Merge branch 'acpi-lpss'
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ECC support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
60 .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
66 .oobfree = {
67 {.offset = 8,
68 . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72 .eccbytes = 24,
73 .eccpos = {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
77 .oobfree = {
78 {.offset = 2,
79 .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
93 .length = 78} }
94 };
95
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99 struct mtd_oob_ops *ops);
100
101 /*
102 * For devices which display every fart in the system on a separate LED. Is
103 * compiled away when LED support is disabled.
104 */
105 DEFINE_LED_TRIGGER(nand_led_trigger);
106
107 static int check_offs_len(struct mtd_info *mtd,
108 loff_t ofs, uint64_t len)
109 {
110 struct nand_chip *chip = mtd->priv;
111 int ret = 0;
112
113 /* Start address must align on block boundary */
114 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
115 pr_debug("%s: unaligned address\n", __func__);
116 ret = -EINVAL;
117 }
118
119 /* Length must align on block boundary */
120 if (len & ((1 << chip->phys_erase_shift) - 1)) {
121 pr_debug("%s: length not block aligned\n", __func__);
122 ret = -EINVAL;
123 }
124
125 return ret;
126 }
127
128 /**
129 * nand_release_device - [GENERIC] release chip
130 * @mtd: MTD device structure
131 *
132 * Release chip lock and wake up anyone waiting on the device.
133 */
134 static void nand_release_device(struct mtd_info *mtd)
135 {
136 struct nand_chip *chip = mtd->priv;
137
138 /* Release the controller and the chip */
139 spin_lock(&chip->controller->lock);
140 chip->controller->active = NULL;
141 chip->state = FL_READY;
142 wake_up(&chip->controller->wq);
143 spin_unlock(&chip->controller->lock);
144 }
145
146 /**
147 * nand_read_byte - [DEFAULT] read one byte from the chip
148 * @mtd: MTD device structure
149 *
150 * Default read function for 8bit buswidth
151 */
152 static uint8_t nand_read_byte(struct mtd_info *mtd)
153 {
154 struct nand_chip *chip = mtd->priv;
155 return readb(chip->IO_ADDR_R);
156 }
157
158 /**
159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
161 * @mtd: MTD device structure
162 *
163 * Default read function for 16bit buswidth with endianness conversion.
164 *
165 */
166 static uint8_t nand_read_byte16(struct mtd_info *mtd)
167 {
168 struct nand_chip *chip = mtd->priv;
169 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
170 }
171
172 /**
173 * nand_read_word - [DEFAULT] read one word from the chip
174 * @mtd: MTD device structure
175 *
176 * Default read function for 16bit buswidth without endianness conversion.
177 */
178 static u16 nand_read_word(struct mtd_info *mtd)
179 {
180 struct nand_chip *chip = mtd->priv;
181 return readw(chip->IO_ADDR_R);
182 }
183
184 /**
185 * nand_select_chip - [DEFAULT] control CE line
186 * @mtd: MTD device structure
187 * @chipnr: chipnumber to select, -1 for deselect
188 *
189 * Default select function for 1 chip devices.
190 */
191 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
192 {
193 struct nand_chip *chip = mtd->priv;
194
195 switch (chipnr) {
196 case -1:
197 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
198 break;
199 case 0:
200 break;
201
202 default:
203 BUG();
204 }
205 }
206
207 /**
208 * nand_write_buf - [DEFAULT] write buffer to chip
209 * @mtd: MTD device structure
210 * @buf: data buffer
211 * @len: number of bytes to write
212 *
213 * Default write function for 8bit buswidth.
214 */
215 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
216 {
217 int i;
218 struct nand_chip *chip = mtd->priv;
219
220 for (i = 0; i < len; i++)
221 writeb(buf[i], chip->IO_ADDR_W);
222 }
223
224 /**
225 * nand_read_buf - [DEFAULT] read chip data into buffer
226 * @mtd: MTD device structure
227 * @buf: buffer to store date
228 * @len: number of bytes to read
229 *
230 * Default read function for 8bit buswidth.
231 */
232 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
233 {
234 int i;
235 struct nand_chip *chip = mtd->priv;
236
237 for (i = 0; i < len; i++)
238 buf[i] = readb(chip->IO_ADDR_R);
239 }
240
241 /**
242 * nand_write_buf16 - [DEFAULT] write buffer to chip
243 * @mtd: MTD device structure
244 * @buf: data buffer
245 * @len: number of bytes to write
246 *
247 * Default write function for 16bit buswidth.
248 */
249 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
250 {
251 int i;
252 struct nand_chip *chip = mtd->priv;
253 u16 *p = (u16 *) buf;
254 len >>= 1;
255
256 for (i = 0; i < len; i++)
257 writew(p[i], chip->IO_ADDR_W);
258
259 }
260
261 /**
262 * nand_read_buf16 - [DEFAULT] read chip data into buffer
263 * @mtd: MTD device structure
264 * @buf: buffer to store date
265 * @len: number of bytes to read
266 *
267 * Default read function for 16bit buswidth.
268 */
269 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
270 {
271 int i;
272 struct nand_chip *chip = mtd->priv;
273 u16 *p = (u16 *) buf;
274 len >>= 1;
275
276 for (i = 0; i < len; i++)
277 p[i] = readw(chip->IO_ADDR_R);
278 }
279
280 /**
281 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
282 * @mtd: MTD device structure
283 * @ofs: offset from device start
284 * @getchip: 0, if the chip is already selected
285 *
286 * Check, if the block is bad.
287 */
288 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
289 {
290 int page, chipnr, res = 0, i = 0;
291 struct nand_chip *chip = mtd->priv;
292 u16 bad;
293
294 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
295 ofs += mtd->erasesize - mtd->writesize;
296
297 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
298
299 if (getchip) {
300 chipnr = (int)(ofs >> chip->chip_shift);
301
302 nand_get_device(mtd, FL_READING);
303
304 /* Select the NAND device */
305 chip->select_chip(mtd, chipnr);
306 }
307
308 do {
309 if (chip->options & NAND_BUSWIDTH_16) {
310 chip->cmdfunc(mtd, NAND_CMD_READOOB,
311 chip->badblockpos & 0xFE, page);
312 bad = cpu_to_le16(chip->read_word(mtd));
313 if (chip->badblockpos & 0x1)
314 bad >>= 8;
315 else
316 bad &= 0xFF;
317 } else {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
319 page);
320 bad = chip->read_byte(mtd);
321 }
322
323 if (likely(chip->badblockbits == 8))
324 res = bad != 0xFF;
325 else
326 res = hweight8(bad) < chip->badblockbits;
327 ofs += mtd->writesize;
328 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
329 i++;
330 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
331
332 if (getchip) {
333 chip->select_chip(mtd, -1);
334 nand_release_device(mtd);
335 }
336
337 return res;
338 }
339
340 /**
341 * nand_default_block_markbad - [DEFAULT] mark a block bad
342 * @mtd: MTD device structure
343 * @ofs: offset from device start
344 *
345 * This is the default implementation, which can be overridden by a hardware
346 * specific driver. We try operations in the following order, according to our
347 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
348 * (1) erase the affected block, to allow OOB marker to be written cleanly
349 * (2) update in-memory BBT
350 * (3) write bad block marker to OOB area of affected block
351 * (4) update flash-based BBT
352 * Note that we retain the first error encountered in (3) or (4), finish the
353 * procedures, and dump the error in the end.
354 */
355 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
356 {
357 struct nand_chip *chip = mtd->priv;
358 uint8_t buf[2] = { 0, 0 };
359 int block, res, ret = 0, i = 0;
360 int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
361
362 if (write_oob) {
363 struct erase_info einfo;
364
365 /* Attempt erase before marking OOB */
366 memset(&einfo, 0, sizeof(einfo));
367 einfo.mtd = mtd;
368 einfo.addr = ofs;
369 einfo.len = 1 << chip->phys_erase_shift;
370 nand_erase_nand(mtd, &einfo, 0);
371 }
372
373 /* Get block number */
374 block = (int)(ofs >> chip->bbt_erase_shift);
375 /* Mark block bad in memory-based BBT */
376 if (chip->bbt)
377 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
378
379 /* Write bad block marker to OOB */
380 if (write_oob) {
381 struct mtd_oob_ops ops;
382 loff_t wr_ofs = ofs;
383
384 nand_get_device(mtd, FL_WRITING);
385
386 ops.datbuf = NULL;
387 ops.oobbuf = buf;
388 ops.ooboffs = chip->badblockpos;
389 if (chip->options & NAND_BUSWIDTH_16) {
390 ops.ooboffs &= ~0x01;
391 ops.len = ops.ooblen = 2;
392 } else {
393 ops.len = ops.ooblen = 1;
394 }
395 ops.mode = MTD_OPS_PLACE_OOB;
396
397 /* Write to first/last page(s) if necessary */
398 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
399 wr_ofs += mtd->erasesize - mtd->writesize;
400 do {
401 res = nand_do_write_oob(mtd, wr_ofs, &ops);
402 if (!ret)
403 ret = res;
404
405 i++;
406 wr_ofs += mtd->writesize;
407 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
408
409 nand_release_device(mtd);
410 }
411
412 /* Update flash-based bad block table */
413 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
414 res = nand_update_bbt(mtd, ofs);
415 if (!ret)
416 ret = res;
417 }
418
419 if (!ret)
420 mtd->ecc_stats.badblocks++;
421
422 return ret;
423 }
424
425 /**
426 * nand_check_wp - [GENERIC] check if the chip is write protected
427 * @mtd: MTD device structure
428 *
429 * Check, if the device is write protected. The function expects, that the
430 * device is already selected.
431 */
432 static int nand_check_wp(struct mtd_info *mtd)
433 {
434 struct nand_chip *chip = mtd->priv;
435
436 /* Broken xD cards report WP despite being writable */
437 if (chip->options & NAND_BROKEN_XD)
438 return 0;
439
440 /* Check the WP bit */
441 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
442 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
443 }
444
445 /**
446 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
447 * @mtd: MTD device structure
448 * @ofs: offset from device start
449 * @getchip: 0, if the chip is already selected
450 * @allowbbt: 1, if its allowed to access the bbt area
451 *
452 * Check, if the block is bad. Either by reading the bad block table or
453 * calling of the scan function.
454 */
455 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
456 int allowbbt)
457 {
458 struct nand_chip *chip = mtd->priv;
459
460 if (!chip->bbt)
461 return chip->block_bad(mtd, ofs, getchip);
462
463 /* Return info from the table */
464 return nand_isbad_bbt(mtd, ofs, allowbbt);
465 }
466
467 /**
468 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
469 * @mtd: MTD device structure
470 * @timeo: Timeout
471 *
472 * Helper function for nand_wait_ready used when needing to wait in interrupt
473 * context.
474 */
475 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
476 {
477 struct nand_chip *chip = mtd->priv;
478 int i;
479
480 /* Wait for the device to get ready */
481 for (i = 0; i < timeo; i++) {
482 if (chip->dev_ready(mtd))
483 break;
484 touch_softlockup_watchdog();
485 mdelay(1);
486 }
487 }
488
489 /* Wait for the ready pin, after a command. The timeout is caught later. */
490 void nand_wait_ready(struct mtd_info *mtd)
491 {
492 struct nand_chip *chip = mtd->priv;
493 unsigned long timeo = jiffies + msecs_to_jiffies(20);
494
495 /* 400ms timeout */
496 if (in_interrupt() || oops_in_progress)
497 return panic_nand_wait_ready(mtd, 400);
498
499 led_trigger_event(nand_led_trigger, LED_FULL);
500 /* Wait until command is processed or timeout occurs */
501 do {
502 if (chip->dev_ready(mtd))
503 break;
504 touch_softlockup_watchdog();
505 } while (time_before(jiffies, timeo));
506 led_trigger_event(nand_led_trigger, LED_OFF);
507 }
508 EXPORT_SYMBOL_GPL(nand_wait_ready);
509
510 /**
511 * nand_command - [DEFAULT] Send command to NAND device
512 * @mtd: MTD device structure
513 * @command: the command to be sent
514 * @column: the column address for this command, -1 if none
515 * @page_addr: the page address for this command, -1 if none
516 *
517 * Send command to NAND device. This function is used for small page devices
518 * (256/512 Bytes per page).
519 */
520 static void nand_command(struct mtd_info *mtd, unsigned int command,
521 int column, int page_addr)
522 {
523 register struct nand_chip *chip = mtd->priv;
524 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
525
526 /* Write out the command to the device */
527 if (command == NAND_CMD_SEQIN) {
528 int readcmd;
529
530 if (column >= mtd->writesize) {
531 /* OOB area */
532 column -= mtd->writesize;
533 readcmd = NAND_CMD_READOOB;
534 } else if (column < 256) {
535 /* First 256 bytes --> READ0 */
536 readcmd = NAND_CMD_READ0;
537 } else {
538 column -= 256;
539 readcmd = NAND_CMD_READ1;
540 }
541 chip->cmd_ctrl(mtd, readcmd, ctrl);
542 ctrl &= ~NAND_CTRL_CHANGE;
543 }
544 chip->cmd_ctrl(mtd, command, ctrl);
545
546 /* Address cycle, when necessary */
547 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
548 /* Serially input address */
549 if (column != -1) {
550 /* Adjust columns for 16 bit buswidth */
551 if (chip->options & NAND_BUSWIDTH_16)
552 column >>= 1;
553 chip->cmd_ctrl(mtd, column, ctrl);
554 ctrl &= ~NAND_CTRL_CHANGE;
555 }
556 if (page_addr != -1) {
557 chip->cmd_ctrl(mtd, page_addr, ctrl);
558 ctrl &= ~NAND_CTRL_CHANGE;
559 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
560 /* One more address cycle for devices > 32MiB */
561 if (chip->chipsize > (32 << 20))
562 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
563 }
564 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
565
566 /*
567 * Program and erase have their own busy handlers status and sequential
568 * in needs no delay
569 */
570 switch (command) {
571
572 case NAND_CMD_PAGEPROG:
573 case NAND_CMD_ERASE1:
574 case NAND_CMD_ERASE2:
575 case NAND_CMD_SEQIN:
576 case NAND_CMD_STATUS:
577 return;
578
579 case NAND_CMD_RESET:
580 if (chip->dev_ready)
581 break;
582 udelay(chip->chip_delay);
583 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
584 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
585 chip->cmd_ctrl(mtd,
586 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
588 ;
589 return;
590
591 /* This applies to read commands */
592 default:
593 /*
594 * If we don't have access to the busy pin, we apply the given
595 * command delay
596 */
597 if (!chip->dev_ready) {
598 udelay(chip->chip_delay);
599 return;
600 }
601 }
602 /*
603 * Apply this short delay always to ensure that we do wait tWB in
604 * any case on any machine.
