mtd: nand: make use of mtd_to_nand() in NAND drivers
[deliverable/linux.git] / drivers / mtd / nand / fsmc_nand.c
1 /*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/mtd/fsmc.h>
39 #include <linux/amba/bus.h>
40 #include <mtd/mtd-abi.h>
41
42 static struct nand_ecclayout fsmc_ecc1_128_layout = {
43 .eccbytes = 24,
44 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
45 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
46 .oobfree = {
47 {.offset = 8, .length = 8},
48 {.offset = 24, .length = 8},
49 {.offset = 40, .length = 8},
50 {.offset = 56, .length = 8},
51 {.offset = 72, .length = 8},
52 {.offset = 88, .length = 8},
53 {.offset = 104, .length = 8},
54 {.offset = 120, .length = 8}
55 }
56 };
57
58 static struct nand_ecclayout fsmc_ecc1_64_layout = {
59 .eccbytes = 12,
60 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
61 .oobfree = {
62 {.offset = 8, .length = 8},
63 {.offset = 24, .length = 8},
64 {.offset = 40, .length = 8},
65 {.offset = 56, .length = 8},
66 }
67 };
68
69 static struct nand_ecclayout fsmc_ecc1_16_layout = {
70 .eccbytes = 3,
71 .eccpos = {2, 3, 4},
72 .oobfree = {
73 {.offset = 8, .length = 8},
74 }
75 };
76
77 /*
78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
80 * bytes are free for use.
81 */
82 static struct nand_ecclayout fsmc_ecc4_256_layout = {
83 .eccbytes = 208,
84 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
85 9, 10, 11, 12, 13, 14,
86 18, 19, 20, 21, 22, 23, 24,
87 25, 26, 27, 28, 29, 30,
88 34, 35, 36, 37, 38, 39, 40,
89 41, 42, 43, 44, 45, 46,
90 50, 51, 52, 53, 54, 55, 56,
91 57, 58, 59, 60, 61, 62,
92 66, 67, 68, 69, 70, 71, 72,
93 73, 74, 75, 76, 77, 78,
94 82, 83, 84, 85, 86, 87, 88,
95 89, 90, 91, 92, 93, 94,
96 98, 99, 100, 101, 102, 103, 104,
97 105, 106, 107, 108, 109, 110,
98 114, 115, 116, 117, 118, 119, 120,
99 121, 122, 123, 124, 125, 126,
100 130, 131, 132, 133, 134, 135, 136,
101 137, 138, 139, 140, 141, 142,
102 146, 147, 148, 149, 150, 151, 152,
103 153, 154, 155, 156, 157, 158,
104 162, 163, 164, 165, 166, 167, 168,
105 169, 170, 171, 172, 173, 174,
106 178, 179, 180, 181, 182, 183, 184,
107 185, 186, 187, 188, 189, 190,
108 194, 195, 196, 197, 198, 199, 200,
109 201, 202, 203, 204, 205, 206,
110 210, 211, 212, 213, 214, 215, 216,
111 217, 218, 219, 220, 221, 222,
112 226, 227, 228, 229, 230, 231, 232,
113 233, 234, 235, 236, 237, 238,
114 242, 243, 244, 245, 246, 247, 248,
115 249, 250, 251, 252, 253, 254
116 },
117 .oobfree = {
118 {.offset = 15, .length = 3},
119 {.offset = 31, .length = 3},
120 {.offset = 47, .length = 3},
121 {.offset = 63, .length = 3},
122 {.offset = 79, .length = 3},
123 {.offset = 95, .length = 3},
124 {.offset = 111, .length = 3},
125 {.offset = 127, .length = 3},
126 {.offset = 143, .length = 3},
127 {.offset = 159, .length = 3},
128 {.offset = 175, .length = 3},
129 {.offset = 191, .length = 3},
130 {.offset = 207, .length = 3},
131 {.offset = 223, .length = 3},
132 {.offset = 239, .length = 3},
133 {.offset = 255, .length = 1}
134 }
135 };
136
137 /*
138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
140 * bytes are free for use.
141 */
142 static struct nand_ecclayout fsmc_ecc4_224_layout = {
143 .eccbytes = 104,
144 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
145 9, 10, 11, 12, 13, 14,
146 18, 19, 20, 21, 22, 23, 24,
147 25, 26, 27, 28, 29, 30,
148 34, 35, 36, 37, 38, 39, 40,
149 41, 42, 43, 44, 45, 46,
150 50, 51, 52, 53, 54, 55, 56,
151 57, 58, 59, 60, 61, 62,
152 66, 67, 68, 69, 70, 71, 72,
153 73, 74, 75, 76, 77, 78,
154 82, 83, 84, 85, 86, 87, 88,
155 89, 90, 91, 92, 93, 94,
156 98, 99, 100, 101, 102, 103, 104,
157 105, 106, 107, 108, 109, 110,
158 114, 115, 116, 117, 118, 119, 120,
159 121, 122, 123, 124, 125, 126
160 },
161 .oobfree = {
162 {.offset = 15, .length = 3},
163 {.offset = 31, .length = 3},
164 {.offset = 47, .length = 3},
165 {.offset = 63, .length = 3},
166 {.offset = 79, .length = 3},
167 {.offset = 95, .length = 3},
168 {.offset = 111, .length = 3},
169 {.offset = 127, .length = 97}
170 }
171 };
172
173 /*
174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
176 * bytes are free for use.
