igb: Add device support for flashless SKU of i210 device
[deliverable/linux.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
37
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
40
41 #define DRIVER_NAME "mxc_nand"
42
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
51 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
66
67 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
77
78 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
79
80 /*
81 * Operation modes for the NFC. Valid for v1, v2 and v3
82 * type controllers.
83 */
84 #define NFC_CMD (1 << 0)
85 #define NFC_ADDR (1 << 1)
86 #define NFC_INPUT (1 << 2)
87 #define NFC_OUTPUT (1 << 3)
88 #define NFC_ID (1 << 4)
89 #define NFC_STATUS (1 << 5)
90
91 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
93
94 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
97
98 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
99
100 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
101
102 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
104 #define NFC_V3_WRPROT_LOCK (1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
107
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
109
110 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
124
125 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8 (1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
132
133 #define NFC_V3_IPC (host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ (1 << 0)
135 #define NFC_V3_IPC_INT (1 << 31)
136
137 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
138
139 struct mxc_nand_host;
140
141 struct mxc_nand_devtype_data {
142 void (*preset)(struct mtd_info *);
143 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
144 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
145 void (*send_page)(struct mtd_info *, unsigned int);
146 void (*send_read_id)(struct mxc_nand_host *);
147 uint16_t (*get_dev_status)(struct mxc_nand_host *);
148 int (*check_int)(struct mxc_nand_host *);
149 void (*irq_control)(struct mxc_nand_host *, int);
150 u32 (*get_ecc_status)(struct mxc_nand_host *);
151 struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
152 void (*select_chip)(struct mtd_info *mtd, int chip);
153 int (*correct_data)(struct mtd_info *mtd, u_char *dat,
154 u_char *read_ecc, u_char *calc_ecc);
155
156 /*
157 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
158 * (CONFIG1:INT_MSK is set). To handle this the driver uses
159 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
160 */
161 int irqpending_quirk;
162 int needs_ip;
163
164 size_t regs_offset;
165 size_t spare0_offset;
166 size_t axi_offset;
167
168 int spare_len;
169 int eccbytes;
170 int eccsize;
171 int ppb_shift;
172 };
173
174 struct mxc_nand_host {
175 struct mtd_info mtd;
176 struct nand_chip nand;
177 struct device *dev;
178
179 void __iomem *spare0;
180 void __iomem *main_area0;
181
182 void __iomem *base;
183 void __iomem *regs;
184 void __iomem *regs_axi;
185 void __iomem *regs_ip;
186 int status_request;
187 struct clk *clk;
188 int clk_act;
189 int irq;
190 int eccsize;
191 int active_cs;
192
193 struct completion op_completion;
194
195 uint8_t *data_buf;
196 unsigned int buf_start;
197
198 const struct mxc_nand_devtype_data *devtype_data;
199 struct mxc_nand_platform_data pdata;
200 };
201
202 /* OOB placement block for use with hardware ecc generation */
203 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
204 .eccbytes = 5,
205 .eccpos = {6, 7, 8, 9, 10},
206 .oobfree = {{0, 5}, {12, 4}, }
207 };
208
209 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
210 .eccbytes = 20,
211 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
212 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
213 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
214 };
215
216 /* OOB description for 512 byte pages with 16 byte OOB */
217 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
218 .eccbytes = 1 * 9,
219 .eccpos = {
220 7, 8, 9, 10, 11, 12, 13, 14, 15
221 },
222 .oobfree = {
223 {.offset = 0, .length = 5}
224 }
225 };
226
227 /* OOB description for 2048 byte pages with 64 byte OOB */
228 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
229 .eccbytes = 4 * 9,
230 .eccpos = {
231 7, 8, 9, 10, 11, 12, 13, 14, 15,
232 23, 24, 25, 26, 27, 28, 29, 30, 31,
233 39, 40, 41, 42, 43, 44, 45, 46, 47,
234 55, 56, 57, 58, 59, 60, 61, 62, 63
235 },
236 .oobfree = {
237 {.offset = 2, .length = 4},
238 {.offset = 16, .length = 7},
239 {.offset = 32, .length = 7},
240 {.offset = 48, .length = 7}
241 }
242 };
243
244 /* OOB description for 4096 byte pages with 128 byte OOB */
245 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
246 .eccbytes = 8 * 9,
247 .eccpos = {
248 7, 8, 9, 10, 11, 12, 13, 14, 15,
249 23, 24, 25, 26, 27, 28, 29, 30, 31,
250 39, 40, 41, 42, 43, 44, 45, 46, 47,
251 55, 56, 57, 58, 59, 60, 61, 62, 63,
252 71, 72, 73, 74, 75, 76, 77, 78, 79,
253 87, 88, 89, 90, 91, 92, 93, 94, 95,
254 103, 104, 105, 106, 107, 108, 109, 110, 111,
255 119, 120, 121, 122, 123, 124, 125, 126, 127,
256 },
257 .oobfree = {
258 {.offset = 2, .length = 4},
259 {.offset = 16, .length = 7},
260 {.offset = 32, .length = 7},
261 {.offset = 48, .length = 7},
262 {.offset = 64, .length = 7},
263 {.offset = 80, .length = 7},
264 {.offset = 96, .length = 7},
265 {.offset = 112, .length = 7},
266 }
267 };
268
269 static const char const *part_probes[] = {
270 "cmdlinepart", "RedBoot", "ofpart", NULL };
