Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[deliverable/linux.git] / drivers / mtd / nand / fsmc_nand.c
1 /*
2 * drivers/mtd/nand/fsmc_nand.c
3 *
4 * ST Microelectronics
5 * Flexible Static Memory Controller (FSMC)
6 * Driver for NAND portions
7 *
8 * Copyright © 2010 ST Microelectronics
9 * Vipin Kumar <vipin.kumar@st.com>
10 * Ashish Priyadarshi
11 *
12 * Based on drivers/mtd/nand/nomadik_nand.c
13 *
14 * This file is licensed under the terms of the GNU General Public
15 * License version 2. This program is licensed "as is" without any
16 * warranty of any kind, whether express or implied.
17 */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/mtd/fsmc.h>
39 #include <linux/amba/bus.h>
40 #include <mtd/mtd-abi.h>
41
42 static struct nand_ecclayout fsmc_ecc1_128_layout = {
43 .eccbytes = 24,
44 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
45 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
46 .oobfree = {
47 {.offset = 8, .length = 8},
48 {.offset = 24, .length = 8},
49 {.offset = 40, .length = 8},
50 {.offset = 56, .length = 8},
51 {.offset = 72, .length = 8},
52 {.offset = 88, .length = 8},
53 {.offset = 104, .length = 8},
54 {.offset = 120, .length = 8}
55 }
56 };
57
58 static struct nand_ecclayout fsmc_ecc1_64_layout = {
59 .eccbytes = 12,
60 .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52},
61 .oobfree = {
62 {.offset = 8, .length = 8},
63 {.offset = 24, .length = 8},
64 {.offset = 40, .length = 8},
65 {.offset = 56, .length = 8},
66 }
67 };
68
69 static struct nand_ecclayout fsmc_ecc1_16_layout = {
70 .eccbytes = 3,
71 .eccpos = {2, 3, 4},
72 .oobfree = {
73 {.offset = 8, .length = 8},
74 }
75 };
76
77 /*
78 * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes
79 * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46
80 * bytes are free for use.
81 */
82 static struct nand_ecclayout fsmc_ecc4_256_layout = {
83 .eccbytes = 208,
84 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
85 9, 10, 11, 12, 13, 14,
86 18, 19, 20, 21, 22, 23, 24,
87 25, 26, 27, 28, 29, 30,
88 34, 35, 36, 37, 38, 39, 40,
89 41, 42, 43, 44, 45, 46,
90 50, 51, 52, 53, 54, 55, 56,
91 57, 58, 59, 60, 61, 62,
92 66, 67, 68, 69, 70, 71, 72,
93 73, 74, 75, 76, 77, 78,
94 82, 83, 84, 85, 86, 87, 88,
95 89, 90, 91, 92, 93, 94,
96 98, 99, 100, 101, 102, 103, 104,
97 105, 106, 107, 108, 109, 110,
98 114, 115, 116, 117, 118, 119, 120,
99 121, 122, 123, 124, 125, 126,
100 130, 131, 132, 133, 134, 135, 136,
101 137, 138, 139, 140, 141, 142,
102 146, 147, 148, 149, 150, 151, 152,
103 153, 154, 155, 156, 157, 158,
104 162, 163, 164, 165, 166, 167, 168,
105 169, 170, 171, 172, 173, 174,
106 178, 179, 180, 181, 182, 183, 184,
107 185, 186, 187, 188, 189, 190,
108 194, 195, 196, 197, 198, 199, 200,
109 201, 202, 203, 204, 205, 206,
110 210, 211, 212, 213, 214, 215, 216,
111 217, 218, 219, 220, 221, 222,
112 226, 227, 228, 229, 230, 231, 232,
113 233, 234, 235, 236, 237, 238,
114 242, 243, 244, 245, 246, 247, 248,
115 249, 250, 251, 252, 253, 254
116 },
117 .oobfree = {
118 {.offset = 15, .length = 3},
119 {.offset = 31, .length = 3},
120 {.offset = 47, .length = 3},
121 {.offset = 63, .length = 3},
122 {.offset = 79, .length = 3},
123 {.offset = 95, .length = 3},
124 {.offset = 111, .length = 3},
125 {.offset = 127, .length = 3},
126 {.offset = 143, .length = 3},
127 {.offset = 159, .length = 3},
128 {.offset = 175, .length = 3},
129 {.offset = 191, .length = 3},
130 {.offset = 207, .length = 3},
131 {.offset = 223, .length = 3},
132 {.offset = 239, .length = 3},
133 {.offset = 255, .length = 1}
134 }
135 };
136
137 /*
138 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
139 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
140 * bytes are free for use.