177 */
178 static struct nand_ecclayout fsmc_ecc4_128_layout = {
179 .eccbytes = 104,
180 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
181 9, 10, 11, 12, 13, 14,
182 18, 19, 20, 21, 22, 23, 24,
183 25, 26, 27, 28, 29, 30,
184 34, 35, 36, 37, 38, 39, 40,
185 41, 42, 43, 44, 45, 46,
186 50, 51, 52, 53, 54, 55, 56,
187 57, 58, 59, 60, 61, 62,
188 66, 67, 68, 69, 70, 71, 72,
189 73, 74, 75, 76, 77, 78,
190 82, 83, 84, 85, 86, 87, 88,
191 89, 90, 91, 92, 93, 94,
192 98, 99, 100, 101, 102, 103, 104,
193 105, 106, 107, 108, 109, 110,
194 114, 115, 116, 117, 118, 119, 120,
195 121, 122, 123, 124, 125, 126
196 },
197 .oobfree = {
198 {.offset = 15, .length = 3},
199 {.offset = 31, .length = 3},
200 {.offset = 47, .length = 3},
201 {.offset = 63, .length = 3},
202 {.offset = 79, .length = 3},
203 {.offset = 95, .length = 3},
204 {.offset = 111, .length = 3},
205 {.offset = 127, .length = 1}
206 }
207 };
208
209 /*
210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
212 * bytes are free for use.
213 */
214 static struct nand_ecclayout fsmc_ecc4_64_layout = {
215 .eccbytes = 52,
216 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
217 9, 10, 11, 12, 13, 14,
218 18, 19, 20, 21, 22, 23, 24,
219 25, 26, 27, 28, 29, 30,
220 34, 35, 36, 37, 38, 39, 40,
221 41, 42, 43, 44, 45, 46,
222 50, 51, 52, 53, 54, 55, 56,
223 57, 58, 59, 60, 61, 62,
224 },
225 .oobfree = {
226 {.offset = 15, .length = 3},
227 {.offset = 31, .length = 3},
228 {.offset = 47, .length = 3},
229 {.offset = 63, .length = 1},
230 }
231 };
232
233 /*
234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
236 * byte is free for use.
237 */
238 static struct nand_ecclayout fsmc_ecc4_16_layout = {
239 .eccbytes = 13,
240 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
241 9, 10, 11, 12, 13, 14
242 },
243 .oobfree = {
244 {.offset = 15, .length = 1},
245 }
246 };
247
248 /*
249 * ECC placement definitions in oobfree type format.
250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
251 * consecutively and immediately after the 512 byte data block for hardware to
252 * generate the error bit offsets in 512 byte data.
253 * Managing the ecc bytes in the following way makes it easier for software to
254 * read ecc bytes consecutive to data bytes. This way is similar to
255 * oobfree structure maintained already in generic nand driver
256 */
257 static struct fsmc_eccplace fsmc_ecc4_lp_place = {
258 .eccplace = {
259 {.offset = 2, .length = 13},
260 {.offset = 18, .length = 13},
261 {.offset = 34, .length = 13},
262 {.offset = 50, .length = 13},
263 {.offset = 66, .length = 13},
264 {.offset = 82, .length = 13},
265 {.offset = 98, .length = 13},
266 {.offset = 114, .length = 13}
267 }
268 };
269
270 static struct fsmc_eccplace fsmc_ecc4_sp_place = {
271 .eccplace = {
272 {.offset = 0, .length = 4},
273 {.offset = 6, .length = 9}
274 }
275 };
276
277 /**
278 * struct fsmc_nand_data - structure for FSMC NAND device state
279 *
280 * @pid: Part ID on the AMBA PrimeCell format
281 * @mtd: MTD info for a NAND flash.
282 * @nand: Chip related info for a NAND flash.
283 * @partitions: Partition info for a NAND Flash.
284 * @nr_partitions: Total number of partition of a NAND flash.
285 *
286 * @ecc_place: ECC placing locations in oobfree type format.
287 * @bank: Bank number for probed device.
288 * @clk: Clock structure for FSMC.
289 *
290 * @read_dma_chan: DMA channel for read access
291 * @write_dma_chan: DMA channel for write access to NAND
292 * @dma_access_complete: Completion structure
293 *
294 * @data_pa: NAND Physical port for Data.
295 * @data_va: NAND port for Data.
296 * @cmd_va: NAND port for Command.
297 * @addr_va: NAND port for Address.
298 * @regs_va: FSMC regs base address.
