mxc nand: simplify command processing
[deliverable/linux.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33
34 #include <asm/mach/flash.h>
35 #include <mach/mxc_nand.h>
36
37 #define DRIVER_NAME "mxc_nand"
38
39 /* Addresses for NFC registers */
40 #define NFC_BUF_SIZE 0xE00
41 #define NFC_BUF_ADDR 0xE04
42 #define NFC_FLASH_ADDR 0xE06
43 #define NFC_FLASH_CMD 0xE08
44 #define NFC_CONFIG 0xE0A
45 #define NFC_ECC_STATUS_RESULT 0xE0C
46 #define NFC_RSLTMAIN_AREA 0xE0E
47 #define NFC_RSLTSPARE_AREA 0xE10
48 #define NFC_WRPROT 0xE12
49 #define NFC_UNLOCKSTART_BLKADDR 0xE14
50 #define NFC_UNLOCKEND_BLKADDR 0xE16
51 #define NFC_NF_WRPRST 0xE18
52 #define NFC_CONFIG1 0xE1A
53 #define NFC_CONFIG2 0xE1C
54
55 /* Addresses for NFC RAM BUFFER Main area 0 */
56 #define MAIN_AREA0 0x000
57 #define MAIN_AREA1 0x200
58 #define MAIN_AREA2 0x400
59 #define MAIN_AREA3 0x600
60
61 /* Addresses for NFC SPARE BUFFER Spare area 0 */
62 #define SPARE_AREA0 0x800
63 #define SPARE_AREA1 0x810
64 #define SPARE_AREA2 0x820
65 #define SPARE_AREA3 0x830
66
67 /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
68 * for Command operation */
69 #define NFC_CMD 0x1
70
71 /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
72 * for Address operation */
73 #define NFC_ADDR 0x2
74
75 /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
76 * for Input operation */
77 #define NFC_INPUT 0x4
78
79 /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
80 * for Data Output operation */
81 #define NFC_OUTPUT 0x8
82
83 /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
84 * for Read ID operation */
85 #define NFC_ID 0x10
86
87 /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
88 * for Read Status operation */
89 #define NFC_STATUS 0x20
90
91 /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
92 * Status operation */
93 #define NFC_INT 0x8000
94
95 #define NFC_SP_EN (1 << 2)
96 #define NFC_ECC_EN (1 << 3)
97 #define NFC_INT_MSK (1 << 4)
98 #define NFC_BIG (1 << 5)
99 #define NFC_RST (1 << 6)
100 #define NFC_CE (1 << 7)
101 #define NFC_ONE_CYCLE (1 << 8)
102
103 struct mxc_nand_host {
104 struct mtd_info mtd;
105 struct nand_chip nand;
106 struct mtd_partition *parts;
107 struct device *dev;
108
109 void __iomem *regs;
110 int status_request;
111 int pagesize_2k;
112 struct clk *clk;
113 int clk_act;
114 int irq;
115
116 wait_queue_head_t irq_waitq;
117
118 uint8_t *data_buf;
119 unsigned int buf_start;
120 int spare_len;
121 };
122
123 /* Define delays in microsec for NAND device operations */
124 #define TROP_US_DELAY 2000
125 /* Macros to get byte and bit positions of ECC */
126 #define COLPOS(x) ((x) >> 3)
127 #define BITPOS(x) ((x) & 0xf)
128
129 /* Define single bit Error positions in Main & Spare area */
130 #define MAIN_SINGLEBIT_ERROR 0x4
131 #define SPARE_SINGLEBIT_ERROR 0x1
132
133 /* OOB placement block for use with hardware ecc generation */
134 static struct nand_ecclayout nand_hw_eccoob_smallpage = {
135 .eccbytes = 5,
136 .eccpos = {6, 7, 8, 9, 10},
137 .oobfree = {{0, 5}, {12, 4}, }
138 };
139
140 static struct nand_ecclayout nand_hw_eccoob_largepage = {
141 .eccbytes = 20,
142 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
143 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
144 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
145 };
146
147 #ifdef CONFIG_MTD_PARTITIONS
148 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
149 #endif
150
151 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
152 {
153 struct mxc_nand_host *host = dev_id;
154
155 uint16_t tmp;
156
157 tmp = readw(host->regs + NFC_CONFIG1);
158 tmp |= NFC_INT_MSK; /* Disable interrupt */
159 writew(tmp, host->regs + NFC_CONFIG1);
160
161 wake_up(&host->irq_waitq);
162
163 return IRQ_HANDLED;
164 }
165
166 /* This function polls the NANDFC to wait for the basic operation to
167 * complete by checking the INT bit of config2 register.
