9c5911616a0794d78c294daeb6a7ec78122d53f3
[deliverable/linux.git] / drivers / mtd / nand / gpmi-nand / gpmi-nand.c
1 /*
2 * Freescale GPMI NAND Flash Driver
3 *
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/clk.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/mtd/partitions.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/of_mtd.h>
32 #include "gpmi-nand.h"
33
34 /* Resource names for the GPMI NAND driver. */
35 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand"
36 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
37 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
38
39 /* add our owner bbt descriptor */
40 static uint8_t scan_ff_pattern[] = { 0xff };
41 static struct nand_bbt_descr gpmi_bbt_descr = {
42 .options = 0,
43 .offs = 0,
44 .len = 1,
45 .pattern = scan_ff_pattern
46 };
47
48 /*
49 * We may change the layout if we can get the ECC info from the datasheet,
50 * else we will use all the (page + OOB).
51 */
52 static struct nand_ecclayout gpmi_hw_ecclayout = {
53 .eccbytes = 0,
54 .eccpos = { 0, },
55 .oobfree = { {.offset = 0, .length = 0} }
56 };
57
58 static irqreturn_t bch_irq(int irq, void *cookie)
59 {
60 struct gpmi_nand_data *this = cookie;
61
62 gpmi_clear_bch(this);
63 complete(&this->bch_done);
64 return IRQ_HANDLED;
65 }
66
67 /*
68 * Calculate the ECC strength by hand:
69 * E : The ECC strength.
70 * G : the length of Galois Field.
71 * N : The chunk count of per page.
72 * O : the oobsize of the NAND chip.
73 * M : the metasize of per page.
74 *
75 * The formula is :
76 * E * G * N
77 * ------------ <= (O - M)
78 * 8
79 *
80 * So, we get E by:
81 * (O - M) * 8
82 * E <= -------------
83 * G * N
84 */
85 static inline int get_ecc_strength(struct gpmi_nand_data *this)
86 {
87 struct bch_geometry *geo = &this->bch_geometry;
88 struct mtd_info *mtd = &this->mtd;
89 int ecc_strength;
90
91 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
92 / (geo->gf_len * geo->ecc_chunk_count);
93
94 /* We need the minor even number. */
95 return round_down(ecc_strength, 2);
96 }
97
98 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
99 {
100 struct bch_geometry *geo = &this->bch_geometry;
101
102 /* Do the sanity check. */
103 if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
104 /* The mx23/mx28 only support the GF13. */
105 if (geo->gf_len == 14)
106 return false;
107
108 if (geo->ecc_strength > MXS_ECC_STRENGTH_MAX)
109 return false;
110 } else if (GPMI_IS_MX6Q(this)) {
111 if (geo->ecc_strength > MX6_ECC_STRENGTH_MAX)
112 return false;
113 }
114 return true;
115 }
116
117 /*
118 * If we can get the ECC information from the nand chip, we do not
119 * need to calculate them ourselves.
120 *
121 * We may have available oob space in this case.
122 */
123 static bool set_geometry_by_ecc_info(struct gpmi_nand_data *this)
124 {
125 struct bch_geometry *geo = &this->bch_geometry;
126 struct mtd_info *mtd = &this->mtd;
127 struct nand_chip *chip = mtd->priv;
128 struct nand_oobfree *of = gpmi_hw_ecclayout.oobfree;
129 unsigned int block_mark_bit_offset;
130
131 if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
132 return false;
133
134 switch (chip->ecc_step_ds) {
135 case SZ_512:
136 geo->gf_len = 13;
137 break;
138 case SZ_1K:
139 geo->gf_len = 14;
140 break;
141 default:
142 dev_err(this->dev,
143 "unsupported nand chip. ecc bits : %d, ecc size : %d\n",
144 chip->ecc_strength_ds, chip->ecc_step_ds);
145 return false;
146 }
147 geo->ecc_chunk_size = chip->ecc_step_ds;
148 geo->ecc_strength = round_up(chip->ecc_strength_ds, 2);
149 if (!gpmi_check_ecc(this))
150 return false;
151
152 /* Keep the C >= O */
153 if (geo->ecc_chunk_size < mtd->oobsize) {
154 dev_err(this->dev,
155 "unsupported nand chip. ecc size: %d, oob size : %d\n",
156 chip->ecc_step_ds, mtd->oobsize);
157 return false;
158 }
159
160 /* The default value, see comment in the legacy_set_geometry(). */
161 geo->metadata_size = 10;
162
163 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
164
165 /*
166 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
167 *
168 * | P |
169 * |<----------------------------------------------------->|
170 * | |
171 * | (Block Mark) |
172 * | P' | | | |
173 * |<-------------------------------------------->| D | | O' |
174 * | |<---->| |<--->|
175 * V V V V V
176 * +---+----------+-+----------+-+----------+-+----------+-+-----+
177 * | M | data |E| data |E| data |E| data |E| |
178 * +---+----------+-+----------+-+----------+-+----------+-+-----+
179 * ^ ^
180 * | O |
181 * |<------------>|
182 * | |
183 *
184 * P : the page size for BCH module.
185 * E : The ECC strength.
186 * G : the length of Galois Field.
187 * N : The chunk count of per page.
188 * M : the metasize of per page.
189 * C : the ecc chunk size, aka the "data" above.
190 * P': the nand chip's page size.
191 * O : the nand chip's oob size.
192 * O': the free oob.
193 *
194 * The formula for P is :
195 *
196 * E * G * N
197 * P = ------------ + P' + M
198 * 8
199 *
200 * The position of block mark moves forward in the ECC-based view
201 * of page, and the delta is:
202 *
203 * E * G * (N - 1)
204 * D = (---------------- + M)
205 * 8
206 *
207 * Please see the comment in legacy_set_geometry().
208 * With the condition C >= O , we still can get same result.
209 * So the bit position of the physical block mark within the ECC-based
210 * view of the page is :
211 * (P' - D) * 8
212 */
213 geo->page_size = mtd->writesize + geo->metadata_size +
214 (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
215
216 /* The available oob size we have. */
217 if (geo->page_size < mtd->writesize + mtd->oobsize) {
218 of->offset = geo->page_size - mtd->writesize;
219 of->length = mtd->oobsize - of->offset;
220 }
221
222 geo->payload_size = mtd->writesize;
223
224 geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
225 geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
226 + ALIGN(geo->ecc_chunk_count, 4);
227
228 if (!this->swap_block_mark)
229 return true;
230
231 /* For bit swap. */
232 block_mark_bit_offset = mtd->writesize * 8 -
233 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
234 + geo->metadata_size * 8);
235
236 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
237 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
238 return true;
239 }
240
241 static int legacy_set_geometry(struct gpmi_nand_data *this)
242 {
243 struct bch_geometry *geo = &this->bch_geometry;
244 struct mtd_info *mtd = &this->mtd;
245 unsigned int metadata_size;
246 unsigned int status_size;
247 unsigned int block_mark_bit_offset;
248
249 /*
250 * The size of the metadata can be changed, though we set it to 10
251 * bytes now. But it can't be too large, because we have to save
252 * enough space for BCH.
