MXC: mxc_nand: support i.MX21
[deliverable/linux.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
18 */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33
34 #include <asm/mach/flash.h>
35 #include <mach/mxc_nand.h>
36 #include <mach/hardware.h>
37
38 #define DRIVER_NAME "mxc_nand"
39
40 #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
41 #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
42
43 /* Addresses for NFC registers */
44 #define NFC_BUF_SIZE 0xE00
45 #define NFC_BUF_ADDR 0xE04
46 #define NFC_FLASH_ADDR 0xE06
47 #define NFC_FLASH_CMD 0xE08
48 #define NFC_CONFIG 0xE0A
49 #define NFC_ECC_STATUS_RESULT 0xE0C
50 #define NFC_RSLTMAIN_AREA 0xE0E
51 #define NFC_RSLTSPARE_AREA 0xE10
52 #define NFC_WRPROT 0xE12
53 #define NFC_V1_UNLOCKSTART_BLKADDR 0xe14
54 #define NFC_V1_UNLOCKEND_BLKADDR 0xe16
55 #define NFC_V21_UNLOCKSTART_BLKADDR 0xe20
56 #define NFC_V21_UNLOCKEND_BLKADDR 0xe22
57 #define NFC_NF_WRPRST 0xE18
58 #define NFC_CONFIG1 0xE1A
59 #define NFC_CONFIG2 0xE1C
60
61 /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
62 * for Command operation */
63 #define NFC_CMD 0x1
64
65 /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
66 * for Address operation */
67 #define NFC_ADDR 0x2
68
69 /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
70 * for Input operation */
71 #define NFC_INPUT 0x4
72
73 /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
74 * for Data Output operation */
75 #define NFC_OUTPUT 0x8
76
77 /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
78 * for Read ID operation */
79 #define NFC_ID 0x10
80
81 /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
82 * for Read Status operation */
83 #define NFC_STATUS 0x20
84
85 /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
86 * Status operation */
87 #define NFC_INT 0x8000
88
89 #define NFC_SP_EN (1 << 2)
90 #define NFC_ECC_EN (1 << 3)
91 #define NFC_INT_MSK (1 << 4)
92 #define NFC_BIG (1 << 5)
93 #define NFC_RST (1 << 6)
94 #define NFC_CE (1 << 7)
95 #define NFC_ONE_CYCLE (1 << 8)
96
97 struct mxc_nand_host {
98 struct mtd_info mtd;
99 struct nand_chip nand;
100 struct mtd_partition *parts;
101 struct device *dev;
102
103 void *spare0;
104 void *main_area0;
105 void *main_area1;
106
107 void __iomem *base;
108 void __iomem *regs;
109 int status_request;
110 struct clk *clk;
111 int clk_act;
112 int irq;
113
114 wait_queue_head_t irq_waitq;
115
116 uint8_t *data_buf;
117 unsigned int buf_start;
118 int spare_len;
119 };
120
121 /* OOB placement block for use with hardware ecc generation */
122 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
123 .eccbytes = 5,
124 .eccpos = {6, 7, 8, 9, 10},
125 .oobfree = {{0, 5}, {12, 4}, }
126 };
127
128 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
129 .eccbytes = 20,
130 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
131 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
132 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
133 };
134
135 /* OOB description for 512 byte pages with 16 byte OOB */
136 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
137 .eccbytes = 1 * 9,
138 .eccpos = {
139 7, 8, 9, 10, 11, 12, 13, 14, 15
140 },
141 .oobfree = {
142 {.offset = 0, .length = 5}
143 }
144 };
145
146 /* OOB description for 2048 byte pages with 64 byte OOB */
147 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
148 .eccbytes = 4 * 9,
149 .eccpos = {
150 7, 8, 9, 10, 11, 12, 13, 14, 15,
151 23, 24, 25, 26, 27, 28, 29, 30, 31,
152 39, 40, 41, 42, 43, 44, 45, 46, 47,
153 55, 56, 57, 58, 59, 60, 61, 62, 63
154 },
155 .oobfree = {
156 {.offset = 2, .length = 4},
157 {.offset = 16, .length = 7},
158 {.offset = 32, .length = 7},
159 {.offset = 48, .length = 7}
160 }
161 };
162
163 #ifdef CONFIG_MTD_PARTITIONS
164 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
165 #endif
166
167 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
168 {
169 struct mxc_nand_host *host = dev_id;
170
171 disable_irq_nosync(irq);
172
173 wake_up(&host->irq_waitq);
174
175 return IRQ_HANDLED;
176 }
177
178 /* This function polls the NANDFC to wait for the basic operation to
179 * complete by checking the INT bit of config2 register.
