_be32(&lbc->bank[bank].or) & BR_BA)
841 == fsl_lbc_addr(res.start))
842 break;
843
844 if (bank >= MAX_BANKS) {
845 dev_err(dev, "address did not match any chip selects\n");
846 return -ENODEV;
847 }
848
849 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
850 if (!priv)
851 return -ENOMEM;
852
853 mutex_lock(&fsl_elbc_nand_mutex);
854 if (!fsl_lbc_ctrl_dev->nand) {
855 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
856 if (!elbc_fcm_ctrl) {
857 dev_err(dev, "failed to allocate memory\n");
858 mutex_unlock(&fsl_elbc_nand_mutex);
859 ret = -ENOMEM;
860 goto err;
861 }
862 elbc_fcm_ctrl->counter++;
863
864 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
865 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
866 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
867 } else {
868 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
869 }
870 mutex_unlock(&fsl_elbc_nand_mutex);
871
872 elbc_fcm_ctrl->chips[bank] = priv;
873 priv->bank = bank;
874 priv->ctrl = fsl_lbc_ctrl_dev;
875 priv->dev = dev;
876
877 priv->vbase = ioremap(res.start, resource_size(&res));
878 if (!priv->vbase) {
879 dev_err(dev, "failed to map chip region\n");
880 ret = -ENOMEM;
881 goto err;
882 }
883
884 priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
885 if (!priv->mtd.name) {
886 ret = -ENOMEM;
887 goto err;
888 }
889
890 ret = fsl_elbc_chip_init(priv);
891 if (ret)
892 goto err;
893
894 ret = nand_scan_ident(&priv->mtd, 1, NULL);
895 if (ret)
896 goto err;
897
898 ret = fsl_elbc_chip_init_tail(&priv->mtd);
899 if (ret)
900 goto err;
901
902 ret = nand_scan_tail(&priv->mtd);
903 if (ret)
904 goto err;
905
906 /* First look for RedBoot table or partitions on the command
907 * line, these take precedence over device tree information */
908 mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
909 NULL, 0);
910
911 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
912 (unsigned long long)res.start, priv->bank);
913 return 0;
914
915 err:
916 fsl_elbc_chip_remove(priv);
917 return ret;
918 }
919
920 static int fsl_elbc_nand_remove(struct platform_device *pdev)
921 {
922 int i;
923 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
924 for (i = 0; i < MAX_BANKS; i++)
925 if (elbc_fcm_ctrl->chips[i])
926 fsl_elbc_chip_remove(elbc_fcm_ctrl->chips[i]);
927
928 mutex_lock(&fsl_elbc_nand_mutex);
929 elbc_fcm_ctrl->counter--;
930 if (!elbc_fcm_ctrl->counter) {
931 fsl_lbc_ctrl_dev->nand = NULL;
932 kfree(elbc_fcm_ctrl);
933 }
934 mutex_unlock(&fsl_elbc_nand_mutex);
935
936 return 0;
937
938 }
939
940 static const struct of_device_id fsl_elbc_nand_match[] = {
941 { .compatible = "fsl,elbc-fcm-nand", },
942 {}
943 };
944
945 static struct platform_driver fsl_elbc_nand_driver = {
946 .driver = {
947 .name = "fsl,elbc-fcm-nand",
948 .owner = THIS_MODULE,
949 .of_match_table = fsl_elbc_nand_match,
950 },
951 .probe = fsl_elbc_nand_probe,
952 .remove = fsl_elbc_nand_remove,
953 };
954
955 static int __init fsl_elbc_nand_init(void)
956 {
957 return platform_driver_register(&fsl_elbc_nand_driver);
958 }
959
960 static void __exit fsl_elbc_nand_exit(void)
961 {
962 platform_driver_unregister(&fsl_elbc_nand_driver);
963 }
964
965 module_init(fsl_elbc_nand_init);
966 module_exit(fsl_elbc_nand_exit);
967
968 MODULE_LICENSE("GPL");
969 MODULE_AUTHOR("Freescale");
970 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
This page took 0.070667 seconds and 5 git commands to generate.