253 */
254 geo->metadata_size = 10;
255
256 /* The default for the length of Galois Field. */
257 geo->gf_len = 13;
258
259 /* The default for chunk size. */
260 geo->ecc_chunk_size = 512;
261 while (geo->ecc_chunk_size < mtd->oobsize) {
262 geo->ecc_chunk_size *= 2; /* keep C >= O */
263 geo->gf_len = 14;
264 }
265
266 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
267
268 /* We use the same ECC strength for all chunks. */
269 geo->ecc_strength = get_ecc_strength(this);
270 if (!gpmi_check_ecc(this)) {
271 dev_err(this->dev,
272 "We can not support this nand chip."
273 " Its required ecc strength(%d) is beyond our"
274 " capability(%d).\n", geo->ecc_strength,
275 (GPMI_IS_MX6Q(this) ? MX6_ECC_STRENGTH_MAX
276 : MXS_ECC_STRENGTH_MAX));
277 return -EINVAL;
278 }
279
280 geo->page_size = mtd->writesize + mtd->oobsize;
281 geo->payload_size = mtd->writesize;
282
283 /*
284 * The auxiliary buffer contains the metadata and the ECC status. The
285 * metadata is padded to the nearest 32-bit boundary. The ECC status
286 * contains one byte for every ECC chunk, and is also padded to the
287 * nearest 32-bit boundary.
288 */
289 metadata_size = ALIGN(geo->metadata_size, 4);
290 status_size = ALIGN(geo->ecc_chunk_count, 4);
291
292 geo->auxiliary_size = metadata_size + status_size;
293 geo->auxiliary_status_offset = metadata_size;
294
295 if (!this->swap_block_mark)
296 return 0;
297
298 /*
299 * We need to compute the byte and bit offsets of
300 * the physical block mark within the ECC-based view of the page.
301 *
302 * NAND chip with 2K page shows below:
303 * (Block Mark)
304 * | |
305 * | D |
306 * |<---->|
307 * V V
308 * +---+----------+-+----------+-+----------+-+----------+-+
309 * | M | data |E| data |E| data |E| data |E|
310 * +---+----------+-+----------+-+----------+-+----------+-+
311 *
312 * The position of block mark moves forward in the ECC-based view
313 * of page, and the delta is:
314 *
315 * E * G * (N - 1)
316 * D = (---------------- + M)
317 * 8
318 *
319 * With the formula to compute the ECC strength, and the condition
320 * : C >= O (C is the ecc chunk size)
321 *
322 * It's easy to deduce to the following result:
323 *
324 * E * G (O - M) C - M C - M
325 * ----------- <= ------- <= -------- < ---------
326 * 8 N N (N - 1)
327 *
328 * So, we get:
329 *
330 * E * G * (N - 1)
331 * D = (---------------- + M) < C
332 * 8
333 *
334 * The above inequality means the position of block mark
335 * within the ECC-based view of the page is still in the data chunk,
336 * and it's NOT in the ECC bits of the chunk.
337 *
338 * Use the following to compute the bit position of the
339 * physical block mark within the ECC-based view of the page:
340 * (page_size - D) * 8
341 *
342 * --Huang Shijie
343 */
344 block_mark_bit_offset = mtd->writesize * 8 -
345 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
346 + geo->metadata_size * 8);
347
348 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
349 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
350 return 0;
351 }
352
353 int common_nfc_set_geometry(struct gpmi_nand_data *this)
354 {
355 if (of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")
356 && set_geometry_by_ecc_info(this))
357 return 0;
358 return legacy_set_geometry(this);
359 }
360
361 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
362 {
363 /* We use the DMA channel 0 to access all the nand chips. */
364 return this->dma_chans[0];
365 }
366
367 /* Can we use the upper's buffer directly for DMA? */
368 void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
369 {
370 struct scatterlist *sgl = &this->data_sgl;
371 int ret;
372
373 this->direct_dma_map_ok = true;
374
375 /* first try to map the upper buffer directly */
376 sg_init_one(sgl, this->upper_buf, this->upper_len);
377 ret = dma_map_sg(this->dev, sgl, 1, dr);
378 if (ret == 0) {
379 /* We have to use our own DMA buffer. */
380 sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
381
382 if (dr == DMA_TO_DEVICE)
383 memcpy(this->data_buffer_dma, this->upper_buf,
384 this->upper_len);
385
386 ret = dma_map_sg(this->dev, sgl, 1, dr);
387 if (ret == 0)
388 pr_err("DMA mapping failed.\n");
389
390 this->direct_dma_map_ok = false;
391 }
392 }
393
394 /* This will be called after the DMA operation is finished. */
395 static void dma_irq_callback(void *param)
396 {
397 struct gpmi_nand_data *this = param;
398 struct completion *dma_c = &this->dma_done;
399
400 switch (this->dma_type) {
401 case DMA_FOR_COMMAND:
402 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
403 break;
404
405 case DMA_FOR_READ_DATA:
406 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
407 if (this->direct_dma_map_ok == false)
408 memcpy(this->upper_buf, this->data_buffer_dma,
409 this->upper_len);
410 break;
411
412 case DMA_FOR_WRITE_DATA:
413 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
414 break;
415
416 case DMA_FOR_READ_ECC_PAGE:
417 case DMA_FOR_WRITE_ECC_PAGE:
418 /* We have to wait the BCH interrupt to finish. */
419 break;
420
421 default:
422 pr_err("in wrong DMA operation.\n");
423 }
424
425 complete(dma_c);
426 }
427
428 int start_dma_without_bch_irq(struct gpmi_nand_data *this,
429 struct dma_async_tx_descriptor *desc)
430 {
431 struct completion *dma_c = &this->dma_done;
432 int err;
433
434 init_completion(dma_c);
435
436 desc->callback = dma_irq_callback;
437 desc->callback_param = this;
438 dmaengine_submit(desc);
439 dma_async_issue_pending(get_dma_chan(this));
440
441 /* Wait for the interrupt from the DMA block. */
442 err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
443 if (!err) {
444 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
445 gpmi_dump_info(this);
446 return -ETIMEDOUT;
447 }
448 return 0;
449 }
450
451 /*
452 * This function is used in BCH reading or BCH writing pages.
453 * It will wait for the BCH interrupt as long as ONE second.
454 * Actually, we must wait for two interrupts :
455 * [1] firstly the DMA interrupt and
456 * [2] secondly the BCH interrupt.
