[MTD] Fix module refcounting in NAND board drivers.
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * 02-08-2004 tglx: support for strange chips, which cannot auto increment
16 * pages on read / read_oob
17 *
18 * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
19 * pointed this out, as he marked an auto increment capable chip
20 * as NOAUTOINCR in the board driver.
21 * Make reads over block boundaries work too
22 *
23 * 04-14-2004 tglx: first working version for 2k page size chips
24 *
25 * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
26 *
27 * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
28 * among multiple independend devices. Suggestions and initial patch
29 * from Ben Dooks <ben-mtd@fluff.org>
30 *
31 * 12-05-2004 dmarlin: add workaround for Renesas AG-AND chips "disturb" issue.
32 * Basically, any block not rewritten may lose data when surrounding blocks
33 * are rewritten many times. JFFS2 ensures this doesn't happen for blocks
34 * it uses, but the Bad Block Table(s) may not be rewritten. To ensure they
35 * do not lose data, force them to be rewritten when some of the surrounding
36 * blocks are erased. Rather than tracking a specific nearby block (which
37 * could itself go bad), use a page address 'mask' to select several blocks
38 * in the same area, and rewrite the BBT when any of them are erased.
39 *
40 * 01-03-2005 dmarlin: added support for the device recovery command sequence for Renesas
41 * AG-AND chips. If there was a sudden loss of power during an erase operation,
42 * a "device recovery" operation must be performed when power is restored
43 * to ensure correct operation.
44 *
45 * 01-20-2005 dmarlin: added support for optional hardware specific callback routine to
46 * perform extra error status checks on erase and write failures. This required
47 * adding a wrapper function for nand_read_ecc.
48 *
49 * 08-20-2005 vwool: suspend/resume added
50 *
51 * Credits:
52 * David Woodhouse for adding multichip support
53 *
54 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
55 * rework for 2K page size chips
56 *
57 * TODO:
58 * Enable cached programming for 2k page size chips
59 * Check, if mtd->ecctype should be set to MTD_ECC_HW
60 * if we have HW ecc support.
61 * The AG-AND chips have nice features for speed improvement,
62 * which are not supported yet. Read / program 4 pages in one go.
63 *
64 * $Id: nand_base.c,v 1.150 2005/09/15 13:58:48 vwool Exp $
65 *
66 * This program is free software; you can redistribute it and/or modify
67 * it under the terms of the GNU General Public License version 2 as
68 * published by the Free Software Foundation.
69 *
70 */
71
72 #include <linux/module.h>
73 #include <linux/delay.h>
74 #include <linux/errno.h>
75 #include <linux/sched.h>
76 #include <linux/slab.h>
77 #include <linux/types.h>
78 #include <linux/mtd/mtd.h>
79 #include <linux/mtd/nand.h>
80 #include <linux/mtd/nand_ecc.h>
81 #include <linux/mtd/compatmac.h>
82 #include <linux/interrupt.h>
83 #include <linux/bitops.h>
84 #include <linux/leds.h>
85 #include <asm/io.h>
86
87 #ifdef CONFIG_MTD_PARTITIONS
88 #include <linux/mtd/partitions.h>
89 #endif
90
91 /* Define default oob placement schemes for large and small page devices */
92 static struct nand_oobinfo nand_oob_8 = {
93 .useecc = MTD_NANDECC_AUTOPLACE,
94 .eccbytes = 3,
95 .eccpos = {0, 1, 2},
96 .oobfree = {{3, 2}, {6, 2}}
97 };
98
99 static struct nand_oobinfo nand_oob_16 = {
100 .useecc = MTD_NANDECC_AUTOPLACE,
101 .eccbytes = 6,
102 .eccpos = {0, 1, 2, 3, 6, 7},
103 .oobfree = {{8, 8}}
104 };
105
106 static struct nand_oobinfo nand_oob_64 = {
107 .useecc = MTD_NANDECC_AUTOPLACE,
108 .eccbytes = 24,
109 .eccpos = {
110 40, 41, 42, 43, 44, 45, 46, 47,
111 48, 49, 50, 51, 52, 53, 54, 55,
112 56, 57, 58, 59, 60, 61, 62, 63},
113 .oobfree = {{2, 38}}
114 };
115
116 /* This is used for padding purposes in nand_write_oob */
117 static u_char ffchars[] = {
118 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126 };
127
128 /*
129 * NAND low-level MTD interface functions
130 */
131 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
132 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
133 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
134
135 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
136 static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
137 size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
138 static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
139 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
140 static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
141 size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
142 static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
143 static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
144 static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
145 unsigned long count, loff_t to, size_t *retlen, u_char *eccbuf,
146 struct nand_oobinfo *oobsel);
147 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr);
148 static void nand_sync(struct mtd_info *mtd);
149
150 /* Some internal functions */
151 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page, u_char * oob_buf,
152 struct nand_oobinfo *oobsel, int mode);
153 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
154 static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
155 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
156 #else
157 #define nand_verify_pages(...) (0)
158 #endif
159
160 static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state);
161
162 /**
163 * nand_release_device - [GENERIC] release chip
164 * @mtd: MTD device structure
165 *
166 * Deselect, release chip lock and wake up anyone waiting on the device
167 */
168 static void nand_release_device(struct mtd_info *mtd)
169 {
170 struct nand_chip *this = mtd->priv;
171
172 /* De-select the NAND device */
173 this->select_chip(mtd, -1);
174
175 if (this->controller) {
176 /* Release the controller and the chip */
177 spin_lock(&this->controller->lock);
178 this->controller->active = NULL;
179 this->state = FL_READY;
180 wake_up(&this->controller->wq);
181 spin_unlock(&this->controller->lock);
182 } else {
183 /* Release the chip */
184 spin_lock(&this->chip_lock);
185 this->state = FL_READY;
186 wake_up(&this->wq);
187 spin_unlock(&this->chip_lock);
188 }
189 }
190
191 /**
192 * nand_read_byte - [DEFAULT] read one byte from the chip
193 * @mtd: MTD device structure
194 *
195 * Default read function for 8bit buswith
196 */
197 static u_char nand_read_byte(struct mtd_info *mtd)
198 {
199 struct nand_chip *this = mtd->priv;
200 return readb(this->IO_ADDR_R);
201 }
202
203 /**
204 * nand_write_byte - [DEFAULT] write one byte to the chip
205 * @mtd: MTD device structure
206 * @byte: pointer to data byte to write
207 *
208 * Default write function for 8it buswith
209 */
210 static void nand_write_byte(struct mtd_info *mtd, u_char byte)
211 {
212 struct nand_chip *this = mtd->priv;
213 writeb(byte, this->IO_ADDR_W);
214 }
215
216 /**
217 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
218 * @mtd: MTD device structure
219 *
220 * Default read function for 16bit buswith with
221 * endianess conversion
222 */
223 static u_char nand_read_byte16(struct mtd_info *mtd)
224 {
225 struct nand_chip *this = mtd->priv;
226 return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
227 }
228
229 /**
230 * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
231 * @mtd: MTD device structure
232 * @byte: pointer to data byte to write
233 *
234 * Default write function for 16bit buswith with
235 * endianess conversion
236 */
237 static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
238 {
239 struct nand_chip *this = mtd->priv;
240 writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
241 }
242
243 /**
244 * nand_read_word - [DEFAULT] read one word from the chip
245 * @mtd: MTD device structure
246 *
247 * Default read function for 16bit buswith without
248 * endianess conversion
249 */
250 static u16 nand_read_word(struct mtd_info *mtd)
251 {
252 struct nand_chip *this = mtd->priv;
253 return readw(this->IO_ADDR_R);
254 }
255
256 /**
257 * nand_write_word - [DEFAULT] write one word to the chip
258 * @mtd: MTD device structure
259 * @word: data word to write
260 *
261 * Default write function for 16bit buswith without
262 * endianess conversion
263 */
264 static void nand_write_word(struct mtd_info *mtd, u16 word)
265 {
266 struct nand_chip *this = mtd->priv;
267 writew(word, this->IO_ADDR_W);
268 }
269
270 /**
271 * nand_select_chip - [DEFAULT] control CE line
272 * @mtd: MTD device structure
273 * @chip: chipnumber to select, -1 for deselect
274 *
275 * Default select function for 1 chip devices.