605 */
606 ndelay(100);
607
608 nand_wait_ready(mtd);
609 }
610
611 /**
612 * nand_command_lp - [DEFAULT] Send command to NAND large page device
613 * @mtd: MTD device structure
614 * @command: the command to be sent
615 * @column: the column address for this command, -1 if none
616 * @page_addr: the page address for this command, -1 if none
617 *
618 * Send command to NAND device. This is the version for the new large page
619 * devices. We don't have the separate regions as we have in the small page
620 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
621 */
622 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
623 int column, int page_addr)
624 {
625 register struct nand_chip *chip = mtd->priv;
626
627 /* Emulate NAND_CMD_READOOB */
628 if (command == NAND_CMD_READOOB) {
629 column += mtd->writesize;
630 command = NAND_CMD_READ0;
631 }
632
633 /* Command latch cycle */
634 chip->cmd_ctrl(mtd, command & 0xff,
635 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
636
637 if (column != -1 || page_addr != -1) {
638 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
639
640 /* Serially input address */
641 if (column != -1) {
642 /* Adjust columns for 16 bit buswidth */
643 if (chip->options & NAND_BUSWIDTH_16)
644 column >>= 1;
645 chip->cmd_ctrl(mtd, column, ctrl);
646 ctrl &= ~NAND_CTRL_CHANGE;
647 chip->cmd_ctrl(mtd, column >> 8, ctrl);
648 }
649 if (page_addr != -1) {
650 chip->cmd_ctrl(mtd, page_addr, ctrl);
651 chip->cmd_ctrl(mtd, page_addr >> 8,
652 NAND_NCE | NAND_ALE);
653 /* One more address cycle for devices > 128MiB */
654 if (chip->chipsize > (128 << 20))
655 chip->cmd_ctrl(mtd, page_addr >> 16,
656 NAND_NCE | NAND_ALE);
657 }
658 }
659 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
660
661 /*
662 * Program and erase have their own busy handlers status, sequential
663 * in, and deplete1 need no delay.
664 */
665 switch (command) {
666
667 case NAND_CMD_CACHEDPROG:
668 case NAND_CMD_PAGEPROG:
669 case NAND_CMD_ERASE1:
670 case NAND_CMD_ERASE2:
671 case NAND_CMD_SEQIN:
672 case NAND_CMD_RNDIN:
673 case NAND_CMD_STATUS:
674 case NAND_CMD_DEPLETE1:
675 return;
676
677 case NAND_CMD_STATUS_ERROR:
678 case NAND_CMD_STATUS_ERROR0:
679 case NAND_CMD_STATUS_ERROR1:
680 case NAND_CMD_STATUS_ERROR2:
681 case NAND_CMD_STATUS_ERROR3:
682 /* Read error status commands require only a short delay */
683 udelay(chip->chip_delay);
684 return;
685
686 case NAND_CMD_RESET:
687 if (chip->dev_ready)
688 break;
689 udelay(chip->chip_delay);
690 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
691 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
692 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
693 NAND_NCE | NAND_CTRL_CHANGE);
694 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
695 ;
696 return;
697
698 case NAND_CMD_RNDOUT:
699 /* No ready / busy check necessary */
700 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
701 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
702 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
703 NAND_NCE | NAND_CTRL_CHANGE);
704 return;
705
706 case NAND_CMD_READ0:
707 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
708 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
709 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
710 NAND_NCE | NAND_CTRL_CHANGE);
711
712 /* This applies to read commands */
713 default:
714 /*
715 * If we don't have access to the busy pin, we apply the given
716 * command delay.
717 */
718 if (!chip->dev_ready) {
719 udelay(chip->chip_delay);
720 return;
721 }
722 }
723
724 /*
725 * Apply this short delay always to ensure that we do wait tWB in
726 * any case on any machine.
727 */
728 ndelay(100);
729
730 nand_wait_ready(mtd);
731 }
732
733 /**
734 * panic_nand_get_device - [GENERIC] Get chip for selected access
735 * @chip: the nand chip descriptor
736 * @mtd: MTD device structure
737 * @new_state: the state which is requested
738 *
739 * Used when in panic, no locks are taken.
740 */
741 static void panic_nand_get_device(struct nand_chip *chip,
742 struct mtd_info *mtd, int new_state)
743 {
744 /* Hardware controller shared among independent devices */
745 chip->controller->active = chip;
746 chip->state = new_state;
747 }
748
749 /**
750 * nand_get_device - [GENERIC] Get chip for selected access
751 * @mtd: MTD device structure
752 * @new_state: the state which is requested
753 *
754 * Get the device and lock it for exclusive access
755 */
756 static int
757 nand_get_device(struct mtd_info *mtd, int new_state)
758 {
759 struct nand_chip *chip = mtd->priv;
760 spinlock_t *lock = &chip->controller->lock;
761 wait_queue_head_t *wq = &chip->controller->wq;
762 DECLARE_WAITQUEUE(wait, current);
763 retry:
764 spin_lock(lock);
765
766 /* Hardware controller shared among independent devices */
767 if (!chip->controller->active)
768 chip->controller->active = chip;
769
770 if (chip->controller->active == chip && chip->state == FL_READY) {
771 chip->state = new_state;
772 spin_unlock(lock);
773 return 0;
774 }
775 if (new_state == FL_PM_SUSPENDED) {
776 if (chip->controller->active->state == FL_PM_SUSPENDED) {
777 chip->state = FL_PM_SUSPENDED;
778 spin_unlock(lock);
779 return 0;
780 }
781 }
782 set_current_state(TASK_UNINTERRUPTIBLE);
783 add_wait_queue(wq, &wait);
784 spin_unlock(lock);
785 schedule();
786 remove_wait_queue(wq, &wait);
787 goto retry;
788 }
789
790 /**
791 * panic_nand_wait - [GENERIC] wait until the command is done
792 * @mtd: MTD device structure
793 * @chip: NAND chip structure
794 * @timeo: timeout
795 *
796 * Wait for command done. This is a helper function for nand_wait used when
797 * we are in interrupt context. May happen when in panic and trying to write
798 * an oops through mtdoops.
799 */
800 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
801 unsigned long timeo)
802 {
803 int i;
804 for (i = 0; i < timeo; i++) {
805 if (chip->dev_ready) {
806 if (chip->dev_ready(mtd))
807 break;
808 } else {
809 if (chip->read_byte(mtd) & NAND_STATUS_READY)
810 break;
811 }
812 mdelay(1);
813 }
814 }
815
816 /**
817 * nand_wait - [DEFAULT] wait until the command is done
818 * @mtd: MTD device structure
819 * @chip: NAND chip structure
820 *
821 * Wait for command done. This applies to erase and program only. Erase can
822 * take up to 400ms and program up to 20ms according to general NAND and
823 * SmartMedia specs.
824 */
825 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
826 {
827
828 int status, state = chip->state;
829 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
830
831 led_trigger_event(nand_led_trigger, LED_FULL);
832
833 /*
834 * Apply this short delay always to ensure that we do wait tWB in any
835 * case on any machine.
836 */
837 ndelay(100);
838
839 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
840 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
841 else
842 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
843
844 if (in_interrupt() || oops_in_progress)
845 panic_nand_wait(mtd, chip, timeo);
846 else {
847 timeo = jiffies + msecs_to_jiffies(timeo);
848 while (time_before(jiffies, timeo)) {
849 if (chip->dev_ready) {
850 if (chip->dev_ready(mtd))
851 break;
852 } else {
853 if (chip->read_byte(mtd) & NAND_STATUS_READY)
854 break;
855 }
856 cond_resched();
857 }
858 }
859 led_trigger_event(nand_led_trigger, LED_OFF);
860
861 status = (int)chip->read_byte(mtd);
862 /* This can happen if in case of timeout or buggy dev_ready */
863 WARN_ON(!(status & NAND_STATUS_READY));
864 return status;
865 }
866
867 /**
868 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
869 * @mtd: mtd info
870 * @ofs: offset to start unlock from
871 * @len: length to unlock
872 * @invert: when = 0, unlock the range of blocks within the lower and
873 * upper boundary address
874 * when = 1, unlock the range of blocks outside the boundaries
875 * of the lower and upper boundary address
876 *
877 * Returs unlock status.
878 */
879 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
880 uint64_t len, int invert)
881 {
882 int ret = 0;
883 int status, page;
884 struct nand_chip *chip = mtd->priv;
885
886 /* Submit address of first page to unlock */
887 page = ofs >> chip->page_shift;
888 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
889
890 /* Submit address of last page to unlock */
891 page = (ofs + len) >> chip->page_shift;
892 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
893 (page | invert) & chip->pagemask);
894
895 /* Call wait ready function */
896 status = chip->waitfunc(mtd, chip);
897 /* See if device thinks it succeeded */
898 if (status & NAND_STATUS_FAIL) {
899 pr_debug("%s: error status = 0x%08x\n",
900 __func__, status);
901 ret = -EIO;
902 }
903
904 return ret;
905 }
906
907 /**
908 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
909 * @mtd: mtd info
910 * @ofs: offset to start unlock from
911 * @len: length to unlock
912 *
913 * Returns unlock status.
914 */
915 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
916 {
917 int ret = 0;
918 int chipnr;
919 struct nand_chip *chip = mtd->priv;
920
921 pr_debug("%s: start = 0x%012llx, len = %llu\n",
922 __func__, (unsigned long long)ofs, len);
923
924 if (check_offs_len(mtd, ofs, len))
925 ret = -EINVAL;
926
927 /* Align to last block address if size addresses end of the device */
928 if (ofs + len == mtd->size)
929 len -= mtd->erasesize;
930
931 nand_get_device(mtd, FL_UNLOCKING);
932
933 /* Shift to get chip number */
934 chipnr = ofs >> chip->chip_shift;
935
936 chip->select_chip(mtd, chipnr);
937
938 /* Check, if it is write protected */
939 if (nand_check_wp(mtd)) {
940 pr_debug("%s: device is write protected!\n",
941 __func__);
942 ret = -EIO;
943 goto out;
944 }
945
946 ret = __nand_unlock(mtd, ofs, len, 0);
947
948 out:
949 chip->select_chip(mtd, -1);
950 nand_release_device(mtd);
951
952 return ret;
953 }
954 EXPORT_SYMBOL(nand_unlock);
955
956 /**
957 * nand_lock - [REPLACEABLE] locks all blocks present in the device
958 * @mtd: mtd info
959 * @ofs: offset to start unlock from
960 * @len: length to unlock
961 *
962 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
963 * have this feature, but it allows only to lock all blocks, not for specified
964 * range for block. Implementing 'lock' feature by making use of 'unlock', for
965 * now.
966 *
967 * Returns lock status.
968 */
969 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
970 {
971 int ret = 0;
972 int chipnr, status, page;
973 struct nand_chip *chip = mtd->priv;
974
975 pr_debug("%s: start = 0x%012llx, len = %llu\n",
976 __func__, (unsigned long long)ofs, len);
977
978 if (check_offs_len(mtd, ofs, len))
979 ret = -EINVAL;
980
981 nand_get_device(mtd, FL_LOCKING);
982
983 /* Shift to get chip number */
984 chipnr = ofs >> chip->chip_shift;
985
986 chip->select_chip(mtd, chipnr);
987
988 /* Check, if it is write protected */
989 if (nand_check_wp(mtd)) {
990 pr_debug("%s: device is write protected!\n",
991 __func__);
992 status = MTD_ERASE_FAILED;
993 ret = -EIO;
994 goto out;
995 }
996
997 /* Submit address of first page to lock */
998 page = ofs >> chip->page_shift;
999 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1000
1001 /* Call wait ready function */
1002 status = chip->waitfunc(mtd, chip);
1003 /* See if device thinks it succeeded */
1004 if (status & NAND_STATUS_FAIL) {
1005 pr_debug("%s: error status = 0x%08x\n",
1006 __func__, status);
1007 ret = -EIO;
1008 goto out;
1009 }
1010
1011 ret = __nand_unlock(mtd, ofs, len, 0x1);
1012
1013 out:
1014 chip->select_chip(mtd, -1);
1015 nand_release_device(mtd);
1016
1017 return ret;
1018 }
1019 EXPORT_SYMBOL(nand_lock);
1020
1021 /**
1022 * nand_read_page_raw - [INTERN] read raw page data without ecc
1023 * @mtd: mtd info structure
1024 * @chip: nand chip info structure
1025 * @buf: buffer to store read data
1026 * @oob_required: caller requires OOB data read to chip->oob_poi
1027 * @page: page number to read
1028 *
1029 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1030 */
1031 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1032 uint8_t *buf, int oob_required, int page)
1033 {
1034 chip->read_buf(mtd, buf, mtd->writesize);
1035 if (oob_required)
1036 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1037 return 0;
1038 }
1039
1040 /**
1041 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1042 * @mtd: mtd info structure
1043 * @chip: nand chip info structure
1044 * @buf: buffer to store read data
1045 * @oob_required: caller requires OOB data read to chip->oob_poi
1046 * @page: page number to read
1047 *
1048 * We need a special oob layout and handling even when OOB isn't used.