457 */
458 int start_dma_with_bch_irq(struct gpmi_nand_data *this,
459 struct dma_async_tx_descriptor *desc)
460 {
461 struct completion *bch_c = &this->bch_done;
462 int err;
463
464 /* Prepare to receive an interrupt from the BCH block. */
465 init_completion(bch_c);
466
467 /* start the DMA */
468 start_dma_without_bch_irq(this, desc);
469
470 /* Wait for the interrupt from the BCH block. */
471 err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
472 if (!err) {
473 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
474 gpmi_dump_info(this);
475 return -ETIMEDOUT;
476 }
477 return 0;
478 }
479
480 static int acquire_register_block(struct gpmi_nand_data *this,
481 const char *res_name)
482 {
483 struct platform_device *pdev = this->pdev;
484 struct resources *res = &this->resources;
485 struct resource *r;
486 void __iomem *p;
487
488 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
489 if (!r) {
490 pr_err("Can't get resource for %s\n", res_name);
491 return -ENODEV;
492 }
493
494 p = ioremap(r->start, resource_size(r));
495 if (!p) {
496 pr_err("Can't remap %s\n", res_name);
497 return -ENOMEM;
498 }
499
500 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
501 res->gpmi_regs = p;
502 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
503 res->bch_regs = p;
504 else
505 pr_err("unknown resource name : %s\n", res_name);
506
507 return 0;
508 }
509
510 static void release_register_block(struct gpmi_nand_data *this)
511 {
512 struct resources *res = &this->resources;
513 if (res->gpmi_regs)
514 iounmap(res->gpmi_regs);
515 if (res->bch_regs)
516 iounmap(res->bch_regs);
517 res->gpmi_regs = NULL;
518 res->bch_regs = NULL;
519 }
520
521 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
522 {
523 struct platform_device *pdev = this->pdev;
524 struct resources *res = &this->resources;
525 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
526 struct resource *r;
527 int err;
528
529 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
530 if (!r) {
531 pr_err("Can't get resource for %s\n", res_name);
532 return -ENODEV;
533 }
534
535 err = request_irq(r->start, irq_h, 0, res_name, this);
536 if (err) {
537 pr_err("Can't own %s\n", res_name);
538 return err;
539 }
540
541 res->bch_low_interrupt = r->start;
542 res->bch_high_interrupt = r->end;
543 return 0;
544 }
545
546 static void release_bch_irq(struct gpmi_nand_data *this)
547 {
548 struct resources *res = &this->resources;
549 int i = res->bch_low_interrupt;
550
551 for (; i <= res->bch_high_interrupt; i++)
552 free_irq(i, this);
553 }
554
555 static void release_dma_channels(struct gpmi_nand_data *this)
556 {
557 unsigned int i;
558 for (i = 0; i < DMA_CHANS; i++)
559 if (this->dma_chans[i]) {
560 dma_release_channel(this->dma_chans[i]);
561 this->dma_chans[i] = NULL;
562 }
563 }
564
565 static int acquire_dma_channels(struct gpmi_nand_data *this)
566 {
567 struct platform_device *pdev = this->pdev;
568 struct dma_chan *dma_chan;
569
570 /* request dma channel */
571 dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
572 if (!dma_chan) {
573 pr_err("Failed to request DMA channel.\n");
574 goto acquire_err;
575 }
576
577 this->dma_chans[0] = dma_chan;
578 return 0;
579
580 acquire_err:
581 release_dma_channels(this);
582 return -EINVAL;
583 }
584
585 static void gpmi_put_clks(struct gpmi_nand_data *this)
586 {
587 struct resources *r = &this->resources;
588 struct clk *clk;
589 int i;
590
591 for (i = 0; i < GPMI_CLK_MAX; i++) {
592 clk = r->clock[i];
593 if (clk) {
594 clk_put(clk);
595 r->clock[i] = NULL;
596 }
597 }
598 }
599
600 static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
601 "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
602 };
603
604 static int gpmi_get_clks(struct gpmi_nand_data *this)
605 {
606 struct resources *r = &this->resources;
607 char **extra_clks = NULL;
608 struct clk *clk;
609 int err, i;
610
611 /* The main clock is stored in the first. */
612 r->clock[0] = clk_get(this->dev, "gpmi_io");
613 if (IS_ERR(r->clock[0])) {
614 err = PTR_ERR(r->clock[0]);
615 goto err_clock;
616 }
617
618 /* Get extra clocks */
619 if (GPMI_IS_MX6Q(this))
620 extra_clks = extra_clks_for_mx6q;
621 if (!extra_clks)
622 return 0;
623
624 for (i = 1; i < GPMI_CLK_MAX; i++) {
625 if (extra_clks[i - 1] == NULL)
626 break;
627
628 clk = clk_get(this->dev, extra_clks[i - 1]);
629 if (IS_ERR(clk)) {
630 err = PTR_ERR(clk);
631 goto err_clock;
632 }
633
634 r->clock[i] = clk;
635 }
636
637 if (GPMI_IS_MX6Q(this))
638 /*
639 * Set the default value for the gpmi clock in mx6q:
640 *
641 * If you want to use the ONFI nand which is in the
642 * Synchronous Mode, you should change the clock as you need.
643 */
644 clk_set_rate(r->clock[0], 22000000);
645
646 return 0;
647
648 err_clock:
649 dev_dbg(this->dev, "failed in finding the clocks.\n");
650 gpmi_put_clks(this);
651 return err;
652 }
653
654 static int acquire_resources(struct gpmi_nand_data *this)
655 {
656 int ret;
657
658 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
659 if (ret)
660 goto exit_regs;
661
662 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
663 if (ret)
664 goto exit_regs;
665
666 ret = acquire_bch_irq(this, bch_irq);
667 if (ret)
668 goto exit_regs;
669
670 ret = acquire_dma_channels(this);
671 if (ret)
672 goto exit_dma_channels;
673
674 ret = gpmi_get_clks(this);
675 if (ret)
676 goto exit_clock;
677 return 0;
678
679 exit_clock:
680 release_dma_channels(this);
681 exit_dma_channels:
682 release_bch_irq(this);
683 exit_regs:
684 release_register_block(this);
685 return ret;
686 }
687
688 static void release_resources(struct gpmi_nand_data *this)
689 {
690 gpmi_put_clks(this);
691 release_register_block(this);
692 release_bch_irq(this);
693 release_dma_channels(this);
694 }
695
696 static int init_hardware(struct gpmi_nand_data *this)
697 {
698 int ret;
699
700 /*
701 * This structure contains the "safe" GPMI timing that should succeed
702 * with any NAND Flash device
703 * (although, with less-than-optimal performance).