276 */
277 static void nand_select_chip(struct mtd_info *mtd, int chip)
278 {
279 struct nand_chip *this = mtd->priv;
280 switch (chip) {
281 case -1:
282 this->hwcontrol(mtd, NAND_CTL_CLRNCE);
283 break;
284 case 0:
285 this->hwcontrol(mtd, NAND_CTL_SETNCE);
286 break;
287
288 default:
289 BUG();
290 }
291 }
292
293 /**
294 * nand_write_buf - [DEFAULT] write buffer to chip
295 * @mtd: MTD device structure
296 * @buf: data buffer
297 * @len: number of bytes to write
298 *
299 * Default write function for 8bit buswith
300 */
301 static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
302 {
303 int i;
304 struct nand_chip *this = mtd->priv;
305
306 for (i = 0; i < len; i++)
307 writeb(buf[i], this->IO_ADDR_W);
308 }
309
310 /**
311 * nand_read_buf - [DEFAULT] read chip data into buffer
312 * @mtd: MTD device structure
313 * @buf: buffer to store date
314 * @len: number of bytes to read
315 *
316 * Default read function for 8bit buswith
317 */
318 static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
319 {
320 int i;
321 struct nand_chip *this = mtd->priv;
322
323 for (i = 0; i < len; i++)
324 buf[i] = readb(this->IO_ADDR_R);
325 }
326
327 /**
328 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
329 * @mtd: MTD device structure
330 * @buf: buffer containing the data to compare
331 * @len: number of bytes to compare
332 *
333 * Default verify function for 8bit buswith
334 */
335 static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
336 {
337 int i;
338 struct nand_chip *this = mtd->priv;
339
340 for (i = 0; i < len; i++)
341 if (buf[i] != readb(this->IO_ADDR_R))
342 return -EFAULT;
343
344 return 0;
345 }
346
347 /**
348 * nand_write_buf16 - [DEFAULT] write buffer to chip
349 * @mtd: MTD device structure
350 * @buf: data buffer
351 * @len: number of bytes to write
352 *
353 * Default write function for 16bit buswith
354 */
355 static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
356 {
357 int i;
358 struct nand_chip *this = mtd->priv;
359 u16 *p = (u16 *) buf;
360 len >>= 1;
361
362 for (i = 0; i < len; i++)
363 writew(p[i], this->IO_ADDR_W);
364
365 }
366
367 /**
368 * nand_read_buf16 - [DEFAULT] read chip data into buffer
369 * @mtd: MTD device structure
370 * @buf: buffer to store date
371 * @len: number of bytes to read
372 *
373 * Default read function for 16bit buswith
374 */
375 static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
376 {
377 int i;
378 struct nand_chip *this = mtd->priv;
379 u16 *p = (u16 *) buf;
380 len >>= 1;
381
382 for (i = 0; i < len; i++)
383 p[i] = readw(this->IO_ADDR_R);
384 }
385
386 /**
387 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
388 * @mtd: MTD device structure
389 * @buf: buffer containing the data to compare
390 * @len: number of bytes to compare
391 *
392 * Default verify function for 16bit buswith
393 */
394 static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
395 {
396 int i;
397 struct nand_chip *this = mtd->priv;
398 u16 *p = (u16 *) buf;
399 len >>= 1;
400
401 for (i = 0; i < len; i++)
402 if (p[i] != readw(this->IO_ADDR_R))
403 return -EFAULT;
404
405 return 0;
406 }
407
408 /**
409 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
410 * @mtd: MTD device structure
411 * @ofs: offset from device start
412 * @getchip: 0, if the chip is already selected
413 *
414 * Check, if the block is bad.
415 */
416 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
417 {
418 int page, chipnr, res = 0;
419 struct nand_chip *this = mtd->priv;
420 u16 bad;
421
422 if (getchip) {
423 page = (int)(ofs >> this->page_shift);
424 chipnr = (int)(ofs >> this->chip_shift);
425
426 /* Grab the lock and see if the device is available */
427 nand_get_device(this, mtd, FL_READING);
428
429 /* Select the NAND device */
430 this->select_chip(mtd, chipnr);
431 } else
432 page = (int)ofs;
433
434 if (this->options & NAND_BUSWIDTH_16) {
435 this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
436 bad = cpu_to_le16(this->read_word(mtd));
437 if (this->badblockpos & 0x1)
438 bad >>= 8;
439 if ((bad & 0xFF) != 0xff)
440 res = 1;
441 } else {
442 this->cmdfunc(mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
443 if (this->read_byte(mtd) != 0xff)
444 res = 1;
445 }
446
447 if (getchip) {
448 /* Deselect and wake up anyone waiting on the device */
449 nand_release_device(mtd);
450 }
451
452 return res;
453 }
454
455 /**
456 * nand_default_block_markbad - [DEFAULT] mark a block bad
457 * @mtd: MTD device structure
458 * @ofs: offset from device start
459 *
460 * This is the default implementation, which can be overridden by
461 * a hardware specific driver.
462 */
463 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
464 {
465 struct nand_chip *this = mtd->priv;
466 u_char buf[2] = { 0, 0 };
467 size_t retlen;
468 int block;
469
470 /* Get block number */
471 block = ((int)ofs) >> this->bbt_erase_shift;
472 if (this->bbt)
473 this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
474
475 /* Do we have a flash based bad block table ? */
476 if (this->options & NAND_USE_FLASH_BBT)
477 return nand_update_bbt(mtd, ofs);
478
479 /* We write two bytes, so we dont have to mess with 16 bit access */
480 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
481 return nand_write_oob(mtd, ofs, 2, &retlen, buf);
482 }
483
484 /**
485 * nand_check_wp - [GENERIC] check if the chip is write protected
486 * @mtd: MTD device structure
487 * Check, if the device is write protected
488 *
489 * The function expects, that the device is already selected
490 */
491 static int nand_check_wp(struct mtd_info *mtd)
492 {
493 struct nand_chip *this = mtd->priv;
494 /* Check the WP bit */
495 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
496 return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
497 }
498
499 /**
500 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
501 * @mtd: MTD device structure
502 * @ofs: offset from device start
503 * @getchip: 0, if the chip is already selected
504 * @allowbbt: 1, if its allowed to access the bbt area
505 *
506 * Check, if the block is bad. Either by reading the bad block table or
507 * calling of the scan function.
508 */
509 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
510 {
511 struct nand_chip *this = mtd->priv;
512
513 if (!this->bbt)
514 return this->block_bad(mtd, ofs, getchip);
515
516 /* Return info from the table */
517 return nand_isbad_bbt(mtd, ofs, allowbbt);
518 }
519
520 DEFINE_LED_TRIGGER(nand_led_trigger);
521
522 /*
523 * Wait for the ready pin, after a command
524 * The timeout is catched later.
525 */
526 static void nand_wait_ready(struct mtd_info *mtd)
527 {
528 struct nand_chip *this = mtd->priv;
529 unsigned long timeo = jiffies + 2;
530
531 led_trigger_event(nand_led_trigger, LED_FULL);
532 /* wait until command is processed or timeout occures */
533 do {
534 if (this->dev_ready(mtd))
535 break;
536 touch_softlockup_watchdog();
537 } while (time_before(jiffies, timeo));
538 led_trigger_event(nand_led_trigger, LED_OFF);
539 }
540
541 /**
542 * nand_command - [DEFAULT] Send command to NAND device
543 * @mtd: MTD device structure
544 * @command: the command to be sent
545 * @column: the column address for this command, -1 if none
546 * @page_addr: the page address for this command, -1 if none
547 *
548 * Send command to NAND device. This function is used for small page
549 * devices (256/512 Bytes per page)
550 */
551 static void nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
552 {
553 register struct nand_chip *this = mtd->priv;
554
555 /* Begin command latch cycle */
556 this->hwcontrol(mtd, NAND_CTL_SETCLE);
557 /*
558 * Write out the command to the device.