141 */
142 static struct nand_ecclayout fsmc_ecc4_224_layout = {
143 .eccbytes = 104,
144 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
145 9, 10, 11, 12, 13, 14,
146 18, 19, 20, 21, 22, 23, 24,
147 25, 26, 27, 28, 29, 30,
148 34, 35, 36, 37, 38, 39, 40,
149 41, 42, 43, 44, 45, 46,
150 50, 51, 52, 53, 54, 55, 56,
151 57, 58, 59, 60, 61, 62,
152 66, 67, 68, 69, 70, 71, 72,
153 73, 74, 75, 76, 77, 78,
154 82, 83, 84, 85, 86, 87, 88,
155 89, 90, 91, 92, 93, 94,
156 98, 99, 100, 101, 102, 103, 104,
157 105, 106, 107, 108, 109, 110,
158 114, 115, 116, 117, 118, 119, 120,
159 121, 122, 123, 124, 125, 126
160 },
161 .oobfree = {
162 {.offset = 15, .length = 3},
163 {.offset = 31, .length = 3},
164 {.offset = 47, .length = 3},
165 {.offset = 63, .length = 3},
166 {.offset = 79, .length = 3},
167 {.offset = 95, .length = 3},
168 {.offset = 111, .length = 3},
169 {.offset = 127, .length = 97}
170 }
171 };
172
173 /*
174 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes
175 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22
176 * bytes are free for use.
177 */
178 static struct nand_ecclayout fsmc_ecc4_128_layout = {
179 .eccbytes = 104,
180 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
181 9, 10, 11, 12, 13, 14,
182 18, 19, 20, 21, 22, 23, 24,
183 25, 26, 27, 28, 29, 30,
184 34, 35, 36, 37, 38, 39, 40,
185 41, 42, 43, 44, 45, 46,
186 50, 51, 52, 53, 54, 55, 56,
187 57, 58, 59, 60, 61, 62,
188 66, 67, 68, 69, 70, 71, 72,
189 73, 74, 75, 76, 77, 78,
190 82, 83, 84, 85, 86, 87, 88,
191 89, 90, 91, 92, 93, 94,
192 98, 99, 100, 101, 102, 103, 104,
193 105, 106, 107, 108, 109, 110,
194 114, 115, 116, 117, 118, 119, 120,
195 121, 122, 123, 124, 125, 126
196 },
197 .oobfree = {
198 {.offset = 15, .length = 3},
199 {.offset = 31, .length = 3},
200 {.offset = 47, .length = 3},
201 {.offset = 63, .length = 3},
202 {.offset = 79, .length = 3},
203 {.offset = 95, .length = 3},
204 {.offset = 111, .length = 3},
205 {.offset = 127, .length = 1}
206 }
207 };
208
209 /*
210 * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of
211 * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10
212 * bytes are free for use.
213 */
214 static struct nand_ecclayout fsmc_ecc4_64_layout = {
215 .eccbytes = 52,
216 .eccpos = { 2, 3, 4, 5, 6, 7, 8,
217 9, 10, 11, 12, 13, 14,
218 18, 19, 20, 21, 22, 23, 24,
219 25, 26, 27, 28, 29, 30,
220 34, 35, 36, 37, 38, 39, 40,
221 41, 42, 43, 44, 45, 46,
222 50, 51, 52, 53, 54, 55, 56,
223 57, 58, 59, 60, 61, 62,
224 },
225 .oobfree = {
226 {.offset = 15, .length = 3},
227 {.offset = 31, .length = 3},
228 {.offset = 47, .length = 3},
229 {.offset = 63, .length = 1},
230 }
231 };
232
233 /*
234 * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of
235 * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One
236 * byte is free for use.
237 */
238 static struct nand_ecclayout fsmc_ecc4_16_layout = {
239 .eccbytes = 13,
240 .eccpos = { 0, 1, 2, 3, 6, 7, 8,
241 9, 10, 11, 12, 13, 14
242 },
243 .oobfree = {
244 {.offset = 15, .length = 1},
245 }
246 };
247
248 /*
249 * ECC placement definitions in oobfree type format.
250 * There are 13 bytes of ecc for every 512 byte block and it has to be read
251 * consecutively and immediately after the 512 byte data block for hardware to
252 * generate the error bit offsets in 512 byte data.
253 * Managing the ecc bytes in the following way makes it easier for software to
254 * read ecc bytes consecutive to data bytes. This way is similar to
255 * oobfree structure maintained already in generic nand driver
256 */
257 static struct fsmc_eccplace fsmc_ecc4_lp_place = {
258 .eccplace = {
259 {.offset = 2, .length = 13},
260 {.offset = 18, .length = 13},
261 {.offset = 34, .length = 13},
262 {.offset = 50, .length = 13},
263 {.offset = 66, .length = 13},
264 {.offset = 82, .length = 13},
265 {.offset = 98, .length = 13},
266 {.offset = 114, .length = 13}
267 }
268 };
269
270 static struct fsmc_eccplace fsmc_ecc4_sp_place = {
271 .eccplace = {
272 {.offset = 0, .length = 4},
273 {.offset = 6, .length = 9}
274 }
275 };
276
277 /**
278 * struct fsmc_nand_data - structure for FSMC NAND device state
279 *
280 * @pid: Part ID on the AMBA PrimeCell format
281 * @mtd: MTD info for a NAND flash.
282 * @nand: Chip related info for a NAND flash.
283 * @partitions: Partition info for a NAND Flash.
284 * @nr_partitions: Total number of partition of a NAND flash.
285 *
286 * @ecc_place: ECC placing locations in oobfree type format.
287 * @bank: Bank number for probed device.
288 * @clk: Clock structure for FSMC.