704 */
705 struct nand_timing safe_timing = {
706 .data_setup_in_ns = 80,
707 .data_hold_in_ns = 60,
708 .address_setup_in_ns = 25,
709 .gpmi_sample_delay_in_ns = 6,
710 .tREA_in_ns = -1,
711 .tRLOH_in_ns = -1,
712 .tRHOH_in_ns = -1,
713 };
714
715 /* Initialize the hardwares. */
716 ret = gpmi_init(this);
717 if (ret)
718 return ret;
719
720 this->timing = safe_timing;
721 return 0;
722 }
723
724 static int read_page_prepare(struct gpmi_nand_data *this,
725 void *destination, unsigned length,
726 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
727 void **use_virt, dma_addr_t *use_phys)
728 {
729 struct device *dev = this->dev;
730
731 if (virt_addr_valid(destination)) {
732 dma_addr_t dest_phys;
733
734 dest_phys = dma_map_single(dev, destination,
735 length, DMA_FROM_DEVICE);
736 if (dma_mapping_error(dev, dest_phys)) {
737 if (alt_size < length) {
738 pr_err("%s, Alternate buffer is too small\n",
739 __func__);
740 return -ENOMEM;
741 }
742 goto map_failed;
743 }
744 *use_virt = destination;
745 *use_phys = dest_phys;
746 this->direct_dma_map_ok = true;
747 return 0;
748 }
749
750 map_failed:
751 *use_virt = alt_virt;
752 *use_phys = alt_phys;
753 this->direct_dma_map_ok = false;
754 return 0;
755 }
756
757 static inline void read_page_end(struct gpmi_nand_data *this,
758 void *destination, unsigned length,
759 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
760 void *used_virt, dma_addr_t used_phys)
761 {
762 if (this->direct_dma_map_ok)
763 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
764 }
765
766 static inline void read_page_swap_end(struct gpmi_nand_data *this,
767 void *destination, unsigned length,
768 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
769 void *used_virt, dma_addr_t used_phys)
770 {
771 if (!this->direct_dma_map_ok)
772 memcpy(destination, alt_virt, length);
773 }
774
775 static int send_page_prepare(struct gpmi_nand_data *this,
776 const void *source, unsigned length,
777 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
778 const void **use_virt, dma_addr_t *use_phys)
779 {
780 struct device *dev = this->dev;
781
782 if (virt_addr_valid(source)) {
783 dma_addr_t source_phys;
784
785 source_phys = dma_map_single(dev, (void *)source, length,
786 DMA_TO_DEVICE);
787 if (dma_mapping_error(dev, source_phys)) {
788 if (alt_size < length) {
789 pr_err("%s, Alternate buffer is too small\n",
790 __func__);
791 return -ENOMEM;
792 }
793 goto map_failed;
794 }
795 *use_virt = source;
796 *use_phys = source_phys;
797 return 0;
798 }
799 map_failed:
800 /*
801 * Copy the content of the source buffer into the alternate
802 * buffer and set up the return values accordingly.
803 */
804 memcpy(alt_virt, source, length);
805
806 *use_virt = alt_virt;
807 *use_phys = alt_phys;
808 return 0;
809 }
810
811 static void send_page_end(struct gpmi_nand_data *this,
812 const void *source, unsigned length,
813 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
814 const void *used_virt, dma_addr_t used_phys)
815 {
816 struct device *dev = this->dev;
817 if (used_virt == source)
818 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
819 }
820
821 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
822 {
823 struct device *dev = this->dev;
824
825 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
826 dma_free_coherent(dev, this->page_buffer_size,
827 this->page_buffer_virt,
828 this->page_buffer_phys);
829 kfree(this->cmd_buffer);
830 kfree(this->data_buffer_dma);
831
832 this->cmd_buffer = NULL;
833 this->data_buffer_dma = NULL;
834 this->page_buffer_virt = NULL;
835 this->page_buffer_size = 0;
836 }
837
838 /* Allocate the DMA buffers */
839 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
840 {
841 struct bch_geometry *geo = &this->bch_geometry;
842 struct device *dev = this->dev;
843
844 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
845 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
846 if (this->cmd_buffer == NULL)
847 goto error_alloc;
848
849 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
850 this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
851 if (this->data_buffer_dma == NULL)
852 goto error_alloc;
853
854 /*
855 * [3] Allocate the page buffer.
856 *
857 * Both the payload buffer and the auxiliary buffer must appear on
858 * 32-bit boundaries. We presume the size of the payload buffer is a
859 * power of two and is much larger than four, which guarantees the
860 * auxiliary buffer will appear on a 32-bit boundary.
861 */
862 this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
863 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
864 &this->page_buffer_phys, GFP_DMA);
865 if (!this->page_buffer_virt)
866 goto error_alloc;
867
868
869 /* Slice up the page buffer. */
870 this->payload_virt = this->page_buffer_virt;
871 this->payload_phys = this->page_buffer_phys;
872 this->auxiliary_virt = this->payload_virt + geo->payload_size;
873 this->auxiliary_phys = this->payload_phys + geo->payload_size;
874 return 0;
875
876 error_alloc:
877 gpmi_free_dma_buffer(this);
878 pr_err("Error allocating DMA buffers!\n");
879 return -ENOMEM;
880 }
881
882 static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
883 {
884 struct nand_chip *chip = mtd->priv;
885 struct gpmi_nand_data *this = chip->priv;
886 int ret;
887
888 /*
889 * Every operation begins with a command byte and a series of zero or
890 * more address bytes. These are distinguished by either the Address
891 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
892 * asserted. When MTD is ready to execute the command, it will deassert
893 * both latch enables.
894 *
895 * Rather than run a separate DMA operation for every single byte, we
896 * queue them up and run a single DMA operation for the entire series
897 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
898 */
899 if ((ctrl & (NAND_ALE | NAND_CLE))) {
900 if (data != NAND_CMD_NONE)
901 this->cmd_buffer[this->command_length++] = data;
902 return;
903 }
904
905 if (!this->command_length)
906 return;
907
908 ret = gpmi_send_command(this);
909 if (ret)
910 pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
911
912 this->command_length = 0;
913 }
914
915 static int gpmi_dev_ready(struct mtd_info *mtd)
916 {
917 struct nand_chip *chip = mtd->priv;
918 struct gpmi_nand_data *this = chip->priv;
919
920 return gpmi_is_ready(this, this->current_chip);
921 }
922
923 static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
924 {
925 struct nand_chip *chip = mtd->priv;
926 struct gpmi_nand_data *this = chip->priv;
927
928 if ((this->current_chip < 0) && (chipnr >= 0))
929 gpmi_begin(this);
930 else if ((this->current_chip >= 0) && (chipnr < 0))
931 gpmi_end(this);
932
933 this->current_chip = chipnr;
934 }
935
936 static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
937 {
938 struct nand_chip *chip = mtd->priv;
939 struct gpmi_nand_data *this = chip->priv;
940
941 pr_debug("len is %d\n", len);
942 this->upper_buf = buf;
943 this->upper_len = len;
944
945 gpmi_read_data(this);
946 }
947
948 static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
949 {
950 struct nand_chip *chip = mtd->priv;
951 struct gpmi_nand_data *this = chip->priv;
952
953 pr_debug("len is %d\n", len);
954 this->upper_buf = (uint8_t *)buf;
955 this->upper_len = len;
956
957 gpmi_send_data(this);
958 }
959
960 static uint8_t gpmi_read_byte(struct mtd_info *mtd)
961 {
962 struct nand_chip *chip = mtd->priv;
963 struct gpmi_nand_data *this = chip->priv;
964 uint8_t *buf = this->data_buffer_dma;
965
966 gpmi_read_buf(mtd, buf, 1);
967 return buf[0];
968 }
969
970 /*
971 * Handles block mark swapping.