559 */
560 if (command == NAND_CMD_SEQIN) {
561 int readcmd;
562
563 if (column >= mtd->oobblock) {
564 /* OOB area */
565 column -= mtd->oobblock;
566 readcmd = NAND_CMD_READOOB;
567 } else if (column < 256) {
568 /* First 256 bytes --> READ0 */
569 readcmd = NAND_CMD_READ0;
570 } else {
571 column -= 256;
572 readcmd = NAND_CMD_READ1;
573 }
574 this->write_byte(mtd, readcmd);
575 }
576 this->write_byte(mtd, command);
577
578 /* Set ALE and clear CLE to start address cycle */
579 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
580
581 if (column != -1 || page_addr != -1) {
582 this->hwcontrol(mtd, NAND_CTL_SETALE);
583
584 /* Serially input address */
585 if (column != -1) {
586 /* Adjust columns for 16 bit buswidth */
587 if (this->options & NAND_BUSWIDTH_16)
588 column >>= 1;
589 this->write_byte(mtd, column);
590 }
591 if (page_addr != -1) {
592 this->write_byte(mtd, (unsigned char)(page_addr & 0xff));
593 this->write_byte(mtd, (unsigned char)((page_addr >> 8) & 0xff));
594 /* One more address cycle for devices > 32MiB */
595 if (this->chipsize > (32 << 20))
596 this->write_byte(mtd, (unsigned char)((page_addr >> 16) & 0x0f));
597 }
598 /* Latch in address */
599 this->hwcontrol(mtd, NAND_CTL_CLRALE);
600 }
601
602 /*
603 * program and erase have their own busy handlers
604 * status and sequential in needs no delay
605 */
606 switch (command) {
607
608 case NAND_CMD_PAGEPROG:
609 case NAND_CMD_ERASE1:
610 case NAND_CMD_ERASE2:
611 case NAND_CMD_SEQIN:
612 case NAND_CMD_STATUS:
613 return;
614
615 case NAND_CMD_RESET:
616 if (this->dev_ready)
617 break;
618 udelay(this->chip_delay);
619 this->hwcontrol(mtd, NAND_CTL_SETCLE);
620 this->write_byte(mtd, NAND_CMD_STATUS);
621 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
622 while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ;
623 return;
624
625 /* This applies to read commands */
626 default:
627 /*
628 * If we don't have access to the busy pin, we apply the given
629 * command delay
630 */
631 if (!this->dev_ready) {
632 udelay(this->chip_delay);
633 return;
634 }
635 }
636 /* Apply this short delay always to ensure that we do wait tWB in
637 * any case on any machine. */
638 ndelay(100);
639
640 nand_wait_ready(mtd);
641 }
642
643 /**
644 * nand_command_lp - [DEFAULT] Send command to NAND large page device
645 * @mtd: MTD device structure
646 * @command: the command to be sent
647 * @column: the column address for this command, -1 if none
648 * @page_addr: the page address for this command, -1 if none
649 *
650 * Send command to NAND device. This is the version for the new large page devices
651 * We dont have the separate regions as we have in the small page devices.
652 * We must emulate NAND_CMD_READOOB to keep the code compatible.
653 *
654 */
655 static void nand_command_lp(struct mtd_info *mtd, unsigned command, int column, int page_addr)
656 {
657 register struct nand_chip *this = mtd->priv;
658
659 /* Emulate NAND_CMD_READOOB */
660 if (command == NAND_CMD_READOOB) {
661 column += mtd->oobblock;
662 command = NAND_CMD_READ0;
663 }
664
665 /* Begin command latch cycle */
666 this->hwcontrol(mtd, NAND_CTL_SETCLE);
667 /* Write out the command to the device. */
668 this->write_byte(mtd, (command & 0xff));
669 /* End command latch cycle */
670 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
671
672 if (column != -1 || page_addr != -1) {
673 this->hwcontrol(mtd, NAND_CTL_SETALE);
674
675 /* Serially input address */
676 if (column != -1) {
677 /* Adjust columns for 16 bit buswidth */
678 if (this->options & NAND_BUSWIDTH_16)
679 column >>= 1;
680 this->write_byte(mtd, column & 0xff);
681 this->write_byte(mtd, column >> 8);
682 }
683 if (page_addr != -1) {
684 this->write_byte(mtd, (unsigned char)(page_addr & 0xff));
685 this->write_byte(mtd, (unsigned char)((page_addr >> 8) & 0xff));
686 /* One more address cycle for devices > 128MiB */
687 if (this->chipsize > (128 << 20))
688 this->write_byte(mtd, (unsigned char)((page_addr >> 16) & 0xff));
689 }
690 /* Latch in address */
691 this->hwcontrol(mtd, NAND_CTL_CLRALE);
692 }
693
694 /*
695 * program and erase have their own busy handlers
696 * status, sequential in, and deplete1 need no delay
697 */
698 switch (command) {
699
700 case NAND_CMD_CACHEDPROG:
701 case NAND_CMD_PAGEPROG:
702 case NAND_CMD_ERASE1:
703 case NAND_CMD_ERASE2:
704 case NAND_CMD_SEQIN:
705 case NAND_CMD_STATUS:
706 case NAND_CMD_DEPLETE1:
707 return;
708
709 /*
710 * read error status commands require only a short delay
711 */
712 case NAND_CMD_STATUS_ERROR:
713 case NAND_CMD_STATUS_ERROR0:
714 case NAND_CMD_STATUS_ERROR1:
715 case NAND_CMD_STATUS_ERROR2:
716 case NAND_CMD_STATUS_ERROR3:
717 udelay(this->chip_delay);
718 return;
719
720 case NAND_CMD_RESET:
721 if (this->dev_ready)
722 break;
723 udelay(this->chip_delay);
724 this->hwcontrol(mtd, NAND_CTL_SETCLE);
725 this->write_byte(mtd, NAND_CMD_STATUS);
726 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
727 while (!(this->read_byte(mtd) & NAND_STATUS_READY)) ;
728 return;
729
730 case NAND_CMD_READ0:
731 /* Begin command latch cycle */
732 this->hwcontrol(mtd, NAND_CTL_SETCLE);
733 /* Write out the start read command */
734 this->write_byte(mtd, NAND_CMD_READSTART);
735 /* End command latch cycle */
736 this->hwcontrol(mtd, NAND_CTL_CLRCLE);
737 /* Fall through into ready check */
738
739 /* This applies to read commands */
740 default:
741 /*
742 * If we don't have access to the busy pin, we apply the given
743 * command delay
744 */
745 if (!this->dev_ready) {
746 udelay(this->chip_delay);
747 return;
748 }
749 }
750
751 /* Apply this short delay always to ensure that we do wait tWB in
752 * any case on any machine. */
753 ndelay(100);
754
755 nand_wait_ready(mtd);
756 }
757
758 /**
759 * nand_get_device - [GENERIC] Get chip for selected access
760 * @this: the nand chip descriptor
761 * @mtd: MTD device structure
762 * @new_state: the state which is requested
763 *
764 * Get the device and lock it for exclusive access
765 */
766 static int nand_get_device(struct nand_chip *this, struct mtd_info *mtd, int new_state)
767 {
768 struct nand_chip *active;
769 spinlock_t *lock;
770 wait_queue_head_t *wq;
771 DECLARE_WAITQUEUE(wait, current);
772
773 lock = (this->controller) ? &this->controller->lock : &this->chip_lock;
774 wq = (this->controller) ? &this->controller->wq : &this->wq;
775 retry:
776 active = this;
777 spin_lock(lock);
778
779 /* Hardware controller shared among independend devices */
780 if (this->controller) {
781 if (this->controller->active)
782 active = this->controller->active;
783 else
784 this->controller->active = this;
785 }
786 if (active == this && this->state == FL_READY) {
787 this->state = new_state;
788 spin_unlock(lock);
789 return 0;
790 }
791 if (new_state == FL_PM_SUSPENDED) {
792 spin_unlock(lock);
793 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
794 }
795 set_current_state(TASK_UNINTERRUPTIBLE);
796 add_wait_queue(wq, &wait);
797 spin_unlock(lock);
798 schedule();
799 remove_wait_queue(wq, &wait);
800 goto retry;
801 }
802
803 /**
804 * nand_wait - [DEFAULT] wait until the command is done
805 * @mtd: MTD device structure
806 * @this: NAND chip structure
807 * @state: state to select the max. timeout value
808 *
809 * Wait for command done. This applies to erase and program only
810 * Erase can take up to 400ms and program up to 20ms according to
811 * general NAND and SmartMedia specs
812 *
813 */
814 static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
815 {
816
817 unsigned long timeo = jiffies;
818 int status;
819
820 if (state == FL_ERASING)
821 timeo += (HZ * 400) / 1000;
822 else
823 timeo += (HZ * 20) / 1000;
824
825 led_trigger_event(nand_led_trigger, LED_FULL);
826
827 /* Apply this short delay always to ensure that we do wait tWB in
828 * any case on any machine. */
829 ndelay(100);
830
831 if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
832 this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
833 else
834 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
835
836 while (time_before(jiffies, timeo)) {
837 /* Check, if we were interrupted */
838 if (this->state != state)
839 return 0;
840
841 if (this->dev_ready) {
842 if (this->dev_ready(mtd))
843 break;
844 } else {
845 if (this->read_byte(mtd) & NAND_STATUS_READY)
846 break;
847 }
848 cond_resched();
849 }
850 led_trigger_event(nand_led_trigger, LED_OFF);
851
852 status = (int)this->read_byte(mtd);
853 return status;
854 }
855
856 /**
857 * nand_write_page - [GENERIC] write one page
858 * @mtd: MTD device structure
859 * @this: NAND chip structure
860 * @page: startpage inside the chip, must be called with (page & this->pagemask)
861 * @oob_buf: out of band data buffer
862 * @oobsel: out of band selecttion structre
863 * @cached: 1 = enable cached programming if supported by chip
864 *
865 * Nand_page_program function is used for write and writev !