299 */
300 struct fsmc_nand_data {
301 u32 pid;
302 struct mtd_info mtd;
303 struct nand_chip nand;
304 struct mtd_partition *partitions;
305 unsigned int nr_partitions;
306
307 struct fsmc_eccplace *ecc_place;
308 unsigned int bank;
309 struct device *dev;
310 enum access_mode mode;
311 struct clk *clk;
312
313 /* DMA related objects */
314 struct dma_chan *read_dma_chan;
315 struct dma_chan *write_dma_chan;
316 struct completion dma_access_complete;
317
318 struct fsmc_nand_timings *dev_timings;
319
320 dma_addr_t data_pa;
321 void __iomem *data_va;
322 void __iomem *cmd_va;
323 void __iomem *addr_va;
324 void __iomem *regs_va;
325
326 void (*select_chip)(uint32_t bank, uint32_t busw);
327 };
328
329 /* Assert CS signal based on chipnr */
330 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
331 {
332 struct nand_chip *chip = mtd_to_nand(mtd);
333 struct fsmc_nand_data *host;
334
335 host = container_of(mtd, struct fsmc_nand_data, mtd);
336
337 switch (chipnr) {
338 case -1:
339 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
340 break;
341 case 0:
342 case 1:
343 case 2:
344 case 3:
345 if (host->select_chip)
346 host->select_chip(chipnr,
347 chip->options & NAND_BUSWIDTH_16);
348 break;
349
350 default:
351 dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
352 }
353 }
354
355 /*
356 * fsmc_cmd_ctrl - For facilitaing Hardware access
357 * This routine allows hardware specific access to control-lines(ALE,CLE)
358 */
359 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
360 {
361 struct nand_chip *this = mtd_to_nand(mtd);
362 struct fsmc_nand_data *host = container_of(mtd,
363 struct fsmc_nand_data, mtd);
364 void __iomem *regs = host->regs_va;
365 unsigned int bank = host->bank;
366
367 if (ctrl & NAND_CTRL_CHANGE) {
368 u32 pc;
369
370 if (ctrl & NAND_CLE) {
371 this->IO_ADDR_R = host->cmd_va;
372 this->IO_ADDR_W = host->cmd_va;
373 } else if (ctrl & NAND_ALE) {
374 this->IO_ADDR_R = host->addr_va;
375 this->IO_ADDR_W = host->addr_va;
376 } else {
377 this->IO_ADDR_R = host->data_va;
378 this->IO_ADDR_W = host->data_va;
379 }
380
381 pc = readl(FSMC_NAND_REG(regs, bank, PC));
382 if (ctrl & NAND_NCE)
383 pc |= FSMC_ENABLE;
384 else
385 pc &= ~FSMC_ENABLE;
386 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
387 }
388
389 mb();
390
391 if (cmd != NAND_CMD_NONE)
392 writeb_relaxed(cmd, this->IO_ADDR_W);
393 }
394
395 /*
396 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
397 *
398 * This routine initializes timing parameters related to NAND memory access in
399 * FSMC registers
400 */
401 static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
402 uint32_t busw, struct fsmc_nand_timings *timings)
403 {
404 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
405 uint32_t tclr, tar, thiz, thold, twait, tset;
406 struct fsmc_nand_timings *tims;
407 struct fsmc_nand_timings default_timings = {
408 .tclr = FSMC_TCLR_1,
409 .tar = FSMC_TAR_1,
410 .thiz = FSMC_THIZ_1,
411 .thold = FSMC_THOLD_4,
412 .twait = FSMC_TWAIT_6,
413 .tset = FSMC_TSET_0,
414 };
415
416 if (timings)
417 tims = timings;
418 else
419 tims = &default_timings;
420
421 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
422 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
423 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
424 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
425 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
426 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
427
428 if (busw)
429 writel_relaxed(value | FSMC_DEVWID_16,
430 FSMC_NAND_REG(regs, bank, PC));
431 else
432 writel_relaxed(value | FSMC_DEVWID_8,
433 FSMC_NAND_REG(regs, bank, PC));
434
435 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
436 FSMC_NAND_REG(regs, bank, PC));
437 writel_relaxed(thiz | thold | twait | tset,
438 FSMC_NAND_REG(regs, bank, COMM));
439 writel_relaxed(thiz | thold | twait | tset,
440 FSMC_NAND_REG(regs, bank, ATTRIB));
441 }
442
443 /*
444 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
445 */
446 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
447 {
448 struct fsmc_nand_data *host = container_of(mtd,
449 struct fsmc_nand_data, mtd);
450 void __iomem *regs = host->regs_va;
451 uint32_t bank = host->bank;
452
453 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
454 FSMC_NAND_REG(regs, bank, PC));
455 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
456 FSMC_NAND_REG(regs, bank, PC));
457 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
458 FSMC_NAND_REG(regs, bank, PC));
459 }
460
461 /*