289 *
290 * @read_dma_chan: DMA channel for read access
291 * @write_dma_chan: DMA channel for write access to NAND
292 * @dma_access_complete: Completion structure
293 *
294 * @data_pa: NAND Physical port for Data.
295 * @data_va: NAND port for Data.
296 * @cmd_va: NAND port for Command.
297 * @addr_va: NAND port for Address.
298 * @regs_va: FSMC regs base address.
299 */
300 struct fsmc_nand_data {
301 u32 pid;
302 struct mtd_info mtd;
303 struct nand_chip nand;
304 struct mtd_partition *partitions;
305 unsigned int nr_partitions;
306
307 struct fsmc_eccplace *ecc_place;
308 unsigned int bank;
309 struct device *dev;
310 enum access_mode mode;
311 struct clk *clk;
312
313 /* DMA related objects */
314 struct dma_chan *read_dma_chan;
315 struct dma_chan *write_dma_chan;
316 struct completion dma_access_complete;
317
318 struct fsmc_nand_timings *dev_timings;
319
320 dma_addr_t data_pa;
321 void __iomem *data_va;
322 void __iomem *cmd_va;
323 void __iomem *addr_va;
324 void __iomem *regs_va;
325
326 void (*select_chip)(uint32_t bank, uint32_t busw);
327 };
328
329 /* Assert CS signal based on chipnr */
330 static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
331 {
332 struct nand_chip *chip = mtd->priv;
333 struct fsmc_nand_data *host;
334
335 host = container_of(mtd, struct fsmc_nand_data, mtd);
336
337 switch (chipnr) {
338 case -1:
339 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
340 break;
341 case 0:
342 case 1:
343 case 2:
344 case 3:
345 if (host->select_chip)
346 host->select_chip(chipnr,
347 chip->options & NAND_BUSWIDTH_16);
348 break;
349
350 default:
351 BUG();
352 }
353 }
354
355 /*
356 * fsmc_cmd_ctrl - For facilitaing Hardware access
357 * This routine allows hardware specific access to control-lines(ALE,CLE)
358 */
359 static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
360 {
361 struct nand_chip *this = mtd->priv;
362 struct fsmc_nand_data *host = container_of(mtd,
363 struct fsmc_nand_data, mtd);
364 void __iomem *regs = host->regs_va;
365 unsigned int bank = host->bank;
366
367 if (ctrl & NAND_CTRL_CHANGE) {
368 u32 pc;
369
370 if (ctrl & NAND_CLE) {
371 this->IO_ADDR_R = host->cmd_va;
372 this->IO_ADDR_W = host->cmd_va;
373 } else if (ctrl & NAND_ALE) {
374 this->IO_ADDR_R = host->addr_va;
375 this->IO_ADDR_W = host->addr_va;
376 } else {
377 this->IO_ADDR_R = host->data_va;
378 this->IO_ADDR_W = host->data_va;
379 }
380
381 pc = readl(FSMC_NAND_REG(regs, bank, PC));
382 if (ctrl & NAND_NCE)
383 pc |= FSMC_ENABLE;
384 else
385 pc &= ~FSMC_ENABLE;
386 writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
387 }
388
389 mb();
390
391 if (cmd != NAND_CMD_NONE)
392 writeb_relaxed(cmd, this->IO_ADDR_W);
393 }
394
395 /*
396 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
397 *
398 * This routine initializes timing parameters related to NAND memory access in
399 * FSMC registers
400 */
401 static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
402 uint32_t busw, struct fsmc_nand_timings *timings)
403 {
404 uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
405 uint32_t tclr, tar, thiz, thold, twait, tset;
406 struct fsmc_nand_timings *tims;
407 struct fsmc_nand_timings default_timings = {
408 .tclr = FSMC_TCLR_1,
409 .tar = FSMC_TAR_1,
410 .thiz = FSMC_THIZ_1,
411 .thold = FSMC_THOLD_4,
412 .twait = FSMC_TWAIT_6,
413 .tset = FSMC_TSET_0,
414 };
415
416 if (timings)
417 tims = timings;
418 else
419 tims = &default_timings;
420
421 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
422 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
423 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
424 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
425 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
426 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
427
428 if (busw)
429 writel_relaxed(value | FSMC_DEVWID_16,
430 FSMC_NAND_REG(regs, bank, PC));
431 else
432 writel_relaxed(value | FSMC_DEVWID_8,
433 FSMC_NAND_REG(regs, bank, PC));
434
435 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
436 FSMC_NAND_REG(regs, bank, PC));
437 writel_relaxed(thiz | thold | twait | tset,
438 FSMC_NAND_REG(regs, bank, COMM));
439 writel_relaxed(thiz | thold | twait | tset,
440 FSMC_NAND_REG(regs, bank, ATTRIB));
441 }
442
443 /*
444 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
445 */
446 static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
447 {
448 struct fsmc_nand_data *host = container_of(mtd,
449 struct fsmc_nand_data, mtd);
450 void __iomem *regs = host->regs_va;
451 uint32_t bank = host->bank;
452
453 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
454 FSMC_NAND_REG(regs, bank, PC));