180 */
181 static void wait_op_done(struct mxc_nand_host *host, int useirq)
182 {
183 uint16_t tmp;
184 int max_retries = 8000;
185
186 if (useirq) {
187 if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
188
189 enable_irq(host->irq);
190
191 wait_event(host->irq_waitq,
192 readw(host->regs + NFC_CONFIG2) & NFC_INT);
193
194 tmp = readw(host->regs + NFC_CONFIG2);
195 tmp &= ~NFC_INT;
196 writew(tmp, host->regs + NFC_CONFIG2);
197 }
198 } else {
199 while (max_retries-- > 0) {
200 if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
201 tmp = readw(host->regs + NFC_CONFIG2);
202 tmp &= ~NFC_INT;
203 writew(tmp, host->regs + NFC_CONFIG2);
204 break;
205 }
206 udelay(1);
207 }
208 if (max_retries < 0)
209 DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n",
210 __func__);
211 }
212 }
213
214 /* This function issues the specified command to the NAND device and
215 * waits for completion. */
216 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
217 {
218 DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
219
220 writew(cmd, host->regs + NFC_FLASH_CMD);
221 writew(NFC_CMD, host->regs + NFC_CONFIG2);
222
223 if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
224 int max_retries = 100;
225 /* Reset completion is indicated by NFC_CONFIG2 */
226 /* being set to 0 */
227 while (max_retries-- > 0) {
228 if (readw(host->regs + NFC_CONFIG2) == 0) {
229 break;
230 }
231 udelay(1);
232 }
233 if (max_retries < 0)
234 DEBUG(MTD_DEBUG_LEVEL0, "%s: RESET failed\n",
235 __func__);
236 } else {
237 /* Wait for operation to complete */
238 wait_op_done(host, useirq);
239 }
240 }
241
242 /* This function sends an address (or partial address) to the
243 * NAND device. The address is used to select the source/destination for
244 * a NAND command. */
245 static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
246 {
247 DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
248
249 writew(addr, host->regs + NFC_FLASH_ADDR);
250 writew(NFC_ADDR, host->regs + NFC_CONFIG2);
251
252 /* Wait for operation to complete */
253 wait_op_done(host, islast);
254 }
255
256 static void send_page(struct mtd_info *mtd, unsigned int ops)
257 {
258 struct nand_chip *nand_chip = mtd->priv;
259 struct mxc_nand_host *host = nand_chip->priv;
260 int bufs, i;
261
262 if (nfc_is_v1() && mtd->writesize > 512)
263 bufs = 4;
264 else
265 bufs = 1;
266
267 for (i = 0; i < bufs; i++) {
268
269 /* NANDFC buffer 0 is used for page read/write */
270 writew(i, host->regs + NFC_BUF_ADDR);
271
272 writew(ops, host->regs + NFC_CONFIG2);
273
274 /* Wait for operation to complete */
275 wait_op_done(host, true);
276 }
277 }
278
279 /* Request the NANDFC to perform a read of the NAND device ID. */
280 static void send_read_id(struct mxc_nand_host *host)
281 {
282 struct nand_chip *this = &host->nand;
283
284 /* NANDFC buffer 0 is used for device ID output */
285 writew(0x0, host->regs + NFC_BUF_ADDR);
286
287 writew(NFC_ID, host->regs + NFC_CONFIG2);
288
289 /* Wait for operation to complete */
290 wait_op_done(host, true);
291
292 if (this->options & NAND_BUSWIDTH_16) {
293 void __iomem *main_buf = host->main_area0;
294 /* compress the ID info */
295 writeb(readb(main_buf + 2), main_buf + 1);
296 writeb(readb(main_buf + 4), main_buf + 2);
297 writeb(readb(main_buf + 6), main_buf + 3);
298 writeb(readb(main_buf + 8), main_buf + 4);
299 writeb(readb(main_buf + 10), main_buf + 5);
300 }
301 memcpy(host->data_buf, host->main_area0, 16);
302 }
303
304 /* This function requests the NANDFC to perform a read of the
305 * NAND device status and returns the current status. */
306 static uint16_t get_dev_status(struct mxc_nand_host *host)
307 {
308 void __iomem *main_buf = host->main_area1;
309 uint32_t store;
310 uint16_t ret;
311 /* Issue status request to NAND device */
312
313 /* store the main area1 first word, later do recovery */
314 store = readl(main_buf);
315 /* NANDFC buffer 1 is used for device status to prevent
316 * corruption of read/write buffer on status requests. */
317 writew(1, host->regs + NFC_BUF_ADDR);
318
319 writew(NFC_STATUS, host->regs + NFC_CONFIG2);
320
321 /* Wait for operation to complete */