168 */
169 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
170 int useirq)
171 {
172 uint32_t tmp;
173
174 if (useirq) {
175 if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
176
177 tmp = readw(host->regs + NFC_CONFIG1);
178 tmp &= ~NFC_INT_MSK; /* Enable interrupt */
179 writew(tmp, host->regs + NFC_CONFIG1);
180
181 wait_event(host->irq_waitq,
182 readw(host->regs + NFC_CONFIG2) & NFC_INT);
183
184 tmp = readw(host->regs + NFC_CONFIG2);
185 tmp &= ~NFC_INT;
186 writew(tmp, host->regs + NFC_CONFIG2);
187 }
188 } else {
189 while (max_retries-- > 0) {
190 if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
191 tmp = readw(host->regs + NFC_CONFIG2);
192 tmp &= ~NFC_INT;
193 writew(tmp, host->regs + NFC_CONFIG2);
194 break;
195 }
196 udelay(1);
197 }
198 if (max_retries < 0)
199 DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n",
200 __func__);
201 }
202 }
203
204 /* This function issues the specified command to the NAND device and
205 * waits for completion. */
206 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
207 {
208 DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
209
210 writew(cmd, host->regs + NFC_FLASH_CMD);
211 writew(NFC_CMD, host->regs + NFC_CONFIG2);
212
213 /* Wait for operation to complete */
214 wait_op_done(host, TROP_US_DELAY, useirq);
215 }
216
217 /* This function sends an address (or partial address) to the
218 * NAND device. The address is used to select the source/destination for
219 * a NAND command. */
220 static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
221 {
222 DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
223
224 writew(addr, host->regs + NFC_FLASH_ADDR);
225 writew(NFC_ADDR, host->regs + NFC_CONFIG2);
226
227 /* Wait for operation to complete */
228 wait_op_done(host, TROP_US_DELAY, islast);
229 }
230
231 static void send_page(struct mxc_nand_host *host, uint8_t buf_id,
232 unsigned int ops)
233 {
234 /* NANDFC buffer 0 is used for page read/write */
235 writew(buf_id, host->regs + NFC_BUF_ADDR);
236
237 writew(ops, host->regs + NFC_CONFIG2);
238
239 /* Wait for operation to complete */
240 wait_op_done(host, TROP_US_DELAY, true);
241 }
242
243 /* Request the NANDFC to perform a read of the NAND device ID. */
244 static void send_read_id(struct mxc_nand_host *host)
245 {
246 struct nand_chip *this = &host->nand;
247 uint16_t tmp;
248
249 /* NANDFC buffer 0 is used for device ID output */
250 writew(0x0, host->regs + NFC_BUF_ADDR);
251
252 /* Read ID into main buffer */
253 tmp = readw(host->regs + NFC_CONFIG1);
254 tmp &= ~NFC_SP_EN;
255 writew(tmp, host->regs + NFC_CONFIG1);
256
257 writew(NFC_ID, host->regs + NFC_CONFIG2);
258
259 /* Wait for operation to complete */
260 wait_op_done(host, TROP_US_DELAY, true);
261
262 if (this->options & NAND_BUSWIDTH_16) {
263 void __iomem *main_buf = host->regs + MAIN_AREA0;
264 /* compress the ID info */
265 writeb(readb(main_buf + 2), main_buf + 1);
266 writeb(readb(main_buf + 4), main_buf + 2);
267 writeb(readb(main_buf + 6), main_buf + 3);
268 writeb(readb(main_buf + 8), main_buf + 4);
269 writeb(readb(main_buf + 10), main_buf + 5);
270 }