462 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
463 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
464 * max of 8-bits)
465 */
466 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
467 uint8_t *ecc)
468 {
469 struct fsmc_nand_data *host = container_of(mtd,
470 struct fsmc_nand_data, mtd);
471 void __iomem *regs = host->regs_va;
472 uint32_t bank = host->bank;
473 uint32_t ecc_tmp;
474 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
475
476 do {
477 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
478 break;
479 else
480 cond_resched();
481 } while (!time_after_eq(jiffies, deadline));
482
483 if (time_after_eq(jiffies, deadline)) {
484 dev_err(host->dev, "calculate ecc timed out\n");
485 return -ETIMEDOUT;
486 }
487
488 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
489 ecc[0] = (uint8_t) (ecc_tmp >> 0);
490 ecc[1] = (uint8_t) (ecc_tmp >> 8);
491 ecc[2] = (uint8_t) (ecc_tmp >> 16);
492 ecc[3] = (uint8_t) (ecc_tmp >> 24);
493
494 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
495 ecc[4] = (uint8_t) (ecc_tmp >> 0);
496 ecc[5] = (uint8_t) (ecc_tmp >> 8);
497 ecc[6] = (uint8_t) (ecc_tmp >> 16);
498 ecc[7] = (uint8_t) (ecc_tmp >> 24);
499
500 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
501 ecc[8] = (uint8_t) (ecc_tmp >> 0);
502 ecc[9] = (uint8_t) (ecc_tmp >> 8);
503 ecc[10] = (uint8_t) (ecc_tmp >> 16);
504 ecc[11] = (uint8_t) (ecc_tmp >> 24);
505
506 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
507 ecc[12] = (uint8_t) (ecc_tmp >> 16);
508
509 return 0;
510 }
511
512 /*
513 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
514 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
515 * max of 1-bit)
516 */
517 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
518 uint8_t *ecc)
519 {
520 struct fsmc_nand_data *host = container_of(mtd,
521 struct fsmc_nand_data, mtd);
522 void __iomem *regs = host->regs_va;
523 uint32_t bank = host->bank;
524 uint32_t ecc_tmp;
525
526 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
527 ecc[0] = (uint8_t) (ecc_tmp >> 0);
528 ecc[1] = (uint8_t) (ecc_tmp >> 8);
529 ecc[2] = (uint8_t) (ecc_tmp >> 16);
530
531 return 0;
532 }
533
534 /* Count the number of 0's in buff upto a max of max_bits */
535 static int count_written_bits(uint8_t *buff, int size, int max_bits)
536 {
537 int k, written_bits = 0;
538
539 for (k = 0; k < size; k++) {
540 written_bits += hweight8(~buff[k]);
541 if (written_bits > max_bits)
542 break;
543 }
544
545 return written_bits;
546 }
547
548 static void dma_complete(void *param)
549 {
550 struct fsmc_nand_data *host = param;
551
552 complete(&host->dma_access_complete);
553 }
554
555 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
556 enum dma_data_direction direction)
557 {
558 struct dma_chan *chan;
559 struct dma_device *dma_dev;
560 struct dma_async_tx_descriptor *tx;
561 dma_addr_t dma_dst, dma_src, dma_addr;
562 dma_cookie_t cookie;
563 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
564 int ret;
565 unsigned long time_left;
566
567 if (direction == DMA_TO_DEVICE)
568 chan = host->write_dma_chan;
569 else if (direction == DMA_FROM_DEVICE)
570 chan = host->read_dma_chan;
571 else
572 return -EINVAL;
573
574 dma_dev = chan->device;
575 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
576
577 if (direction == DMA_TO_DEVICE) {
578 dma_src = dma_addr;
579 dma_dst = host->data_pa;
580 } else {
581 dma_src = host->data_pa;
582 dma_dst = dma_addr;
583 }
584
585 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
586 len, flags);
587 if (!tx) {
588 dev_err(host->dev, "device_prep_dma_memcpy error\n");
589 ret = -EIO;
590 goto unmap_dma;
591 }
592
593 tx->callback = dma_complete;
594 tx->callback_param = host;
595 cookie = tx->tx_submit(tx);
596
597 ret = dma_submit_error(cookie);
598 if (ret) {
599 dev_err(host->dev, "dma_submit_error %d\n", cookie);
600 goto unmap_dma;
601 }
602
603 dma_async_issue_pending(chan);
604
605 time_left =
606 wait_for_completion_timeout(&host->dma_access_complete,
607 msecs_to_jiffies(3000));
608 if (time_left == 0) {
609 dmaengine_terminate_all(chan);
610 dev_err(host->dev, "wait_for_completion_timeout\n");
611 ret = -ETIMEDOUT;
612 goto unmap_dma;
613 }
614
615 ret = 0;
616
617 unmap_dma:
618 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
619
620 return ret;
621 }
622
623 /*
624 * fsmc_write_buf - write buffer to chip
625 * @mtd: MTD device structure
626 * @buf: data buffer
627 * @len: number of bytes to write
628 */
629 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