972 * It can be called in swapping the block mark, or swapping it back,
973 * because the the operations are the same.
974 */
975 static void block_mark_swapping(struct gpmi_nand_data *this,
976 void *payload, void *auxiliary)
977 {
978 struct bch_geometry *nfc_geo = &this->bch_geometry;
979 unsigned char *p;
980 unsigned char *a;
981 unsigned int bit;
982 unsigned char mask;
983 unsigned char from_data;
984 unsigned char from_oob;
985
986 if (!this->swap_block_mark)
987 return;
988
989 /*
990 * If control arrives here, we're swapping. Make some convenience
991 * variables.
992 */
993 bit = nfc_geo->block_mark_bit_offset;
994 p = payload + nfc_geo->block_mark_byte_offset;
995 a = auxiliary;
996
997 /*
998 * Get the byte from the data area that overlays the block mark. Since
999 * the ECC engine applies its own view to the bits in the page, the
1000 * physical block mark won't (in general) appear on a byte boundary in
1001 * the data.
1002 */
1003 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1004
1005 /* Get the byte from the OOB. */
1006 from_oob = a[0];
1007
1008 /* Swap them. */
1009 a[0] = from_data;
1010
1011 mask = (0x1 << bit) - 1;
1012 p[0] = (p[0] & mask) | (from_oob << bit);
1013
1014 mask = ~0 << bit;
1015 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1016 }
1017
1018 static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1019 uint8_t *buf, int oob_required, int page)
1020 {
1021 struct gpmi_nand_data *this = chip->priv;
1022 struct bch_geometry *nfc_geo = &this->bch_geometry;
1023 void *payload_virt;
1024 dma_addr_t payload_phys;
1025 void *auxiliary_virt;
1026 dma_addr_t auxiliary_phys;
1027 unsigned int i;
1028 unsigned char *status;
1029 unsigned int max_bitflips = 0;
1030 int ret;
1031
1032 pr_debug("page number is : %d\n", page);
1033 ret = read_page_prepare(this, buf, mtd->writesize,
1034 this->payload_virt, this->payload_phys,
1035 nfc_geo->payload_size,
1036 &payload_virt, &payload_phys);
1037 if (ret) {
1038 pr_err("Inadequate DMA buffer\n");
1039 ret = -ENOMEM;
1040 return ret;
1041 }
1042 auxiliary_virt = this->auxiliary_virt;
1043 auxiliary_phys = this->auxiliary_phys;
1044
1045 /* go! */
1046 ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
1047 read_page_end(this, buf, mtd->writesize,
1048 this->payload_virt, this->payload_phys,
1049 nfc_geo->payload_size,
1050 payload_virt, payload_phys);
1051 if (ret) {
1052 pr_err("Error in ECC-based read: %d\n", ret);
1053 return ret;
1054 }
1055
1056 /* handle the block mark swapping */
1057 block_mark_swapping(this, payload_virt, auxiliary_virt);
1058
1059 /* Loop over status bytes, accumulating ECC status. */
1060 status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
1061
1062 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
1063 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1064 continue;
1065
1066 if (*status == STATUS_UNCORRECTABLE) {
1067 mtd->ecc_stats.failed++;
1068 continue;
1069 }
1070 mtd->ecc_stats.corrected += *status;
1071 max_bitflips = max_t(unsigned int, max_bitflips, *status);
1072 }
1073
1074 if (oob_required) {
1075 /*
1076 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1077 * for details about our policy for delivering the OOB.
1078 *
1079 * We fill the caller's buffer with set bits, and then copy the
1080 * block mark to th caller's buffer. Note that, if block mark
1081 * swapping was necessary, it has already been done, so we can
1082 * rely on the first byte of the auxiliary buffer to contain
1083 * the block mark.
1084 */
1085 memset(chip->oob_poi, ~0, mtd->oobsize);
1086 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
1087 }
1088
1089 read_page_swap_end(this, buf, mtd->writesize,
1090 this->payload_virt, this->payload_phys,
1091 nfc_geo->payload_size,
1092 payload_virt, payload_phys);
1093
1094 return max_bitflips;
1095 }
1096
1097 static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1098 const uint8_t *buf, int oob_required)
1099 {
1100 struct gpmi_nand_data *this = chip->priv;
1101 struct bch_geometry *nfc_geo = &this->bch_geometry;
1102 const void *payload_virt;
1103 dma_addr_t payload_phys;
1104 const void *auxiliary_virt;
1105 dma_addr_t auxiliary_phys;
1106 int ret;
1107
1108 pr_debug("ecc write page.\n");
1109 if (this->swap_block_mark) {
1110 /*
1111 * If control arrives here, we're doing block mark swapping.
1112 * Since we can't modify the caller's buffers, we must copy them
1113 * into our own.
1114 */
1115 memcpy(this->payload_virt, buf, mtd->writesize);
1116 payload_virt = this->payload_virt;
1117 payload_phys = this->payload_phys;
1118
1119 memcpy(this->auxiliary_virt, chip->oob_poi,
1120 nfc_geo->auxiliary_size);
1121 auxiliary_virt = this->auxiliary_virt;
1122 auxiliary_phys = this->auxiliary_phys;
1123
1124 /* Handle block mark swapping. */
1125 block_mark_swapping(this,
1126 (void *) payload_virt, (void *) auxiliary_virt);
1127 } else {
1128 /*
1129 * If control arrives here, we're not doing block mark swapping,
1130 * so we can to try and use the caller's buffers.
1131 */
1132 ret = send_page_prepare(this,
1133 buf, mtd->writesize,
1134 this->payload_virt, this->payload_phys,
1135 nfc_geo->payload_size,
1136 &payload_virt, &payload_phys);
1137 if (ret) {
1138 pr_err("Inadequate payload DMA buffer\n");
1139 return 0;
1140 }
1141
1142 ret = send_page_prepare(this,
1143 chip->oob_poi, mtd->oobsize,
1144 this->auxiliary_virt, this->auxiliary_phys,
1145 nfc_geo->auxiliary_size,
1146 &auxiliary_virt, &auxiliary_phys);
1147 if (ret) {
1148 pr_err("Inadequate auxiliary DMA buffer\n");
1149 goto exit_auxiliary;
1150 }
1151 }
1152
1153 /* Ask the NFC. */
1154 ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1155 if (ret)
1156 pr_err("Error in ECC-based write: %d\n", ret);
1157
1158 if (!this->swap_block_mark) {
1159 send_page_end(this, chip->oob_poi, mtd->oobsize,
1160 this->auxiliary_virt, this->auxiliary_phys,
1161 nfc_geo->auxiliary_size,
1162 auxiliary_virt, auxiliary_phys);
1163 exit_auxiliary:
1164 send_page_end(this, buf, mtd->writesize,
1165 this->payload_virt, this->payload_phys,
1166 nfc_geo->payload_size,
1167 payload_virt, payload_phys);
1168 }
1169
1170 return 0;
1171 }
1172
1173 /*
1174 * There are several places in this driver where we have to handle the OOB and
1175 * block marks. This is the function where things are the most complicated, so
1176 * this is where we try to explain it all. All the other places refer back to
1177 * here.