271 memcpy(host->data_buf, host->regs + MAIN_AREA0, 16);
272 }
273
274 /* This function requests the NANDFC to perform a read of the
275 * NAND device status and returns the current status. */
276 static uint16_t get_dev_status(struct mxc_nand_host *host)
277 {
278 void __iomem *main_buf = host->regs + MAIN_AREA1;
279 uint32_t store;
280 uint16_t ret, tmp;
281 /* Issue status request to NAND device */
282
283 /* store the main area1 first word, later do recovery */
284 store = readl(main_buf);
285 /* NANDFC buffer 1 is used for device status to prevent
286 * corruption of read/write buffer on status requests. */
287 writew(1, host->regs + NFC_BUF_ADDR);
288
289 /* Read status into main buffer */
290 tmp = readw(host->regs + NFC_CONFIG1);
291 tmp &= ~NFC_SP_EN;
292 writew(tmp, host->regs + NFC_CONFIG1);
293
294 writew(NFC_STATUS, host->regs + NFC_CONFIG2);
295
296 /* Wait for operation to complete */
297 wait_op_done(host, TROP_US_DELAY, true);
298
299 /* Status is placed in first word of main buffer */
300 /* get status, then recovery area 1 data */
301 ret = readw(main_buf);
302 writel(store, main_buf);
303
304 return ret;
305 }
306
307 /* This functions is used by upper layer to checks if device is ready */
308 static int mxc_nand_dev_ready(struct mtd_info *mtd)
309 {
310 /*
311 * NFC handles R/B internally. Therefore, this function
312 * always returns status as ready.
313 */
314 return 1;
315 }
316
317 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
318 {
319 /*
320 * If HW ECC is enabled, we turn it on during init. There is
321 * no need to enable again here.
322 */
323 }
324
325 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
326 u_char *read_ecc, u_char *calc_ecc)
327 {
328 struct nand_chip *nand_chip = mtd->priv;
329 struct mxc_nand_host *host = nand_chip->priv;
330
331 /*
332 * 1-Bit errors are automatically corrected in HW. No need for
333 * additional correction. 2-Bit errors cannot be corrected by
334 * HW ECC, so we need to return failure
335 */
336 uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
337
338 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
339 DEBUG(MTD_DEBUG_LEVEL0,
340 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
341 return -1;
342 }
343
344 return 0;
345 }
346
347 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
348 u_char *ecc_code)
349 {
350 return 0;
351 }
352
353 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
354 {
355 struct nand_chip *nand_chip = mtd->priv;
356 struct mxc_nand_host *host = nand_chip->priv;
357 uint8_t ret;
358
359 /* Check for status request */
360 if (host->status_request)
361 return get_dev_status(host) & 0xFF;
362
363 ret = *(uint8_t *)(host->data_buf + host->buf_start);
364 host->buf_start++;
365
366 return ret;
367 }
368
369 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
370 {
371 struct nand_chip *nand_chip = mtd->priv;
372 struct mxc_nand_host *host = nand_chip->priv;
373 uint16_t ret;
374
375 ret = *(uint16_t *)(host->data_buf + host->buf_start);
376 host->buf_start += 2;
377
378 return ret;
379 }
380
381 /* Write data of length len to buffer buf. The data to be