630 {
631 int i;
632 struct nand_chip *chip = mtd_to_nand(mtd);
633
634 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
635 IS_ALIGNED(len, sizeof(uint32_t))) {
636 uint32_t *p = (uint32_t *)buf;
637 len = len >> 2;
638 for (i = 0; i < len; i++)
639 writel_relaxed(p[i], chip->IO_ADDR_W);
640 } else {
641 for (i = 0; i < len; i++)
642 writeb_relaxed(buf[i], chip->IO_ADDR_W);
643 }
644 }
645
646 /*
647 * fsmc_read_buf - read chip data into buffer
648 * @mtd: MTD device structure
649 * @buf: buffer to store date
650 * @len: number of bytes to read
651 */
652 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
653 {
654 int i;
655 struct nand_chip *chip = mtd_to_nand(mtd);
656
657 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
658 IS_ALIGNED(len, sizeof(uint32_t))) {
659 uint32_t *p = (uint32_t *)buf;
660 len = len >> 2;
661 for (i = 0; i < len; i++)
662 p[i] = readl_relaxed(chip->IO_ADDR_R);
663 } else {
664 for (i = 0; i < len; i++)
665 buf[i] = readb_relaxed(chip->IO_ADDR_R);
666 }
667 }
668
669 /*
670 * fsmc_read_buf_dma - read chip data into buffer
671 * @mtd: MTD device structure
672 * @buf: buffer to store date
673 * @len: number of bytes to read
674 */
675 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
676 {
677 struct fsmc_nand_data *host;
678
679 host = container_of(mtd, struct fsmc_nand_data, mtd);
680 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
681 }
682
683 /*
684 * fsmc_write_buf_dma - write buffer to chip
685 * @mtd: MTD device structure
686 * @buf: data buffer
687 * @len: number of bytes to write
688 */
689 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
690 int len)
691 {
692 struct fsmc_nand_data *host;
693
694 host = container_of(mtd, struct fsmc_nand_data, mtd);
695 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
696 }
697
698 /*
699 * fsmc_read_page_hwecc
700 * @mtd: mtd info structure
701 * @chip: nand chip info structure
702 * @buf: buffer to store read data
703 * @oob_required: caller expects OOB data read to chip->oob_poi
704 * @page: page number to read
705 *
706 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
707 * performed in a strict sequence as follows:
708 * data(512 byte) -> ecc(13 byte)
709 * After this read, fsmc hardware generates and reports error data bits(up to a
710 * max of 8 bits)
711 */
712 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
713 uint8_t *buf, int oob_required, int page)
714 {
715 struct fsmc_nand_data *host = container_of(mtd,
716 struct fsmc_nand_data, mtd);
717 struct fsmc_eccplace *ecc_place = host->ecc_place;
718 int i, j, s, stat, eccsize = chip->ecc.size;
719 int eccbytes = chip->ecc.bytes;
720 int eccsteps = chip->ecc.steps;
721 uint8_t *p = buf;
722 uint8_t *ecc_calc = chip->buffers->ecccalc;
723 uint8_t *ecc_code = chip->buffers->ecccode;
724 int off, len, group = 0;
725 /*
726 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
727 * end up reading 14 bytes (7 words) from oob. The local array is
728 * to maintain word alignment
729 */
730 uint16_t ecc_oob[7];
731 uint8_t *oob = (uint8_t *)&ecc_oob[0];
732 unsigned int max_bitflips = 0;
733
734 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
735 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
736 chip->ecc.hwctl(mtd, NAND_ECC_READ);
737 chip->read_buf(mtd, p, eccsize);
738
739 for (j = 0; j < eccbytes;) {
740 off = ecc_place->eccplace[group].offset;
741 len = ecc_place->eccplace[group].length;
742 group++;
743
744 /*
745 * length is intentionally kept a higher multiple of 2
746 * to read at least 13 bytes even in case of 16 bit NAND
747 * devices
748 */
749 if (chip->options & NAND_BUSWIDTH_16)
750 len = roundup(len, 2);
751
752 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
753 chip->read_buf(mtd, oob + j, len);
754 j += len;
755 }
756
757 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
758 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
759
760 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
761 if (stat < 0) {
762 mtd->ecc_stats.failed++;
763 } else {
764 mtd->ecc_stats.corrected += stat;
765 max_bitflips = max_t(unsigned int, max_bitflips, stat);
766 }
767 }
768
769 return max_bitflips;
770 }
771
772 /*
773 * fsmc_bch8_correct_data
774 * @mtd: mtd info structure
775 * @dat: buffer of read data
776 * @read_ecc: ecc read from device spare area
777 * @calc_ecc: ecc calculated from read data
778 *
779 * calc_ecc is a 104 bit information containing maximum of 8 error
780 * offset informations of 13 bits each in 512 bytes of read data.