1049 */
1050 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1051 struct nand_chip *chip, uint8_t *buf,
1052 int oob_required, int page)
1053 {
1054 int eccsize = chip->ecc.size;
1055 int eccbytes = chip->ecc.bytes;
1056 uint8_t *oob = chip->oob_poi;
1057 int steps, size;
1058
1059 for (steps = chip->ecc.steps; steps > 0; steps--) {
1060 chip->read_buf(mtd, buf, eccsize);
1061 buf += eccsize;
1062
1063 if (chip->ecc.prepad) {
1064 chip->read_buf(mtd, oob, chip->ecc.prepad);
1065 oob += chip->ecc.prepad;
1066 }
1067
1068 chip->read_buf(mtd, oob, eccbytes);
1069 oob += eccbytes;
1070
1071 if (chip->ecc.postpad) {
1072 chip->read_buf(mtd, oob, chip->ecc.postpad);
1073 oob += chip->ecc.postpad;
1074 }
1075 }
1076
1077 size = mtd->oobsize - (oob - chip->oob_poi);
1078 if (size)
1079 chip->read_buf(mtd, oob, size);
1080
1081 return 0;
1082 }
1083
1084 /**
1085 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1086 * @mtd: mtd info structure
1087 * @chip: nand chip info structure
1088 * @buf: buffer to store read data
1089 * @oob_required: caller requires OOB data read to chip->oob_poi
1090 * @page: page number to read
1091 */
1092 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1093 uint8_t *buf, int oob_required, int page)
1094 {
1095 int i, eccsize = chip->ecc.size;
1096 int eccbytes = chip->ecc.bytes;
1097 int eccsteps = chip->ecc.steps;
1098 uint8_t *p = buf;
1099 uint8_t *ecc_calc = chip->buffers->ecccalc;
1100 uint8_t *ecc_code = chip->buffers->ecccode;
1101 uint32_t *eccpos = chip->ecc.layout->eccpos;
1102 unsigned int max_bitflips = 0;
1103
1104 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1105
1106 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1107 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1108
1109 for (i = 0; i < chip->ecc.total; i++)
1110 ecc_code[i] = chip->oob_poi[eccpos[i]];
1111
1112 eccsteps = chip->ecc.steps;
1113 p = buf;
1114
1115 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1116 int stat;
1117
1118 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1119 if (stat < 0) {
1120 mtd->ecc_stats.failed++;
1121 } else {
1122 mtd->ecc_stats.corrected += stat;
1123 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1124 }
1125 }
1126 return max_bitflips;
1127 }
1128
1129 /**
1130 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1131 * @mtd: mtd info structure
1132 * @chip: nand chip info structure
1133 * @data_offs: offset of requested data within the page
1134 * @readlen: data length
1135 * @bufpoi: buffer to store read data
1136 */
1137 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1138 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1139 {
1140 int start_step, end_step, num_steps;
1141 uint32_t *eccpos = chip->ecc.layout->eccpos;
1142 uint8_t *p;
1143 int data_col_addr, i, gaps = 0;
1144 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1145 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1146 int index = 0;
1147 unsigned int max_bitflips = 0;
1148
1149 /* Column address within the page aligned to ECC size (256bytes) */
1150 start_step = data_offs / chip->ecc.size;
1151 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1152 num_steps = end_step - start_step + 1;
1153
1154 /* Data size aligned to ECC ecc.size */
1155 datafrag_len = num_steps * chip->ecc.size;
1156 eccfrag_len = num_steps * chip->ecc.bytes;
1157
1158 data_col_addr = start_step * chip->ecc.size;
1159 /* If we read not a page aligned data */
1160 if (data_col_addr != 0)
1161 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1162
1163 p = bufpoi + data_col_addr;
1164 chip->read_buf(mtd, p, datafrag_len);
1165
1166 /* Calculate ECC */
1167 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1168 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1169
1170 /*
1171 * The performance is faster if we position offsets according to
1172 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1173 */
1174 for (i = 0; i < eccfrag_len - 1; i++) {
1175 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1176 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1177 gaps = 1;
1178 break;
1179 }
1180 }
1181 if (gaps) {
1182 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1183 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1184 } else {
1185 /*
1186 * Send the command to read the particular ECC bytes take care
1187 * about buswidth alignment in read_buf.
1188 */
1189 index = start_step * chip->ecc.bytes;
1190
1191 aligned_pos = eccpos[index] & ~(busw - 1);
1192 aligned_len = eccfrag_len;
1193 if (eccpos[index] & (busw - 1))
1194 aligned_len++;
1195 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1196 aligned_len++;
1197
1198 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1199 mtd->writesize + aligned_pos, -1);
1200 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1201 }
1202
1203 for (i = 0; i < eccfrag_len; i++)
1204 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1205
1206 p = bufpoi + data_col_addr;
1207 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1208 int stat;
1209
1210 stat = chip->ecc.correct(mtd, p,
1211 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1212 if (stat < 0) {
1213 mtd->ecc_stats.failed++;
1214 } else {
1215 mtd->ecc_stats.corrected += stat;
1216 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1217 }
1218 }
1219 return max_bitflips;
1220 }
1221
1222 /**
1223 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1224 * @mtd: mtd info structure
1225 * @chip: nand chip info structure
1226 * @buf: buffer to store read data
1227 * @oob_required: caller requires OOB data read to chip->oob_poi
1228 * @page: page number to read
1229 *
1230 * Not for syndrome calculating ECC controllers which need a special oob layout.
1231 */
1232 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1233 uint8_t *buf, int oob_required, int page)
1234 {
1235 int i, eccsize = chip->ecc.size;
1236 int eccbytes = chip->ecc.bytes;
1237 int eccsteps = chip->ecc.steps;
1238 uint8_t *p = buf;
1239 uint8_t *ecc_calc = chip->buffers->ecccalc;
1240 uint8_t *ecc_code = chip->buffers->ecccode;
1241 uint32_t *eccpos = chip->ecc.layout->eccpos;
1242 unsigned int max_bitflips = 0;
1243
1244 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1245 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1246 chip->read_buf(mtd, p, eccsize);
1247 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1248 }
1249 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1250
1251 for (i = 0; i < chip->ecc.total; i++)
1252 ecc_code[i] = chip->oob_poi[eccpos[i]];
1253
1254 eccsteps = chip->ecc.steps;
1255 p = buf;
1256
1257 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1258 int stat;
1259
1260 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1261 if (stat < 0) {
1262 mtd->ecc_stats.failed++;
1263 } else {
1264 mtd->ecc_stats.corrected += stat;
1265 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1266 }
1267 }
1268 return max_bitflips;
1269 }
1270
1271 /**
1272 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1273 * @mtd: mtd info structure
1274 * @chip: nand chip info structure
1275 * @buf: buffer to store read data
1276 * @oob_required: caller requires OOB data read to chip->oob_poi
1277 * @page: page number to read
1278 *
1279 * Hardware ECC for large page chips, require OOB to be read first. For this
1280 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1281 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1282 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1283 * the data area, by overwriting the NAND manufacturer bad block markings.
1284 */
1285 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1286 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1287 {
1288 int i, eccsize = chip->ecc.size;
1289 int eccbytes = chip->ecc.bytes;
1290 int eccsteps = chip->ecc.steps;
1291 uint8_t *p = buf;
1292 uint8_t *ecc_code = chip->buffers->ecccode;
1293 uint32_t *eccpos = chip->ecc.layout->eccpos;
1294 uint8_t *ecc_calc = chip->buffers->ecccalc;
1295 unsigned int max_bitflips = 0;
1296
1297 /* Read the OOB area first */
1298 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1299 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1300 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1301
1302 for (i = 0; i < chip->ecc.total; i++)
1303 ecc_code[i] = chip->oob_poi[eccpos[i]];
1304
1305 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1306 int stat;
1307
1308 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1309 chip->read_buf(mtd, p, eccsize);
1310 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1311
1312 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1313 if (stat < 0) {
1314 mtd->ecc_stats.failed++;
1315 } else {
1316 mtd->ecc_stats.corrected += stat;
1317 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1318 }
1319 }
1320 return max_bitflips;
1321 }
1322
1323 /**
1324 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1325 * @mtd: mtd info structure
1326 * @chip: nand chip info structure
1327 * @buf: buffer to store read data
1328 * @oob_required: caller requires OOB data read to chip->oob_poi
1329 * @page: page number to read
1330 *
1331 * The hw generator calculates the error syndrome automatically. Therefore we
1332 * need a special oob layout and handling.
1333 */
1334 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1335 uint8_t *buf, int oob_required, int page)
1336 {
1337 int i, eccsize = chip->ecc.size;
1338 int eccbytes = chip->ecc.bytes;
1339 int eccsteps = chip->ecc.steps;
1340 uint8_t *p = buf;
1341 uint8_t *oob = chip->oob_poi;
1342 unsigned int max_bitflips = 0;
1343
1344 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1345 int stat;
1346
1347 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1348 chip->read_buf(mtd, p, eccsize);
1349
1350 if (chip->ecc.prepad) {
1351 chip->read_buf(mtd, oob, chip->ecc.prepad);
1352 oob += chip->ecc.prepad;
1353 }
1354
1355 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1356 chip->read_buf(mtd, oob, eccbytes);
1357 stat = chip->ecc.correct(mtd, p, oob, NULL);
1358
1359 if (stat < 0) {
1360 mtd->ecc_stats.failed++;
1361 } else {
1362 mtd->ecc_stats.corrected += stat;
1363 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1364 }
1365
1366 oob += eccbytes;
1367
1368 if (chip->ecc.postpad) {
1369 chip->read_buf(mtd, oob, chip->ecc.postpad);
1370 oob += chip->ecc.postpad;
1371 }
1372 }
1373
1374 /* Calculate remaining oob bytes */
1375 i = mtd->oobsize - (oob - chip->oob_poi);
1376 if (i)
1377 chip->read_buf(mtd, oob, i);
1378
1379 return max_bitflips;
1380 }
1381
1382 /**
1383 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1384 * @chip: nand chip structure
1385 * @oob: oob destination address
1386 * @ops: oob ops structure
1387 * @len: size of oob to transfer
1388 */
1389 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1390 struct mtd_oob_ops *ops, size_t len)
1391 {
1392 switch (ops->mode) {
1393
1394 case MTD_OPS_PLACE_OOB:
1395 case MTD_OPS_RAW:
1396 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1397 return oob + len;
1398
1399 case MTD_OPS_AUTO_OOB: {
1400 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1401 uint32_t boffs = 0, roffs = ops->ooboffs;
1402 size_t bytes = 0;
1403
1404 for (; free->length && len; free++, len -= bytes) {
1405 /* Read request not from offset 0? */
1406 if (unlikely(roffs)) {
1407 if (roffs >= free->length) {
1408 roffs -= free->length;
1409 continue;
1410 }
1411 boffs = free->offset + roffs;
1412 bytes = min_t(size_t, len,
1413 (free->length - roffs));
1414 roffs = 0;
1415 } else {
1416 bytes = min_t(size_t, len, free->length);
1417 boffs = free->offset;
1418 }
1419 memcpy(oob, chip->oob_poi + boffs, bytes);
1420 oob += bytes;
1421 }
1422 return oob;
1423 }
1424 default:
1425 BUG();
1426 }
1427 return NULL;
1428 }
1429
1430 /**
1431 * nand_do_read_ops - [INTERN] Read data with ECC
1432 * @mtd: MTD device structure
1433 * @from: offset to read from
1434 * @ops: oob ops structure
1435 *
1436 * Internal function. Called with chip held.
1437 */
1438 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1439 struct mtd_oob_ops *ops)
1440 {
1441 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1442 struct nand_chip *chip = mtd->priv;
1443 struct mtd_ecc_stats stats;
1444 int ret = 0;
1445 uint32_t readlen = ops->len;
1446 uint32_t oobreadlen = ops->ooblen;
1447 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1448 mtd->oobavail : mtd->oobsize;
1449
1450 uint8_t *bufpoi, *oob, *buf;
1451 unsigned int max_bitflips = 0;
1452
1453 stats = mtd->ecc_stats;
1454
1455 chipnr = (int)(from >> chip->chip_shift);
1456 chip->select_chip(mtd, chipnr);
1457
1458 realpage = (int)(from >> chip->page_shift);
1459 page = realpage & chip->pagemask;
1460
1461 col = (int)(from & (mtd->writesize - 1));
1462
1463 buf = ops->datbuf;
1464 oob = ops->oobbuf;
1465 oob_required = oob ? 1 : 0;
1466
1467 while (1) {
1468 bytes = min(mtd->writesize - col, readlen);
1469 aligned = (bytes == mtd->writesize);
1470
1471 /* Is the current page in the buffer? */
1472 if (realpage != chip->pagebuf || oob) {
1473 bufpoi = aligned ? buf : chip->buffers->databuf;
1474
1475 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1476
1477 /*
1478 * Now read the page into the buffer. Absent an error,
1479 * the read methods return max bitflips per ecc step.