382 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
383 * Operation by the NFC, the data is written to NAND Flash */
384 static void mxc_nand_write_buf(struct mtd_info *mtd,
385 const u_char *buf, int len)
386 {
387 struct nand_chip *nand_chip = mtd->priv;
388 struct mxc_nand_host *host = nand_chip->priv;
389 u16 col = host->buf_start;
390 int n = mtd->oobsize + mtd->writesize - col;
391
392 n = min(n, len);
393
394 memcpy(host->data_buf + col, buf, n);
395
396 host->buf_start += n;
397 }
398
399 /* Read the data buffer from the NAND Flash. To read the data from NAND
400 * Flash first the data output cycle is initiated by the NFC, which copies
401 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
402 */
403 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
404 {
405 struct nand_chip *nand_chip = mtd->priv;
406 struct mxc_nand_host *host = nand_chip->priv;
407 u16 col = host->buf_start;
408 int n = mtd->oobsize + mtd->writesize - col;
409
410 n = min(n, len);
411
412 memcpy(buf, host->data_buf + col, len);
413
414 host->buf_start += len;
415 }
416
417 /* Used by the upper layer to verify the data in NAND Flash
418 * with the data in the buf. */
419 static int mxc_nand_verify_buf(struct mtd_info *mtd,
420 const u_char *buf, int len)
421 {
422 return -EFAULT;
423 }
424
425 /* This function is used by upper layer for select and
426 * deselect of the NAND chip */
427 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
428 {
429 struct nand_chip *nand_chip = mtd->priv;
430 struct mxc_nand_host *host = nand_chip->priv;
431
432 switch (chip) {
433 case -1:
434 /* Disable the NFC clock */
435 if (host->clk_act) {
436 clk_disable(host->clk);
437 host->clk_act = 0;
438 }
439 break;
440 case 0:
441 /* Enable the NFC clock */
442 if (!host->clk_act) {
443 clk_enable(host->clk);
444 host->clk_act = 1;
445 }
446 break;
447
448 default:
449 break;
450 }
451 }
452
453 /*
454 * Function to transfer data to/from spare area.
455 */
456 static void copy_spare(struct mtd_info *mtd, bool bfrom)
457 {
458 struct nand_chip *this = mtd->priv;
459 struct mxc_nand_host *host = this->priv;
460 u16 i, j;
461 u16 n = mtd->writesize >> 9;
462 u8 *d = host->data_buf + mtd->writesize;
463 u8 *s = host->regs + SPARE_AREA0;
464 u16 t = host->spare_len;
465
466 j = (mtd->oobsize / n >> 1) << 1;
467
468 if (bfrom) {
469 for (i = 0; i < n - 1; i++)
470 memcpy(d + i * j, s + i * t, j);
471
472 /* the last section */
473 memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
474 } else {
475 for (i = 0; i < n - 1; i++)
476 memcpy(&s[i * t], &d[i * j], j);
477
478 /* the last section */
479 memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
480 }
481 }
482
483 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
484 {
485 struct nand_chip *nand_chip = mtd->priv;
486 struct mxc_nand_host *host = nand_chip->priv;
487
488 /* Write out column address, if necessary */
489 if (column != -1) {
490 /*
491 * MXC NANDFC can only perform full page+spare or
492 * spare-only read/write. When the upper layers
493 * layers perform a read/write buf operation,
494 * we will used the saved column adress to index into
495 * the full page.