1178 *
1179 * These are the rules, in order of decreasing importance:
1180 *
1181 * 1) Nothing the caller does can be allowed to imperil the block mark.
1182 *
1183 * 2) In read operations, the first byte of the OOB we return must reflect the
1184 * true state of the block mark, no matter where that block mark appears in
1185 * the physical page.
1186 *
1187 * 3) ECC-based read operations return an OOB full of set bits (since we never
1188 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1189 * return).
1190 *
1191 * 4) "Raw" read operations return a direct view of the physical bytes in the
1192 * page, using the conventional definition of which bytes are data and which
1193 * are OOB. This gives the caller a way to see the actual, physical bytes
1194 * in the page, without the distortions applied by our ECC engine.
1195 *
1196 *
1197 * What we do for this specific read operation depends on two questions:
1198 *
1199 * 1) Are we doing a "raw" read, or an ECC-based read?
1200 *
1201 * 2) Are we using block mark swapping or transcription?
1202 *
1203 * There are four cases, illustrated by the following Karnaugh map:
1204 *
1205 * | Raw | ECC-based |
1206 * -------------+-------------------------+-------------------------+
1207 * | Read the conventional | |
1208 * | OOB at the end of the | |
1209 * Swapping | page and return it. It | |
1210 * | contains exactly what | |
1211 * | we want. | Read the block mark and |
1212 * -------------+-------------------------+ return it in a buffer |
1213 * | Read the conventional | full of set bits. |
1214 * | OOB at the end of the | |
1215 * | page and also the block | |
1216 * Transcribing | mark in the metadata. | |
1217 * | Copy the block mark | |
1218 * | into the first byte of | |
1219 * | the OOB. | |
1220 * -------------+-------------------------+-------------------------+
1221 *
1222 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1223 * giving an accurate view of the actual, physical bytes in the page (we're
1224 * overwriting the block mark). That's OK because it's more important to follow
1225 * rule #2.
1226 *
1227 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1228 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1229 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1230 * ECC-based or raw view of the page is implicit in which function it calls
1231 * (there is a similar pair of ECC-based/raw functions for writing).
1232 *
1233 * FIXME: The following paragraph is incorrect, now that there exist
1234 * ecc.read_oob_raw and ecc.write_oob_raw functions.
1235 *
1236 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1237 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1238 * caller wants an ECC-based or raw view of the page is not propagated down to
1239 * this driver.
1240 */
1241 static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1242 int page)
1243 {
1244 struct gpmi_nand_data *this = chip->priv;
1245
1246 pr_debug("page number is %d\n", page);
1247 /* clear the OOB buffer */
1248 memset(chip->oob_poi, ~0, mtd->oobsize);
1249
1250 /* Read out the conventional OOB. */
1251 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1252 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1253
1254 /*
1255 * Now, we want to make sure the block mark is correct. In the
1256 * Swapping/Raw case, we already have it. Otherwise, we need to
1257 * explicitly read it.
1258 */
1259 if (!this->swap_block_mark) {
1260 /* Read the block mark into the first byte of the OOB buffer. */
1261 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1262 chip->oob_poi[0] = chip->read_byte(mtd);
1263 }
1264
1265 return 0;
1266 }
1267
1268 static int
1269 gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1270 {
1271 struct nand_oobfree *of = mtd->ecclayout->oobfree;
1272 int status = 0;
1273
1274 /* Do we have available oob area? */
1275 if (!of->length)
1276 return -EPERM;
1277
1278 if (!nand_is_slc(chip))
1279 return -EPERM;
1280
1281 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize + of->offset, page);
1282 chip->write_buf(mtd, chip->oob_poi + of->offset, of->length);
1283 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1284
1285 status = chip->waitfunc(mtd, chip);
1286 return status & NAND_STATUS_FAIL ? -EIO : 0;
1287 }
1288
1289 static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1290 {
1291 struct nand_chip *chip = mtd->priv;
1292 struct gpmi_nand_data *this = chip->priv;
1293 int ret = 0;
1294 uint8_t *block_mark;
1295 int column, page, status, chipnr;
1296
1297 chipnr = (int)(ofs >> chip->chip_shift);
1298 chip->select_chip(mtd, chipnr);
1299
1300 column = this->swap_block_mark ? mtd->writesize : 0;
1301
1302 /* Write the block mark. */
1303 block_mark = this->data_buffer_dma;
1304 block_mark[0] = 0; /* bad block marker */
1305
1306 /* Shift to get page */
1307 page = (int)(ofs >> chip->page_shift);
1308
1309 chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1310 chip->write_buf(mtd, block_mark, 1);
1311 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1312
1313 status = chip->waitfunc(mtd, chip);
1314 if (status & NAND_STATUS_FAIL)
1315 ret = -EIO;
1316
1317 chip->select_chip(mtd, -1);
1318
1319 return ret;
1320 }
1321
1322 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1323 {
1324 struct boot_rom_geometry *geometry = &this->rom_geometry;
1325
1326 /*
1327 * Set the boot block stride size.
1328 *
1329 * In principle, we should be reading this from the OTP bits, since
1330 * that's where the ROM is going to get it. In fact, we don't have any
1331 * way to read the OTP bits, so we go with the default and hope for the
1332 * best.
1333 */
1334 geometry->stride_size_in_pages = 64;
1335
1336 /*
1337 * Set the search area stride exponent.
1338 *
1339 * In principle, we should be reading this from the OTP bits, since
1340 * that's where the ROM is going to get it. In fact, we don't have any
1341 * way to read the OTP bits, so we go with the default and hope for the
1342 * best.
1343 */
1344 geometry->search_area_stride_exponent = 2;
1345 return 0;
1346 }
1347
1348 static const char *fingerprint = "STMP";
1349 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1350 {
1351 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1352 struct device *dev = this->dev;
1353 struct mtd_info *mtd = &this->mtd;
1354 struct nand_chip *chip = &this->nand;
1355 unsigned int search_area_size_in_strides;
1356 unsigned int stride;
1357 unsigned int page;
1358 uint8_t *buffer = chip->buffers->databuf;
1359 int saved_chip_number;
1360 int found_an_ncb_fingerprint = false;
1361
1362 /* Compute the number of strides in a search area. */
1363 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1364
1365 saved_chip_number = this->current_chip;
1366 chip->select_chip(mtd, 0);
1367
1368 /*
1369 * Loop through the first search area, looking for the NCB fingerprint.
1370 */
1371 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1372
1373 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1374 /* Compute the page addresses. */
1375 page = stride * rom_geo->stride_size_in_pages;
1376
1377 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1378
1379 /*
1380 * Read the NCB fingerprint. The fingerprint is four bytes long
1381 * and starts in the 12th byte of the page.