271
272 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
273 {
274 int i;
275 u32 *t = trg;
276 const __iomem u32 *s = src;
277
278 for (i = 0; i < (size >> 2); i++)
279 *t++ = __raw_readl(s++);
280 }
281
282 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
283 {
284 int i;
285 u32 __iomem *t = trg;
286 const u32 *s = src;
287
288 for (i = 0; i < (size >> 2); i++)
289 __raw_writel(*s++, t++);
290 }
291
292 static int check_int_v3(struct mxc_nand_host *host)
293 {
294 uint32_t tmp;
295
296 tmp = readl(NFC_V3_IPC);
297 if (!(tmp & NFC_V3_IPC_INT))
298 return 0;
299
300 tmp &= ~NFC_V3_IPC_INT;
301 writel(tmp, NFC_V3_IPC);
302
303 return 1;
304 }
305
306 static int check_int_v1_v2(struct mxc_nand_host *host)
307 {
308 uint32_t tmp;
309
310 tmp = readw(NFC_V1_V2_CONFIG2);
311 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
312 return 0;
313
314 if (!host->devtype_data->irqpending_quirk)
315 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
316
317 return 1;
318 }
319
320 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
321 {
322 uint16_t tmp;
323
324 tmp = readw(NFC_V1_V2_CONFIG1);
325
326 if (activate)
327 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
328 else
329 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
330
331 writew(tmp, NFC_V1_V2_CONFIG1);
332 }
333
334 static void irq_control_v3(struct mxc_nand_host *host, int activate)
335 {
336 uint32_t tmp;
337
338 tmp = readl(NFC_V3_CONFIG2);
339
340 if (activate)
341 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
342 else
343 tmp |= NFC_V3_CONFIG2_INT_MSK;
344
345 writel(tmp, NFC_V3_CONFIG2);
346 }
347
348 static void irq_control(struct mxc_nand_host *host, int activate)
349 {
350 if (host->devtype_data->irqpending_quirk) {
351 if (activate)
352 enable_irq(host->irq);
353 else
354 disable_irq_nosync(host->irq);
355 } else {
356 host->devtype_data->irq_control(host, activate);
357 }
358 }
359
360 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
361 {
362 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
363 }
364
365 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
366 {
367 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
368 }
369
370 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
371 {
372 return readl(NFC_V3_ECC_STATUS_RESULT);
373 }
374
375 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
376 {
377 struct mxc_nand_host *host = dev_id;
378
379 if (!host->devtype_data->check_int(host))
380 return IRQ_NONE;
381
382 irq_control(host, 0);
383
384 complete(&host->op_completion);
385
386 return IRQ_HANDLED;
387 }
388
389 /* This function polls the NANDFC to wait for the basic operation to
390 * complete by checking the INT bit of config2 register.
391 */
392 static void wait_op_done(struct mxc_nand_host *host, int useirq)
393 {
394 int max_retries = 8000;
395
396 if (useirq) {
397 if (!host->devtype_data->check_int(host)) {
398 INIT_COMPLETION(host->op_completion);
399 irq_control(host, 1);
400 wait_for_completion(&host->op_completion);
401 }
402 } else {
403 while (max_retries-- > 0) {
404 if (host->devtype_data->check_int(host))
405 break;
406
407 udelay(1);
408 }
409 if (max_retries < 0)
410 pr_debug("%s: INT not set\n", __func__);
411 }
412 }
413
414 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
415 {
416 /* fill command */
417 writel(cmd, NFC_V3_FLASH_CMD);
418
419 /* send out command */
420 writel(NFC_CMD, NFC_V3_LAUNCH);
421
422 /* Wait for operation to complete */
423 wait_op_done(host, useirq);
424 }
425
426 /* This function issues the specified command to the NAND device and
427 * waits for completion. */
428 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
429 {
430 pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
431
432 writew(cmd, NFC_V1_V2_FLASH_CMD);
433 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
434
435 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
436 int max_retries = 100;
437 /* Reset completion is indicated by NFC_CONFIG2 */
438 /* being set to 0 */
439 while (max_retries-- > 0) {
440 if (readw(NFC_V1_V2_CONFIG2) == 0) {
441 break;
442 }
443 udelay(1);
444 }
445 if (max_retries < 0)
446 pr_debug("%s: RESET failed\n", __func__);
447 } else {
448 /* Wait for operation to complete */
449 wait_op_done(host, useirq);
450 }
451 }
452
453 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
454 {
455 /* fill address */
456 writel(addr, NFC_V3_FLASH_ADDR0);
457
458 /* send out address */
459 writel(NFC_ADDR, NFC_V3_LAUNCH);
460
461 wait_op_done(host, 0);
462 }
463
464 /* This function sends an address (or partial address) to the
465 * NAND device. The address is used to select the source/destination for
466 * a NAND command. */
467 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
468 {
469 pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
470
471 writew(addr, NFC_V1_V2_FLASH_ADDR);
472 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
473
474 /* Wait for operation to complete */
475 wait_op_done(host, islast);
476 }
477
478 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
479 {
480 struct nand_chip *nand_chip = mtd->priv;
481 struct mxc_nand_host *host = nand_chip->priv;
482 uint32_t tmp;
483
484 tmp = readl(NFC_V3_CONFIG1);
485 tmp &= ~(7 << 4);
486 writel(tmp, NFC_V3_CONFIG1);
487
488 /* transfer data from NFC ram to nand */
489 writel(ops, NFC_V3_LAUNCH);
490
491 wait_op_done(host, false);
492 }
493