322 wait_op_done(host, true);
323
324 /* Status is placed in first word of main buffer */
325 /* get status, then recovery area 1 data */
326 ret = readw(main_buf);
327 writel(store, main_buf);
328
329 return ret;
330 }
331
332 /* This functions is used by upper layer to checks if device is ready */
333 static int mxc_nand_dev_ready(struct mtd_info *mtd)
334 {
335 /*
336 * NFC handles R/B internally. Therefore, this function
337 * always returns status as ready.
338 */
339 return 1;
340 }
341
342 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
343 {
344 /*
345 * If HW ECC is enabled, we turn it on during init. There is
346 * no need to enable again here.
347 */
348 }
349
350 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
351 u_char *read_ecc, u_char *calc_ecc)
352 {
353 struct nand_chip *nand_chip = mtd->priv;
354 struct mxc_nand_host *host = nand_chip->priv;
355
356 /*
357 * 1-Bit errors are automatically corrected in HW. No need for
358 * additional correction. 2-Bit errors cannot be corrected by
359 * HW ECC, so we need to return failure
360 */
361 uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
362
363 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
364 DEBUG(MTD_DEBUG_LEVEL0,
365 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
366 return -1;
367 }
368
369 return 0;
370 }
371
372 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
373 u_char *ecc_code)
374 {
375 return 0;
376 }
377
378 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
379 {
380 struct nand_chip *nand_chip = mtd->priv;
381 struct mxc_nand_host *host = nand_chip->priv;
382 uint8_t ret;
383
384 /* Check for status request */
385 if (host->status_request)
386 return get_dev_status(host) & 0xFF;
387
388 ret = *(uint8_t *)(host->data_buf + host->buf_start);
389 host->buf_start++;
390
391 return ret;
392 }
393
394 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
395 {
396 struct nand_chip *nand_chip = mtd->priv;
397 struct mxc_nand_host *host = nand_chip->priv;
398 uint16_t ret;
399
400 ret = *(uint16_t *)(host->data_buf + host->buf_start);
401 host->buf_start += 2;
402
403 return ret;
404 }
405
406 /* Write data of length len to buffer buf. The data to be
407 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
408 * Operation by the NFC, the data is written to NAND Flash */
409 static void mxc_nand_write_buf(struct mtd_info *mtd,
410 const u_char *buf, int len)
411 {
412 struct nand_chip *nand_chip = mtd->priv;
413 struct mxc_nand_host *host = nand_chip->priv;
414 u16 col = host->buf_start;
415 int n = mtd->oobsize + mtd->writesize - col;
416
417 n = min(n, len);
418
419 memcpy(host->data_buf + col, buf, n);
420
421 host->buf_start += n;
422 }
423
424 /* Read the data buffer from the NAND Flash. To read the data from NAND
425 * Flash first the data output cycle is initiated by the NFC, which copies
426 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
427 */
428 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
429 {
430 struct nand_chip *nand_chip = mtd->priv;
431 struct mxc_nand_host *host = nand_chip->priv;
432 u16 col = host->buf_start;
433 int n = mtd->oobsize + mtd->writesize - col;
434
435 n = min(n, len);
436
437 memcpy(buf, host->data_buf + col, len);
438
439 host->buf_start += len;
440 }
441
442 /* Used by the upper layer to verify the data in NAND Flash
443 * with the data in the buf. */
444 static int mxc_nand_verify_buf(struct mtd_info *mtd,
445 const u_char *buf, int len)
446 {
447 return -EFAULT;
448 }
449
450 /* This function is used by upper layer for select and
451 * deselect of the NAND chip */
452 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
453 {
454 struct nand_chip *nand_chip = mtd->priv;
455 struct mxc_nand_host *host = nand_chip->priv;
456
457 switch (chip) {
458 case -1:
459 /* Disable the NFC clock */
460 if (host->clk_act) {
461 clk_disable(host->clk);
462 host->clk_act = 0;
463 }
464 break;
465 case 0:
466 /* Enable the NFC clock */
467 if (!host->clk_act) {
468 clk_enable(host->clk);
469 host->clk_act = 1;
470 }
471 break;
472
473 default:
474 break;
475 }
476 }
477
478 /*
479 * Function to transfer data to/from spare area.