496 */
497 send_addr(host, 0, page_addr == -1);
498 if (host->pagesize_2k)
499 /* another col addr cycle for 2k page */
500 send_addr(host, 0, false);
501 }
502
503 /* Write out page address, if necessary */
504 if (page_addr != -1) {
505 /* paddr_0 - p_addr_7 */
506 send_addr(host, (page_addr & 0xff), false);
507
508 if (host->pagesize_2k) {
509 if (mtd->size >= 0x10000000) {
510 /* paddr_8 - paddr_15 */
511 send_addr(host, (page_addr >> 8) & 0xff, false);
512 send_addr(host, (page_addr >> 16) & 0xff, true);
513 } else
514 /* paddr_8 - paddr_15 */
515 send_addr(host, (page_addr >> 8) & 0xff, true);
516 } else {
517 /* One more address cycle for higher density devices */
518 if (mtd->size >= 0x4000000) {
519 /* paddr_8 - paddr_15 */
520 send_addr(host, (page_addr >> 8) & 0xff, false);
521 send_addr(host, (page_addr >> 16) & 0xff, true);
522 } else
523 /* paddr_8 - paddr_15 */
524 send_addr(host, (page_addr >> 8) & 0xff, true);
525 }
526 }
527 }
528
529 /* Used by the upper layer to write command to NAND Flash for
530 * different operations to be carried out on NAND Flash */
531 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
532 int column, int page_addr)
533 {
534 struct nand_chip *nand_chip = mtd->priv;
535 struct mxc_nand_host *host = nand_chip->priv;
536
537 DEBUG(MTD_DEBUG_LEVEL3,
538 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
539 command, column, page_addr);
540
541 /* Reset command state information */
542 host->status_request = false;
543
544 /* Command pre-processing step */
545 switch (command) {
546
547 case NAND_CMD_STATUS:
548 host->buf_start = 0;
549 host->status_request = true;
550
551 send_cmd(host, command, true);
552 mxc_do_addr_cycle(mtd, column, page_addr);
553 break;
554
555 case NAND_CMD_READ0:
556 case NAND_CMD_READOOB:
557 if (command == NAND_CMD_READ0)
558 host->buf_start = column;
559 else
560 host->buf_start = column + mtd->writesize;
561
562 if (host->pagesize_2k)
563 command = NAND_CMD_READ0; /* only READ0 is valid */
564
565 send_cmd(host, command, false);
566 mxc_do_addr_cycle(mtd, column, page_addr);
567
568 if (host->pagesize_2k) {
569 /* send read confirm command */
570 send_cmd(host, NAND_CMD_READSTART, true);
571 /* read for each AREA */
572 send_page(host, 0, NFC_OUTPUT);
573 send_page(host, 1, NFC_OUTPUT);
574 send_page(host, 2, NFC_OUTPUT);
575 send_page(host, 3, NFC_OUTPUT);
576 } else
577 send_page(host, 0, NFC_OUTPUT);
578
579 memcpy(host->data_buf, host->regs + MAIN_AREA0, mtd->writesize);
580 copy_spare(mtd, true);
581 break;
582
583 case NAND_CMD_SEQIN:
584 if (column >= mtd->writesize) {
585 /*
586 * FIXME: before send SEQIN command for write OOB,
587 * We must read one page out.
588 * For K9F1GXX has no READ1 command to set current HW
589 * pointer to spare area, we must write the whole page
590 * including OOB together.
591 */
592 if (host->pagesize_2k)
593 /* call ourself to read a page */
594 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
595 page_addr);
596
597 host->buf_start = column;
598
599 /* Set program pointer to spare region */
600 if (!host->pagesize_2k)
601 send_cmd(host, NAND_CMD_READOOB, false);
602 } else {
603 host->buf_start = column;
604
605 /* Set program pointer to page start */
606 if (!host->pagesize_2k)
607 send_cmd(host, NAND_CMD_READ0, false);
608 }
609
610 send_cmd(host, command, false);
611 mxc_do_addr_cycle(mtd, column, page_addr);
612 break;
613
614 case NAND_CMD_PAGEPROG:
615 memcpy(host->regs + MAIN_AREA0, host->data_buf, mtd->writesize);
616 copy_spare(mtd, false);
617 send_page(host, 0, NFC_INPUT);
618
619 if (host->pagesize_2k) {
620 /* data in 4 areas datas */
621 send_page(host, 1, NFC_INPUT);
622 send_page(host, 2, NFC_INPUT);
623 send_page(host, 3, NFC_INPUT);
624 }
625
626 send_cmd(host, command, true);
627 mxc_do_addr_cycle(mtd, column, page_addr);
628 break;
629
630 case NAND_CMD_READID:
631 send_cmd(host, command, true);
632 mxc_do_addr_cycle(mtd, column, page_addr);
633 send_read_id(host);
634 break;
635
636 case NAND_CMD_ERASE1:
637 case NAND_CMD_ERASE2:
638 send_cmd(host, command, false);
639 mxc_do_addr_cycle(mtd, column, page_addr);
640
641 break;
642 }
643 }
644
645 static int __init mxcnd_probe(struct platform_device *pdev)
646 {
647 struct nand_chip *this;
648 struct mtd_info *mtd;
649 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
650 struct mxc_nand_host *host;
651 struct resource *res;
652 uint16_t tmp;
653 int err = 0, nr_parts = 0;
654
655 /* Allocate memory for MTD device structure and private data */
656 host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
657 NAND_MAX_OOBSIZE, GFP_KERNEL);
658 if (!host)
659 return -ENOMEM;
660
661 host->data_buf = (uint8_t *)(host + 1);
662 host->spare_len = 16;
663
664 host->dev = &pdev->dev;
665 /* structures must be linked */
666 this = &host->nand;
667 mtd = &host->mtd;
668 mtd->priv = this;
669 mtd->owner = THIS_MODULE;
670 mtd->dev.parent = &pdev->dev;
671 mtd->name = "mxc_nand";
672
673 /* 50 us command delay time */
674 this->chip_delay = 5;
675
676 this->priv = host;
677 this->dev_ready = mxc_nand_dev_ready;
678 this->cmdfunc = mxc_nand_command;
679 this->select_chip = mxc_nand_select_chip;
680 this->read_byte = mxc_nand_read_byte;
681 this->read_word = mxc_nand_read_word;
682 this->write_buf = mxc_nand_write_buf;
683 this->read_buf = mxc_nand_read_buf;
684 this->verify_buf = mxc_nand_verify_buf;
685
686 host->clk = clk_get(&pdev->dev, "nfc");
687 if (IS_ERR(host->clk)) {
688 err = PTR_ERR(host->clk);
689 goto eclk;
690 }
691
692 clk_enable(host->clk);
693 host->clk_act = 1;
694
695 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
696 if (!res) {
697 err = -ENODEV;
698 goto eres;
699 }
700
701 host->regs = ioremap(res->start, resource_size(res));
702 if (!host->regs) {
703 err = -ENOMEM;
704 goto eres;
705 }
706
707 tmp = readw(host->regs + NFC_CONFIG1);
708 tmp |= NFC_INT_MSK;
709 writew(tmp, host->regs + NFC_CONFIG1);
710
711 init_waitqueue_head(&host->irq_waitq);
712
713 host->irq = platform_get_irq(pdev, 0);
714
715 err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
716 if (err)
717 goto eirq;
718
719 /* Reset NAND */
720 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
721
722 /* preset operation */
723 /* Unlock the internal RAM Buffer */
724 writew(0x2, host->regs + NFC_CONFIG);
725
726 /* Blocks to be unlocked */
727 writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
728 writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
729
730 /* Unlock Block Command for given address range */
731 writew(0x4, host->regs + NFC_WRPROT);
732
733 this->ecc.size = 512;
734 this->ecc.bytes = 3;
735 this->ecc.layout = &nand_hw_eccoob_smallpage;
736
737 if (pdata->hw_ecc) {
738 this->ecc.calculate = mxc_nand_calculate_ecc;
739 this->ecc.hwctl = mxc_nand_enable_hwecc;
740 this->ecc.correct = mxc_nand_correct_data;
741 this->ecc.mode = NAND_ECC_HW;