1480 */
1481 if (unlikely(ops->mode == MTD_OPS_RAW))
1482 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1483 oob_required,
1484 page);
1485 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1486 !oob)
1487 ret = chip->ecc.read_subpage(mtd, chip,
1488 col, bytes, bufpoi);
1489 else
1490 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1491 oob_required, page);
1492 if (ret < 0) {
1493 if (!aligned)
1494 /* Invalidate page cache */
1495 chip->pagebuf = -1;
1496 break;
1497 }
1498
1499 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1500
1501 /* Transfer not aligned data */
1502 if (!aligned) {
1503 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1504 !(mtd->ecc_stats.failed - stats.failed) &&
1505 (ops->mode != MTD_OPS_RAW)) {
1506 chip->pagebuf = realpage;
1507 chip->pagebuf_bitflips = ret;
1508 } else {
1509 /* Invalidate page cache */
1510 chip->pagebuf = -1;
1511 }
1512 memcpy(buf, chip->buffers->databuf + col, bytes);
1513 }
1514
1515 buf += bytes;
1516
1517 if (unlikely(oob)) {
1518 int toread = min(oobreadlen, max_oobsize);
1519
1520 if (toread) {
1521 oob = nand_transfer_oob(chip,
1522 oob, ops, toread);
1523 oobreadlen -= toread;
1524 }
1525 }
1526
1527 if (chip->options & NAND_NEED_READRDY) {
1528 /* Apply delay or wait for ready/busy pin */
1529 if (!chip->dev_ready)
1530 udelay(chip->chip_delay);
1531 else
1532 nand_wait_ready(mtd);
1533 }
1534 } else {
1535 memcpy(buf, chip->buffers->databuf + col, bytes);
1536 buf += bytes;
1537 max_bitflips = max_t(unsigned int, max_bitflips,
1538 chip->pagebuf_bitflips);
1539 }
1540
1541 readlen -= bytes;
1542
1543 if (!readlen)
1544 break;
1545
1546 /* For subsequent reads align to page boundary */
1547 col = 0;
1548 /* Increment page address */
1549 realpage++;
1550
1551 page = realpage & chip->pagemask;
1552 /* Check, if we cross a chip boundary */
1553 if (!page) {
1554 chipnr++;
1555 chip->select_chip(mtd, -1);
1556 chip->select_chip(mtd, chipnr);
1557 }
1558 }
1559 chip->select_chip(mtd, -1);
1560
1561 ops->retlen = ops->len - (size_t) readlen;
1562 if (oob)
1563 ops->oobretlen = ops->ooblen - oobreadlen;
1564
1565 if (ret < 0)
1566 return ret;
1567
1568 if (mtd->ecc_stats.failed - stats.failed)
1569 return -EBADMSG;
1570
1571 return max_bitflips;
1572 }
1573
1574 /**
1575 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1576 * @mtd: MTD device structure
1577 * @from: offset to read from
1578 * @len: number of bytes to read
1579 * @retlen: pointer to variable to store the number of read bytes
1580 * @buf: the databuffer to put data
1581 *
1582 * Get hold of the chip and call nand_do_read.
1583 */
1584 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1585 size_t *retlen, uint8_t *buf)
1586 {
1587 struct mtd_oob_ops ops;
1588 int ret;
1589
1590 nand_get_device(mtd, FL_READING);
1591 ops.len = len;
1592 ops.datbuf = buf;
1593 ops.oobbuf = NULL;
1594 ops.mode = MTD_OPS_PLACE_OOB;
1595 ret = nand_do_read_ops(mtd, from, &ops);
1596 *retlen = ops.retlen;
1597 nand_release_device(mtd);
1598 return ret;
1599 }
1600
1601 /**
1602 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1603 * @mtd: mtd info structure
1604 * @chip: nand chip info structure
1605 * @page: page number to read
1606 */
1607 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1608 int page)
1609 {
1610 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1611 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1612 return 0;
1613 }
1614
1615 /**
1616 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1617 * with syndromes
1618 * @mtd: mtd info structure
1619 * @chip: nand chip info structure
1620 * @page: page number to read
1621 */
1622 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1623 int page)
1624 {
1625 uint8_t *buf = chip->oob_poi;
1626 int length = mtd->oobsize;
1627 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1628 int eccsize = chip->ecc.size;
1629 uint8_t *bufpoi = buf;
1630 int i, toread, sndrnd = 0, pos;
1631
1632 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1633 for (i = 0; i < chip->ecc.steps; i++) {
1634 if (sndrnd) {
1635 pos = eccsize + i * (eccsize + chunk);
1636 if (mtd->writesize > 512)
1637 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1638 else
1639 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1640 } else
1641 sndrnd = 1;
1642 toread = min_t(int, length, chunk);
1643 chip->read_buf(mtd, bufpoi, toread);
1644 bufpoi += toread;
1645 length -= toread;
1646 }
1647 if (length > 0)
1648 chip->read_buf(mtd, bufpoi, length);
1649
1650 return 0;
1651 }
1652
1653 /**
1654 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1655 * @mtd: mtd info structure
1656 * @chip: nand chip info structure
1657 * @page: page number to write
1658 */
1659 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1660 int page)
1661 {
1662 int status = 0;
1663 const uint8_t *buf = chip->oob_poi;
1664 int length = mtd->oobsize;
1665
1666 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1667 chip->write_buf(mtd, buf, length);
1668 /* Send command to program the OOB data */
1669 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1670
1671 status = chip->waitfunc(mtd, chip);
1672
1673 return status & NAND_STATUS_FAIL ? -EIO : 0;
1674 }
1675
1676 /**
1677 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1678 * with syndrome - only for large page flash
1679 * @mtd: mtd info structure
1680 * @chip: nand chip info structure
1681 * @page: page number to write
1682 */
1683 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1684 struct nand_chip *chip, int page)
1685 {
1686 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1687 int eccsize = chip->ecc.size, length = mtd->oobsize;
1688 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1689 const uint8_t *bufpoi = chip->oob_poi;
1690
1691 /*
1692 * data-ecc-data-ecc ... ecc-oob
1693 * or
1694 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1695 */
1696 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1697 pos = steps * (eccsize + chunk);
1698 steps = 0;
1699 } else
1700 pos = eccsize;
1701
1702 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1703 for (i = 0; i < steps; i++) {
1704 if (sndcmd) {
1705 if (mtd->writesize <= 512) {
1706 uint32_t fill = 0xFFFFFFFF;
1707
1708 len = eccsize;
1709 while (len > 0) {
1710 int num = min_t(int, len, 4);
1711 chip->write_buf(mtd, (uint8_t *)&fill,
1712 num);
1713 len -= num;
1714 }
1715 } else {
1716 pos = eccsize + i * (eccsize + chunk);
1717 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1718 }
1719 } else
1720 sndcmd = 1;
1721 len = min_t(int, length, chunk);
1722 chip->write_buf(mtd, bufpoi, len);
1723 bufpoi += len;
1724 length -= len;
1725 }
1726 if (length > 0)
1727 chip->write_buf(mtd, bufpoi, length);
1728
1729 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1730 status = chip->waitfunc(mtd, chip);
1731
1732 return status & NAND_STATUS_FAIL ? -EIO : 0;
1733 }
1734
1735 /**
1736 * nand_do_read_oob - [INTERN] NAND read out-of-band
1737 * @mtd: MTD device structure
1738 * @from: offset to read from
1739 * @ops: oob operations description structure
1740 *
1741 * NAND read out-of-band data from the spare area.
1742 */
1743 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1744 struct mtd_oob_ops *ops)
1745 {
1746 int page, realpage, chipnr;
1747 struct nand_chip *chip = mtd->priv;
1748 struct mtd_ecc_stats stats;
1749 int readlen = ops->ooblen;
1750 int len;
1751 uint8_t *buf = ops->oobbuf;
1752 int ret = 0;
1753
1754 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1755 __func__, (unsigned long long)from, readlen);
1756
1757 stats = mtd->ecc_stats;
1758
1759 if (ops->mode == MTD_OPS_AUTO_OOB)
1760 len = chip->ecc.layout->oobavail;
1761 else
1762 len = mtd->oobsize;
1763
1764 if (unlikely(ops->ooboffs >= len)) {
1765 pr_debug("%s: attempt to start read outside oob\n",
1766 __func__);
1767 return -EINVAL;
1768 }
1769
1770 /* Do not allow reads past end of device */
1771 if (unlikely(from >= mtd->size ||
1772 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1773 (from >> chip->page_shift)) * len)) {
1774 pr_debug("%s: attempt to read beyond end of device\n",
1775 __func__);
1776 return -EINVAL;
1777 }
1778
1779 chipnr = (int)(from >> chip->chip_shift);
1780 chip->select_chip(mtd, chipnr);
1781
1782 /* Shift to get page */
1783 realpage = (int)(from >> chip->page_shift);
1784 page = realpage & chip->pagemask;
1785
1786 while (1) {
1787 if (ops->mode == MTD_OPS_RAW)
1788 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1789 else
1790 ret = chip->ecc.read_oob(mtd, chip, page);
1791
1792 if (ret < 0)
1793 break;
1794
1795 len = min(len, readlen);
1796 buf = nand_transfer_oob(chip, buf, ops, len);
1797
1798 if (chip->options & NAND_NEED_READRDY) {
1799 /* Apply delay or wait for ready/busy pin */
1800 if (!chip->dev_ready)
1801 udelay(chip->chip_delay);
1802 else
1803 nand_wait_ready(mtd);
1804 }
1805
1806 readlen -= len;
1807 if (!readlen)
1808 break;
1809
1810 /* Increment page address */
1811 realpage++;
1812
1813 page = realpage & chip->pagemask;
1814 /* Check, if we cross a chip boundary */
1815 if (!page) {
1816 chipnr++;
1817 chip->select_chip(mtd, -1);
1818 chip->select_chip(mtd, chipnr);
1819 }
1820 }
1821 chip->select_chip(mtd, -1);
1822
1823 ops->oobretlen = ops->ooblen - readlen;
1824
1825 if (ret < 0)
1826 return ret;
1827
1828 if (mtd->ecc_stats.failed - stats.failed)
1829 return -EBADMSG;
1830
1831 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1832 }
1833
1834 /**
1835 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1836 * @mtd: MTD device structure
1837 * @from: offset to read from
1838 * @ops: oob operation description structure
1839 *
1840 * NAND read data and/or out-of-band data.
1841 */
1842 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1843 struct mtd_oob_ops *ops)
1844 {
1845 int ret = -ENOTSUPP;
1846
1847 ops->retlen = 0;
1848
1849 /* Do not allow reads past end of device */
1850 if (ops->datbuf && (from + ops->len) > mtd->size) {
1851 pr_debug("%s: attempt to read beyond end of device\n",
1852 __func__);
1853 return -EINVAL;
1854 }
1855
1856 nand_get_device(mtd, FL_READING);
1857
1858 switch (ops->mode) {
1859 case MTD_OPS_PLACE_OOB:
1860 case MTD_OPS_AUTO_OOB:
1861 case MTD_OPS_RAW:
1862 break;
1863
1864 default:
1865 goto out;
1866 }
1867
1868 if (!ops->datbuf)
1869 ret = nand_do_read_oob(mtd, from, ops);
1870 else
1871 ret = nand_do_read_ops(mtd, from, ops);
1872
1873 out:
1874 nand_release_device(mtd);
1875 return ret;
1876 }
1877
1878
1879 /**
1880 * nand_write_page_raw - [INTERN] raw page write function
1881 * @mtd: mtd info structure
1882 * @chip: nand chip info structure
1883 * @buf: data buffer
1884 * @oob_required: must write chip->oob_poi to OOB
1885 *
1886 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1887 */
1888 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1889 const uint8_t *buf, int oob_required)
1890 {
1891 chip->write_buf(mtd, buf, mtd->writesize);
1892 if (oob_required)
1893 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1894
1895 return 0;
1896 }
1897
1898 /**
1899 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1900 * @mtd: mtd info structure
1901 * @chip: nand chip info structure
1902 * @buf: data buffer
1903 * @oob_required: must write chip->oob_poi to OOB
1904 *
1905 * We need a special oob layout and handling even when ECC isn't checked.
1906 */
1907 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1908 struct nand_chip *chip,
1909 const uint8_t *buf, int oob_required)
1910 {
1911 int eccsize = chip->ecc.size;
1912 int eccbytes = chip->ecc.bytes;
1913 uint8_t *oob = chip->oob_poi;
1914 int steps, size;
1915
1916 for (steps = chip->ecc.steps; steps > 0; steps--) {
1917 chip->write_buf(mtd, buf, eccsize);
1918 buf += eccsize;
1919
1920 if (chip->ecc.prepad) {
1921 chip->write_buf(mtd, oob, chip->ecc.prepad);
1922 oob += chip->ecc.prepad;
1923 }
1924
1925 chip->read_buf(mtd, oob, eccbytes);
1926 oob += eccbytes;
1927
1928 if (chip->ecc.postpad) {
1929 chip->write_buf(mtd, oob, chip->ecc.postpad);
1930 oob += chip->ecc.postpad;
1931 }
1932 }
1933
1934 size = mtd->oobsize - (oob - chip->oob_poi);
1935 if (size)
1936 chip->write_buf(mtd, oob, size);
1937
1938 return 0;
1939 }
1940 /**
1941 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1942 * @mtd: mtd info structure
1943 * @chip: nand chip info structure
1944 * @buf: data buffer
1945 * @oob_required: must write chip->oob_poi to OOB
1946 */
1947 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1948 const uint8_t *buf, int oob_required)
1949 {
1950 int i, eccsize = chip->ecc.size;
1951 int eccbytes = chip->ecc.bytes;
1952 int eccsteps = chip->ecc.steps;
1953 uint8_t *ecc_calc = chip->buffers->ecccalc;
1954 const uint8_t *p = buf;
1955 uint32_t *eccpos = chip->ecc.layout->eccpos;
1956
1957 /* Software ECC calculation */
1958 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1959 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1960
1961 for (i = 0; i < chip->ecc.total; i++)
1962 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1963
1964 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1965 }
1966
1967 /**
1968 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1969 * @mtd: mtd info structure
1970 * @chip: nand chip info structure
1971 * @buf: data buffer
1972 * @oob_required: must write chip->oob_poi to OOB
1973 */
1974 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1975 const uint8_t *buf, int oob_required)
1976 {
1977 int i, eccsize = chip->ecc.size;
1978 int eccbytes = chip->ecc.bytes;
1979 int eccsteps = chip->ecc.steps;
1980 uint8_t *ecc_calc = chip->buffers->ecccalc;
1981 const uint8_t *p = buf;
1982 uint32_t *eccpos = chip->ecc.layout->eccpos;
1983
1984 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1985 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1986 chip->write_buf(mtd, p, eccsize);
1987 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1988 }
1989
1990 for (i = 0; i < chip->ecc.total; i++)
1991 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1992
1993 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1994
1995 return 0;
1996 }
1997
1998 /**
1999 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2000 * @mtd: mtd info structure
2001 * @chip: nand chip info structure
2002 * @buf: data buffer
2003 * @oob_required: must write chip->oob_poi to OOB
2004 *
2005 * The hw generator calculates the error syndrome automatically. Therefore we
2006 * need a special oob layout and handling.