480 */
481 static void copy_spare(struct mtd_info *mtd, bool bfrom)
482 {
483 struct nand_chip *this = mtd->priv;
484 struct mxc_nand_host *host = this->priv;
485 u16 i, j;
486 u16 n = mtd->writesize >> 9;
487 u8 *d = host->data_buf + mtd->writesize;
488 u8 *s = host->spare0;
489 u16 t = host->spare_len;
490
491 j = (mtd->oobsize / n >> 1) << 1;
492
493 if (bfrom) {
494 for (i = 0; i < n - 1; i++)
495 memcpy(d + i * j, s + i * t, j);
496
497 /* the last section */
498 memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
499 } else {
500 for (i = 0; i < n - 1; i++)
501 memcpy(&s[i * t], &d[i * j], j);
502
503 /* the last section */
504 memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
505 }
506 }
507
508 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
509 {
510 struct nand_chip *nand_chip = mtd->priv;
511 struct mxc_nand_host *host = nand_chip->priv;
512
513 /* Write out column address, if necessary */
514 if (column != -1) {
515 /*
516 * MXC NANDFC can only perform full page+spare or
517 * spare-only read/write. When the upper layers
518 * layers perform a read/write buf operation,
519 * we will used the saved column address to index into
520 * the full page.
521 */
522 send_addr(host, 0, page_addr == -1);
523 if (mtd->writesize > 512)
524 /* another col addr cycle for 2k page */
525 send_addr(host, 0, false);
526 }
527
528 /* Write out page address, if necessary */
529 if (page_addr != -1) {
530 /* paddr_0 - p_addr_7 */
531 send_addr(host, (page_addr & 0xff), false);
532
533 if (mtd->writesize > 512) {
534 if (mtd->size >= 0x10000000) {
535 /* paddr_8 - paddr_15 */
536 send_addr(host, (page_addr >> 8) & 0xff, false);
537 send_addr(host, (page_addr >> 16) & 0xff, true);
538 } else
539 /* paddr_8 - paddr_15 */
540 send_addr(host, (page_addr >> 8) & 0xff, true);
541 } else {
542 /* One more address cycle for higher density devices */
543 if (mtd->size >= 0x4000000) {
544 /* paddr_8 - paddr_15 */
545 send_addr(host, (page_addr >> 8) & 0xff, false);
546 send_addr(host, (page_addr >> 16) & 0xff, true);
547 } else
548 /* paddr_8 - paddr_15 */
549 send_addr(host, (page_addr >> 8) & 0xff, true);
550 }
551 }
552 }
553
554 static void preset(struct mtd_info *mtd)
555 {
556 struct nand_chip *nand_chip = mtd->priv;
557 struct mxc_nand_host *host = nand_chip->priv;
558 uint16_t tmp;
559
560 /* enable interrupt, disable spare enable */
561 tmp = readw(host->regs + NFC_CONFIG1);
562 tmp &= ~NFC_INT_MSK;
563 tmp &= ~NFC_SP_EN;
564 if (nand_chip->ecc.mode == NAND_ECC_HW) {
565 tmp |= NFC_ECC_EN;
566 } else {
567 tmp &= ~NFC_ECC_EN;
568 }
569 writew(tmp, host->regs + NFC_CONFIG1);
570 /* preset operation */
571
572 /* Unlock the internal RAM Buffer */
573 writew(0x2, host->regs + NFC_CONFIG);
574
575 /* Blocks to be unlocked */
576 if (nfc_is_v21()) {
577 writew(0x0, host->regs + NFC_V21_UNLOCKSTART_BLKADDR);
578 writew(0xffff, host->regs + NFC_V21_UNLOCKEND_BLKADDR);
579 } else if (nfc_is_v1()) {
580 writew(0x0, host->regs + NFC_V1_UNLOCKSTART_BLKADDR);
581 writew(0x4000, host->regs + NFC_V1_UNLOCKEND_BLKADDR);
582 } else
583 BUG();
584