866 * This function will always program a full page of data
867 * If you call it with a non page aligned buffer, you're lost :)
868 *
869 * Cached programming is not supported yet.
870 */
871 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *this, int page,
872 u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
873 {
874 int i, status;
875 u_char ecc_code[32];
876 int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
877 int *oob_config = oobsel->eccpos;
878 int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
879 int eccbytes = 0;
880
881 /* FIXME: Enable cached programming */
882 cached = 0;
883
884 /* Send command to begin auto page programming */
885 this->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
886
887 /* Write out complete page of data, take care of eccmode */
888 switch (eccmode) {
889 /* No ecc, write all */
890 case NAND_ECC_NONE:
891 printk(KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
892 this->write_buf(mtd, this->data_poi, mtd->oobblock);
893 break;
894
895 /* Software ecc 3/256, write all */
896 case NAND_ECC_SOFT:
897 for (; eccsteps; eccsteps--) {
898 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
899 for (i = 0; i < 3; i++, eccidx++)
900 oob_buf[oob_config[eccidx]] = ecc_code[i];
901 datidx += this->eccsize;
902 }
903 this->write_buf(mtd, this->data_poi, mtd->oobblock);
904 break;
905 default:
906 eccbytes = this->eccbytes;
907 for (; eccsteps; eccsteps--) {
908 /* enable hardware ecc logic for write */
909 this->enable_hwecc(mtd, NAND_ECC_WRITE);
910 this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
911 this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
912 for (i = 0; i < eccbytes; i++, eccidx++)
913 oob_buf[oob_config[eccidx]] = ecc_code[i];
914 /* If the hardware ecc provides syndromes then
915 * the ecc code must be written immidiately after
916 * the data bytes (words) */
917 if (this->options & NAND_HWECC_SYNDROME)
918 this->write_buf(mtd, ecc_code, eccbytes);
919 datidx += this->eccsize;
920 }
921 break;
922 }
923
924 /* Write out OOB data */
925 if (this->options & NAND_HWECC_SYNDROME)
926 this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
927 else
928 this->write_buf(mtd, oob_buf, mtd->oobsize);
929
930 /* Send command to actually program the data */
931 this->cmdfunc(mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
932
933 if (!cached) {
934 /* call wait ready function */
935 status = this->waitfunc(mtd, this, FL_WRITING);
936
937 /* See if operation failed and additional status checks are available */
938 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
939 status = this->errstat(mtd, this, FL_WRITING, status, page);
940 }
941
942 /* See if device thinks it succeeded */
943 if (status & NAND_STATUS_FAIL) {
944 DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
945 return -EIO;
946 }
947 } else {
948 /* FIXME: Implement cached programming ! */
949 /* wait until cache is ready */
950 // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
951 }
952 return 0;
953 }
954
955 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
956 /**
957 * nand_verify_pages - [GENERIC] verify the chip contents after a write
958 * @mtd: MTD device structure
959 * @this: NAND chip structure
960 * @page: startpage inside the chip, must be called with (page & this->pagemask)
961 * @numpages: number of pages to verify
962 * @oob_buf: out of band data buffer
963 * @oobsel: out of band selecttion structre
964 * @chipnr: number of the current chip
965 * @oobmode: 1 = full buffer verify, 0 = ecc only
966 *
967 * The NAND device assumes that it is always writing to a cleanly erased page.
968 * Hence, it performs its internal write verification only on bits that
969 * transitioned from 1 to 0. The device does NOT verify the whole page on a
970 * byte by byte basis. It is possible that the page was not completely erased
971 * or the page is becoming unusable due to wear. The read with ECC would catch
972 * the error later when the ECC page check fails, but we would rather catch
973 * it early in the page write stage. Better to write no data than invalid data.
974 */
975 static int nand_verify_pages(struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
976 u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
977 {
978 int i, j, datidx = 0, oobofs = 0, res = -EIO;
979 int eccsteps = this->eccsteps;
980 int hweccbytes;
981 u_char oobdata[64];
982
983 hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
984
985 /* Send command to read back the first page */
986 this->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
987
988 for (;;) {
989 for (j = 0; j < eccsteps; j++) {
990 /* Loop through and verify the data */
991 if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
992 DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
993 goto out;
994 }
995 datidx += mtd->eccsize;
996 /* Have we a hw generator layout ? */
997 if (!hweccbytes)
998 continue;
999 if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
1000 DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1001 goto out;
1002 }
1003 oobofs += hweccbytes;
1004 }
1005
1006 /* check, if we must compare all data or if we just have to
1007 * compare the ecc bytes
1008 */
1009 if (oobmode) {
1010 if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
1011 DEBUG(MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
1012 goto out;
1013 }
1014 } else {
1015 /* Read always, else autoincrement fails */
1016 this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
1017
1018 if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
1019 int ecccnt = oobsel->eccbytes;
1020
1021 for (i = 0; i < ecccnt; i++) {
1022 int idx = oobsel->eccpos[i];
1023 if (oobdata[idx] != oob_buf[oobofs + idx]) {
1024 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed ECC write verify, page 0x%08x, %6i bytes were succesful\n",
1025 __FUNCTION__, page, i);
1026 goto out;
1027 }
1028 }
1029 }
1030 }
1031 oobofs += mtd->oobsize - hweccbytes * eccsteps;
1032 page++;
1033 numpages--;
1034
1035 /* Apply delay or wait for ready/busy pin
1036 * Do this before the AUTOINCR check, so no problems
1037 * arise if a chip which does auto increment
1038 * is marked as NOAUTOINCR by the board driver.
1039 * Do this also before returning, so the chip is
1040 * ready for the next command.
1041 */
1042 if (!this->dev_ready)
1043 udelay(this->chip_delay);
1044 else
1045 nand_wait_ready(mtd);
1046
1047 /* All done, return happy */
1048 if (!numpages)
1049 return 0;
1050
1051 /* Check, if the chip supports auto page increment */
1052 if (!NAND_CANAUTOINCR(this))
1053 this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1054 }
1055 /*
1056 * Terminate the read command. We come here in case of an error
1057 * So we must issue a reset command.