781 */
782 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
783 uint8_t *read_ecc, uint8_t *calc_ecc)
784 {
785 struct fsmc_nand_data *host = container_of(mtd,
786 struct fsmc_nand_data, mtd);
787 struct nand_chip *chip = mtd_to_nand(mtd);
788 void __iomem *regs = host->regs_va;
789 unsigned int bank = host->bank;
790 uint32_t err_idx[8];
791 uint32_t num_err, i;
792 uint32_t ecc1, ecc2, ecc3, ecc4;
793
794 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
795
796 /* no bit flipping */
797 if (likely(num_err == 0))
798 return 0;
799
800 /* too many errors */
801 if (unlikely(num_err > 8)) {
802 /*
803 * This is a temporary erase check. A newly erased page read
804 * would result in an ecc error because the oob data is also
805 * erased to FF and the calculated ecc for an FF data is not
806 * FF..FF.
807 * This is a workaround to skip performing correction in case
808 * data is FF..FF
809 *
810 * Logic:
811 * For every page, each bit written as 0 is counted until these
812 * number of bits are greater than 8 (the maximum correction
813 * capability of FSMC for each 512 + 13 bytes)
814 */
815
816 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
817 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
818
819 if ((bits_ecc + bits_data) <= 8) {
820 if (bits_data)
821 memset(dat, 0xff, chip->ecc.size);
822 return bits_data;
823 }
824
825 return -EBADMSG;
826 }
827
828 /*
829 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
830 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
831 *
832 * calc_ecc is a 104 bit information containing maximum of 8 error
833 * offset informations of 13 bits each. calc_ecc is copied into a
834 * uint64_t array and error offset indexes are populated in err_idx
835 * array
836 */
837 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
838 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
839 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
840 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
841
842 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
843 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
844 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
845 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
846 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
847 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
848 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
849 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
850
851 i = 0;
852 while (num_err--) {
853 change_bit(0, (unsigned long *)&err_idx[i]);
854 change_bit(1, (unsigned long *)&err_idx[i]);
855
856 if (err_idx[i] < chip->ecc.size * 8) {
857 change_bit(err_idx[i], (unsigned long *)dat);
858 i++;
859 }
860 }
861 return i;
862 }
863
864 static bool filter(struct dma_chan *chan, void *slave)
865 {
866 chan->private = slave;
867 return true;
868 }
869
870 #ifdef CONFIG_OF
871 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
872 struct device_node *np)
873 {
874 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
875 u32 val;
876 int ret;
877
878 /* Set default NAND width to 8 bits */
879 pdata->width = 8;
880 if (!of_property_read_u32(np, "bank-width", &val)) {
881 if (val == 2) {
882 pdata->width = 16;
883 } else if (val != 1) {
884 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
885 return -EINVAL;
886 }
887 }
888 if (of_get_property(np, "nand-skip-bbtscan", NULL))
889 pdata->options = NAND_SKIP_BBTSCAN;
890
891 pdata->nand_timings = devm_kzalloc(&pdev->dev,
892 sizeof(*pdata->nand_timings), GFP_KERNEL);
893 if (!pdata->nand_timings)
894 return -ENOMEM;
895 ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
896 sizeof(*pdata->nand_timings));
897 if (ret) {
898 dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
899 pdata->nand_timings = NULL;
900 }
901
902 /* Set default NAND bank to 0 */
903 pdata->bank = 0;
904 if (!of_property_read_u32(np, "bank", &val)) {
905 if (val > 3) {
906 dev_err(&pdev->dev, "invalid bank %u\n", val);
907 return -EINVAL;
908 }
909 pdata->bank = val;
910 }
911 return 0;
912 }
913 #else
914 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
915 struct device_node *np)
916 {
917 return -ENOSYS;
918 }
919 #endif
920
921 /*
922 * fsmc_nand_probe - Probe function
923 * @pdev: platform device structure
924 */
925 static int __init fsmc_nand_probe(struct platform_device *pdev)
926 {
927 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
928 struct device_node __maybe_unused *np = pdev->dev.of_node;
929 struct fsmc_nand_data *host;
930 struct mtd_info *mtd;
931 struct nand_chip *nand;
932 struct resource *res;
933 dma_cap_mask_t mask;
934 int ret = 0;
935 u32 pid;
936 int i;
937
938 if (np) {
939 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
940 pdev->dev.platform_data = pdata;
941 ret = fsmc_nand_probe_config_dt(pdev, np);
942 if (ret) {
943 dev_err(&pdev->dev, "no platform data\n");
944 return -ENODEV;
945 }
946 }
947
948 if (!pdata) {
949 dev_err(&pdev->dev, "platform data is NULL\n");
950 return -EINVAL;
951 }
952
953 /* Allocate memory for the device structure (and zero it) */
954 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
955 if (!host)
956 return -ENOMEM;
957
958 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
959 host->data_va = devm_ioremap_resource(&pdev->dev, res);
960 if (IS_ERR(host->data_va))
961 return PTR_ERR(host->data_va);
962
963 host->data_pa = (dma_addr_t)res->start;
964
965 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
966 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
967 if (IS_ERR(host->addr_va))
968 return PTR_ERR(host->addr_va);
969
970 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
971 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
972 if (IS_ERR(host->cmd_va))
973 return PTR_ERR(host->cmd_va);
974
975 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
976 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
977 if (IS_ERR(host->regs_va))
978 return PTR_ERR(host->regs_va);
979
980 host->clk = clk_get(&pdev->dev, NULL);
981 if (IS_ERR(host->clk)) {
982 dev_err(&pdev->dev, "failed to fetch block clock\n");
983 return PTR_ERR(host->clk);
984 }
985
986 ret = clk_prepare_enable(host->clk);
987 if (ret)
988 goto err_clk_prepare_enable;
989
990 /*
991 * This device ID is actually a common AMBA ID as used on the
992 * AMBA PrimeCell bus. However it is not a PrimeCell.