2007 */
2008 static int nand_write_page_syndrome(struct mtd_info *mtd,
2009 struct nand_chip *chip,
2010 const uint8_t *buf, int oob_required)
2011 {
2012 int i, eccsize = chip->ecc.size;
2013 int eccbytes = chip->ecc.bytes;
2014 int eccsteps = chip->ecc.steps;
2015 const uint8_t *p = buf;
2016 uint8_t *oob = chip->oob_poi;
2017
2018 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2019
2020 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2021 chip->write_buf(mtd, p, eccsize);
2022
2023 if (chip->ecc.prepad) {
2024 chip->write_buf(mtd, oob, chip->ecc.prepad);
2025 oob += chip->ecc.prepad;
2026 }
2027
2028 chip->ecc.calculate(mtd, p, oob);
2029 chip->write_buf(mtd, oob, eccbytes);
2030 oob += eccbytes;
2031
2032 if (chip->ecc.postpad) {
2033 chip->write_buf(mtd, oob, chip->ecc.postpad);
2034 oob += chip->ecc.postpad;
2035 }
2036 }
2037
2038 /* Calculate remaining oob bytes */
2039 i = mtd->oobsize - (oob - chip->oob_poi);
2040 if (i)
2041 chip->write_buf(mtd, oob, i);
2042
2043 return 0;
2044 }
2045
2046 /**
2047 * nand_write_page - [REPLACEABLE] write one page
2048 * @mtd: MTD device structure
2049 * @chip: NAND chip descriptor
2050 * @buf: the data to write
2051 * @oob_required: must write chip->oob_poi to OOB
2052 * @page: page number to write
2053 * @cached: cached programming
2054 * @raw: use _raw version of write_page
2055 */
2056 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2057 const uint8_t *buf, int oob_required, int page,
2058 int cached, int raw)
2059 {
2060 int status;
2061
2062 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2063
2064 if (unlikely(raw))
2065 status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
2066 else
2067 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2068
2069 if (status < 0)
2070 return status;
2071
2072 /*
2073 * Cached progamming disabled for now. Not sure if it's worth the
2074 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2075 */
2076 cached = 0;
2077
2078 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2079
2080 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2081 status = chip->waitfunc(mtd, chip);
2082 /*
2083 * See if operation failed and additional status checks are
2084 * available.
2085 */
2086 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2087 status = chip->errstat(mtd, chip, FL_WRITING, status,
2088 page);
2089
2090 if (status & NAND_STATUS_FAIL)
2091 return -EIO;
2092 } else {
2093 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2094 status = chip->waitfunc(mtd, chip);
2095 }
2096
2097 return 0;
2098 }
2099
2100 /**
2101 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2102 * @mtd: MTD device structure
2103 * @oob: oob data buffer
2104 * @len: oob data write length
2105 * @ops: oob ops structure
2106 */
2107 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2108 struct mtd_oob_ops *ops)
2109 {
2110 struct nand_chip *chip = mtd->priv;
2111
2112 /*
2113 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2114 * data from a previous OOB read.
2115 */
2116 memset(chip->oob_poi, 0xff, mtd->oobsize);
2117
2118 switch (ops->mode) {
2119
2120 case MTD_OPS_PLACE_OOB:
2121 case MTD_OPS_RAW:
2122 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2123 return oob + len;
2124
2125 case MTD_OPS_AUTO_OOB: {
2126 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2127 uint32_t boffs = 0, woffs = ops->ooboffs;
2128 size_t bytes = 0;
2129
2130 for (; free->length && len; free++, len -= bytes) {
2131 /* Write request not from offset 0? */
2132 if (unlikely(woffs)) {
2133 if (woffs >= free->length) {
2134 woffs -= free->length;
2135 continue;
2136 }
2137 boffs = free->offset + woffs;
2138 bytes = min_t(size_t, len,
2139 (free->length - woffs));
2140 woffs = 0;
2141 } else {
2142 bytes = min_t(size_t, len, free->length);
2143 boffs = free->offset;
2144 }
2145 memcpy(chip->oob_poi + boffs, oob, bytes);
2146 oob += bytes;
2147 }
2148 return oob;
2149 }
2150 default:
2151 BUG();
2152 }
2153 return NULL;
2154 }
2155
2156 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2157
2158 /**
2159 * nand_do_write_ops - [INTERN] NAND write with ECC
2160 * @mtd: MTD device structure
2161 * @to: offset to write to
2162 * @ops: oob operations description structure
2163 *
2164 * NAND write with ECC.
2165 */
2166 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2167 struct mtd_oob_ops *ops)
2168 {
2169 int chipnr, realpage, page, blockmask, column;
2170 struct nand_chip *chip = mtd->priv;
2171 uint32_t writelen = ops->len;
2172
2173 uint32_t oobwritelen = ops->ooblen;
2174 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2175 mtd->oobavail : mtd->oobsize;
2176
2177 uint8_t *oob = ops->oobbuf;
2178 uint8_t *buf = ops->datbuf;
2179 int ret, subpage;
2180 int oob_required = oob ? 1 : 0;
2181
2182 ops->retlen = 0;
2183 if (!writelen)
2184 return 0;
2185
2186 /* Reject writes, which are not page aligned */
2187 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2188 pr_notice("%s: attempt to write non page aligned data\n",
2189 __func__);
2190 return -EINVAL;
2191 }
2192
2193 column = to & (mtd->writesize - 1);
2194 subpage = column || (writelen & (mtd->writesize - 1));
2195
2196 if (subpage && oob)
2197 return -EINVAL;
2198
2199 chipnr = (int)(to >> chip->chip_shift);
2200 chip->select_chip(mtd, chipnr);
2201
2202 /* Check, if it is write protected */
2203 if (nand_check_wp(mtd)) {
2204 ret = -EIO;
2205 goto err_out;
2206 }
2207
2208 realpage = (int)(to >> chip->page_shift);
2209 page = realpage & chip->pagemask;
2210 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2211
2212 /* Invalidate the page cache, when we write to the cached page */
2213 if (to <= (chip->pagebuf << chip->page_shift) &&
2214 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2215 chip->pagebuf = -1;
2216
2217 /* Don't allow multipage oob writes with offset */
2218 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2219 ret = -EINVAL;
2220 goto err_out;
2221 }
2222
2223 while (1) {
2224 int bytes = mtd->writesize;
2225 int cached = writelen > bytes && page != blockmask;
2226 uint8_t *wbuf = buf;
2227
2228 /* Partial page write? */
2229 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2230 cached = 0;
2231 bytes = min_t(int, bytes - column, (int) writelen);
2232 chip->pagebuf = -1;
2233 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2234 memcpy(&chip->buffers->databuf[column], buf, bytes);
2235 wbuf = chip->buffers->databuf;
2236 }
2237
2238 if (unlikely(oob)) {
2239 size_t len = min(oobwritelen, oobmaxlen);
2240 oob = nand_fill_oob(mtd, oob, len, ops);
2241 oobwritelen -= len;
2242 } else {
2243 /* We still need to erase leftover OOB data */
2244 memset(chip->oob_poi, 0xff, mtd->oobsize);
2245 }
2246
2247 ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2248 cached, (ops->mode == MTD_OPS_RAW));
2249 if (ret)
2250 break;
2251
2252 writelen -= bytes;
2253 if (!writelen)
2254 break;
2255
2256 column = 0;
2257 buf += bytes;
2258 realpage++;
2259
2260 page = realpage & chip->pagemask;
2261 /* Check, if we cross a chip boundary */
2262 if (!page) {
2263 chipnr++;
2264 chip->select_chip(mtd, -1);
2265 chip->select_chip(mtd, chipnr);
2266 }
2267 }
2268
2269 ops->retlen = ops->len - writelen;
2270 if (unlikely(oob))
2271 ops->oobretlen = ops->ooblen;
2272
2273 err_out:
2274 chip->select_chip(mtd, -1);
2275 return ret;
2276 }
2277
2278 /**
2279 * panic_nand_write - [MTD Interface] NAND write with ECC
2280 * @mtd: MTD device structure
2281 * @to: offset to write to
2282 * @len: number of bytes to write
2283 * @retlen: pointer to variable to store the number of written bytes
2284 * @buf: the data to write
2285 *
2286 * NAND write with ECC. Used when performing writes in interrupt context, this
2287 * may for example be called by mtdoops when writing an oops while in panic.
2288 */
2289 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2290 size_t *retlen, const uint8_t *buf)
2291 {
2292 struct nand_chip *chip = mtd->priv;
2293 struct mtd_oob_ops ops;
2294 int ret;
2295
2296 /* Wait for the device to get ready */
2297 panic_nand_wait(mtd, chip, 400);
2298
2299 /* Grab the device */
2300 panic_nand_get_device(chip, mtd, FL_WRITING);
2301
2302 ops.len = len;
2303 ops.datbuf = (uint8_t *)buf;
2304 ops.oobbuf = NULL;
2305 ops.mode = MTD_OPS_PLACE_OOB;
2306
2307 ret = nand_do_write_ops(mtd, to, &ops);
2308
2309 *retlen = ops.retlen;
2310 return ret;
2311 }
2312
2313 /**
2314 * nand_write - [MTD Interface] NAND write with ECC
2315 * @mtd: MTD device structure
2316 * @to: offset to write to
2317 * @len: number of bytes to write
2318 * @retlen: pointer to variable to store the number of written bytes
2319 * @buf: the data to write
2320 *
2321 * NAND write with ECC.
2322 */
2323 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2324 size_t *retlen, const uint8_t *buf)
2325 {
2326 struct mtd_oob_ops ops;
2327 int ret;
2328
2329 nand_get_device(mtd, FL_WRITING);
2330 ops.len = len;
2331 ops.datbuf = (uint8_t *)buf;
2332 ops.oobbuf = NULL;
2333 ops.mode = MTD_OPS_PLACE_OOB;
2334 ret = nand_do_write_ops(mtd, to, &ops);
2335 *retlen = ops.retlen;
2336 nand_release_device(mtd);
2337 return ret;
2338 }
2339
2340 /**
2341 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2342 * @mtd: MTD device structure
2343 * @to: offset to write to
2344 * @ops: oob operation description structure
2345 *
2346 * NAND write out-of-band.
2347 */
2348 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2349 struct mtd_oob_ops *ops)
2350 {
2351 int chipnr, page, status, len;
2352 struct nand_chip *chip = mtd->priv;
2353
2354 pr_debug("%s: to = 0x%08x, len = %i\n",
2355 __func__, (unsigned int)to, (int)ops->ooblen);
2356
2357 if (ops->mode == MTD_OPS_AUTO_OOB)
2358 len = chip->ecc.layout->oobavail;
2359 else
2360 len = mtd->oobsize;
2361
2362 /* Do not allow write past end of page */
2363 if ((ops->ooboffs + ops->ooblen) > len) {
2364 pr_debug("%s: attempt to write past end of page\n",
2365 __func__);
2366 return -EINVAL;
2367 }
2368
2369 if (unlikely(ops->ooboffs >= len)) {
2370 pr_debug("%s: attempt to start write outside oob\n",
2371 __func__);
2372 return -EINVAL;
2373 }
2374
2375 /* Do not allow write past end of device */
2376 if (unlikely(to >= mtd->size ||
2377 ops->ooboffs + ops->ooblen >
2378 ((mtd->size >> chip->page_shift) -
2379 (to >> chip->page_shift)) * len)) {
2380 pr_debug("%s: attempt to write beyond end of device\n",
2381 __func__);
2382 return -EINVAL;
2383 }
2384
2385 chipnr = (int)(to >> chip->chip_shift);
2386 chip->select_chip(mtd, chipnr);
2387
2388 /* Shift to get page */
2389 page = (int)(to >> chip->page_shift);
2390
2391 /*
2392 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2393 * of my DiskOnChip 2000 test units) will clear the whole data page too
2394 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2395 * it in the doc2000 driver in August 1999. dwmw2.
2396 */
2397 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2398
2399 /* Check, if it is write protected */
2400 if (nand_check_wp(mtd)) {
2401 chip->select_chip(mtd, -1);
2402 return -EROFS;
2403 }
2404
2405 /* Invalidate the page cache, if we write to the cached page */
2406 if (page == chip->pagebuf)
2407 chip->pagebuf = -1;
2408
2409 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2410
2411 if (ops->mode == MTD_OPS_RAW)
2412 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2413 else
2414 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2415
2416 chip->select_chip(mtd, -1);
2417
2418 if (status)
2419 return status;
2420
2421 ops->oobretlen = ops->ooblen;
2422
2423 return 0;
2424 }
2425
2426 /**
2427 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2428 * @mtd: MTD device structure
2429 * @to: offset to write to
2430 * @ops: oob operation description structure
2431 */
2432 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2433 struct mtd_oob_ops *ops)
2434 {
2435 int ret = -ENOTSUPP;
2436
2437 ops->retlen = 0;
2438
2439 /* Do not allow writes past end of device */
2440 if (ops->datbuf && (to + ops->len) > mtd->size) {
2441 pr_debug("%s: attempt to write beyond end of device\n",
2442 __func__);
2443 return -EINVAL;
2444 }
2445
2446 nand_get_device(mtd, FL_WRITING);
2447
2448 switch (ops->mode) {
2449 case MTD_OPS_PLACE_OOB:
2450 case MTD_OPS_AUTO_OOB:
2451 case MTD_OPS_RAW:
2452 break;
2453
2454 default:
2455 goto out;
2456 }
2457
2458 if (!ops->datbuf)
2459 ret = nand_do_write_oob(mtd, to, ops);
2460 else
2461 ret = nand_do_write_ops(mtd, to, ops);
2462
2463 out:
2464 nand_release_device(mtd);
2465 return ret;
2466 }
2467
2468 /**
2469 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2470 * @mtd: MTD device structure
2471 * @page: the page address of the block which will be erased
2472 *
2473 * Standard erase command for NAND chips.