455 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
456 FSMC_NAND_REG(regs, bank, PC));
457 writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
458 FSMC_NAND_REG(regs, bank, PC));
459 }
460
461 /*
462 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
463 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
464 * max of 8-bits)
465 */
466 static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
467 uint8_t *ecc)
468 {
469 struct fsmc_nand_data *host = container_of(mtd,
470 struct fsmc_nand_data, mtd);
471 void __iomem *regs = host->regs_va;
472 uint32_t bank = host->bank;
473 uint32_t ecc_tmp;
474 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
475
476 do {
477 if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
478 break;
479 else
480 cond_resched();
481 } while (!time_after_eq(jiffies, deadline));
482
483 if (time_after_eq(jiffies, deadline)) {
484 dev_err(host->dev, "calculate ecc timed out\n");
485 return -ETIMEDOUT;
486 }
487
488 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
489 ecc[0] = (uint8_t) (ecc_tmp >> 0);
490 ecc[1] = (uint8_t) (ecc_tmp >> 8);
491 ecc[2] = (uint8_t) (ecc_tmp >> 16);
492 ecc[3] = (uint8_t) (ecc_tmp >> 24);
493
494 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
495 ecc[4] = (uint8_t) (ecc_tmp >> 0);
496 ecc[5] = (uint8_t) (ecc_tmp >> 8);
497 ecc[6] = (uint8_t) (ecc_tmp >> 16);
498 ecc[7] = (uint8_t) (ecc_tmp >> 24);
499
500 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
501 ecc[8] = (uint8_t) (ecc_tmp >> 0);
502 ecc[9] = (uint8_t) (ecc_tmp >> 8);
503 ecc[10] = (uint8_t) (ecc_tmp >> 16);
504 ecc[11] = (uint8_t) (ecc_tmp >> 24);
505
506 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
507 ecc[12] = (uint8_t) (ecc_tmp >> 16);
508
509 return 0;
510 }
511
512 /*
513 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
514 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
515 * max of 1-bit)
516 */
517 static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
518 uint8_t *ecc)
519 {
520 struct fsmc_nand_data *host = container_of(mtd,
521 struct fsmc_nand_data, mtd);
522 void __iomem *regs = host->regs_va;
523 uint32_t bank = host->bank;
524 uint32_t ecc_tmp;
525
526 ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
527 ecc[0] = (uint8_t) (ecc_tmp >> 0);
528 ecc[1] = (uint8_t) (ecc_tmp >> 8);
529 ecc[2] = (uint8_t) (ecc_tmp >> 16);
530
531 return 0;
532 }
533
534 /* Count the number of 0's in buff upto a max of max_bits */
535 static int count_written_bits(uint8_t *buff, int size, int max_bits)
536 {
537 int k, written_bits = 0;
538
539 for (k = 0; k < size; k++) {
540 written_bits += hweight8(~buff[k]);
541 if (written_bits > max_bits)
542 break;
543 }
544
545 return written_bits;
546 }
547
548 static void dma_complete(void *param)
549 {
550 struct fsmc_nand_data *host = param;
551
552 complete(&host->dma_access_complete);
553 }
554
555 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
556 enum dma_data_direction direction)
557 {
558 struct dma_chan *chan;
559 struct dma_device *dma_dev;
560 struct dma_async_tx_descriptor *tx;
561 dma_addr_t dma_dst, dma_src, dma_addr;
562 dma_cookie_t cookie;
563 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
564 int ret;
565
566 if (direction == DMA_TO_DEVICE)
567 chan = host->write_dma_chan;
568 else if (direction == DMA_FROM_DEVICE)
569 chan = host->read_dma_chan;
570 else
571 return -EINVAL;
572
573 dma_dev = chan->device;
574 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
575
576 flags |= DMA_COMPL_SKIP_SRC_UNMAP | DMA_COMPL_SKIP_DEST_UNMAP;
577
578 if (direction == DMA_TO_DEVICE) {
579 dma_src = dma_addr;
580 dma_dst = host->data_pa;
581 } else {
582 dma_src = host->data_pa;
583 dma_dst = dma_addr;
584 }
585
586 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
587 len, flags);
588 if (!tx) {
589 dev_err(host->dev, "device_prep_dma_memcpy error\n");
590 ret = -EIO;
591 goto unmap_dma;
592 }
593
594 tx->callback = dma_complete;
595 tx->callback_param = host;
596 cookie = tx->tx_submit(tx);
597
598 ret = dma_submit_error(cookie);
599 if (ret) {
600 dev_err(host->dev, "dma_submit_error %d\n", cookie);
601 goto unmap_dma;
602 }
603
604 dma_async_issue_pending(chan);
605
606 ret =
607 wait_for_completion_timeout(&host->dma_access_complete,
608 msecs_to_jiffies(3000));
609 if (ret <= 0) {
610 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
611 dev_err(host->dev, "wait_for_completion_timeout\n");
612 if (!ret)
613 ret = -ETIMEDOUT;
614 goto unmap_dma;
615 }
616
617 ret = 0;
618
619 unmap_dma:
620 dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
621
622 return ret;
623 }
624
625 /*
626 * fsmc_write_buf - write buffer to chip