993 */
994 for (pid = 0, i = 0; i < 4; i++)
995 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
996 host->pid = pid;
997 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
998 "revision %02x, config %02x\n",
999 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1000 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1001
1002 host->bank = pdata->bank;
1003 host->select_chip = pdata->select_bank;
1004 host->partitions = pdata->partitions;
1005 host->nr_partitions = pdata->nr_partitions;
1006 host->dev = &pdev->dev;
1007 host->dev_timings = pdata->nand_timings;
1008 host->mode = pdata->mode;
1009
1010 if (host->mode == USE_DMA_ACCESS)
1011 init_completion(&host->dma_access_complete);
1012
1013 /* Link all private pointers */
1014 mtd = &host->mtd;
1015 nand = &host->nand;
1016 mtd->priv = nand;
1017 nand->priv = host;
1018 nand_set_flash_node(nand, np);
1019
1020 host->mtd.dev.parent = &pdev->dev;
1021 nand->IO_ADDR_R = host->data_va;
1022 nand->IO_ADDR_W = host->data_va;
1023 nand->cmd_ctrl = fsmc_cmd_ctrl;
1024 nand->chip_delay = 30;
1025
1026 /*
1027 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1028 * can overwrite this value if the DT provides a different value.
1029 */
1030 nand->ecc.mode = NAND_ECC_HW;
1031 nand->ecc.hwctl = fsmc_enable_hwecc;
1032 nand->ecc.size = 512;
1033 nand->options = pdata->options;
1034 nand->select_chip = fsmc_select_chip;
1035 nand->badblockbits = 7;
1036 nand_set_flash_node(nand, np);
1037
1038 if (pdata->width == FSMC_NAND_BW16)
1039 nand->options |= NAND_BUSWIDTH_16;
1040
1041 switch (host->mode) {
1042 case USE_DMA_ACCESS:
1043 dma_cap_zero(mask);
1044 dma_cap_set(DMA_MEMCPY, mask);
1045 host->read_dma_chan = dma_request_channel(mask, filter,
1046 pdata->read_dma_priv);
1047 if (!host->read_dma_chan) {
1048 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1049 goto err_req_read_chnl;
1050 }
1051 host->write_dma_chan = dma_request_channel(mask, filter,
1052 pdata->write_dma_priv);
1053 if (!host->write_dma_chan) {
1054 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1055 goto err_req_write_chnl;
1056 }
1057 nand->read_buf = fsmc_read_buf_dma;
1058 nand->write_buf = fsmc_write_buf_dma;
1059 break;
1060
1061 default:
1062 case USE_WORD_ACCESS:
1063 nand->read_buf = fsmc_read_buf;
1064 nand->write_buf = fsmc_write_buf;
1065 break;
1066 }
1067
1068 fsmc_nand_setup(host->regs_va, host->bank,
1069 nand->options & NAND_BUSWIDTH_16,
1070 host->dev_timings);
1071
1072 if (AMBA_REV_BITS(host->pid) >= 8) {
1073 nand->ecc.read_page = fsmc_read_page_hwecc;
1074 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1075 nand->ecc.correct = fsmc_bch8_correct_data;
1076 nand->ecc.bytes = 13;
1077 nand->ecc.strength = 8;
1078 }
1079
1080 /*
1081 * Scan to find existence of the device
1082 */
1083 if (nand_scan_ident(&host->mtd, 1, NULL)) {
1084 ret = -ENXIO;
1085 dev_err(&pdev->dev, "No NAND Device found!\n");
1086 goto err_scan_ident;
1087 }
1088
1089 if (AMBA_REV_BITS(host->pid) >= 8) {
1090 switch (host->mtd.oobsize) {
1091 case 16:
1092 nand->ecc.layout = &fsmc_ecc4_16_layout;
1093 host->ecc_place = &fsmc_ecc4_sp_place;
1094 break;
1095 case 64:
1096 nand->ecc.layout = &fsmc_ecc4_64_layout;
1097 host->ecc_place = &fsmc_ecc4_lp_place;
1098 break;
1099 case 128:
1100 nand->ecc.layout = &fsmc_ecc4_128_layout;
1101 host->ecc_place = &fsmc_ecc4_lp_place;
1102 break;
1103 case 224:
1104 nand->ecc.layout = &fsmc_ecc4_224_layout;
1105 host->ecc_place = &fsmc_ecc4_lp_place;
1106 break;
1107 case 256:
1108 nand->ecc.layout = &fsmc_ecc4_256_layout;
1109 host->ecc_place = &fsmc_ecc4_lp_place;
1110 break;
1111 default:
1112 dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
1113 mtd->oobsize);
1114 ret = -EINVAL;
1115 goto err_probe;
1116 }
1117 } else {
1118 switch (nand->ecc.mode) {
1119 case NAND_ECC_HW:
1120 dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
1121 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1122 nand->ecc.correct = nand_correct_data;
1123 nand->ecc.bytes = 3;
1124 nand->ecc.strength = 1;
1125 break;
1126
1127 case NAND_ECC_SOFT_BCH:
1128 dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
1129 break;
1130
1131 default:
1132 dev_err(&pdev->dev, "Unsupported ECC mode!\n");
1133 goto err_probe;
1134 }
1135
1136 /*
1137 * Don't set layout for BCH4 SW ECC. This will be
1138 * generated later in nand_bch_init() later.