494 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
495 {
496 struct nand_chip *nand_chip = mtd->priv;
497 struct mxc_nand_host *host = nand_chip->priv;
498
499 /* NANDFC buffer 0 is used for page read/write */
500 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
501
502 writew(ops, NFC_V1_V2_CONFIG2);
503
504 /* Wait for operation to complete */
505 wait_op_done(host, true);
506 }
507
508 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
509 {
510 struct nand_chip *nand_chip = mtd->priv;
511 struct mxc_nand_host *host = nand_chip->priv;
512 int bufs, i;
513
514 if (mtd->writesize > 512)
515 bufs = 4;
516 else
517 bufs = 1;
518
519 for (i = 0; i < bufs; i++) {
520
521 /* NANDFC buffer 0 is used for page read/write */
522 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
523
524 writew(ops, NFC_V1_V2_CONFIG2);
525
526 /* Wait for operation to complete */
527 wait_op_done(host, true);
528 }
529 }
530
531 static void send_read_id_v3(struct mxc_nand_host *host)
532 {
533 struct nand_chip *this = &host->nand;
534
535 /* Read ID into main buffer */
536 writel(NFC_ID, NFC_V3_LAUNCH);
537
538 wait_op_done(host, true);
539
540 memcpy32_fromio(host->data_buf, host->main_area0, 16);
541
542 if (this->options & NAND_BUSWIDTH_16) {
543 /* compress the ID info */
544 host->data_buf[1] = host->data_buf[2];
545 host->data_buf[2] = host->data_buf[4];
546 host->data_buf[3] = host->data_buf[6];
547 host->data_buf[4] = host->data_buf[8];
548 host->data_buf[5] = host->data_buf[10];
549 }
550 }
551
552 /* Request the NANDFC to perform a read of the NAND device ID. */
553 static void send_read_id_v1_v2(struct mxc_nand_host *host)
554 {
555 struct nand_chip *this = &host->nand;
556
557 /* NANDFC buffer 0 is used for device ID output */
558 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
559
560 writew(NFC_ID, NFC_V1_V2_CONFIG2);
561
562 /* Wait for operation to complete */
563 wait_op_done(host, true);
564
565 memcpy32_fromio(host->data_buf, host->main_area0, 16);
566
567 if (this->options & NAND_BUSWIDTH_16) {
568 /* compress the ID info */
569 host->data_buf[1] = host->data_buf[2];
570 host->data_buf[2] = host->data_buf[4];
571 host->data_buf[3] = host->data_buf[6];
572 host->data_buf[4] = host->data_buf[8];
573 host->data_buf[5] = host->data_buf[10];
574 }
575 }
576
577 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
578 {
579 writew(NFC_STATUS, NFC_V3_LAUNCH);
580 wait_op_done(host, true);
581
582 return readl(NFC_V3_CONFIG1) >> 16;
583 }
584
585 /* This function requests the NANDFC to perform a read of the
586 * NAND device status and returns the current status. */
587 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
588 {
589 void __iomem *main_buf = host->main_area0;
590 uint32_t store;
591 uint16_t ret;
592
593 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
594
595 /*
596 * The device status is stored in main_area0. To
597 * prevent corruption of the buffer save the value
598 * and restore it afterwards.
599 */
600 store = readl(main_buf);
601
602 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
603 wait_op_done(host, true);
604
605 ret = readw(main_buf);
606
607 writel(store, main_buf);
608
609 return ret;
610 }
611
612 /* This functions is used by upper layer to checks if device is ready */
613 static int mxc_nand_dev_ready(struct mtd_info *mtd)
614 {
615 /*
616 * NFC handles R/B internally. Therefore, this function
617 * always returns status as ready.
618 */
619 return 1;
620 }
621
622 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
623 {
624 /*
625 * If HW ECC is enabled, we turn it on during init. There is
626 * no need to enable again here.
627 */
628 }
629
630 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
631 u_char *read_ecc, u_char *calc_ecc)
632 {
633 struct nand_chip *nand_chip = mtd->priv;
634 struct mxc_nand_host *host = nand_chip->priv;
635
636 /*
637 * 1-Bit errors are automatically corrected in HW. No need for
638 * additional correction. 2-Bit errors cannot be corrected by
639 * HW ECC, so we need to return failure
640 */
641 uint16_t ecc_status = get_ecc_status_v1(host);
642
643 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
644 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
645 return -1;
646 }
647
648 return 0;
649 }
650
651 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
652 u_char *read_ecc, u_char *calc_ecc)
653 {
654 struct nand_chip *nand_chip = mtd->priv;
655 struct mxc_nand_host *host = nand_chip->priv;
656 u32 ecc_stat, err;
657 int no_subpages = 1;
658 int ret = 0;
659 u8 ecc_bit_mask, err_limit;
660
661 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
662 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
663
664 no_subpages = mtd->writesize >> 9;
665
666 ecc_stat = host->devtype_data->get_ecc_status(host);
667
668 do {
669 err = ecc_stat & ecc_bit_mask;
670 if (err > err_limit) {
671 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
672 return -1;
673 } else {
674 ret += err;
675 }
676 ecc_stat >>= 4;
677 } while (--no_subpages);
678
679 mtd->ecc_stats.corrected += ret;
680 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
681
682 return ret;
683 }
684
685 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
686 u_char *ecc_code)
687 {
688 return 0;
689 }
690
691 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
692 {
693 struct nand_chip *nand_chip = mtd->priv;
694 struct mxc_nand_host *host = nand_chip->priv;