1058 */
1059 out:
1060 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1061 return res;
1062 }
1063 #endif
1064
1065 /**
1066 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1067 * @mtd: MTD device structure
1068 * @from: offset to read from
1069 * @len: number of bytes to read
1070 * @retlen: pointer to variable to store the number of read bytes
1071 * @buf: the databuffer to put data
1072 *
1073 * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
1074 * and flags = 0xff
1075 */
1076 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1077 {
1078 return nand_do_read_ecc(mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
1079 }
1080
1081 /**
1082 * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc
1083 * @mtd: MTD device structure
1084 * @from: offset to read from
1085 * @len: number of bytes to read
1086 * @retlen: pointer to variable to store the number of read bytes
1087 * @buf: the databuffer to put data
1088 * @oob_buf: filesystem supplied oob data buffer
1089 * @oobsel: oob selection structure
1090 *
1091 * This function simply calls nand_do_read_ecc with flags = 0xff
1092 */
1093 static int nand_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
1094 size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel)
1095 {
1096 /* use userspace supplied oobinfo, if zero */
1097 if (oobsel == NULL)
1098 oobsel = &mtd->oobinfo;
1099 return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff);
1100 }
1101
1102 /**
1103 * nand_do_read_ecc - [MTD Interface] Read data with ECC
1104 * @mtd: MTD device structure
1105 * @from: offset to read from
1106 * @len: number of bytes to read
1107 * @retlen: pointer to variable to store the number of read bytes
1108 * @buf: the databuffer to put data
1109 * @oob_buf: filesystem supplied oob data buffer (can be NULL)
1110 * @oobsel: oob selection structure
1111 * @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
1112 * and how many corrected error bits are acceptable:
1113 * bits 0..7 - number of tolerable errors
1114 * bit 8 - 0 == do not get/release chip, 1 == get/release chip
1115 *
1116 * NAND read with ECC
1117 */
1118 int nand_do_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
1119 size_t *retlen, u_char *buf, u_char *oob_buf, struct nand_oobinfo *oobsel, int flags)
1120 {
1121
1122 int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
1123 int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
1124 struct nand_chip *this = mtd->priv;
1125 u_char *data_poi, *oob_data = oob_buf;
1126 u_char ecc_calc[32];
1127 u_char ecc_code[32];
1128 int eccmode, eccsteps;
1129 int *oob_config, datidx;
1130 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1131 int eccbytes;
1132 int compareecc = 1;
1133 int oobreadlen;
1134
1135 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len);
1136
1137 /* Do not allow reads past end of device */
1138 if ((from + len) > mtd->size) {
1139 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
1140 *retlen = 0;
1141 return -EINVAL;
1142 }
1143
1144 /* Grab the lock and see if the device is available */
1145 if (flags & NAND_GET_DEVICE)
1146 nand_get_device(this, mtd, FL_READING);
1147
1148 /* Autoplace of oob data ? Use the default placement scheme */
1149 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
1150 oobsel = this->autooob;
1151
1152 eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
1153 oob_config = oobsel->eccpos;
1154
1155 /* Select the NAND device */
1156 chipnr = (int)(from >> this->chip_shift);
1157 this->select_chip(mtd, chipnr);
1158
1159 /* First we calculate the starting page */
1160 realpage = (int)(from >> this->page_shift);
1161 page = realpage & this->pagemask;
1162
1163 /* Get raw starting column */
1164 col = from & (mtd->oobblock - 1);
1165
1166 end = mtd->oobblock;
1167 ecc = this->eccsize;
1168 eccbytes = this->eccbytes;
1169
1170 if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
1171 compareecc = 0;
1172
1173 oobreadlen = mtd->oobsize;
1174 if (this->options & NAND_HWECC_SYNDROME)
1175 oobreadlen -= oobsel->eccbytes;
1176
1177 /* Loop until all data read */
1178 while (read < len) {
1179
1180 int aligned = (!col && (len - read) >= end);
1181 /*
1182 * If the read is not page aligned, we have to read into data buffer
1183 * due to ecc, else we read into return buffer direct
1184 */
1185 if (aligned)
1186 data_poi = &buf[read];
1187 else
1188 data_poi = this->data_buf;
1189
1190 /* Check, if we have this page in the buffer
1191 *
1192 * FIXME: Make it work when we must provide oob data too,
1193 * check the usage of data_buf oob field
1194 */
1195 if (realpage == this->pagebuf && !oob_buf) {
1196 /* aligned read ? */
1197 if (aligned)
1198 memcpy(data_poi, this->data_buf, end);
1199 goto readdata;
1200 }
1201
1202 /* Check, if we must send the read command */
1203 if (sndcmd) {
1204 this->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1205 sndcmd = 0;
1206 }
1207
1208 /* get oob area, if we have no oob buffer from fs-driver */
1209 if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
1210 oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1211 oob_data = &this->data_buf[end];
1212
1213 eccsteps = this->eccsteps;
1214
1215 switch (eccmode) {
1216 case NAND_ECC_NONE:{
1217 /* No ECC, Read in a page */
1218 static unsigned long lastwhinge = 0;
1219 if ((lastwhinge / HZ) != (jiffies / HZ)) {
1220 printk(KERN_WARNING
1221 "Reading data from NAND FLASH without ECC is not recommended\n");
1222 lastwhinge = jiffies;
1223 }
1224 this->read_buf(mtd, data_poi, end);
1225 break;
1226 }
1227
1228 case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
1229 this->read_buf(mtd, data_poi, end);
1230 for (i = 0, datidx = 0; eccsteps; eccsteps--, i += 3, datidx += ecc)
1231 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1232 break;
1233
1234 default:
1235 for (i = 0, datidx = 0; eccsteps; eccsteps--, i += eccbytes, datidx += ecc) {
1236 this->enable_hwecc(mtd, NAND_ECC_READ);
1237 this->read_buf(mtd, &data_poi[datidx], ecc);
1238
1239 /* HW ecc with syndrome calculation must read the
1240 * syndrome from flash immidiately after the data */
1241 if (!compareecc) {
1242 /* Some hw ecc generators need to know when the
1243 * syndrome is read from flash */
1244 this->enable_hwecc(mtd, NAND_ECC_READSYN);
1245 this->read_buf(mtd, &oob_data[i], eccbytes);
1246 /* We calc error correction directly, it checks the hw
1247 * generator for an error, reads back the syndrome and
1248 * does the error correction on the fly */
1249 ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
1250 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
1251 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: "
1252 "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
1253 ecc_failed++;
1254 }
1255 } else {
1256 this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
1257 }
1258 }
1259 break;
1260 }
1261
1262 /* read oobdata */
1263 this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
1264
1265 /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
1266 if (!compareecc)
1267 goto readoob;
1268
1269 /* Pick the ECC bytes out of the oob data */
1270 for (j = 0; j < oobsel->eccbytes; j++)
1271 ecc_code[j] = oob_data[oob_config[j]];
1272
1273 /* correct data, if necessary */
1274 for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
1275 ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
1276
1277 /* Get next chunk of ecc bytes */
1278 j += eccbytes;
1279
1280 /* Check, if we have a fs supplied oob-buffer,
1281 * This is the legacy mode. Used by YAFFS1
1282 * Should go away some day
1283 */
1284 if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
1285 int *p = (int *)(&oob_data[mtd->oobsize]);
1286 p[i] = ecc_status;
1287 }
1288
1289 if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
1290 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
1291 ecc_failed++;
1292 }
1293 }
1294
1295 readoob:
1296 /* check, if we have a fs supplied oob-buffer */
1297 if (oob_buf) {
1298 /* without autoplace. Legacy mode used by YAFFS1 */
1299 switch (oobsel->useecc) {
1300 case MTD_NANDECC_AUTOPLACE:
1301 case MTD_NANDECC_AUTOPL_USR:
1302 /* Walk through the autoplace chunks */
1303 for (i = 0; oobsel->oobfree[i][1]; i++) {
1304 int from = oobsel->oobfree[i][0];
1305 int num = oobsel->oobfree[i][1];
1306 memcpy(&oob_buf[oob], &oob_data[from], num);
1307 oob += num;
1308 }
1309 break;
1310 case MTD_NANDECC_PLACE:
1311 /* YAFFS1 legacy mode */
1312 oob_data += this->eccsteps * sizeof(int);
1313 default:
1314 oob_data += mtd->oobsize;
1315 }
1316 }
1317 readdata:
1318 /* Partial page read, transfer data into fs buffer */
1319 if (!aligned) {
1320 for (j = col; j < end && read < len; j++)
1321 buf[read++] = data_poi[j];
1322 this->pagebuf = realpage;
1323 } else
1324 read += mtd->oobblock;
1325
1326 /* Apply delay or wait for ready/busy pin
1327 * Do this before the AUTOINCR check, so no problems
1328 * arise if a chip which does auto increment
1329 * is marked as NOAUTOINCR by the board driver.
1330 */
1331 if (!this->dev_ready)
1332 udelay(this->chip_delay);
1333 else
1334 nand_wait_ready(mtd);
1335
1336 if (read == len)
1337 break;
1338
1339 /* For subsequent reads align to page boundary. */
1340 col = 0;
1341 /* Increment page address */
1342 realpage++;
1343
1344 page = realpage & this->pagemask;
1345 /* Check, if we cross a chip boundary */
1346 if (!page) {
1347 chipnr++;
1348 this->select_chip(mtd, -1);
1349 this->select_chip(mtd, chipnr);
1350 }
1351 /* Check, if the chip supports auto page increment
1352 * or if we have hit a block boundary.