742 tmp = readw(host->regs + NFC_CONFIG1);
743 tmp |= NFC_ECC_EN;
744 writew(tmp, host->regs + NFC_CONFIG1);
745 } else {
746 this->ecc.mode = NAND_ECC_SOFT;
747 tmp = readw(host->regs + NFC_CONFIG1);
748 tmp &= ~NFC_ECC_EN;
749 writew(tmp, host->regs + NFC_CONFIG1);
750 }
751
752 /* NAND bus width determines access funtions used by upper layer */
753 if (pdata->width == 2)
754 this->options |= NAND_BUSWIDTH_16;
755
756 /* first scan to find the device and get the page size */
757 if (nand_scan_ident(mtd, 1)) {
758 err = -ENXIO;
759 goto escan;
760 }
761
762 if (mtd->writesize == 2048) {
763 host->pagesize_2k = 1;
764 this->ecc.layout = &nand_hw_eccoob_largepage;
765 }
766
767 /* second phase scan */
768 if (nand_scan_tail(mtd)) {
769 err = -ENXIO;
770 goto escan;
771 }
772
773 /* Register the partitions */
774 #ifdef CONFIG_MTD_PARTITIONS
775 nr_parts =
776 parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
777 if (nr_parts > 0)
778 add_mtd_partitions(mtd, host->parts, nr_parts);
779 else
780 #endif
781 {
782 pr_info("Registering %s as whole device\n", mtd->name);
783 add_mtd_device(mtd);
784 }
785
786 platform_set_drvdata(pdev, host);
787
788 return 0;
789
790 escan:
791 free_irq(host->irq, host);
792 eirq:
793 iounmap(host->regs);
794 eres:
795 clk_put(host->clk);
796 eclk:
797 kfree(host);
798
799 return err;
800 }
801
802 static int __exit mxcnd_remove(struct platform_device *pdev)
803 {
804 struct mxc_nand_host *host = platform_get_drvdata(pdev);
805
806 clk_put(host->clk);
807
808 platform_set_drvdata(pdev, NULL);
809
810 nand_release(&host->mtd);
811 free_irq(host->irq, host);
812 iounmap(host->regs);
813 kfree(host);
814
815 return 0;
816 }
817
818 #ifdef CONFIG_PM
819 static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
820 {
821 struct mtd_info *mtd = platform_get_drvdata(pdev);
822 struct nand_chip *nand_chip = mtd->priv;
823 struct mxc_nand_host *host = nand_chip->priv;
824 int ret = 0;
825
826 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
827 if (mtd) {
828 ret = mtd->suspend(mtd);
829 /* Disable the NFC clock */
830 clk_disable(host->clk);
831 }
832
833 return ret;
834 }
835
836 static int mxcnd_resume(struct platform_device *pdev)
837 {
838 struct mtd_info *mtd = platform_get_drvdata(pdev);
839 struct nand_chip *nand_chip = mtd->priv;
840 struct mxc_nand_host *host = nand_chip->priv;
841 int ret = 0;
842
843 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
844
845 if (mtd) {
846 /* Enable the NFC clock */
847 clk_enable(host->clk);
848 mtd->resume(mtd);
849 }
850
851 return ret;
852 }
853
854 #else
855 # define mxcnd_suspend NULL
856 # define mxcnd_resume NULL
857 #endif /* CONFIG_PM */
858
859 static struct platform_driver mxcnd_driver = {
860 .driver = {
861 .name = DRIVER_NAME,
862 },
863 .remove = __exit_p(mxcnd_remove),
864 .suspend = mxcnd_suspend,
865 .resume = mxcnd_resume,
866 };
867
868 static int __init mxc_nd_init(void)
869 {
870 return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
871 }
872
873 static void __exit mxc_nd_cleanup(void)
874 {
875 /* Unregister the device structure */
876 platform_driver_unregister(&mxcnd_driver);
877 }
878
879 module_init(mxc_nd_init);
880 module_exit(mxc_nd_cleanup);
881
882 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
883 MODULE_DESCRIPTION("MXC NAND MTD driver");
884 MODULE_LICENSE("GPL");
This page took 0.062228 seconds and 5 git commands to generate.