695 uint8_t ret;
696
697 /* Check for status request */
698 if (host->status_request)
699 return host->devtype_data->get_dev_status(host) & 0xFF;
700
701 ret = *(uint8_t *)(host->data_buf + host->buf_start);
702 host->buf_start++;
703
704 return ret;
705 }
706
707 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
708 {
709 struct nand_chip *nand_chip = mtd->priv;
710 struct mxc_nand_host *host = nand_chip->priv;
711 uint16_t ret;
712
713 ret = *(uint16_t *)(host->data_buf + host->buf_start);
714 host->buf_start += 2;
715
716 return ret;
717 }
718
719 /* Write data of length len to buffer buf. The data to be
720 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
721 * Operation by the NFC, the data is written to NAND Flash */
722 static void mxc_nand_write_buf(struct mtd_info *mtd,
723 const u_char *buf, int len)
724 {
725 struct nand_chip *nand_chip = mtd->priv;
726 struct mxc_nand_host *host = nand_chip->priv;
727 u16 col = host->buf_start;
728 int n = mtd->oobsize + mtd->writesize - col;
729
730 n = min(n, len);
731
732 memcpy(host->data_buf + col, buf, n);
733
734 host->buf_start += n;
735 }
736
737 /* Read the data buffer from the NAND Flash. To read the data from NAND
738 * Flash first the data output cycle is initiated by the NFC, which copies
739 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
740 */
741 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
742 {
743 struct nand_chip *nand_chip = mtd->priv;
744 struct mxc_nand_host *host = nand_chip->priv;
745 u16 col = host->buf_start;
746 int n = mtd->oobsize + mtd->writesize - col;
747
748 n = min(n, len);
749
750 memcpy(buf, host->data_buf + col, n);
751
752 host->buf_start += n;
753 }
754
755 /* This function is used by upper layer for select and
756 * deselect of the NAND chip */
757 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
758 {
759 struct nand_chip *nand_chip = mtd->priv;
760 struct mxc_nand_host *host = nand_chip->priv;
761
762 if (chip == -1) {
763 /* Disable the NFC clock */
764 if (host->clk_act) {
765 clk_disable_unprepare(host->clk);
766 host->clk_act = 0;
767 }
768 return;
769 }
770
771 if (!host->clk_act) {
772 /* Enable the NFC clock */
773 clk_prepare_enable(host->clk);
774 host->clk_act = 1;
775 }
776 }
777
778 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
779 {
780 struct nand_chip *nand_chip = mtd->priv;
781 struct mxc_nand_host *host = nand_chip->priv;
782
783 if (chip == -1) {
784 /* Disable the NFC clock */
785 if (host->clk_act) {
786 clk_disable_unprepare(host->clk);
787 host->clk_act = 0;
788 }
789 return;
790 }
791
792 if (!host->clk_act) {
793 /* Enable the NFC clock */
794 clk_prepare_enable(host->clk);
795 host->clk_act = 1;
796 }
797
798 host->active_cs = chip;
799 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
800 }
801
802 /*
803 * Function to transfer data to/from spare area.
804 */
805 static void copy_spare(struct mtd_info *mtd, bool bfrom)
806 {
807 struct nand_chip *this = mtd->priv;
808 struct mxc_nand_host *host = this->priv;
809 u16 i, j;
810 u16 n = mtd->writesize >> 9;
811 u8 *d = host->data_buf + mtd->writesize;
812 u8 __iomem *s = host->spare0;
813 u16 t = host->devtype_data->spare_len;
814
815 j = (mtd->oobsize / n >> 1) << 1;
816
817 if (bfrom) {
818 for (i = 0; i < n - 1; i++)
819 memcpy32_fromio(d + i * j, s + i * t, j);
820
821 /* the last section */
822 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
823 } else {
824 for (i = 0; i < n - 1; i++)
825 memcpy32_toio(&s[i * t], &d[i * j], j);
826
827 /* the last section */
828 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
829 }
830 }
831
832 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
833 {
834 struct nand_chip *nand_chip = mtd->priv;
835 struct mxc_nand_host *host = nand_chip->priv;
836
837 /* Write out column address, if necessary */
838 if (column != -1) {
839 /*
840 * MXC NANDFC can only perform full page+spare or
841 * spare-only read/write. When the upper layers
842 * perform a read/write buf operation, the saved column
843 * address is used to index into the full page.
844 */
845 host->devtype_data->send_addr(host, 0, page_addr == -1);
846 if (mtd->writesize > 512)
847 /* another col addr cycle for 2k page */
848 host->devtype_data->send_addr(host, 0, false);
849 }
850
851 /* Write out page address, if necessary */
852 if (page_addr != -1) {
853 /* paddr_0 - p_addr_7 */
854 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
855
856 if (mtd->writesize > 512) {
857 if (mtd->size >= 0x10000000) {
858 /* paddr_8 - paddr_15 */
859 host->devtype_data->send_addr(host,
860 (page_addr >> 8) & 0xff,
861 false);
862 host->devtype_data->send_addr(host,
863 (page_addr >> 16) & 0xff,
864 true);
865 } else
866 /* paddr_8 - paddr_15 */
867 host->devtype_data->send_addr(host,
868 (page_addr >> 8) & 0xff, true);
869 } else {
870 /* One more address cycle for higher density devices */
871 if (mtd->size >= 0x4000000) {
872 /* paddr_8 - paddr_15 */
873 host->devtype_data->send_addr(host,
874 (page_addr >> 8) & 0xff,
875 false);
876 host->devtype_data->send_addr(host,
877 (page_addr >> 16) & 0xff,
878 true);
879 } else
880 /* paddr_8 - paddr_15 */
881 host->devtype_data->send_addr(host,
882 (page_addr >> 8) & 0xff, true);
883 }
884 }
885 }
886
887 /*
888 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
889 * on how much oob the nand chip has. For 8bit ecc we need at least
890 * 26 bytes of oob data per 512 byte block.