1382 */
1383 chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1384 chip->read_buf(mtd, buffer, strlen(fingerprint));
1385
1386 /* Look for the fingerprint. */
1387 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1388 found_an_ncb_fingerprint = true;
1389 break;
1390 }
1391
1392 }
1393
1394 chip->select_chip(mtd, saved_chip_number);
1395
1396 if (found_an_ncb_fingerprint)
1397 dev_dbg(dev, "\tFound a fingerprint\n");
1398 else
1399 dev_dbg(dev, "\tNo fingerprint found\n");
1400 return found_an_ncb_fingerprint;
1401 }
1402
1403 /* Writes a transcription stamp. */
1404 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1405 {
1406 struct device *dev = this->dev;
1407 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1408 struct mtd_info *mtd = &this->mtd;
1409 struct nand_chip *chip = &this->nand;
1410 unsigned int block_size_in_pages;
1411 unsigned int search_area_size_in_strides;
1412 unsigned int search_area_size_in_pages;
1413 unsigned int search_area_size_in_blocks;
1414 unsigned int block;
1415 unsigned int stride;
1416 unsigned int page;
1417 uint8_t *buffer = chip->buffers->databuf;
1418 int saved_chip_number;
1419 int status;
1420
1421 /* Compute the search area geometry. */
1422 block_size_in_pages = mtd->erasesize / mtd->writesize;
1423 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1424 search_area_size_in_pages = search_area_size_in_strides *
1425 rom_geo->stride_size_in_pages;
1426 search_area_size_in_blocks =
1427 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1428 block_size_in_pages;
1429
1430 dev_dbg(dev, "Search Area Geometry :\n");
1431 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1432 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1433 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1434
1435 /* Select chip 0. */
1436 saved_chip_number = this->current_chip;
1437 chip->select_chip(mtd, 0);
1438
1439 /* Loop over blocks in the first search area, erasing them. */
1440 dev_dbg(dev, "Erasing the search area...\n");
1441
1442 for (block = 0; block < search_area_size_in_blocks; block++) {
1443 /* Compute the page address. */
1444 page = block * block_size_in_pages;
1445
1446 /* Erase this block. */
1447 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1448 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1449 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1450
1451 /* Wait for the erase to finish. */
1452 status = chip->waitfunc(mtd, chip);
1453 if (status & NAND_STATUS_FAIL)
1454 dev_err(dev, "[%s] Erase failed.\n", __func__);
1455 }
1456
1457 /* Write the NCB fingerprint into the page buffer. */
1458 memset(buffer, ~0, mtd->writesize);
1459 memset(chip->oob_poi, ~0, mtd->oobsize);
1460 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1461
1462 /* Loop through the first search area, writing NCB fingerprints. */
1463 dev_dbg(dev, "Writing NCB fingerprints...\n");
1464 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1465 /* Compute the page addresses. */
1466 page = stride * rom_geo->stride_size_in_pages;
1467
1468 /* Write the first page of the current stride. */
1469 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1470 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1471 chip->ecc.write_page_raw(mtd, chip, buffer, 0);
1472 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1473
1474 /* Wait for the write to finish. */
1475 status = chip->waitfunc(mtd, chip);
1476 if (status & NAND_STATUS_FAIL)
1477 dev_err(dev, "[%s] Write failed.\n", __func__);
1478 }
1479
1480 /* Deselect chip 0. */
1481 chip->select_chip(mtd, saved_chip_number);
1482 return 0;
1483 }
1484
1485 static int mx23_boot_init(struct gpmi_nand_data *this)
1486 {
1487 struct device *dev = this->dev;
1488 struct nand_chip *chip = &this->nand;
1489 struct mtd_info *mtd = &this->mtd;
1490 unsigned int block_count;
1491 unsigned int block;
1492 int chipnr;
1493 int page;
1494 loff_t byte;
1495 uint8_t block_mark;
1496 int ret = 0;
1497
1498 /*
1499 * If control arrives here, we can't use block mark swapping, which
1500 * means we're forced to use transcription. First, scan for the
1501 * transcription stamp. If we find it, then we don't have to do
1502 * anything -- the block marks are already transcribed.
1503 */
1504 if (mx23_check_transcription_stamp(this))
1505 return 0;
1506
1507 /*
1508 * If control arrives here, we couldn't find a transcription stamp, so
1509 * so we presume the block marks are in the conventional location.
1510 */
1511 dev_dbg(dev, "Transcribing bad block marks...\n");
1512
1513 /* Compute the number of blocks in the entire medium. */
1514 block_count = chip->chipsize >> chip->phys_erase_shift;
1515
1516 /*
1517 * Loop over all the blocks in the medium, transcribing block marks as
1518 * we go.
1519 */
1520 for (block = 0; block < block_count; block++) {
1521 /*
1522 * Compute the chip, page and byte addresses for this block's
1523 * conventional mark.
1524 */
1525 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1526 page = block << (chip->phys_erase_shift - chip->page_shift);
1527 byte = block << chip->phys_erase_shift;
1528
1529 /* Send the command to read the conventional block mark. */
1530 chip->select_chip(mtd, chipnr);
1531 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1532 block_mark = chip->read_byte(mtd);
1533 chip->select_chip(mtd, -1);
1534
1535 /*
1536 * Check if the block is marked bad. If so, we need to mark it
1537 * again, but this time the result will be a mark in the
1538 * location where we transcribe block marks.