627 * @mtd: MTD device structure
628 * @buf: data buffer
629 * @len: number of bytes to write
630 */
631 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
632 {
633 int i;
634 struct nand_chip *chip = mtd->priv;
635
636 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
637 IS_ALIGNED(len, sizeof(uint32_t))) {
638 uint32_t *p = (uint32_t *)buf;
639 len = len >> 2;
640 for (i = 0; i < len; i++)
641 writel_relaxed(p[i], chip->IO_ADDR_W);
642 } else {
643 for (i = 0; i < len; i++)
644 writeb_relaxed(buf[i], chip->IO_ADDR_W);
645 }
646 }
647
648 /*
649 * fsmc_read_buf - read chip data into buffer
650 * @mtd: MTD device structure
651 * @buf: buffer to store date
652 * @len: number of bytes to read
653 */
654 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
655 {
656 int i;
657 struct nand_chip *chip = mtd->priv;
658
659 if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
660 IS_ALIGNED(len, sizeof(uint32_t))) {
661 uint32_t *p = (uint32_t *)buf;
662 len = len >> 2;
663 for (i = 0; i < len; i++)
664 p[i] = readl_relaxed(chip->IO_ADDR_R);
665 } else {
666 for (i = 0; i < len; i++)
667 buf[i] = readb_relaxed(chip->IO_ADDR_R);
668 }
669 }
670
671 /*
672 * fsmc_read_buf_dma - read chip data into buffer
673 * @mtd: MTD device structure
674 * @buf: buffer to store date
675 * @len: number of bytes to read
676 */
677 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
678 {
679 struct fsmc_nand_data *host;
680
681 host = container_of(mtd, struct fsmc_nand_data, mtd);
682 dma_xfer(host, buf, len, DMA_FROM_DEVICE);
683 }
684
685 /*
686 * fsmc_write_buf_dma - write buffer to chip
687 * @mtd: MTD device structure
688 * @buf: data buffer
689 * @len: number of bytes to write
690 */
691 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
692 int len)
693 {
694 struct fsmc_nand_data *host;
695
696 host = container_of(mtd, struct fsmc_nand_data, mtd);
697 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
698 }
699
700 /*
701 * fsmc_read_page_hwecc
702 * @mtd: mtd info structure
703 * @chip: nand chip info structure
704 * @buf: buffer to store read data
705 * @oob_required: caller expects OOB data read to chip->oob_poi
706 * @page: page number to read
707 *
708 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
709 * performed in a strict sequence as follows:
710 * data(512 byte) -> ecc(13 byte)
711 * After this read, fsmc hardware generates and reports error data bits(up to a
712 * max of 8 bits)
713 */
714 static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
715 uint8_t *buf, int oob_required, int page)
716 {
717 struct fsmc_nand_data *host = container_of(mtd,
718 struct fsmc_nand_data, mtd);
719 struct fsmc_eccplace *ecc_place = host->ecc_place;
720 int i, j, s, stat, eccsize = chip->ecc.size;
721 int eccbytes = chip->ecc.bytes;
722 int eccsteps = chip->ecc.steps;
723 uint8_t *p = buf;
724 uint8_t *ecc_calc = chip->buffers->ecccalc;
725 uint8_t *ecc_code = chip->buffers->ecccode;
726 int off, len, group = 0;
727 /*
728 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
729 * end up reading 14 bytes (7 words) from oob. The local array is
730 * to maintain word alignment
731 */
732 uint16_t ecc_oob[7];
733 uint8_t *oob = (uint8_t *)&ecc_oob[0];
734 unsigned int max_bitflips = 0;
735
736 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
737 chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
738 chip->ecc.hwctl(mtd, NAND_ECC_READ);
739 chip->read_buf(mtd, p, eccsize);
740
741 for (j = 0; j < eccbytes;) {
742 off = ecc_place->eccplace[group].offset;
743 len = ecc_place->eccplace[group].length;
744 group++;
745
746 /*
747 * length is intentionally kept a higher multiple of 2
748 * to read at least 13 bytes even in case of 16 bit NAND
749 * devices
750 */
751 if (chip->options & NAND_BUSWIDTH_16)
752 len = roundup(len, 2);
753
754 chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
755 chip->read_buf(mtd, oob + j, len);
756 j += len;
757 }
758
759 memcpy(&ecc_code[i], oob, chip->ecc.bytes);
760 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
761
762 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
763 if (stat < 0) {
764 mtd->ecc_stats.failed++;
765 } else {
766 mtd->ecc_stats.corrected += stat;
767 max_bitflips = max_t(unsigned int, max_bitflips, stat);
768 }
769 }
770
771 return max_bitflips;
772 }
773
774 /*
775 * fsmc_bch8_correct_data
776 * @mtd: mtd info structure
777 * @dat: buffer of read data
778 * @read_ecc: ecc read from device spare area
779 * @calc_ecc: ecc calculated from read data
780 *
781 * calc_ecc is a 104 bit information containing maximum of 8 error
782 * offset informations of 13 bits each in 512 bytes of read data.