891 */
892 static int get_eccsize(struct mtd_info *mtd)
893 {
894 int oobbytes_per_512 = 0;
895
896 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
897
898 if (oobbytes_per_512 < 26)
899 return 4;
900 else
901 return 8;
902 }
903
904 static void preset_v1(struct mtd_info *mtd)
905 {
906 struct nand_chip *nand_chip = mtd->priv;
907 struct mxc_nand_host *host = nand_chip->priv;
908 uint16_t config1 = 0;
909
910 if (nand_chip->ecc.mode == NAND_ECC_HW)
911 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
912
913 if (!host->devtype_data->irqpending_quirk)
914 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
915
916 host->eccsize = 1;
917
918 writew(config1, NFC_V1_V2_CONFIG1);
919 /* preset operation */
920
921 /* Unlock the internal RAM Buffer */
922 writew(0x2, NFC_V1_V2_CONFIG);
923
924 /* Blocks to be unlocked */
925 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
926 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
927
928 /* Unlock Block Command for given address range */
929 writew(0x4, NFC_V1_V2_WRPROT);
930 }
931
932 static void preset_v2(struct mtd_info *mtd)
933 {
934 struct nand_chip *nand_chip = mtd->priv;
935 struct mxc_nand_host *host = nand_chip->priv;
936 uint16_t config1 = 0;
937
938 if (nand_chip->ecc.mode == NAND_ECC_HW)
939 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
940
941 config1 |= NFC_V2_CONFIG1_FP_INT;
942
943 if (!host->devtype_data->irqpending_quirk)
944 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
945
946 if (mtd->writesize) {
947 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
948
949 host->eccsize = get_eccsize(mtd);
950 if (host->eccsize == 4)
951 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
952
953 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
954 } else {
955 host->eccsize = 1;
956 }
957
958 writew(config1, NFC_V1_V2_CONFIG1);
959 /* preset operation */
960
961 /* Unlock the internal RAM Buffer */
962 writew(0x2, NFC_V1_V2_CONFIG);
963
964 /* Blocks to be unlocked */
965 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
966 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
967 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
968 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
969 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
970 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
971 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
972 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
973
974 /* Unlock Block Command for given address range */
975 writew(0x4, NFC_V1_V2_WRPROT);
976 }
977
978 static void preset_v3(struct mtd_info *mtd)
979 {
980 struct nand_chip *chip = mtd->priv;
981 struct mxc_nand_host *host = chip->priv;
982 uint32_t config2, config3;
983 int i, addr_phases;
984
985 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
986 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
987
988 /* Unlock the internal RAM Buffer */
989 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
990 NFC_V3_WRPROT);
991
992 /* Blocks to be unlocked */
993 for (i = 0; i < NAND_MAX_CHIPS; i++)
994 writel(0x0 | (0xffff << 16),
995 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
996
997 writel(0, NFC_V3_IPC);
998
999 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1000 NFC_V3_CONFIG2_2CMD_PHASES |
1001 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1002 NFC_V3_CONFIG2_ST_CMD(0x70) |
1003 NFC_V3_CONFIG2_INT_MSK |
1004 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1005
1006 if (chip->ecc.mode == NAND_ECC_HW)
1007 config2 |= NFC_V3_CONFIG2_ECC_EN;
1008
1009 addr_phases = fls(chip->pagemask) >> 3;
1010
1011 if (mtd->writesize == 2048) {
1012 config2 |= NFC_V3_CONFIG2_PS_2048;
1013 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1014 } else if (mtd->writesize == 4096) {
1015 config2 |= NFC_V3_CONFIG2_PS_4096;
1016 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1017 } else {
1018 config2 |= NFC_V3_CONFIG2_PS_512;
1019 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1020 }
1021
1022 if (mtd->writesize) {
1023 config2 |= NFC_V3_CONFIG2_PPB(
1024 ffs(mtd->erasesize / mtd->writesize) - 6,
1025 host->devtype_data->ppb_shift);
1026 host->eccsize = get_eccsize(mtd);
1027 if (host->eccsize == 8)
1028 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1029 }
1030
1031 writel(config2, NFC_V3_CONFIG2);
1032
1033 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1034 NFC_V3_CONFIG3_NO_SDMA |
1035 NFC_V3_CONFIG3_RBB_MODE |
1036 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1037 NFC_V3_CONFIG3_ADD_OP(0);
1038
1039 if (!(chip->options & NAND_BUSWIDTH_16))
1040 config3 |= NFC_V3_CONFIG3_FW8;
1041
1042 writel(config3, NFC_V3_CONFIG3);
1043
1044 writel(0, NFC_V3_DELAY_LINE);
1045 }
1046
1047 /* Used by the upper layer to write command to NAND Flash for
1048 * different operations to be carried out on NAND Flash */
1049 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1050 int column, int page_addr)
1051 {
1052 struct nand_chip *nand_chip = mtd->priv;
1053 struct mxc_nand_host *host = nand_chip->priv;
1054
1055 pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1056 command, column, page_addr);
1057
1058 /* Reset command state information */
1059 host->status_request = false;
1060
1061 /* Command pre-processing step */
1062 switch (command) {
1063 case NAND_CMD_RESET:
1064 host->devtype_data->preset(mtd);
1065 host->devtype_data->send_cmd(host, command, false);
1066 break;
1067
1068 case NAND_CMD_STATUS:
1069 host->buf_start = 0;
1070 host->status_request = true;
1071
1072 host->devtype_data->send_cmd(host, command, true);
1073 mxc_do_addr_cycle(mtd, column, page_addr);
1074 break;
1075
1076 case NAND_CMD_READ0:
1077 case NAND_CMD_READOOB:
1078 if (command == NAND_CMD_READ0)
1079 host->buf_start = column;
1080 else
1081 host->buf_start = column + mtd->writesize;
1082
1083 command = NAND_CMD_READ0; /* only READ0 is valid */
1084
1085 host->devtype_data->send_cmd(host, command, false);
1086 mxc_do_addr_cycle(mtd, column, page_addr);
1087
1088 if (mtd->writesize > 512)
1089 host->devtype_data->send_cmd(host,
1090 NAND_CMD_READSTART, true);
1091
1092 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1093
1094 memcpy32_fromio(host->data_buf, host->main_area0,
1095 mtd->writesize);
1096 copy_spare(mtd, true);
1097 break;
1098
1099 case NAND_CMD_SEQIN:
1100 if (column >= mtd->writesize)
1101 /* call ourself to read a page */
1102 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1103
1104 host->buf_start = column;
1105
1106 host->devtype_data->send_cmd(host, command, false);
1107 mxc_do_addr_cycle(mtd, column, page_addr);
1108 break;
1109
1110 case NAND_CMD_PAGEPROG:
1111 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1112 copy_spare(mtd, false);
1113 host->devtype_data->send_page(mtd, NFC_INPUT);
1114 host->devtype_data->send_cmd(host, command, true);
1115 mxc_do_addr_cycle(mtd, column, page_addr);
1116 break;
1117
1118 case NAND_CMD_READID:
1119 host->devtype_data->send_cmd(host, command, true);
1120 mxc_do_addr_cycle(mtd, column, page_addr);
1121 host->devtype_data->send_read_id(host);
1122 host->buf_start = column;
1123 break;
1124
1125 case NAND_CMD_ERASE1:
1126 case NAND_CMD_ERASE2:
1127 host->devtype_data->send_cmd(host, command, false);
1128 mxc_do_addr_cycle(mtd, column, page_addr);
1129
1130 break;
1131 }
1132 }
1133
1134 /*
1135 * The generic flash bbt decriptors overlap with our ecc
1136 * hardware, so define some i.MX specific ones.