1353 */
1354 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1355 sndcmd = 1;
1356 }
1357
1358 /* Deselect and wake up anyone waiting on the device */
1359 if (flags & NAND_GET_DEVICE)
1360 nand_release_device(mtd);
1361
1362 /*
1363 * Return success, if no ECC failures, else -EBADMSG
1364 * fs driver will take care of that, because
1365 * retlen == desired len and result == -EBADMSG
1366 */
1367 *retlen = read;
1368 return ecc_failed ? -EBADMSG : 0;
1369 }
1370
1371 /**
1372 * nand_read_oob - [MTD Interface] NAND read out-of-band
1373 * @mtd: MTD device structure
1374 * @from: offset to read from
1375 * @len: number of bytes to read
1376 * @retlen: pointer to variable to store the number of read bytes
1377 * @buf: the databuffer to put data
1378 *
1379 * NAND read out-of-band data from the spare area
1380 */
1381 static int nand_read_oob(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1382 {
1383 int i, col, page, chipnr;
1384 struct nand_chip *this = mtd->priv;
1385 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1386
1387 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int)from, (int)len);
1388
1389 /* Shift to get page */
1390 page = (int)(from >> this->page_shift);
1391 chipnr = (int)(from >> this->chip_shift);
1392
1393 /* Mask to get column */
1394 col = from & (mtd->oobsize - 1);
1395
1396 /* Initialize return length value */
1397 *retlen = 0;
1398
1399 /* Do not allow reads past end of device */
1400 if ((from + len) > mtd->size) {
1401 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
1402 *retlen = 0;
1403 return -EINVAL;
1404 }
1405
1406 /* Grab the lock and see if the device is available */
1407 nand_get_device(this, mtd, FL_READING);
1408
1409 /* Select the NAND device */
1410 this->select_chip(mtd, chipnr);
1411
1412 /* Send the read command */
1413 this->cmdfunc(mtd, NAND_CMD_READOOB, col, page & this->pagemask);
1414 /*
1415 * Read the data, if we read more than one page
1416 * oob data, let the device transfer the data !
1417 */
1418 i = 0;
1419 while (i < len) {
1420 int thislen = mtd->oobsize - col;
1421 thislen = min_t(int, thislen, len);
1422 this->read_buf(mtd, &buf[i], thislen);
1423 i += thislen;
1424
1425 /* Read more ? */
1426 if (i < len) {
1427 page++;
1428 col = 0;
1429
1430 /* Check, if we cross a chip boundary */
1431 if (!(page & this->pagemask)) {
1432 chipnr++;
1433 this->select_chip(mtd, -1);
1434 this->select_chip(mtd, chipnr);
1435 }
1436
1437 /* Apply delay or wait for ready/busy pin
1438 * Do this before the AUTOINCR check, so no problems
1439 * arise if a chip which does auto increment
1440 * is marked as NOAUTOINCR by the board driver.
1441 */
1442 if (!this->dev_ready)
1443 udelay(this->chip_delay);
1444 else
1445 nand_wait_ready(mtd);
1446
1447 /* Check, if the chip supports auto page increment
1448 * or if we have hit a block boundary.
1449 */
1450 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
1451 /* For subsequent page reads set offset to 0 */
1452 this->cmdfunc(mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
1453 }
1454 }
1455 }
1456
1457 /* Deselect and wake up anyone waiting on the device */
1458 nand_release_device(mtd);
1459
1460 /* Return happy */
1461 *retlen = len;
1462 return 0;
1463 }
1464
1465 /**
1466 * nand_read_raw - [GENERIC] Read raw data including oob into buffer
1467 * @mtd: MTD device structure
1468 * @buf: temporary buffer
1469 * @from: offset to read from
1470 * @len: number of bytes to read
1471 * @ooblen: number of oob data bytes to read
1472 *
1473 * Read raw data including oob into buffer
1474 */
1475 int nand_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
1476 {
1477 struct nand_chip *this = mtd->priv;
1478 int page = (int)(from >> this->page_shift);
1479 int chip = (int)(from >> this->chip_shift);
1480 int sndcmd = 1;
1481 int cnt = 0;
1482 int pagesize = mtd->oobblock + mtd->oobsize;
1483 int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
1484
1485 /* Do not allow reads past end of device */
1486 if ((from + len) > mtd->size) {
1487 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
1488 return -EINVAL;
1489 }
1490
1491 /* Grab the lock and see if the device is available */
1492 nand_get_device(this, mtd, FL_READING);
1493
1494 this->select_chip(mtd, chip);
1495
1496 /* Add requested oob length */
1497 len += ooblen;
1498
1499 while (len) {
1500 if (sndcmd)
1501 this->cmdfunc(mtd, NAND_CMD_READ0, 0, page & this->pagemask);
1502 sndcmd = 0;
1503
1504 this->read_buf(mtd, &buf[cnt], pagesize);
1505
1506 len -= pagesize;
1507 cnt += pagesize;
1508 page++;
1509
1510 if (!this->dev_ready)
1511 udelay(this->chip_delay);
1512 else
1513 nand_wait_ready(mtd);
1514
1515 /* Check, if the chip supports auto page increment */
1516 if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
1517 sndcmd = 1;
1518 }
1519
1520 /* Deselect and wake up anyone waiting on the device */
1521 nand_release_device(mtd);
1522 return 0;
1523 }
1524
1525 /**
1526 * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
1527 * @mtd: MTD device structure
1528 * @fsbuf: buffer given by fs driver
1529 * @oobsel: out of band selection structre
1530 * @autoplace: 1 = place given buffer into the oob bytes
1531 * @numpages: number of pages to prepare
1532 *
1533 * Return:
1534 * 1. Filesystem buffer available and autoplacement is off,
1535 * return filesystem buffer
1536 * 2. No filesystem buffer or autoplace is off, return internal
1537 * buffer
1538 * 3. Filesystem buffer is given and autoplace selected
1539 * put data from fs buffer into internal buffer and
1540 * retrun internal buffer
1541 *
1542 * Note: The internal buffer is filled with 0xff. This must
1543 * be done only once, when no autoplacement happens
1544 * Autoplacement sets the buffer dirty flag, which
1545 * forces the 0xff fill before using the buffer again.
1546 *
1547 */
1548 static u_char *nand_prepare_oobbuf(struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
1549 int autoplace, int numpages)
1550 {
1551 struct nand_chip *this = mtd->priv;
1552 int i, len, ofs;
1553
1554 /* Zero copy fs supplied buffer */
1555 if (fsbuf && !autoplace)
1556 return fsbuf;
1557
1558 /* Check, if the buffer must be filled with ff again */
1559 if (this->oobdirty) {
1560 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
1561 this->oobdirty = 0;
1562 }
1563
1564 /* If we have no autoplacement or no fs buffer use the internal one */
1565 if (!autoplace || !fsbuf)
1566 return this->oob_buf;
1567
1568 /* Walk through the pages and place the data */
1569 this->oobdirty = 1;
1570 ofs = 0;
1571 while (numpages--) {
1572 for (i = 0, len = 0; len < mtd->oobavail; i++) {
1573 int to = ofs + oobsel->oobfree[i][0];
1574 int num = oobsel->oobfree[i][1];
1575 memcpy(&this->oob_buf[to], fsbuf, num);
1576 len += num;
1577 fsbuf += num;
1578 }
1579 ofs += mtd->oobavail;
1580 }
1581 return this->oob_buf;
1582 }
1583
1584 #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
1585
1586 /**
1587 * nand_write - [MTD Interface] compability function for nand_write_ecc
1588 * @mtd: MTD device structure
1589 * @to: offset to write to
1590 * @len: number of bytes to write
1591 * @retlen: pointer to variable to store the number of written bytes
1592 * @buf: the data to write
1593 *
1594 * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
1595 *
1596 */
1597 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
1598 {
1599 return (nand_write_ecc(mtd, to, len, retlen, buf, NULL, NULL));
1600 }
1601
1602 /**
1603 * nand_write_ecc - [MTD Interface] NAND write with ECC
1604 * @mtd: MTD device structure
1605 * @to: offset to write to
1606 * @len: number of bytes to write
1607 * @retlen: pointer to variable to store the number of written bytes
1608 * @buf: the data to write
1609 * @eccbuf: filesystem supplied oob data buffer
1610 * @oobsel: oob selection structure
1611 *
1612 * NAND write with ECC
1613 */
1614 static int nand_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
1615 size_t *retlen, const u_char *buf, u_char *eccbuf,
1616 struct nand_oobinfo *oobsel)
1617 {
1618 int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
1619 int autoplace = 0, numpages, totalpages;
1620 struct nand_chip *this = mtd->priv;
1621 u_char *oobbuf, *bufstart;
1622 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1623
1624 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
1625
1626 /* Initialize retlen, in case of early exit */
1627 *retlen = 0;
1628
1629 /* Do not allow write past end of device */
1630 if ((to + len) > mtd->size) {
1631 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
1632 return -EINVAL;
1633 }
1634
1635 /* reject writes, which are not page aligned */
1636 if (NOTALIGNED(to) || NOTALIGNED(len)) {
1637 printk(KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1638 return -EINVAL;
1639 }
1640
1641 /* Grab the lock and see if the device is available */
1642 nand_get_device(this, mtd, FL_WRITING);
1643
1644 /* Calculate chipnr */
1645 chipnr = (int)(to >> this->chip_shift);
1646 /* Select the NAND device */
1647 this->select_chip(mtd, chipnr);
1648
1649 /* Check, if it is write protected */
1650 if (nand_check_wp(mtd))
1651 goto out;
1652
1653 /* if oobsel is NULL, use chip defaults */
1654 if (oobsel == NULL)
1655 oobsel = &mtd->oobinfo;
1656
1657 /* Autoplace of oob data ? Use the default placement scheme */
1658 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1659 oobsel = this->autooob;
1660 autoplace = 1;
1661 }
1662 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1663 autoplace = 1;
1664
1665 /* Setup variables and oob buffer */
1666 totalpages = len >> this->page_shift;
1667 page = (int)(to >> this->page_shift);
1668 /* Invalidate the page cache, if we write to the cached page */
1669 if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
1670 this->pagebuf = -1;
1671
1672 /* Set it relative to chip */
1673 page &= this->pagemask;
1674 startpage = page;
1675 /* Calc number of pages we can write in one go */
1676 numpages = min(ppblock - (startpage & (ppblock - 1)), totalpages);
1677 oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
1678 bufstart = (u_char *) buf;
1679
1680 /* Loop until all data is written */
1681 while (written < len) {
1682
1683 this->data_poi = (u_char *) &buf[written];
1684 /* Write one page. If this is the last page to write
1685 * or the last page in this block, then use the
1686 * real pageprogram command, else select cached programming
1687 * if supported by the chip.