585 /* Unlock Block Command for given address range */
586 writew(0x4, host->regs + NFC_WRPROT);
587 }
588
589 /* Used by the upper layer to write command to NAND Flash for
590 * different operations to be carried out on NAND Flash */
591 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
592 int column, int page_addr)
593 {
594 struct nand_chip *nand_chip = mtd->priv;
595 struct mxc_nand_host *host = nand_chip->priv;
596
597 DEBUG(MTD_DEBUG_LEVEL3,
598 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
599 command, column, page_addr);
600
601 /* Reset command state information */
602 host->status_request = false;
603
604 /* Command pre-processing step */
605 switch (command) {
606 case NAND_CMD_RESET:
607 send_cmd(host, command, false);
608 preset(mtd);
609 break;
610
611 case NAND_CMD_STATUS:
612 host->buf_start = 0;
613 host->status_request = true;
614
615 send_cmd(host, command, true);
616 mxc_do_addr_cycle(mtd, column, page_addr);
617 break;
618
619 case NAND_CMD_READ0:
620 case NAND_CMD_READOOB:
621 if (command == NAND_CMD_READ0)
622 host->buf_start = column;
623 else
624 host->buf_start = column + mtd->writesize;
625
626 if (mtd->writesize > 512)
627 command = NAND_CMD_READ0; /* only READ0 is valid */
628
629 send_cmd(host, command, false);
630 mxc_do_addr_cycle(mtd, column, page_addr);
631
632 if (mtd->writesize > 512)
633 send_cmd(host, NAND_CMD_READSTART, true);
634
635 send_page(mtd, NFC_OUTPUT);
636
637 memcpy(host->data_buf, host->main_area0, mtd->writesize);
638 copy_spare(mtd, true);
639 break;
640
641 case NAND_CMD_SEQIN:
642 if (column >= mtd->writesize) {
643 /*
644 * FIXME: before send SEQIN command for write OOB,
645 * We must read one page out.
646 * For K9F1GXX has no READ1 command to set current HW
647 * pointer to spare area, we must write the whole page
648 * including OOB together.
649 */
650 if (mtd->writesize > 512)
651 /* call ourself to read a page */
652 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
653 page_addr);
654
655 host->buf_start = column;
656
657 /* Set program pointer to spare region */
658 if (mtd->writesize == 512)
659 send_cmd(host, NAND_CMD_READOOB, false);
660 } else {
661 host->buf_start = column;
662
663 /* Set program pointer to page start */
664 if (mtd->writesize == 512)
665 send_cmd(host, NAND_CMD_READ0, false);
666 }
667
668 send_cmd(host, command, false);
669 mxc_do_addr_cycle(mtd, column, page_addr);
670 break;
671
672 case NAND_CMD_PAGEPROG:
673 memcpy(host->main_area0, host->data_buf, mtd->writesize);
674 copy_spare(mtd, false);
675 send_page(mtd, NFC_INPUT);
676 send_cmd(host, command, true);
677 mxc_do_addr_cycle(mtd, column, page_addr);
678 break;
679
680 case NAND_CMD_READID:
681 send_cmd(host, command, true);
682 mxc_do_addr_cycle(mtd, column, page_addr);
683 send_read_id(host);
684 host->buf_start = column;
685 break;
686
687 case NAND_CMD_ERASE1:
688 case NAND_CMD_ERASE2:
689 send_cmd(host, command, false);
690 mxc_do_addr_cycle(mtd, column, page_addr);
691
692 break;
693 }
694 }
695
696 /*
697 * The generic flash bbt decriptors overlap with our ecc
698 * hardware, so define some i.MX specific ones.