1137 */
1138 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1139 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1140
1141 static struct nand_bbt_descr bbt_main_descr = {
1142 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1143 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1144 .offs = 0,
1145 .len = 4,
1146 .veroffs = 4,
1147 .maxblocks = 4,
1148 .pattern = bbt_pattern,
1149 };
1150
1151 static struct nand_bbt_descr bbt_mirror_descr = {
1152 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1153 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1154 .offs = 0,
1155 .len = 4,
1156 .veroffs = 4,
1157 .maxblocks = 4,
1158 .pattern = mirror_pattern,
1159 };
1160
1161 /* v1 + irqpending_quirk: i.MX21 */
1162 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1163 .preset = preset_v1,
1164 .send_cmd = send_cmd_v1_v2,
1165 .send_addr = send_addr_v1_v2,
1166 .send_page = send_page_v1,
1167 .send_read_id = send_read_id_v1_v2,
1168 .get_dev_status = get_dev_status_v1_v2,
1169 .check_int = check_int_v1_v2,
1170 .irq_control = irq_control_v1_v2,
1171 .get_ecc_status = get_ecc_status_v1,
1172 .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1173 .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1174 .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1175 .select_chip = mxc_nand_select_chip_v1_v3,
1176 .correct_data = mxc_nand_correct_data_v1,
1177 .irqpending_quirk = 1,
1178 .needs_ip = 0,
1179 .regs_offset = 0xe00,
1180 .spare0_offset = 0x800,
1181 .spare_len = 16,
1182 .eccbytes = 3,
1183 .eccsize = 1,
1184 };
1185
1186 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1187 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1188 .preset = preset_v1,
1189 .send_cmd = send_cmd_v1_v2,
1190 .send_addr = send_addr_v1_v2,
1191 .send_page = send_page_v1,
1192 .send_read_id = send_read_id_v1_v2,
1193 .get_dev_status = get_dev_status_v1_v2,
1194 .check_int = check_int_v1_v2,
1195 .irq_control = irq_control_v1_v2,
1196 .get_ecc_status = get_ecc_status_v1,
1197 .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1198 .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1199 .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1200 .select_chip = mxc_nand_select_chip_v1_v3,
1201 .correct_data = mxc_nand_correct_data_v1,
1202 .irqpending_quirk = 0,
1203 .needs_ip = 0,
1204 .regs_offset = 0xe00,
1205 .spare0_offset = 0x800,
1206 .axi_offset = 0,
1207 .spare_len = 16,
1208 .eccbytes = 3,
1209 .eccsize = 1,
1210 };
1211
1212 /* v21: i.MX25, i.MX35 */
1213 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1214 .preset = preset_v2,
1215 .send_cmd = send_cmd_v1_v2,
1216 .send_addr = send_addr_v1_v2,
1217 .send_page = send_page_v2,
1218 .send_read_id = send_read_id_v1_v2,
1219 .get_dev_status = get_dev_status_v1_v2,
1220 .check_int = check_int_v1_v2,
1221 .irq_control = irq_control_v1_v2,
1222 .get_ecc_status = get_ecc_status_v2,
1223 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1224 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1225 .ecclayout_4k = &nandv2_hw_eccoob_4k,
1226 .select_chip = mxc_nand_select_chip_v2,
1227 .correct_data = mxc_nand_correct_data_v2_v3,
1228 .irqpending_quirk = 0,
1229 .needs_ip = 0,
1230 .regs_offset = 0x1e00,
1231 .spare0_offset = 0x1000,
1232 .axi_offset = 0,
1233 .spare_len = 64,
1234 .eccbytes = 9,
1235 .eccsize = 0,
1236 };
1237
1238 /* v3.2a: i.MX51 */
1239 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1240 .preset = preset_v3,
1241 .send_cmd = send_cmd_v3,
1242 .send_addr = send_addr_v3,
1243 .send_page = send_page_v3,
1244 .send_read_id = send_read_id_v3,
1245 .get_dev_status = get_dev_status_v3,
1246 .check_int = check_int_v3,
1247 .irq_control = irq_control_v3,
1248 .get_ecc_status = get_ecc_status_v3,
1249 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1250 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1251 .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1252 .select_chip = mxc_nand_select_chip_v1_v3,
1253 .correct_data = mxc_nand_correct_data_v2_v3,
1254 .irqpending_quirk = 0,
1255 .needs_ip = 1,
1256 .regs_offset = 0,
1257 .spare0_offset = 0x1000,
1258 .axi_offset = 0x1e00,
1259 .spare_len = 64,
1260 .eccbytes = 0,
1261 .eccsize = 0,
1262 .ppb_shift = 7,
1263 };
1264
1265 /* v3.2b: i.MX53 */
1266 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1267 .preset = preset_v3,
1268 .send_cmd = send_cmd_v3,
1269 .send_addr = send_addr_v3,
1270 .send_page = send_page_v3,
1271 .send_read_id = send_read_id_v3,
1272 .get_dev_status = get_dev_status_v3,
1273 .check_int = check_int_v3,
1274 .irq_control = irq_control_v3,
1275 .get_ecc_status = get_ecc_status_v3,