1688 */
1689 ret = nand_write_page(mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
1690 if (ret) {
1691 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
1692 goto out;
1693 }
1694 /* Next oob page */
1695 oob += mtd->oobsize;
1696 /* Update written bytes count */
1697 written += mtd->oobblock;
1698 if (written == len)
1699 goto cmp;
1700
1701 /* Increment page address */
1702 page++;
1703
1704 /* Have we hit a block boundary ? Then we have to verify and
1705 * if verify is ok, we have to setup the oob buffer for
1706 * the next pages.
1707 */
1708 if (!(page & (ppblock - 1))) {
1709 int ofs;
1710 this->data_poi = bufstart;
1711 ret = nand_verify_pages(mtd, this, startpage, page - startpage,
1712 oobbuf, oobsel, chipnr, (eccbuf != NULL));
1713 if (ret) {
1714 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1715 goto out;
1716 }
1717 *retlen = written;
1718
1719 ofs = autoplace ? mtd->oobavail : mtd->oobsize;
1720 if (eccbuf)
1721 eccbuf += (page - startpage) * ofs;
1722 totalpages -= page - startpage;
1723 numpages = min(totalpages, ppblock);
1724 page &= this->pagemask;
1725 startpage = page;
1726 oobbuf = nand_prepare_oobbuf(mtd, eccbuf, oobsel, autoplace, numpages);
1727 oob = 0;
1728 /* Check, if we cross a chip boundary */
1729 if (!page) {
1730 chipnr++;
1731 this->select_chip(mtd, -1);
1732 this->select_chip(mtd, chipnr);
1733 }
1734 }
1735 }
1736 /* Verify the remaining pages */
1737 cmp:
1738 this->data_poi = bufstart;
1739 ret = nand_verify_pages(mtd, this, startpage, totalpages, oobbuf, oobsel, chipnr, (eccbuf != NULL));
1740 if (!ret)
1741 *retlen = written;
1742 else
1743 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
1744
1745 out:
1746 /* Deselect and wake up anyone waiting on the device */
1747 nand_release_device(mtd);
1748
1749 return ret;
1750 }
1751
1752 /**
1753 * nand_write_oob - [MTD Interface] NAND write out-of-band
1754 * @mtd: MTD device structure
1755 * @to: offset to write to
1756 * @len: number of bytes to write
1757 * @retlen: pointer to variable to store the number of written bytes
1758 * @buf: the data to write
1759 *
1760 * NAND write out-of-band
1761 */
1762 static int nand_write_oob(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
1763 {
1764 int column, page, status, ret = -EIO, chipnr;
1765 struct nand_chip *this = mtd->priv;
1766
1767 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int)to, (int)len);
1768
1769 /* Shift to get page */
1770 page = (int)(to >> this->page_shift);
1771 chipnr = (int)(to >> this->chip_shift);
1772
1773 /* Mask to get column */
1774 column = to & (mtd->oobsize - 1);
1775
1776 /* Initialize return length value */
1777 *retlen = 0;
1778
1779 /* Do not allow write past end of page */
1780 if ((column + len) > mtd->oobsize) {
1781 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
1782 return -EINVAL;
1783 }
1784
1785 /* Grab the lock and see if the device is available */
1786 nand_get_device(this, mtd, FL_WRITING);
1787
1788 /* Select the NAND device */
1789 this->select_chip(mtd, chipnr);
1790
1791 /* Reset the chip. Some chips (like the Toshiba TC5832DC found
1792 in one of my DiskOnChip 2000 test units) will clear the whole
1793 data page too if we don't do this. I have no clue why, but
1794 I seem to have 'fixed' it in the doc2000 driver in
1795 August 1999. dwmw2. */
1796 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1797
1798 /* Check, if it is write protected */
1799 if (nand_check_wp(mtd))
1800 goto out;
1801
1802 /* Invalidate the page cache, if we write to the cached page */
1803 if (page == this->pagebuf)
1804 this->pagebuf = -1;
1805
1806 if (NAND_MUST_PAD(this)) {
1807 /* Write out desired data */
1808 this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
1809 /* prepad 0xff for partial programming */
1810 this->write_buf(mtd, ffchars, column);
1811 /* write data */
1812 this->write_buf(mtd, buf, len);
1813 /* postpad 0xff for partial programming */
1814 this->write_buf(mtd, ffchars, mtd->oobsize - (len + column));
1815 } else {
1816 /* Write out desired data */
1817 this->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
1818 /* write data */
1819 this->write_buf(mtd, buf, len);
1820 }
1821 /* Send command to program the OOB data */
1822 this->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1823
1824 status = this->waitfunc(mtd, this, FL_WRITING);
1825
1826 /* See if device thinks it succeeded */
1827 if (status & NAND_STATUS_FAIL) {
1828 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
1829 ret = -EIO;
1830 goto out;
1831 }
1832 /* Return happy */
1833 *retlen = len;
1834
1835 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1836 /* Send command to read back the data */
1837 this->cmdfunc(mtd, NAND_CMD_READOOB, column, page & this->pagemask);
1838
1839 if (this->verify_buf(mtd, buf, len)) {
1840 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
1841 ret = -EIO;
1842 goto out;
1843 }
1844 #endif
1845 ret = 0;
1846 out:
1847 /* Deselect and wake up anyone waiting on the device */
1848 nand_release_device(mtd);
1849
1850 return ret;
1851 }
1852
1853 /**
1854 * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
1855 * @mtd: MTD device structure
1856 * @vecs: the iovectors to write
1857 * @count: number of vectors
1858 * @to: offset to write to
1859 * @retlen: pointer to variable to store the number of written bytes
1860 *
1861 * NAND write with kvec. This just calls the ecc function
1862 */
1863 static int nand_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1864 loff_t to, size_t *retlen)
1865 {
1866 return (nand_writev_ecc(mtd, vecs, count, to, retlen, NULL, NULL));
1867 }
1868
1869 /**
1870 * nand_writev_ecc - [MTD Interface] write with iovec with ecc
1871 * @mtd: MTD device structure
1872 * @vecs: the iovectors to write
1873 * @count: number of vectors
1874 * @to: offset to write to
1875 * @retlen: pointer to variable to store the number of written bytes
1876 * @eccbuf: filesystem supplied oob data buffer
1877 * @oobsel: oob selection structure
1878 *
1879 * NAND write with iovec with ecc
1880 */
1881 static int nand_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
1882 loff_t to, size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
1883 {
1884 int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
1885 int oob, numpages, autoplace = 0, startpage;
1886 struct nand_chip *this = mtd->priv;
1887 int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
1888 u_char *oobbuf, *bufstart;
1889
1890 /* Preset written len for early exit */
1891 *retlen = 0;
1892
1893 /* Calculate total length of data */
1894 total_len = 0;
1895 for (i = 0; i < count; i++)
1896 total_len += (int)vecs[i].iov_len;
1897
1898 DEBUG(MTD_DEBUG_LEVEL3, "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int)to, (unsigned int)total_len, count);
1899
1900 /* Do not allow write past end of page */
1901 if ((to + total_len) > mtd->size) {
1902 DEBUG(MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
1903 return -EINVAL;
1904 }
1905
1906 /* reject writes, which are not page aligned */
1907 if (NOTALIGNED(to) || NOTALIGNED(total_len)) {
1908 printk(KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
1909 return -EINVAL;
1910 }
1911
1912 /* Grab the lock and see if the device is available */
1913 nand_get_device(this, mtd, FL_WRITING);
1914
1915 /* Get the current chip-nr */
1916 chipnr = (int)(to >> this->chip_shift);
1917 /* Select the NAND device */
1918 this->select_chip(mtd, chipnr);
1919
1920 /* Check, if it is write protected */
1921 if (nand_check_wp(mtd))
1922 goto out;
1923
1924 /* if oobsel is NULL, use chip defaults */
1925 if (oobsel == NULL)
1926 oobsel = &mtd->oobinfo;
1927
1928 /* Autoplace of oob data ? Use the default placement scheme */
1929 if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
1930 oobsel = this->autooob;
1931 autoplace = 1;
1932 }
1933 if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
1934 autoplace = 1;
1935
1936 /* Setup start page */
1937 page = (int)(to >> this->page_shift);
1938 /* Invalidate the page cache, if we write to the cached page */
1939 if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
1940 this->pagebuf = -1;
1941
1942 startpage = page & this->pagemask;
1943
1944 /* Loop until all kvec' data has been written */
1945 len = 0;
1946 while (count) {
1947 /* If the given tuple is >= pagesize then
1948 * write it out from the iov
1949 */
1950 if ((vecs->iov_len - len) >= mtd->oobblock) {
1951 /* Calc number of pages we can write
1952 * out of this iov in one go */
1953 numpages = (vecs->iov_len - len) >> this->page_shift;
1954 /* Do not cross block boundaries */
1955 numpages = min(ppblock - (startpage & (ppblock - 1)), numpages);
1956 oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
1957 bufstart = (u_char *) vecs->iov_base;
1958 bufstart += len;
1959 this->data_poi = bufstart;
1960 oob = 0;
1961 for (i = 1; i <= numpages; i++) {
1962 /* Write one page. If this is the last page to write
1963 * then use the real pageprogram command, else select
1964 * cached programming if supported by the chip.