699 */
700 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
701 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
702
703 static struct nand_bbt_descr bbt_main_descr = {
704 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
705 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
706 .offs = 0,
707 .len = 4,
708 .veroffs = 4,
709 .maxblocks = 4,
710 .pattern = bbt_pattern,
711 };
712
713 static struct nand_bbt_descr bbt_mirror_descr = {
714 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
715 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
716 .offs = 0,
717 .len = 4,
718 .veroffs = 4,
719 .maxblocks = 4,
720 .pattern = mirror_pattern,
721 };
722
723 static int __init mxcnd_probe(struct platform_device *pdev)
724 {
725 struct nand_chip *this;
726 struct mtd_info *mtd;
727 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
728 struct mxc_nand_host *host;
729 struct resource *res;
730 int err = 0, nr_parts = 0;
731 struct nand_ecclayout *oob_smallpage, *oob_largepage;
732
733 /* Allocate memory for MTD device structure and private data */
734 host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
735 NAND_MAX_OOBSIZE, GFP_KERNEL);
736 if (!host)
737 return -ENOMEM;
738
739 host->data_buf = (uint8_t *)(host + 1);
740
741 host->dev = &pdev->dev;
742 /* structures must be linked */
743 this = &host->nand;
744 mtd = &host->mtd;
745 mtd->priv = this;
746 mtd->owner = THIS_MODULE;
747 mtd->dev.parent = &pdev->dev;
748 mtd->name = DRIVER_NAME;
749
750 /* 50 us command delay time */
751 this->chip_delay = 5;
752
753 this->priv = host;
754 this->dev_ready = mxc_nand_dev_ready;
755 this->cmdfunc = mxc_nand_command;
756 this->select_chip = mxc_nand_select_chip;
757 this->read_byte = mxc_nand_read_byte;
758 this->read_word = mxc_nand_read_word;
759 this->write_buf = mxc_nand_write_buf;
760 this->read_buf = mxc_nand_read_buf;
761 this->verify_buf = mxc_nand_verify_buf;
762
763 host->clk = clk_get(&pdev->dev, "nfc");
764 if (IS_ERR(host->clk)) {
765 err = PTR_ERR(host->clk);
766 goto eclk;
767 }
768
769 clk_enable(host->clk);
770 host->clk_act = 1;
771
772 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
773 if (!res) {
774 err = -ENODEV;
775 goto eres;
776 }
777
778 host->base = ioremap(res->start, resource_size(res));
779 if (!host->base) {
780 err = -ENOMEM;
781 goto eres;
782 }
783
784 host->main_area0 = host->base;
785 host->main_area1 = host->base + 0x200;
786
787 if (nfc_is_v21()) {
788 host->regs = host->base + 0x1000;
789 host->spare0 = host->base + 0x1000;
790 host->spare_len = 64;
791 oob_smallpage = &nandv2_hw_eccoob_smallpage;
792 oob_largepage = &nandv2_hw_eccoob_largepage;
793 this->ecc.bytes = 9;
794 } else if (nfc_is_v1()) {
795 host->regs = host->base;
796 host->spare0 = host->base + 0x800;
797 host->spare_len = 16;
798 oob_smallpage = &nandv1_hw_eccoob_smallpage;
799 oob_largepage = &nandv1_hw_eccoob_largepage;
800 this->ecc.bytes = 3;
801 } else
802 BUG();
803
804 this->ecc.size = 512;
805 this->ecc.layout = oob_smallpage;
806
807 if (pdata->hw_ecc) {
808 this->ecc.calculate = mxc_nand_calculate_ecc;
809 this->ecc.hwctl = mxc_nand_enable_hwecc;
810 this->ecc.correct = mxc_nand_correct_data;
811 this->ecc.mode = NAND_ECC_HW;
812 } else {
813 this->ecc.mode = NAND_ECC_SOFT;
814 }
815
816 /* NAND bus width determines access funtions used by upper layer */
817 if (pdata->width == 2)