1276 .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1277 .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1278 .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1279 .select_chip = mxc_nand_select_chip_v1_v3,
1280 .correct_data = mxc_nand_correct_data_v2_v3,
1281 .irqpending_quirk = 0,
1282 .needs_ip = 1,
1283 .regs_offset = 0,
1284 .spare0_offset = 0x1000,
1285 .axi_offset = 0x1e00,
1286 .spare_len = 64,
1287 .eccbytes = 0,
1288 .eccsize = 0,
1289 .ppb_shift = 8,
1290 };
1291
1292 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1293 {
1294 return host->devtype_data == &imx21_nand_devtype_data;
1295 }
1296
1297 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1298 {
1299 return host->devtype_data == &imx27_nand_devtype_data;
1300 }
1301
1302 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1303 {
1304 return host->devtype_data == &imx25_nand_devtype_data;
1305 }
1306
1307 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1308 {
1309 return host->devtype_data == &imx51_nand_devtype_data;
1310 }
1311
1312 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1313 {
1314 return host->devtype_data == &imx53_nand_devtype_data;
1315 }
1316
1317 static struct platform_device_id mxcnd_devtype[] = {
1318 {
1319 .name = "imx21-nand",
1320 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1321 }, {
1322 .name = "imx27-nand",
1323 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1324 }, {
1325 .name = "imx25-nand",
1326 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1327 }, {
1328 .name = "imx51-nand",
1329 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1330 }, {
1331 .name = "imx53-nand",
1332 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1333 }, {
1334 /* sentinel */
1335 }
1336 };
1337 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1338
1339 #ifdef CONFIG_OF_MTD
1340 static const struct of_device_id mxcnd_dt_ids[] = {
1341 {
1342 .compatible = "fsl,imx21-nand",
1343 .data = &imx21_nand_devtype_data,
1344 }, {
1345 .compatible = "fsl,imx27-nand",
1346 .data = &imx27_nand_devtype_data,
1347 }, {
1348 .compatible = "fsl,imx25-nand",
1349 .data = &imx25_nand_devtype_data,
1350 }, {
1351 .compatible = "fsl,imx51-nand",
1352 .data = &imx51_nand_devtype_data,
1353 }, {
1354 .compatible = "fsl,imx53-nand",
1355 .data = &imx53_nand_devtype_data,
1356 },
1357 { /* sentinel */ }
1358 };
1359
1360 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1361 {
1362 struct device_node *np = host->dev->of_node;
1363 struct mxc_nand_platform_data *pdata = &host->pdata;
1364 const struct of_device_id *of_id =
1365 of_match_device(mxcnd_dt_ids, host->dev);
1366 int buswidth;
1367
1368 if (!np)
1369 return 1;
1370
1371 if (of_get_nand_ecc_mode(np) >= 0)
1372 pdata->hw_ecc = 1;
1373
1374 pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1375
1376 buswidth = of_get_nand_bus_width(np);
1377 if (buswidth < 0)
1378 return buswidth;
1379
1380 pdata->width = buswidth / 8;
1381
1382 host->devtype_data = of_id->data;
1383
1384 return 0;
1385 }
1386 #else
1387 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1388 {
1389 return 1;
1390 }
1391 #endif
1392
1393 static int mxcnd_probe(struct platform_device *pdev)
1394 {
1395 struct nand_chip *this;
1396 struct mtd_info *mtd;
1397 struct mxc_nand_host *host;
1398 struct resource *res;
1399 int err = 0;
1400
1401 /* Allocate memory for MTD device structure and private data */
1402 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host) +
1403 NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE, GFP_KERNEL);
1404 if (!host)
1405 return -ENOMEM;
1406
1407 host->data_buf = (uint8_t *)(host + 1);
1408
1409 host->dev = &pdev->dev;
1410 /* structures must be linked */
1411 this = &host->nand;
1412 mtd = &host->mtd;
1413 mtd->priv = this;
1414 mtd->owner = THIS_MODULE;
1415 mtd->dev.parent = &pdev->dev;
1416 mtd->name = DRIVER_NAME;
1417
1418 /* 50 us command delay time */
1419 this->chip_delay = 5;
1420
1421 this->priv = host;
1422 this->dev_ready = mxc_nand_dev_ready;
1423 this->cmdfunc = mxc_nand_command;
1424 this->read_byte = mxc_nand_read_byte;
1425 this->read_word = mxc_nand_read_word;
1426 this->write_buf = mxc_nand_write_buf;
1427 this->read_buf = mxc_nand_read_buf;
1428
1429 host->clk = devm_clk_get(&pdev->dev, NULL);
1430 if (IS_ERR(host->clk))
1431 return PTR_ERR(host->clk);
1432
1433 err = mxcnd_probe_dt(host);
1434 if (err > 0) {
1435 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
1436 if (pdata) {
1437 host->pdata = *pdata;
1438 host->devtype_data = (struct mxc_nand_devtype_data *)
1439 pdev->id_entry->driver_data;
1440 } else {
1441 err = -ENODEV;