1539 */
1540 if (block_mark != 0xff) {
1541 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1542 ret = chip->block_markbad(mtd, byte);
1543 if (ret)
1544 dev_err(dev, "Failed to mark block bad with "
1545 "ret %d\n", ret);
1546 }
1547 }
1548
1549 /* Write the stamp that indicates we've transcribed the block marks. */
1550 mx23_write_transcription_stamp(this);
1551 return 0;
1552 }
1553
1554 static int nand_boot_init(struct gpmi_nand_data *this)
1555 {
1556 nand_boot_set_geometry(this);
1557
1558 /* This is ROM arch-specific initilization before the BBT scanning. */
1559 if (GPMI_IS_MX23(this))
1560 return mx23_boot_init(this);
1561 return 0;
1562 }
1563
1564 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1565 {
1566 int ret;
1567
1568 /* Free the temporary DMA memory for reading ID. */
1569 gpmi_free_dma_buffer(this);
1570
1571 /* Set up the NFC geometry which is used by BCH. */
1572 ret = bch_set_geometry(this);
1573 if (ret) {
1574 pr_err("Error setting BCH geometry : %d\n", ret);
1575 return ret;
1576 }
1577
1578 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1579 return gpmi_alloc_dma_buffer(this);
1580 }
1581
1582 static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
1583 {
1584 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1585 if (GPMI_IS_MX23(this))
1586 this->swap_block_mark = false;
1587 else
1588 this->swap_block_mark = true;
1589
1590 /* Set up the medium geometry */
1591 return gpmi_set_geometry(this);
1592
1593 }
1594
1595 static void gpmi_nfc_exit(struct gpmi_nand_data *this)
1596 {
1597 nand_release(&this->mtd);
1598 gpmi_free_dma_buffer(this);
1599 }
1600
1601 static int gpmi_init_last(struct gpmi_nand_data *this)
1602 {
1603 struct mtd_info *mtd = &this->mtd;
1604 struct nand_chip *chip = mtd->priv;
1605 struct nand_ecc_ctrl *ecc = &chip->ecc;
1606 struct bch_geometry *bch_geo = &this->bch_geometry;
1607 int ret;
1608
1609 /* Prepare for the BBT scan. */
1610 ret = gpmi_pre_bbt_scan(this);
1611 if (ret)
1612 return ret;
1613
1614 /* Init the nand_ecc_ctrl{} */
1615 ecc->read_page = gpmi_ecc_read_page;
1616 ecc->write_page = gpmi_ecc_write_page;
1617 ecc->read_oob = gpmi_ecc_read_oob;
1618 ecc->write_oob = gpmi_ecc_write_oob;
1619 ecc->mode = NAND_ECC_HW;
1620 ecc->size = bch_geo->ecc_chunk_size;
1621 ecc->strength = bch_geo->ecc_strength;
1622 ecc->layout = &gpmi_hw_ecclayout;
1623
1624 /*
1625 * Can we enable the extra features? such as EDO or Sync mode.
1626 *
1627 * We do not check the return value now. That's means if we fail in
1628 * enable the extra features, we still can run in the normal way.
1629 */
1630 gpmi_extra_init(this);
1631
1632 return 0;
1633 }
1634
1635 static int gpmi_nfc_init(struct gpmi_nand_data *this)
1636 {
1637 struct mtd_info *mtd = &this->mtd;
1638 struct nand_chip *chip = &this->nand;
1639 struct mtd_part_parser_data ppdata = {};
1640 int ret;
1641
1642 /* init current chip */
1643 this->current_chip = -1;
1644
1645 /* init the MTD data structures */
1646 mtd->priv = chip;
1647 mtd->name = "gpmi-nand";
1648 mtd->owner = THIS_MODULE;
1649
1650 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1651 chip->priv = this;
1652 chip->select_chip = gpmi_select_chip;
1653 chip->cmd_ctrl = gpmi_cmd_ctrl;
1654 chip->dev_ready = gpmi_dev_ready;
1655 chip->read_byte = gpmi_read_byte;
1656 chip->read_buf = gpmi_read_buf;
1657 chip->write_buf = gpmi_write_buf;
1658 chip->badblock_pattern = &gpmi_bbt_descr;
1659 chip->block_markbad = gpmi_block_markbad;
1660 chip->options |= NAND_NO_SUBPAGE_WRITE;
1661 if (of_get_nand_on_flash_bbt(this->dev->of_node))
1662 chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
1663
1664 /*
1665 * Allocate a temporary DMA buffer for reading ID in the
1666 * nand_scan_ident().
1667 */
1668 this->bch_geometry.payload_size = 1024;
1669 this->bch_geometry.auxiliary_size = 128;
1670 ret = gpmi_alloc_dma_buffer(this);
1671 if (ret)
1672 goto err_out;
1673
1674 ret = nand_scan_ident(mtd, GPMI_IS_MX6Q(this) ? 2 : 1, NULL);
1675 if (ret)
1676 goto err_out;
1677
1678 ret = gpmi_init_last(this);
1679 if (ret)
1680 goto err_out;
1681
1682 chip->options |= NAND_SKIP_BBTSCAN;
1683 ret = nand_scan_tail(mtd);
1684 if (ret)
1685 goto err_out;
1686
1687 ret = nand_boot_init(this);
1688 if (ret)
1689 goto err_out;
1690 chip->scan_bbt(mtd);
1691
1692 ppdata.of_node = this->pdev->dev.of_node;
1693 ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1694 if (ret)
1695 goto err_out;
1696 return 0;
1697
1698 err_out:
1699 gpmi_nfc_exit(this);
1700 return ret;
1701 }
1702
1703 static const struct platform_device_id gpmi_ids[] = {
1704 { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
1705 { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
1706 { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
1707 {}
1708 };
1709
1710 static const struct of_device_id gpmi_nand_id_table[] = {
1711 {
1712 .compatible = "fsl,imx23-gpmi-nand",
1713 .data = (void *)&gpmi_ids[IS_MX23],
1714 }, {
1715 .compatible = "fsl,imx28-gpmi-nand",
1716 .data = (void *)&gpmi_ids[IS_MX28],
1717 }, {
1718 .compatible = "fsl,imx6q-gpmi-nand",
1719 .data = (void *)&gpmi_ids[IS_MX6Q],
1720 }, {}
1721 };
1722 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1723
1724 static int gpmi_nand_probe(struct platform_device *pdev)
1725 {
1726 struct gpmi_nand_data *this;
1727 const struct of_device_id *of_id;
1728 int ret;
1729
1730 of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1731 if (of_id) {
1732 pdev->id_entry = of_id->data;
1733 } else {
1734 pr_err("Failed to find the right device id.\n");
1735 return -ENODEV;
1736 }
1737
1738 this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
1739 if (!this) {
1740 pr_err("Failed to allocate per-device memory\n");
1741 return -ENOMEM;
1742 }
1743
1744 platform_set_drvdata(pdev, this);
1745 this->pdev = pdev;
1746 this->dev = &pdev->dev;
1747
1748 ret = acquire_resources(this);
1749 if (ret)
1750 goto exit_acquire_resources;
1751
1752 ret = init_hardware(this);
1753 if (ret)
1754 goto exit_nfc_init;
1755
1756 ret = gpmi_nfc_init(this);
1757 if (ret)
1758 goto exit_nfc_init;
1759
1760 dev_info(this->dev, "driver registered.\n");
1761
1762 return 0;
1763
1764 exit_nfc_init:
1765 release_resources(this);
1766 exit_acquire_resources:
1767 dev_err(this->dev, "driver registration failed: %d\n", ret);
1768
1769 return ret;
1770 }
1771
1772 static int gpmi_nand_remove(struct platform_device *pdev)
1773 {
1774 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1775
1776 gpmi_nfc_exit(this);
1777 release_resources(this);
1778 return 0;
1779 }
1780
1781 static struct platform_driver gpmi_nand_driver = {
1782 .driver = {
1783 .name = "gpmi-nand",
1784 .of_match_table = gpmi_nand_id_table,
1785 },
1786 .probe = gpmi_nand_probe,
1787 .remove = gpmi_nand_remove,
1788 .id_table = gpmi_ids,
1789 };
1790 module_platform_driver(gpmi_nand_driver);
1791
1792 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1793 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1794 MODULE_LICENSE("GPL");
This page took 0.097254 seconds and 4 git commands to generate.