2474 */
2475 static void single_erase_cmd(struct mtd_info *mtd, int page)
2476 {
2477 struct nand_chip *chip = mtd->priv;
2478 /* Send commands to erase a block */
2479 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2480 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2481 }
2482
2483 /**
2484 * multi_erase_cmd - [GENERIC] AND specific block erase command function
2485 * @mtd: MTD device structure
2486 * @page: the page address of the block which will be erased
2487 *
2488 * AND multi block erase command function. Erase 4 consecutive blocks.
2489 */
2490 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2491 {
2492 struct nand_chip *chip = mtd->priv;
2493 /* Send commands to erase a block */
2494 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2495 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2496 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2497 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2498 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2499 }
2500
2501 /**
2502 * nand_erase - [MTD Interface] erase block(s)
2503 * @mtd: MTD device structure
2504 * @instr: erase instruction
2505 *
2506 * Erase one ore more blocks.
2507 */
2508 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2509 {
2510 return nand_erase_nand(mtd, instr, 0);
2511 }
2512
2513 #define BBT_PAGE_MASK 0xffffff3f
2514 /**
2515 * nand_erase_nand - [INTERN] erase block(s)
2516 * @mtd: MTD device structure
2517 * @instr: erase instruction
2518 * @allowbbt: allow erasing the bbt area
2519 *
2520 * Erase one ore more blocks.
2521 */
2522 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2523 int allowbbt)
2524 {
2525 int page, status, pages_per_block, ret, chipnr;
2526 struct nand_chip *chip = mtd->priv;
2527 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2528 unsigned int bbt_masked_page = 0xffffffff;
2529 loff_t len;
2530
2531 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2532 __func__, (unsigned long long)instr->addr,
2533 (unsigned long long)instr->len);
2534
2535 if (check_offs_len(mtd, instr->addr, instr->len))
2536 return -EINVAL;
2537
2538 /* Grab the lock and see if the device is available */
2539 nand_get_device(mtd, FL_ERASING);
2540
2541 /* Shift to get first page */
2542 page = (int)(instr->addr >> chip->page_shift);
2543 chipnr = (int)(instr->addr >> chip->chip_shift);
2544
2545 /* Calculate pages in each block */
2546 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2547
2548 /* Select the NAND device */
2549 chip->select_chip(mtd, chipnr);
2550
2551 /* Check, if it is write protected */
2552 if (nand_check_wp(mtd)) {
2553 pr_debug("%s: device is write protected!\n",
2554 __func__);
2555 instr->state = MTD_ERASE_FAILED;
2556 goto erase_exit;
2557 }
2558
2559 /*
2560 * If BBT requires refresh, set the BBT page mask to see if the BBT
2561 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2562 * can not be matched. This is also done when the bbt is actually
2563 * erased to avoid recursive updates.
2564 */
2565 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2566 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2567
2568 /* Loop through the pages */
2569 len = instr->len;
2570
2571 instr->state = MTD_ERASING;
2572
2573 while (len) {
2574 /* Check if we have a bad block, we do not erase bad blocks! */
2575 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2576 chip->page_shift, 0, allowbbt)) {
2577 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2578 __func__, page);
2579 instr->state = MTD_ERASE_FAILED;
2580 goto erase_exit;
2581 }
2582
2583 /*
2584 * Invalidate the page cache, if we erase the block which
2585 * contains the current cached page.
2586 */
2587 if (page <= chip->pagebuf && chip->pagebuf <
2588 (page + pages_per_block))
2589 chip->pagebuf = -1;
2590
2591 chip->erase_cmd(mtd, page & chip->pagemask);
2592
2593 status = chip->waitfunc(mtd, chip);
2594
2595 /*
2596 * See if operation failed and additional status checks are
2597 * available
2598 */
2599 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2600 status = chip->errstat(mtd, chip, FL_ERASING,
2601 status, page);
2602
2603 /* See if block erase succeeded */
2604 if (status & NAND_STATUS_FAIL) {
2605 pr_debug("%s: failed erase, page 0x%08x\n",
2606 __func__, page);
2607 instr->state = MTD_ERASE_FAILED;
2608 instr->fail_addr =
2609 ((loff_t)page << chip->page_shift);
2610 goto erase_exit;
2611 }
2612
2613 /*
2614 * If BBT requires refresh, set the BBT rewrite flag to the
2615 * page being erased.
2616 */
2617 if (bbt_masked_page != 0xffffffff &&
2618 (page & BBT_PAGE_MASK) == bbt_masked_page)
2619 rewrite_bbt[chipnr] =
2620 ((loff_t)page << chip->page_shift);
2621
2622 /* Increment page address and decrement length */
2623 len -= (1 << chip->phys_erase_shift);
2624 page += pages_per_block;
2625
2626 /* Check, if we cross a chip boundary */
2627 if (len && !(page & chip->pagemask)) {
2628 chipnr++;
2629 chip->select_chip(mtd, -1);
2630 chip->select_chip(mtd, chipnr);
2631
2632 /*
2633 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2634 * page mask to see if this BBT should be rewritten.
2635 */
2636 if (bbt_masked_page != 0xffffffff &&
2637 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2638 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2639 BBT_PAGE_MASK;
2640 }
2641 }
2642 instr->state = MTD_ERASE_DONE;
2643
2644 erase_exit:
2645
2646 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2647
2648 /* Deselect and wake up anyone waiting on the device */
2649 chip->select_chip(mtd, -1);
2650 nand_release_device(mtd);
2651
2652 /* Do call back function */
2653 if (!ret)
2654 mtd_erase_callback(instr);
2655
2656 /*
2657 * If BBT requires refresh and erase was successful, rewrite any
2658 * selected bad block tables.
2659 */
2660 if (bbt_masked_page == 0xffffffff || ret)
2661 return ret;
2662
2663 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2664 if (!rewrite_bbt[chipnr])
2665 continue;
2666 /* Update the BBT for chip */
2667 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2668 __func__, chipnr, rewrite_bbt[chipnr],
2669 chip->bbt_td->pages[chipnr]);
2670 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2671 }
2672
2673 /* Return more or less happy */
2674 return ret;
2675 }
2676
2677 /**
2678 * nand_sync - [MTD Interface] sync
2679 * @mtd: MTD device structure
2680 *
2681 * Sync is actually a wait for chip ready function.
2682 */
2683 static void nand_sync(struct mtd_info *mtd)
2684 {
2685 pr_debug("%s: called\n", __func__);
2686
2687 /* Grab the lock and see if the device is available */
2688 nand_get_device(mtd, FL_SYNCING);
2689 /* Release it and go back */
2690 nand_release_device(mtd);
2691 }
2692
2693 /**
2694 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2695 * @mtd: MTD device structure
2696 * @offs: offset relative to mtd start
2697 */
2698 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2699 {
2700 return nand_block_checkbad(mtd, offs, 1, 0);
2701 }
2702
2703 /**
2704 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2705 * @mtd: MTD device structure
2706 * @ofs: offset relative to mtd start
2707 */
2708 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2709 {
2710 struct nand_chip *chip = mtd->priv;
2711 int ret;
2712
2713 ret = nand_block_isbad(mtd, ofs);
2714 if (ret) {
2715 /* If it was bad already, return success and do nothing */
2716 if (ret > 0)
2717 return 0;
2718 return ret;
2719 }
2720
2721 return chip->block_markbad(mtd, ofs);
2722 }
2723
2724 /**
2725 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2726 * @mtd: MTD device structure
2727 * @chip: nand chip info structure
2728 * @addr: feature address.
2729 * @subfeature_param: the subfeature parameters, a four bytes array.
2730 */
2731 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2732 int addr, uint8_t *subfeature_param)
2733 {
2734 int status;
2735
2736 if (!chip->onfi_version)
2737 return -EINVAL;
2738
2739 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2740 chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2741 status = chip->waitfunc(mtd, chip);
2742 if (status & NAND_STATUS_FAIL)
2743 return -EIO;
2744 return 0;
2745 }
2746
2747 /**
2748 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2749 * @mtd: MTD device structure
2750 * @chip: nand chip info structure
2751 * @addr: feature address.
2752 * @subfeature_param: the subfeature parameters, a four bytes array.
2753 */
2754 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2755 int addr, uint8_t *subfeature_param)
2756 {
2757 if (!chip->onfi_version)
2758 return -EINVAL;
2759
2760 /* clear the sub feature parameters */
2761 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2762
2763 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2764 chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2765 return 0;
2766 }
2767
2768 /**
2769 * nand_suspend - [MTD Interface] Suspend the NAND flash
2770 * @mtd: MTD device structure
2771 */
2772 static int nand_suspend(struct mtd_info *mtd)
2773 {
2774 return nand_get_device(mtd, FL_PM_SUSPENDED);
2775 }
2776
2777 /**
2778 * nand_resume - [MTD Interface] Resume the NAND flash
2779 * @mtd: MTD device structure
2780 */
2781 static void nand_resume(struct mtd_info *mtd)
2782 {
2783 struct nand_chip *chip = mtd->priv;
2784
2785 if (chip->state == FL_PM_SUSPENDED)
2786 nand_release_device(mtd);
2787 else
2788 pr_err("%s called for a chip which is not in suspended state\n",
2789 __func__);
2790 }
2791
2792 /* Set default functions */
2793 static void nand_set_defaults(struct nand_chip *chip, int busw)
2794 {
2795 /* check for proper chip_delay setup, set 20us if not */
2796 if (!chip->chip_delay)
2797 chip->chip_delay = 20;
2798
2799 /* check, if a user supplied command function given */
2800 if (chip->cmdfunc == NULL)
2801 chip->cmdfunc = nand_command;
2802
2803 /* check, if a user supplied wait function given */
2804 if (chip->waitfunc == NULL)
2805 chip->waitfunc = nand_wait;
2806
2807 if (!chip->select_chip)
2808 chip->select_chip = nand_select_chip;
2809 if (!chip->read_byte)
2810 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2811 if (!chip->read_word)
2812 chip->read_word = nand_read_word;
2813 if (!chip->block_bad)
2814 chip->block_bad = nand_block_bad;
2815 if (!chip->block_markbad)
2816 chip->block_markbad = nand_default_block_markbad;
2817 if (!chip->write_buf)
2818 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2819 if (!chip->read_buf)
2820 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2821 if (!chip->scan_bbt)
2822 chip->scan_bbt = nand_default_bbt;
2823
2824 if (!chip->controller) {
2825 chip->controller = &chip->hwcontrol;
2826 spin_lock_init(&chip->controller->lock);
2827 init_waitqueue_head(&chip->controller->wq);
2828 }
2829
2830 }
2831
2832 /* Sanitize ONFI strings so we can safely print them */
2833 static void sanitize_string(uint8_t *s, size_t len)
2834 {
2835 ssize_t i;
2836
2837 /* Null terminate */
2838 s[len - 1] = 0;
2839
2840 /* Remove non printable chars */
2841 for (i = 0; i < len - 1; i++) {
2842 if (s[i] < ' ' || s[i] > 127)
2843 s[i] = '?';
2844 }
2845
2846 /* Remove trailing spaces */
2847 strim(s);
2848 }
2849
2850 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2851 {
2852 int i;
2853 while (len--) {
2854 crc ^= *p++ << 8;
2855 for (i = 0; i < 8; i++)
2856 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2857 }
2858
2859 return crc;
2860 }
2861
2862 /*
2863 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2864 */
2865 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2866 int *busw)
2867 {
2868 struct nand_onfi_params *p = &chip->onfi_params;
2869 int i;
2870 int val;
2871
2872 /* ONFI need to be probed in 8 bits mode, and 16 bits should be selected with NAND_BUSWIDTH_AUTO */
2873 if (chip->options & NAND_BUSWIDTH_16) {
2874 pr_err("Trying ONFI probe in 16 bits mode, aborting !\n");
2875 return 0;
2876 }
2877 /* Try ONFI for unknown chip or LP */
2878 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2879 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2880 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2881 return 0;
2882
2883 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2884 for (i = 0; i < 3; i++) {
2885 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2886 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2887 le16_to_cpu(p->crc)) {
2888 pr_info("ONFI param page %d valid\n", i);
2889 break;
2890 }
2891 }
2892
2893 if (i == 3)
2894 return 0;
2895
2896 /* Check version */
2897 val = le16_to_cpu(p->revision);
2898 if (val & (1 << 5))
2899 chip->onfi_version = 23;
2900 else if (val & (1 << 4))
2901 chip->onfi_version = 22;
2902 else if (val & (1 << 3))
2903 chip->onfi_version = 21;
2904 else if (val & (1 << 2))
2905 chip->onfi_version = 20;
2906 else if (val & (1 << 1))
2907 chip->onfi_version = 10;
2908 else
2909 chip->onfi_version = 0;
2910
2911 if (!chip->onfi_version) {
2912 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2913 return 0;
2914 }
2915
2916 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2917 sanitize_string(p->model, sizeof(p->model));
2918 if (!mtd->name)
2919 mtd->name = p->model;
2920 mtd->writesize = le32_to_cpu(p->byte_per_page);
2921 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2922 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2923 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2924 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2925 *busw = 0;
2926 if (le16_to_cpu(p->features) & 1)
2927 *busw = NAND_BUSWIDTH_16;
2928
2929 pr_info("ONFI flash detected\n");
2930 return 1;
2931 }
2932
2933 /*
2934 * nand_id_has_period - Check if an ID string has a given wraparound period
2935 * @id_data: the ID string
2936 * @arrlen: the length of the @id_data array
2937 * @period: the period of repitition
2938 *
2939 * Check if an ID string is repeated within a given sequence of bytes at
2940 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
2941 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
2942 * if the repetition has a period of @period; otherwise, returns zero.