1442 }
1443 }
1444 if (err < 0)
1445 return err;
1446
1447 if (host->devtype_data->needs_ip) {
1448 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1449 if (!res)
1450 return -ENODEV;
1451 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1452 if (IS_ERR(host->regs_ip))
1453 return PTR_ERR(host->regs_ip);
1454
1455 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1456 } else {
1457 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1458 }
1459
1460 if (!res)
1461 return -ENODEV;
1462
1463 host->base = devm_ioremap_resource(&pdev->dev, res);
1464 if (IS_ERR(host->base))
1465 return PTR_ERR(host->base);
1466
1467 host->main_area0 = host->base;
1468
1469 if (host->devtype_data->regs_offset)
1470 host->regs = host->base + host->devtype_data->regs_offset;
1471 host->spare0 = host->base + host->devtype_data->spare0_offset;
1472 if (host->devtype_data->axi_offset)
1473 host->regs_axi = host->base + host->devtype_data->axi_offset;
1474
1475 this->ecc.bytes = host->devtype_data->eccbytes;
1476 host->eccsize = host->devtype_data->eccsize;
1477
1478 this->select_chip = host->devtype_data->select_chip;
1479 this->ecc.size = 512;
1480 this->ecc.layout = host->devtype_data->ecclayout_512;
1481
1482 if (host->pdata.hw_ecc) {
1483 this->ecc.calculate = mxc_nand_calculate_ecc;
1484 this->ecc.hwctl = mxc_nand_enable_hwecc;
1485 this->ecc.correct = host->devtype_data->correct_data;
1486 this->ecc.mode = NAND_ECC_HW;
1487 } else {
1488 this->ecc.mode = NAND_ECC_SOFT;
1489 }
1490
1491 /* NAND bus width determines access functions used by upper layer */
1492 if (host->pdata.width == 2)
1493 this->options |= NAND_BUSWIDTH_16;
1494
1495 if (host->pdata.flash_bbt) {
1496 this->bbt_td = &bbt_main_descr;
1497 this->bbt_md = &bbt_mirror_descr;
1498 /* update flash based bbt */
1499 this->bbt_options |= NAND_BBT_USE_FLASH;
1500 }
1501
1502 init_completion(&host->op_completion);
1503
1504 host->irq = platform_get_irq(pdev, 0);
1505
1506 /*
1507 * Use host->devtype_data->irq_control() here instead of irq_control()
1508 * because we must not disable_irq_nosync without having requested the
1509 * irq.
1510 */
1511 host->devtype_data->irq_control(host, 0);
1512
1513 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1514 IRQF_DISABLED, DRIVER_NAME, host);
1515 if (err)
1516 return err;
1517
1518 clk_prepare_enable(host->clk);
1519 host->clk_act = 1;
1520
1521 /*
1522 * Now that we "own" the interrupt make sure the interrupt mask bit is
1523 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1524 * on this machine.
1525 */
1526 if (host->devtype_data->irqpending_quirk) {
1527 disable_irq_nosync(host->irq);
1528 host->devtype_data->irq_control(host, 1);
1529 }
1530
1531 /* first scan to find the device and get the page size */
1532 if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1533 err = -ENXIO;
1534 goto escan;
1535 }
1536
1537 /* Call preset again, with correct writesize this time */
1538 host->devtype_data->preset(mtd);
1539
1540 if (mtd->writesize == 2048)
1541 this->ecc.layout = host->devtype_data->ecclayout_2k;
1542 else if (mtd->writesize == 4096)
1543 this->ecc.layout = host->devtype_data->ecclayout_4k;
1544
1545 if (this->ecc.mode == NAND_ECC_HW) {
1546 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1547 this->ecc.strength = 1;
1548 else
1549 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1550 }
1551
1552 /* second phase scan */
1553 if (nand_scan_tail(mtd)) {
1554 err = -ENXIO;
1555 goto escan;
1556 }
1557
1558 /* Register the partitions */
1559 mtd_device_parse_register(mtd, part_probes,
1560 &(struct mtd_part_parser_data){
1561 .of_node = pdev->dev.of_node,
1562 },
1563 host->pdata.parts,
1564 host->pdata.nr_parts);
1565
1566 platform_set_drvdata(pdev, host);
1567
1568 return 0;
1569
1570 escan:
1571 if (host->clk_act)
1572 clk_disable_unprepare(host->clk);
1573
1574 return err;
1575 }
1576
1577 static int mxcnd_remove(struct platform_device *pdev)
1578 {
1579 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1580
1581 platform_set_drvdata(pdev, NULL);
1582
1583 nand_release(&host->mtd);
1584
1585 return 0;
1586 }
1587
1588 static struct platform_driver mxcnd_driver = {
1589 .driver = {
1590 .name = DRIVER_NAME,
1591 .owner = THIS_MODULE,
1592 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1593 },
1594 .id_table = mxcnd_devtype,
1595 .probe = mxcnd_probe,
1596 .remove = mxcnd_remove,
1597 };
1598 module_platform_driver(mxcnd_driver);
1599
1600 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1601 MODULE_DESCRIPTION("MXC NAND MTD driver");
1602 MODULE_LICENSE("GPL");
This page took 0.067105 seconds and 5 git commands to generate.