1139 */
1140 if (nand->ecc.mode != NAND_ECC_SOFT_BCH) {
1141 switch (host->mtd.oobsize) {
1142 case 16:
1143 nand->ecc.layout = &fsmc_ecc1_16_layout;
1144 break;
1145 case 64:
1146 nand->ecc.layout = &fsmc_ecc1_64_layout;
1147 break;
1148 case 128:
1149 nand->ecc.layout = &fsmc_ecc1_128_layout;
1150 break;
1151 default:
1152 dev_warn(&pdev->dev,
1153 "No oob scheme defined for oobsize %d\n",
1154 mtd->oobsize);
1155 ret = -EINVAL;
1156 goto err_probe;
1157 }
1158 }
1159 }
1160
1161 /* Second stage of scan to fill MTD data-structures */
1162 if (nand_scan_tail(&host->mtd)) {
1163 ret = -ENXIO;
1164 goto err_probe;
1165 }
1166
1167 /*
1168 * The partition information can is accessed by (in the same precedence)
1169 *
1170 * command line through Bootloader,
1171 * platform data,
1172 * default partition information present in driver.
1173 */
1174 /*
1175 * Check for partition info passed
1176 */
1177 host->mtd.name = "nand";
1178 ret = mtd_device_register(&host->mtd, host->partitions,
1179 host->nr_partitions);
1180 if (ret)
1181 goto err_probe;
1182
1183 platform_set_drvdata(pdev, host);
1184 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1185 return 0;
1186
1187 err_probe:
1188 err_scan_ident:
1189 if (host->mode == USE_DMA_ACCESS)
1190 dma_release_channel(host->write_dma_chan);
1191 err_req_write_chnl:
1192 if (host->mode == USE_DMA_ACCESS)
1193 dma_release_channel(host->read_dma_chan);
1194 err_req_read_chnl:
1195 clk_disable_unprepare(host->clk);
1196 err_clk_prepare_enable:
1197 clk_put(host->clk);
1198 return ret;
1199 }
1200
1201 /*
1202 * Clean up routine
1203 */
1204 static int fsmc_nand_remove(struct platform_device *pdev)
1205 {
1206 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1207
1208 if (host) {
1209 nand_release(&host->mtd);
1210
1211 if (host->mode == USE_DMA_ACCESS) {
1212 dma_release_channel(host->write_dma_chan);
1213 dma_release_channel(host->read_dma_chan);
1214 }
1215 clk_disable_unprepare(host->clk);
1216 clk_put(host->clk);
1217 }
1218
1219 return 0;
1220 }
1221
1222 #ifdef CONFIG_PM_SLEEP
1223 static int fsmc_nand_suspend(struct device *dev)
1224 {
1225 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1226 if (host)
1227 clk_disable_unprepare(host->clk);
1228 return 0;
1229 }
1230
1231 static int fsmc_nand_resume(struct device *dev)
1232 {
1233 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1234 if (host) {
1235 clk_prepare_enable(host->clk);
1236 fsmc_nand_setup(host->regs_va, host->bank,
1237 host->nand.options & NAND_BUSWIDTH_16,
1238 host->dev_timings);
1239 }
1240 return 0;
1241 }
1242 #endif
1243
1244 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1245
1246 #ifdef CONFIG_OF
1247 static const struct of_device_id fsmc_nand_id_table[] = {
1248 { .compatible = "st,spear600-fsmc-nand" },
1249 { .compatible = "stericsson,fsmc-nand" },
1250 {}
1251 };
1252 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1253 #endif
1254
1255 static struct platform_driver fsmc_nand_driver = {
1256 .remove = fsmc_nand_remove,
1257 .driver = {
1258 .name = "fsmc-nand",
1259 .of_match_table = of_match_ptr(fsmc_nand_id_table),
1260 .pm = &fsmc_nand_pm_ops,
1261 },
1262 };
1263
1264 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1265
1266 MODULE_LICENSE("GPL");
1267 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1268 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
This page took 0.07375 seconds and 5 git commands to generate.