2943 */
2944 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
2945 {
2946 int i, j;
2947 for (i = 0; i < period; i++)
2948 for (j = i + period; j < arrlen; j += period)
2949 if (id_data[i] != id_data[j])
2950 return 0;
2951 return 1;
2952 }
2953
2954 /*
2955 * nand_id_len - Get the length of an ID string returned by CMD_READID
2956 * @id_data: the ID string
2957 * @arrlen: the length of the @id_data array
2958
2959 * Returns the length of the ID string, according to known wraparound/trailing
2960 * zero patterns. If no pattern exists, returns the length of the array.
2961 */
2962 static int nand_id_len(u8 *id_data, int arrlen)
2963 {
2964 int last_nonzero, period;
2965
2966 /* Find last non-zero byte */
2967 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
2968 if (id_data[last_nonzero])
2969 break;
2970
2971 /* All zeros */
2972 if (last_nonzero < 0)
2973 return 0;
2974
2975 /* Calculate wraparound period */
2976 for (period = 1; period < arrlen; period++)
2977 if (nand_id_has_period(id_data, arrlen, period))
2978 break;
2979
2980 /* There's a repeated pattern */
2981 if (period < arrlen)
2982 return period;
2983
2984 /* There are trailing zeros */
2985 if (last_nonzero < arrlen - 1)
2986 return last_nonzero + 1;
2987
2988 /* No pattern detected */
2989 return arrlen;
2990 }
2991
2992 /*
2993 * Many new NAND share similar device ID codes, which represent the size of the
2994 * chip. The rest of the parameters must be decoded according to generic or
2995 * manufacturer-specific "extended ID" decoding patterns.
2996 */
2997 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
2998 u8 id_data[8], int *busw)
2999 {
3000 int extid, id_len;
3001 /* The 3rd id byte holds MLC / multichip data */
3002 chip->cellinfo = id_data[2];
3003 /* The 4th id byte is the important one */
3004 extid = id_data[3];
3005
3006 id_len = nand_id_len(id_data, 8);
3007
3008 /*
3009 * Field definitions are in the following datasheets:
3010 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3011 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3012 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3013 *
3014 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3015 * ID to decide what to do.
3016 */
3017 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3018 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3019 id_data[5] != 0x00) {
3020 /* Calc pagesize */
3021 mtd->writesize = 2048 << (extid & 0x03);
3022 extid >>= 2;
3023 /* Calc oobsize */
3024 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3025 case 1:
3026 mtd->oobsize = 128;
3027 break;
3028 case 2:
3029 mtd->oobsize = 218;
3030 break;
3031 case 3:
3032 mtd->oobsize = 400;
3033 break;
3034 case 4:
3035 mtd->oobsize = 436;
3036 break;
3037 case 5:
3038 mtd->oobsize = 512;
3039 break;
3040 case 6:
3041 default: /* Other cases are "reserved" (unknown) */
3042 mtd->oobsize = 640;
3043 break;
3044 }
3045 extid >>= 2;
3046 /* Calc blocksize */
3047 mtd->erasesize = (128 * 1024) <<
3048 (((extid >> 1) & 0x04) | (extid & 0x03));
3049 *busw = 0;
3050 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3051 (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3052 unsigned int tmp;
3053
3054 /* Calc pagesize */
3055 mtd->writesize = 2048 << (extid & 0x03);
3056 extid >>= 2;
3057 /* Calc oobsize */
3058 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3059 case 0:
3060 mtd->oobsize = 128;
3061 break;
3062 case 1:
3063 mtd->oobsize = 224;
3064 break;
3065 case 2:
3066 mtd->oobsize = 448;
3067 break;
3068 case 3:
3069 mtd->oobsize = 64;
3070 break;
3071 case 4:
3072 mtd->oobsize = 32;
3073 break;
3074 case 5:
3075 mtd->oobsize = 16;
3076 break;
3077 default:
3078 mtd->oobsize = 640;
3079 break;
3080 }
3081 extid >>= 2;
3082 /* Calc blocksize */
3083 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3084 if (tmp < 0x03)
3085 mtd->erasesize = (128 * 1024) << tmp;
3086 else if (tmp == 0x03)
3087 mtd->erasesize = 768 * 1024;
3088 else
3089 mtd->erasesize = (64 * 1024) << tmp;
3090 *busw = 0;
3091 } else {
3092 /* Calc pagesize */
3093 mtd->writesize = 1024 << (extid & 0x03);
3094 extid >>= 2;
3095 /* Calc oobsize */
3096 mtd->oobsize = (8 << (extid & 0x01)) *
3097 (mtd->writesize >> 9);
3098 extid >>= 2;
3099 /* Calc blocksize. Blocksize is multiples of 64KiB */
3100 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3101 extid >>= 2;
3102 /* Get buswidth information */
3103 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3104 }
3105 }
3106
3107 /*
3108 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3109 * decodes a matching ID table entry and assigns the MTD size parameters for
3110 * the chip.
3111 */
3112 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3113 struct nand_flash_dev *type, u8 id_data[8],
3114 int *busw)
3115 {
3116 int maf_id = id_data[0];
3117
3118 mtd->erasesize = type->erasesize;
3119 mtd->writesize = type->pagesize;
3120 mtd->oobsize = mtd->writesize / 32;
3121 *busw = type->options & NAND_BUSWIDTH_16;
3122
3123 /*
3124 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3125 * some Spansion chips have erasesize that conflicts with size
3126 * listed in nand_ids table.
3127 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3128 */
3129 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3130 && id_data[6] == 0x00 && id_data[7] == 0x00
3131 && mtd->writesize == 512) {
3132 mtd->erasesize = 128 * 1024;
3133 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3134 }
3135 }
3136
3137 /*
3138 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3139 * heuristic patterns using various detected parameters (e.g., manufacturer,
3140 * page size, cell-type information).
3141 */
3142 static void nand_decode_bbm_options(struct mtd_info *mtd,
3143 struct nand_chip *chip, u8 id_data[8])
3144 {
3145 int maf_id = id_data[0];
3146
3147 /* Set the bad block position */
3148 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3149 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3150 else
3151 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3152
3153 /*
3154 * Bad block marker is stored in the last page of each block on Samsung
3155 * and Hynix MLC devices; stored in first two pages of each block on
3156 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3157 * AMD/Spansion, and Macronix. All others scan only the first page.
3158 */
3159 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3160 (maf_id == NAND_MFR_SAMSUNG ||
3161 maf_id == NAND_MFR_HYNIX))
3162 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3163 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3164 (maf_id == NAND_MFR_SAMSUNG ||
3165 maf_id == NAND_MFR_HYNIX ||
3166 maf_id == NAND_MFR_TOSHIBA ||
3167 maf_id == NAND_MFR_AMD ||
3168 maf_id == NAND_MFR_MACRONIX)) ||
3169 (mtd->writesize == 2048 &&
3170 maf_id == NAND_MFR_MICRON))
3171 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3172 }
3173
3174 /*
3175 * Get the flash and manufacturer id and lookup if the type is supported.
3176 */
3177 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3178 struct nand_chip *chip,
3179 int busw,
3180 int *maf_id, int *dev_id,
3181 struct nand_flash_dev *type)
3182 {
3183 int i, maf_idx;
3184 u8 id_data[8];
3185
3186 /* Select the device */
3187 chip->select_chip(mtd, 0);
3188
3189 /*
3190 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3191 * after power-up.
3192 */
3193 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3194
3195 /* Send the command for reading device ID */
3196 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3197
3198 /* Read manufacturer and device IDs */
3199 *maf_id = chip->read_byte(mtd);
3200 *dev_id = chip->read_byte(mtd);
3201
3202 /*
3203 * Try again to make sure, as some systems the bus-hold or other
3204 * interface concerns can cause random data which looks like a
3205 * possibly credible NAND flash to appear. If the two results do
3206 * not match, ignore the device completely.
3207 */
3208
3209 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3210
3211 /* Read entire ID string */
3212 for (i = 0; i < 8; i++)
3213 id_data[i] = chip->read_byte(mtd);
3214
3215 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3216 pr_info("%s: second ID read did not match "
3217 "%02x,%02x against %02x,%02x\n", __func__,
3218 *maf_id, *dev_id, id_data[0], id_data[1]);
3219 return ERR_PTR(-ENODEV);
3220 }
3221
3222 if (!type)
3223 type = nand_flash_ids;
3224
3225 for (; type->name != NULL; type++)
3226 if (*dev_id == type->id)
3227 break;
3228
3229 chip->onfi_version = 0;
3230 if (!type->name || !type->pagesize) {
3231 /* Check is chip is ONFI compliant */
3232 if (nand_flash_detect_onfi(mtd, chip, &busw))
3233 goto ident_done;
3234 }
3235
3236 if (!type->name)
3237 return ERR_PTR(-ENODEV);
3238
3239 if (!mtd->name)
3240 mtd->name = type->name;
3241
3242 chip->chipsize = (uint64_t)type->chipsize << 20;
3243
3244 if (!type->pagesize && chip->init_size) {
3245 /* Set the pagesize, oobsize, erasesize by the driver */
3246 busw = chip->init_size(mtd, chip, id_data);
3247 } else if (!type->pagesize) {
3248 /* Decode parameters from extended ID */
3249 nand_decode_ext_id(mtd, chip, id_data, &busw);
3250 } else {
3251 nand_decode_id(mtd, chip, type, id_data, &busw);
3252 }
3253 /* Get chip options */
3254 chip->options |= type->options;
3255
3256 /*
3257 * Check if chip is not a Samsung device. Do not clear the
3258 * options for chips which do not have an extended id.
3259 */
3260 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3261 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3262 ident_done:
3263
3264 /* Try to identify manufacturer */
3265 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3266 if (nand_manuf_ids[maf_idx].id == *maf_id)
3267 break;
3268 }
3269
3270 if (chip->options & NAND_BUSWIDTH_AUTO) {
3271 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3272 chip->options |= busw;
3273 nand_set_defaults(chip, busw);
3274 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3275 /*
3276 * Check, if buswidth is correct. Hardware drivers should set
3277 * chip correct!
3278 */
3279 pr_info("NAND device: Manufacturer ID:"
3280 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3281 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3282 pr_warn("NAND bus width %d instead %d bit\n",
3283 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3284 busw ? 16 : 8);
3285 return ERR_PTR(-EINVAL);
3286 }
3287
3288 nand_decode_bbm_options(mtd, chip, id_data);
3289
3290 /* Calculate the address shift from the page size */
3291 chip->page_shift = ffs(mtd->writesize) - 1;
3292 /* Convert chipsize to number of pages per chip -1 */
3293 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3294
3295 chip->bbt_erase_shift = chip->phys_erase_shift =
3296 ffs(mtd->erasesize) - 1;
3297 if (chip->chipsize & 0xffffffff)
3298 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3299 else {
3300 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3301 chip->chip_shift += 32 - 1;
3302 }
3303
3304 chip->badblockbits = 8;
3305
3306 /* Check for AND chips with 4 page planes */
3307 if (chip->options & NAND_4PAGE_ARRAY)
3308 chip->erase_cmd = multi_erase_cmd;
3309 else
3310 chip->erase_cmd = single_erase_cmd;
3311
3312 /* Do not replace user supplied command function! */
3313 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3314 chip->cmdfunc = nand_command_lp;
3315
3316 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3317 " %dMiB, page size: %d, OOB size: %d\n",
3318 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3319 chip->onfi_version ? chip->onfi_params.model : type->name,
3320 (int)(chip->chipsize >> 20), mtd->writesize, mtd->oobsize);
3321
3322 return type;
3323 }
3324
3325 /**
3326 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3327 * @mtd: MTD device structure
3328 * @maxchips: number of chips to scan for
3329 * @table: alternative NAND ID table
3330 *
3331 * This is the first phase of the normal nand_scan() function. It reads the
3332 * flash ID and sets up MTD fields accordingly.
3333 *
3334 * The mtd->owner field must be set to the module of the caller.
3335 */
3336 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3337 struct nand_flash_dev *table)
3338 {
3339 int i, busw, nand_maf_id, nand_dev_id;
3340 struct nand_chip *chip = mtd->priv;
3341 struct nand_flash_dev *type;
3342
3343 /* Get buswidth to select the correct functions */
3344 busw = chip->options & NAND_BUSWIDTH_16;
3345 /* Set the default functions */
3346 nand_set_defaults(chip, busw);
3347
3348 /* Read the flash type */
3349 type = nand_get_flash_type(mtd, chip, busw,
3350 &nand_maf_id, &nand_dev_id, table);
3351
3352 if (IS_ERR(type)) {
3353 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3354 pr_warn("No NAND device found\n");
3355 chip->select_chip(mtd, -1);
3356 return PTR_ERR(type);
3357 }
3358
3359 chip->select_chip(mtd, -1);
3360
3361 /* Check for a chip array */
3362 for (i = 1; i < maxchips; i++) {
3363 chip->select_chip(mtd, i);
3364 /* See comment in nand_get_flash_type for reset */
3365 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3366 /* Send the command for reading device ID */
3367 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3368 /* Read manufacturer and device IDs */
3369 if (nand_maf_id != chip->read_byte(mtd) ||
3370 nand_dev_id != chip->read_byte(mtd)) {
3371 chip->select_chip(mtd, -1);
3372 break;
3373 }
3374 chip->select_chip(mtd, -1);
3375 }
3376 if (i > 1)
3377 pr_info("%d NAND chips detected\n", i);
3378
3379 /* Store the number of chips and calc total size for mtd */
3380 chip->numchips = i;
3381 mtd->size = i * chip->chipsize;
3382
3383 return 0;
3384 }
3385 EXPORT_SYMBOL(nand_scan_ident);
3386
3387
3388 /**
3389 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3390 * @mtd: MTD device structure
3391 *
3392 * This is the second phase of the normal nand_scan() function. It fills out
3393 * all the uninitialized function pointers with the defaults and scans for a
3394 * bad block table if appropriate.