818 this->options |= NAND_BUSWIDTH_16;
819
820 if (pdata->flash_bbt) {
821 this->bbt_td = &bbt_main_descr;
822 this->bbt_md = &bbt_mirror_descr;
823 /* update flash based bbt */
824 this->options |= NAND_USE_FLASH_BBT;
825 }
826
827 init_waitqueue_head(&host->irq_waitq);
828
829 host->irq = platform_get_irq(pdev, 0);
830
831 err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
832 if (err)
833 goto eirq;
834
835 /* first scan to find the device and get the page size */
836 if (nand_scan_ident(mtd, 1)) {
837 err = -ENXIO;
838 goto escan;
839 }
840
841 if (mtd->writesize == 2048)
842 this->ecc.layout = oob_largepage;
843
844 /* second phase scan */
845 if (nand_scan_tail(mtd)) {
846 err = -ENXIO;
847 goto escan;
848 }
849
850 /* Register the partitions */
851 #ifdef CONFIG_MTD_PARTITIONS
852 nr_parts =
853 parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
854 if (nr_parts > 0)
855 add_mtd_partitions(mtd, host->parts, nr_parts);
856 else
857 #endif
858 {
859 pr_info("Registering %s as whole device\n", mtd->name);
860 add_mtd_device(mtd);
861 }
862
863 platform_set_drvdata(pdev, host);
864
865 return 0;
866
867 escan:
868 free_irq(host->irq, host);
869 eirq:
870 iounmap(host->base);
871 eres:
872 clk_put(host->clk);
873 eclk:
874 kfree(host);
875
876 return err;
877 }
878
879 static int __devexit mxcnd_remove(struct platform_device *pdev)
880 {
881 struct mxc_nand_host *host = platform_get_drvdata(pdev);
882
883 clk_put(host->clk);
884
885 platform_set_drvdata(pdev, NULL);
886
887 nand_release(&host->mtd);
888 free_irq(host->irq, host);
889 iounmap(host->base);
890 kfree(host);
891
892 return 0;
893 }
894
895 #ifdef CONFIG_PM
896 static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
897 {
898 struct mtd_info *mtd = platform_get_drvdata(pdev);
899 struct nand_chip *nand_chip = mtd->priv;
900 struct mxc_nand_host *host = nand_chip->priv;
901 int ret = 0;
902
903 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
904 if (mtd) {
905 ret = mtd->suspend(mtd);
906 /* Disable the NFC clock */
907 clk_disable(host->clk);
908 }
909
910 return ret;
911 }
912
913 static int mxcnd_resume(struct platform_device *pdev)
914 {
915 struct mtd_info *mtd = platform_get_drvdata(pdev);
916 struct nand_chip *nand_chip = mtd->priv;
917 struct mxc_nand_host *host = nand_chip->priv;
918 int ret = 0;
919
920 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
921
922 if (mtd) {
923 /* Enable the NFC clock */
924 clk_enable(host->clk);
925 mtd->resume(mtd);
926 }
927
928 return ret;
929 }
930
931 #else
932 # define mxcnd_suspend NULL
933 # define mxcnd_resume NULL
934 #endif /* CONFIG_PM */
935
936 static struct platform_driver mxcnd_driver = {
937 .driver = {
938 .name = DRIVER_NAME,
939 },
940 .remove = __devexit_p(mxcnd_remove),
941 .suspend = mxcnd_suspend,
942 .resume = mxcnd_resume,
943 };
944
945 static int __init mxc_nd_init(void)
946 {
947 return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
948 }
949
950 static void __exit mxc_nd_cleanup(void)
951 {
952 /* Unregister the device structure */
953 platform_driver_unregister(&mxcnd_driver);
954 }
955
956 module_init(mxc_nd_init);
957 module_exit(mxc_nd_cleanup);
958
959 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
960 MODULE_DESCRIPTION("MXC NAND MTD driver");
961 MODULE_LICENSE("GPL");
This page took 0.0783 seconds and 5 git commands to generate.