783 */
784 static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
785 uint8_t *read_ecc, uint8_t *calc_ecc)
786 {
787 struct fsmc_nand_data *host = container_of(mtd,
788 struct fsmc_nand_data, mtd);
789 struct nand_chip *chip = mtd->priv;
790 void __iomem *regs = host->regs_va;
791 unsigned int bank = host->bank;
792 uint32_t err_idx[8];
793 uint32_t num_err, i;
794 uint32_t ecc1, ecc2, ecc3, ecc4;
795
796 num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
797
798 /* no bit flipping */
799 if (likely(num_err == 0))
800 return 0;
801
802 /* too many errors */
803 if (unlikely(num_err > 8)) {
804 /*
805 * This is a temporary erase check. A newly erased page read
806 * would result in an ecc error because the oob data is also
807 * erased to FF and the calculated ecc for an FF data is not
808 * FF..FF.
809 * This is a workaround to skip performing correction in case
810 * data is FF..FF
811 *
812 * Logic:
813 * For every page, each bit written as 0 is counted until these
814 * number of bits are greater than 8 (the maximum correction
815 * capability of FSMC for each 512 + 13 bytes)
816 */
817
818 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
819 int bits_data = count_written_bits(dat, chip->ecc.size, 8);
820
821 if ((bits_ecc + bits_data) <= 8) {
822 if (bits_data)
823 memset(dat, 0xff, chip->ecc.size);
824 return bits_data;
825 }
826
827 return -EBADMSG;
828 }
829
830 /*
831 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
832 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
833 *
834 * calc_ecc is a 104 bit information containing maximum of 8 error
835 * offset informations of 13 bits each. calc_ecc is copied into a
836 * uint64_t array and error offset indexes are populated in err_idx
837 * array
838 */
839 ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
840 ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
841 ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
842 ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
843
844 err_idx[0] = (ecc1 >> 0) & 0x1FFF;
845 err_idx[1] = (ecc1 >> 13) & 0x1FFF;
846 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
847 err_idx[3] = (ecc2 >> 7) & 0x1FFF;
848 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
849 err_idx[5] = (ecc3 >> 1) & 0x1FFF;
850 err_idx[6] = (ecc3 >> 14) & 0x1FFF;
851 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
852
853 i = 0;
854 while (num_err--) {
855 change_bit(0, (unsigned long *)&err_idx[i]);
856 change_bit(1, (unsigned long *)&err_idx[i]);
857
858 if (err_idx[i] < chip->ecc.size * 8) {
859 change_bit(err_idx[i], (unsigned long *)dat);
860 i++;
861 }
862 }
863 return i;
864 }
865
866 static bool filter(struct dma_chan *chan, void *slave)
867 {
868 chan->private = slave;
869 return true;
870 }
871
872 #ifdef CONFIG_OF
873 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
874 struct device_node *np)
875 {
876 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
877 u32 val;
878
879 /* Set default NAND width to 8 bits */
880 pdata->width = 8;
881 if (!of_property_read_u32(np, "bank-width", &val)) {
882 if (val == 2) {
883 pdata->width = 16;
884 } else if (val != 1) {
885 dev_err(&pdev->dev, "invalid bank-width %u\n", val);
886 return -EINVAL;
887 }
888 }
889 if (of_get_property(np, "nand-skip-bbtscan", NULL))
890 pdata->options = NAND_SKIP_BBTSCAN;
891
892 pdata->nand_timings = devm_kzalloc(&pdev->dev,
893 sizeof(*pdata->nand_timings), GFP_KERNEL);
894 if (!pdata->nand_timings) {
895 dev_err(&pdev->dev, "no memory for nand_timing\n");
896 return -ENOMEM;
897 }
898 of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
899 sizeof(*pdata->nand_timings));
900
901 /* Set default NAND bank to 0 */
902 pdata->bank = 0;
903 if (!of_property_read_u32(np, "bank", &val)) {
904 if (val > 3) {
905 dev_err(&pdev->dev, "invalid bank %u\n", val);
906 return -EINVAL;
907 }
908 pdata->bank = val;
909 }
910 return 0;
911 }
912 #else
913 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
914 struct device_node *np)
915 {
916 return -ENOSYS;
917 }
918 #endif
919
920 /*
921 * fsmc_nand_probe - Probe function
922 * @pdev: platform device structure
923 */
924 static int __init fsmc_nand_probe(struct platform_device *pdev)
925 {
926 struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
927 struct device_node __maybe_unused *np = pdev->dev.of_node;
928 struct mtd_part_parser_data ppdata = {};
929 struct fsmc_nand_data *host;
930 struct mtd_info *mtd;
931 struct nand_chip *nand;
932 struct resource *res;
933 dma_cap_mask_t mask;
934 int ret = 0;
935 u32 pid;
936 int i;
937
938 if (np) {
939 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
940 pdev->dev.platform_data = pdata;
941 ret = fsmc_nand_probe_config_dt(pdev, np);
942 if (ret) {
943 dev_err(&pdev->dev, "no platform data\n");
944 return -ENODEV;
945 }
946 }
947
948 if (!pdata) {
949 dev_err(&pdev->dev, "platform data is NULL\n");
950 return -EINVAL;
951 }
952
953 /* Allocate memory for the device structure (and zero it) */
954 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
955 if (!host) {
956 dev_err(&pdev->dev, "failed to allocate device structure\n");
957 return -ENOMEM;
958 }
959
960 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
961 host->data_va = devm_ioremap_resource(&pdev->dev, res);
962 if (IS_ERR(host->data_va))
963 return PTR_ERR(host->data_va);
964
965 host->data_pa = (dma_addr_t)res->start;
966
967 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
968 host->addr_va = devm_ioremap_resource(&pdev->dev, res);
969 if (IS_ERR(host->addr_va))
970 return PTR_ERR(host->addr_va);
971
972 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
973 host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
974 if (IS_ERR(host->cmd_va))
975 return PTR_ERR(host->cmd_va);
976
977 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
978 host->regs_va = devm_ioremap_resource(&pdev->dev, res);
979 if (IS_ERR(host->regs_va))
980 return PTR_ERR(host->regs_va);
981
982 host->clk = clk_get(&pdev->dev, NULL);
983 if (IS_ERR(host->clk)) {
984 dev_err(&pdev->dev, "failed to fetch block clock\n");
985 return PTR_ERR(host->clk);
986 }
987
988 ret = clk_prepare_enable(host->clk);
989 if (ret)
990 goto err_clk_prepare_enable;
991
992 /*
993 * This device ID is actually a common AMBA ID as used on the
994 * AMBA PrimeCell bus. However it is not a PrimeCell.