3395 */
3396 int nand_scan_tail(struct mtd_info *mtd)
3397 {
3398 int i;
3399 struct nand_chip *chip = mtd->priv;
3400
3401 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3402 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3403 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3404
3405 if (!(chip->options & NAND_OWN_BUFFERS))
3406 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3407 if (!chip->buffers)
3408 return -ENOMEM;
3409
3410 /* Set the internal oob buffer location, just after the page data */
3411 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3412
3413 /*
3414 * If no default placement scheme is given, select an appropriate one.
3415 */
3416 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3417 switch (mtd->oobsize) {
3418 case 8:
3419 chip->ecc.layout = &nand_oob_8;
3420 break;
3421 case 16:
3422 chip->ecc.layout = &nand_oob_16;
3423 break;
3424 case 64:
3425 chip->ecc.layout = &nand_oob_64;
3426 break;
3427 case 128:
3428 chip->ecc.layout = &nand_oob_128;
3429 break;
3430 default:
3431 pr_warn("No oob scheme defined for oobsize %d\n",
3432 mtd->oobsize);
3433 BUG();
3434 }
3435 }
3436
3437 if (!chip->write_page)
3438 chip->write_page = nand_write_page;
3439
3440 /* set for ONFI nand */
3441 if (!chip->onfi_set_features)
3442 chip->onfi_set_features = nand_onfi_set_features;
3443 if (!chip->onfi_get_features)
3444 chip->onfi_get_features = nand_onfi_get_features;
3445
3446 /*
3447 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3448 * selected and we have 256 byte pagesize fallback to software ECC
3449 */
3450
3451 switch (chip->ecc.mode) {
3452 case NAND_ECC_HW_OOB_FIRST:
3453 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3454 if (!chip->ecc.calculate || !chip->ecc.correct ||
3455 !chip->ecc.hwctl) {
3456 pr_warn("No ECC functions supplied; "
3457 "hardware ECC not possible\n");
3458 BUG();
3459 }
3460 if (!chip->ecc.read_page)
3461 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3462
3463 case NAND_ECC_HW:
3464 /* Use standard hwecc read page function? */
3465 if (!chip->ecc.read_page)
3466 chip->ecc.read_page = nand_read_page_hwecc;
3467 if (!chip->ecc.write_page)
3468 chip->ecc.write_page = nand_write_page_hwecc;
3469 if (!chip->ecc.read_page_raw)
3470 chip->ecc.read_page_raw = nand_read_page_raw;
3471 if (!chip->ecc.write_page_raw)
3472 chip->ecc.write_page_raw = nand_write_page_raw;
3473 if (!chip->ecc.read_oob)
3474 chip->ecc.read_oob = nand_read_oob_std;
3475 if (!chip->ecc.write_oob)
3476 chip->ecc.write_oob = nand_write_oob_std;
3477
3478 case NAND_ECC_HW_SYNDROME:
3479 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3480 !chip->ecc.hwctl) &&
3481 (!chip->ecc.read_page ||
3482 chip->ecc.read_page == nand_read_page_hwecc ||
3483 !chip->ecc.write_page ||
3484 chip->ecc.write_page == nand_write_page_hwecc)) {
3485 pr_warn("No ECC functions supplied; "
3486 "hardware ECC not possible\n");
3487 BUG();
3488 }
3489 /* Use standard syndrome read/write page function? */
3490 if (!chip->ecc.read_page)
3491 chip->ecc.read_page = nand_read_page_syndrome;
3492 if (!chip->ecc.write_page)
3493 chip->ecc.write_page = nand_write_page_syndrome;
3494 if (!chip->ecc.read_page_raw)
3495 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3496 if (!chip->ecc.write_page_raw)
3497 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3498 if (!chip->ecc.read_oob)
3499 chip->ecc.read_oob = nand_read_oob_syndrome;
3500 if (!chip->ecc.write_oob)
3501 chip->ecc.write_oob = nand_write_oob_syndrome;
3502
3503 if (mtd->writesize >= chip->ecc.size) {
3504 if (!chip->ecc.strength) {
3505 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3506 BUG();
3507 }
3508 break;
3509 }
3510 pr_warn("%d byte HW ECC not possible on "
3511 "%d byte page size, fallback to SW ECC\n",
3512 chip->ecc.size, mtd->writesize);
3513 chip->ecc.mode = NAND_ECC_SOFT;
3514
3515 case NAND_ECC_SOFT:
3516 chip->ecc.calculate = nand_calculate_ecc;
3517 chip->ecc.correct = nand_correct_data;
3518 chip->ecc.read_page = nand_read_page_swecc;
3519 chip->ecc.read_subpage = nand_read_subpage;
3520 chip->ecc.write_page = nand_write_page_swecc;
3521 chip->ecc.read_page_raw = nand_read_page_raw;
3522 chip->ecc.write_page_raw = nand_write_page_raw;
3523 chip->ecc.read_oob = nand_read_oob_std;
3524 chip->ecc.write_oob = nand_write_oob_std;
3525 if (!chip->ecc.size)
3526 chip->ecc.size = 256;
3527 chip->ecc.bytes = 3;
3528 chip->ecc.strength = 1;
3529 break;
3530
3531 case NAND_ECC_SOFT_BCH:
3532 if (!mtd_nand_has_bch()) {
3533 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3534 BUG();
3535 }
3536 chip->ecc.calculate = nand_bch_calculate_ecc;
3537 chip->ecc.correct = nand_bch_correct_data;
3538 chip->ecc.read_page = nand_read_page_swecc;
3539 chip->ecc.read_subpage = nand_read_subpage;
3540 chip->ecc.write_page = nand_write_page_swecc;
3541 chip->ecc.read_page_raw = nand_read_page_raw;
3542 chip->ecc.write_page_raw = nand_write_page_raw;
3543 chip->ecc.read_oob = nand_read_oob_std;
3544 chip->ecc.write_oob = nand_write_oob_std;
3545 /*
3546 * Board driver should supply ecc.size and ecc.bytes values to
3547 * select how many bits are correctable; see nand_bch_init()
3548 * for details. Otherwise, default to 4 bits for large page
3549 * devices.
3550 */
3551 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3552 chip->ecc.size = 512;
3553 chip->ecc.bytes = 7;
3554 }
3555 chip->ecc.priv = nand_bch_init(mtd,
3556 chip->ecc.size,
3557 chip->ecc.bytes,
3558 &chip->ecc.layout);
3559 if (!chip->ecc.priv) {
3560 pr_warn("BCH ECC initialization failed!\n");
3561 BUG();
3562 }
3563 chip->ecc.strength =
3564 chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3565 break;
3566
3567 case NAND_ECC_NONE:
3568 pr_warn("NAND_ECC_NONE selected by board driver. "
3569 "This is not recommended!\n");
3570 chip->ecc.read_page = nand_read_page_raw;
3571 chip->ecc.write_page = nand_write_page_raw;
3572 chip->ecc.read_oob = nand_read_oob_std;
3573 chip->ecc.read_page_raw = nand_read_page_raw;
3574 chip->ecc.write_page_raw = nand_write_page_raw;
3575 chip->ecc.write_oob = nand_write_oob_std;
3576 chip->ecc.size = mtd->writesize;
3577 chip->ecc.bytes = 0;
3578 chip->ecc.strength = 0;
3579 break;
3580
3581 default:
3582 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3583 BUG();
3584 }
3585
3586 /* For many systems, the standard OOB write also works for raw */
3587 if (!chip->ecc.read_oob_raw)
3588 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3589 if (!chip->ecc.write_oob_raw)
3590 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3591
3592 /*
3593 * The number of bytes available for a client to place data into
3594 * the out of band area.
3595 */
3596 chip->ecc.layout->oobavail = 0;
3597 for (i = 0; chip->ecc.layout->oobfree[i].length
3598 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3599 chip->ecc.layout->oobavail +=
3600 chip->ecc.layout->oobfree[i].length;
3601 mtd->oobavail = chip->ecc.layout->oobavail;
3602
3603 /*
3604 * Set the number of read / write steps for one page depending on ECC
3605 * mode.
3606 */
3607 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3608 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3609 pr_warn("Invalid ECC parameters\n");
3610 BUG();
3611 }
3612 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3613
3614 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3615 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3616 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3617 switch (chip->ecc.steps) {
3618 case 2:
3619 mtd->subpage_sft = 1;
3620 break;
3621 case 4:
3622 case 8:
3623 case 16:
3624 mtd->subpage_sft = 2;
3625 break;
3626 }
3627 }
3628 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3629
3630 /* Initialize state */
3631 chip->state = FL_READY;
3632
3633 /* Invalidate the pagebuffer reference */
3634 chip->pagebuf = -1;
3635
3636 /* Large page NAND with SOFT_ECC should support subpage reads */
3637 if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3638 chip->options |= NAND_SUBPAGE_READ;
3639
3640 /* Fill in remaining MTD driver data */
3641 mtd->type = MTD_NANDFLASH;
3642 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3643 MTD_CAP_NANDFLASH;
3644 mtd->_erase = nand_erase;
3645 mtd->_point = NULL;
3646 mtd->_unpoint = NULL;
3647 mtd->_read = nand_read;
3648 mtd->_write = nand_write;
3649 mtd->_panic_write = panic_nand_write;
3650 mtd->_read_oob = nand_read_oob;
3651 mtd->_write_oob = nand_write_oob;
3652 mtd->_sync = nand_sync;
3653 mtd->_lock = NULL;
3654 mtd->_unlock = NULL;
3655 mtd->_suspend = nand_suspend;
3656 mtd->_resume = nand_resume;
3657 mtd->_block_isbad = nand_block_isbad;
3658 mtd->_block_markbad = nand_block_markbad;
3659 mtd->writebufsize = mtd->writesize;
3660
3661 /* propagate ecc info to mtd_info */
3662 mtd->ecclayout = chip->ecc.layout;
3663 mtd->ecc_strength = chip->ecc.strength;
3664 /*
3665 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3666 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3667 * properly set.
3668 */
3669 if (!mtd->bitflip_threshold)
3670 mtd->bitflip_threshold = mtd->ecc_strength;
3671
3672 /* Check, if we should skip the bad block table scan */
3673 if (chip->options & NAND_SKIP_BBTSCAN)
3674 return 0;
3675
3676 /* Build bad block table */
3677 return chip->scan_bbt(mtd);
3678 }
3679 EXPORT_SYMBOL(nand_scan_tail);
3680
3681 /*
3682 * is_module_text_address() isn't exported, and it's mostly a pointless
3683 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3684 * to call us from in-kernel code if the core NAND support is modular.
3685 */
3686 #ifdef MODULE
3687 #define caller_is_module() (1)
3688 #else
3689 #define caller_is_module() \
3690 is_module_text_address((unsigned long)__builtin_return_address(0))
3691 #endif
3692
3693 /**
3694 * nand_scan - [NAND Interface] Scan for the NAND device
3695 * @mtd: MTD device structure
3696 * @maxchips: number of chips to scan for
3697 *
3698 * This fills out all the uninitialized function pointers with the defaults.
3699 * The flash ID is read and the mtd/chip structures are filled with the
3700 * appropriate values. The mtd->owner field must be set to the module of the
3701 * caller.
3702 */
3703 int nand_scan(struct mtd_info *mtd, int maxchips)
3704 {
3705 int ret;
3706
3707 /* Many callers got this wrong, so check for it for a while... */
3708 if (!mtd->owner && caller_is_module()) {
3709 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3710 BUG();
3711 }
3712
3713 ret = nand_scan_ident(mtd, maxchips, NULL);
3714 if (!ret)
3715 ret = nand_scan_tail(mtd);
3716 return ret;
3717 }
3718 EXPORT_SYMBOL(nand_scan);
3719
3720 /**
3721 * nand_release - [NAND Interface] Free resources held by the NAND device
3722 * @mtd: MTD device structure
3723 */
3724 void nand_release(struct mtd_info *mtd)
3725 {
3726 struct nand_chip *chip = mtd->priv;
3727
3728 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3729 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3730
3731 mtd_device_unregister(mtd);
3732
3733 /* Free bad block table memory */
3734 kfree(chip->bbt);
3735 if (!(chip->options & NAND_OWN_BUFFERS))
3736 kfree(chip->buffers);
3737
3738 /* Free bad block descriptor memory */
3739 if (chip->badblock_pattern && chip->badblock_pattern->options
3740 & NAND_BBT_DYNAMICSTRUCT)
3741 kfree(chip->badblock_pattern);
3742 }
3743 EXPORT_SYMBOL_GPL(nand_release);
3744
3745 static int __init nand_base_init(void)
3746 {
3747 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3748 return 0;
3749 }
3750
3751 static void __exit nand_base_exit(void)
3752 {
3753 led_trigger_unregister_simple(nand_led_trigger);
3754 }
3755
3756 module_init(nand_base_init);
3757 module_exit(nand_base_exit);
3758
3759 MODULE_LICENSE("GPL");
3760 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3761 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3762 MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.130723 seconds and 5 git commands to generate.