995 */
996 for (pid = 0, i = 0; i < 4; i++)
997 pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
998 host->pid = pid;
999 dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
1000 "revision %02x, config %02x\n",
1001 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1002 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1003
1004 host->bank = pdata->bank;
1005 host->select_chip = pdata->select_bank;
1006 host->partitions = pdata->partitions;
1007 host->nr_partitions = pdata->nr_partitions;
1008 host->dev = &pdev->dev;
1009 host->dev_timings = pdata->nand_timings;
1010 host->mode = pdata->mode;
1011
1012 if (host->mode == USE_DMA_ACCESS)
1013 init_completion(&host->dma_access_complete);
1014
1015 /* Link all private pointers */
1016 mtd = &host->mtd;
1017 nand = &host->nand;
1018 mtd->priv = nand;
1019 nand->priv = host;
1020
1021 host->mtd.owner = THIS_MODULE;
1022 nand->IO_ADDR_R = host->data_va;
1023 nand->IO_ADDR_W = host->data_va;
1024 nand->cmd_ctrl = fsmc_cmd_ctrl;
1025 nand->chip_delay = 30;
1026
1027 nand->ecc.mode = NAND_ECC_HW;
1028 nand->ecc.hwctl = fsmc_enable_hwecc;
1029 nand->ecc.size = 512;
1030 nand->options = pdata->options;
1031 nand->select_chip = fsmc_select_chip;
1032 nand->badblockbits = 7;
1033
1034 if (pdata->width == FSMC_NAND_BW16)
1035 nand->options |= NAND_BUSWIDTH_16;
1036
1037 switch (host->mode) {
1038 case USE_DMA_ACCESS:
1039 dma_cap_zero(mask);
1040 dma_cap_set(DMA_MEMCPY, mask);
1041 host->read_dma_chan = dma_request_channel(mask, filter,
1042 pdata->read_dma_priv);
1043 if (!host->read_dma_chan) {
1044 dev_err(&pdev->dev, "Unable to get read dma channel\n");
1045 goto err_req_read_chnl;
1046 }
1047 host->write_dma_chan = dma_request_channel(mask, filter,
1048 pdata->write_dma_priv);
1049 if (!host->write_dma_chan) {
1050 dev_err(&pdev->dev, "Unable to get write dma channel\n");
1051 goto err_req_write_chnl;
1052 }
1053 nand->read_buf = fsmc_read_buf_dma;
1054 nand->write_buf = fsmc_write_buf_dma;
1055 break;
1056
1057 default:
1058 case USE_WORD_ACCESS:
1059 nand->read_buf = fsmc_read_buf;
1060 nand->write_buf = fsmc_write_buf;
1061 break;
1062 }
1063
1064 fsmc_nand_setup(host->regs_va, host->bank,
1065 nand->options & NAND_BUSWIDTH_16,
1066 host->dev_timings);
1067
1068 if (AMBA_REV_BITS(host->pid) >= 8) {
1069 nand->ecc.read_page = fsmc_read_page_hwecc;
1070 nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1071 nand->ecc.correct = fsmc_bch8_correct_data;
1072 nand->ecc.bytes = 13;
1073 nand->ecc.strength = 8;
1074 } else {
1075 nand->ecc.calculate = fsmc_read_hwecc_ecc1;
1076 nand->ecc.correct = nand_correct_data;
1077 nand->ecc.bytes = 3;
1078 nand->ecc.strength = 1;
1079 }
1080
1081 /*
1082 * Scan to find existence of the device
1083 */
1084 if (nand_scan_ident(&host->mtd, 1, NULL)) {
1085 ret = -ENXIO;
1086 dev_err(&pdev->dev, "No NAND Device found!\n");
1087 goto err_scan_ident;
1088 }
1089
1090 if (AMBA_REV_BITS(host->pid) >= 8) {
1091 switch (host->mtd.oobsize) {
1092 case 16:
1093 nand->ecc.layout = &fsmc_ecc4_16_layout;
1094 host->ecc_place = &fsmc_ecc4_sp_place;
1095 break;
1096 case 64:
1097 nand->ecc.layout = &fsmc_ecc4_64_layout;
1098 host->ecc_place = &fsmc_ecc4_lp_place;
1099 break;
1100 case 128:
1101 nand->ecc.layout = &fsmc_ecc4_128_layout;
1102 host->ecc_place = &fsmc_ecc4_lp_place;
1103 break;
1104 case 224:
1105 nand->ecc.layout = &fsmc_ecc4_224_layout;
1106 host->ecc_place = &fsmc_ecc4_lp_place;
1107 break;
1108 case 256:
1109 nand->ecc.layout = &fsmc_ecc4_256_layout;
1110 host->ecc_place = &fsmc_ecc4_lp_place;
1111 break;
1112 default:
1113 printk(KERN_WARNING "No oob scheme defined for "
1114 "oobsize %d\n", mtd->oobsize);
1115 BUG();
1116 }
1117 } else {
1118 switch (host->mtd.oobsize) {
1119 case 16:
1120 nand->ecc.layout = &fsmc_ecc1_16_layout;
1121 break;
1122 case 64:
1123 nand->ecc.layout = &fsmc_ecc1_64_layout;
1124 break;
1125 case 128:
1126 nand->ecc.layout = &fsmc_ecc1_128_layout;
1127 break;
1128 default:
1129 printk(KERN_WARNING "No oob scheme defined for "
1130 "oobsize %d\n", mtd->oobsize);
1131 BUG();
1132 }
1133 }
1134
1135 /* Second stage of scan to fill MTD data-structures */
1136 if (nand_scan_tail(&host->mtd)) {
1137 ret = -ENXIO;
1138 goto err_probe;
1139 }
1140
1141 /*
1142 * The partition information can is accessed by (in the same precedence)
1143 *
1144 * command line through Bootloader,
1145 * platform data,
1146 * default partition information present in driver.
1147 */
1148 /*
1149 * Check for partition info passed
1150 */
1151 host->mtd.name = "nand";
1152 ppdata.of_node = np;
1153 ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata,
1154 host->partitions, host->nr_partitions);
1155 if (ret)
1156 goto err_probe;
1157
1158 platform_set_drvdata(pdev, host);
1159 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1160 return 0;
1161
1162 err_probe:
1163 err_scan_ident:
1164 if (host->mode == USE_DMA_ACCESS)
1165 dma_release_channel(host->write_dma_chan);
1166 err_req_write_chnl:
1167 if (host->mode == USE_DMA_ACCESS)
1168 dma_release_channel(host->read_dma_chan);
1169 err_req_read_chnl:
1170 clk_disable_unprepare(host->clk);
1171 err_clk_prepare_enable:
1172 clk_put(host->clk);
1173 return ret;
1174 }
1175
1176 /*
1177 * Clean up routine
1178 */
1179 static int fsmc_nand_remove(struct platform_device *pdev)
1180 {
1181 struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1182
1183 if (host) {
1184 nand_release(&host->mtd);
1185
1186 if (host->mode == USE_DMA_ACCESS) {
1187 dma_release_channel(host->write_dma_chan);
1188 dma_release_channel(host->read_dma_chan);
1189 }
1190 clk_disable_unprepare(host->clk);
1191 clk_put(host->clk);
1192 }
1193
1194 return 0;
1195 }
1196
1197 #ifdef CONFIG_PM_SLEEP
1198 static int fsmc_nand_suspend(struct device *dev)
1199 {
1200 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1201 if (host)
1202 clk_disable_unprepare(host->clk);
1203 return 0;
1204 }
1205
1206 static int fsmc_nand_resume(struct device *dev)
1207 {
1208 struct fsmc_nand_data *host = dev_get_drvdata(dev);
1209 if (host) {
1210 clk_prepare_enable(host->clk);
1211 fsmc_nand_setup(host->regs_va, host->bank,
1212 host->nand.options & NAND_BUSWIDTH_16,
1213 host->dev_timings);
1214 }
1215 return 0;
1216 }
1217 #endif
1218
1219 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1220
1221 #ifdef CONFIG_OF
1222 static const struct of_device_id fsmc_nand_id_table[] = {
1223 { .compatible = "st,spear600-fsmc-nand" },
1224 { .compatible = "stericsson,fsmc-nand" },
1225 {}
1226 };
1227 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1228 #endif
1229
1230 static struct platform_driver fsmc_nand_driver = {
1231 .remove = fsmc_nand_remove,
1232 .driver = {
1233 .owner = THIS_MODULE,
1234 .name = "fsmc-nand",
1235 .of_match_table = of_match_ptr(fsmc_nand_id_table),
1236 .pm = &fsmc_nand_pm_ops,
1237 },
1238 };
1239
1240 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1241
1242 MODULE_LICENSE("GPL");
1243 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1244 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
This page took 0.062991 seconds and 5 git commands to generate.