1965 */
1966 ret = nand_write_page(mtd, this, page & this->pagemask,
1967 &oobbuf[oob], oobsel, i != numpages);
1968 if (ret)
1969 goto out;
1970 this->data_poi += mtd->oobblock;
1971 len += mtd->oobblock;
1972 oob += mtd->oobsize;
1973 page++;
1974 }
1975 /* Check, if we have to switch to the next tuple */
1976 if (len >= (int)vecs->iov_len) {
1977 vecs++;
1978 len = 0;
1979 count--;
1980 }
1981 } else {
1982 /* We must use the internal buffer, read data out of each
1983 * tuple until we have a full page to write
1984 */
1985 int cnt = 0;
1986 while (cnt < mtd->oobblock) {
1987 if (vecs->iov_base != NULL && vecs->iov_len)
1988 this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
1989 /* Check, if we have to switch to the next tuple */
1990 if (len >= (int)vecs->iov_len) {
1991 vecs++;
1992 len = 0;
1993 count--;
1994 }
1995 }
1996 this->pagebuf = page;
1997 this->data_poi = this->data_buf;
1998 bufstart = this->data_poi;
1999 numpages = 1;
2000 oobbuf = nand_prepare_oobbuf(mtd, NULL, oobsel, autoplace, numpages);
2001 ret = nand_write_page(mtd, this, page & this->pagemask, oobbuf, oobsel, 0);
2002 if (ret)
2003 goto out;
2004 page++;
2005 }
2006
2007 this->data_poi = bufstart;
2008 ret = nand_verify_pages(mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
2009 if (ret)
2010 goto out;
2011
2012 written += mtd->oobblock * numpages;
2013 /* All done ? */
2014 if (!count)
2015 break;
2016
2017 startpage = page & this->pagemask;
2018 /* Check, if we cross a chip boundary */
2019 if (!startpage) {
2020 chipnr++;
2021 this->select_chip(mtd, -1);
2022 this->select_chip(mtd, chipnr);
2023 }
2024 }
2025 ret = 0;
2026 out:
2027 /* Deselect and wake up anyone waiting on the device */
2028 nand_release_device(mtd);
2029
2030 *retlen = written;
2031 return ret;
2032 }
2033
2034 /**
2035 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2036 * @mtd: MTD device structure
2037 * @page: the page address of the block which will be erased
2038 *
2039 * Standard erase command for NAND chips
2040 */
2041 static void single_erase_cmd(struct mtd_info *mtd, int page)
2042 {
2043 struct nand_chip *this = mtd->priv;
2044 /* Send commands to erase a block */
2045 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2046 this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2047 }
2048
2049 /**
2050 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2051 * @mtd: MTD device structure
2052 * @page: the page address of the block which will be erased
2053 *
2054 * AND multi block erase command function
2055 * Erase 4 consecutive blocks
2056 */
2057 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2058 {
2059 struct nand_chip *this = mtd->priv;
2060 /* Send commands to erase a block */
2061 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2062 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2063 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2064 this->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2065 this->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2066 }
2067
2068 /**
2069 * nand_erase - [MTD Interface] erase block(s)
2070 * @mtd: MTD device structure
2071 * @instr: erase instruction
2072 *
2073 * Erase one ore more blocks
2074 */
2075 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2076 {
2077 return nand_erase_nand(mtd, instr, 0);
2078 }
2079
2080 #define BBT_PAGE_MASK 0xffffff3f
2081 /**
2082 * nand_erase_intern - [NAND Interface] erase block(s)
2083 * @mtd: MTD device structure
2084 * @instr: erase instruction
2085 * @allowbbt: allow erasing the bbt area
2086 *
2087 * Erase one ore more blocks
2088 */
2089 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
2090 {
2091 int page, len, status, pages_per_block, ret, chipnr;
2092 struct nand_chip *this = mtd->priv;
2093 int rewrite_bbt[NAND_MAX_CHIPS]={0}; /* flags to indicate the page, if bbt needs to be rewritten. */
2094 unsigned int bbt_masked_page; /* bbt mask to compare to page being erased. */
2095 /* It is used to see if the current page is in the same */
2096 /* 256 block group and the same bank as the bbt. */
2097
2098 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n", (unsigned int)instr->addr, (unsigned int)instr->len);
2099
2100 /* Start address must align on block boundary */
2101 if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
2102 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
2103 return -EINVAL;
2104 }
2105
2106 /* Length must align on block boundary */
2107 if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
2108 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
2109 return -EINVAL;
2110 }
2111
2112 /* Do not allow erase past end of device */
2113 if ((instr->len + instr->addr) > mtd->size) {
2114 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
2115 return -EINVAL;
2116 }
2117
2118 instr->fail_addr = 0xffffffff;
2119
2120 /* Grab the lock and see if the device is available */
2121 nand_get_device(this, mtd, FL_ERASING);
2122
2123 /* Shift to get first page */
2124 page = (int)(instr->addr >> this->page_shift);
2125 chipnr = (int)(instr->addr >> this->chip_shift);
2126
2127 /* Calculate pages in each block */
2128 pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
2129
2130 /* Select the NAND device */
2131 this->select_chip(mtd, chipnr);
2132
2133 /* Check the WP bit */
2134 /* Check, if it is write protected */
2135 if (nand_check_wp(mtd)) {
2136 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
2137 instr->state = MTD_ERASE_FAILED;
2138 goto erase_exit;
2139 }
2140
2141 /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */
2142 if (this->options & BBT_AUTO_REFRESH) {
2143 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2144 } else {
2145 bbt_masked_page = 0xffffffff; /* should not match anything */
2146 }
2147
2148 /* Loop through the pages */
2149 len = instr->len;
2150
2151 instr->state = MTD_ERASING;
2152
2153 while (len) {
2154 /* Check if we have a bad block, we do not erase bad blocks ! */
2155 if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
2156 printk(KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
2157 instr->state = MTD_ERASE_FAILED;
2158 goto erase_exit;
2159 }
2160
2161 /* Invalidate the page cache, if we erase the block which contains
2162 the current cached page */
2163 if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
2164 this->pagebuf = -1;
2165
2166 this->erase_cmd(mtd, page & this->pagemask);
2167
2168 status = this->waitfunc(mtd, this, FL_ERASING);
2169
2170 /* See if operation failed and additional status checks are available */
2171 if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
2172 status = this->errstat(mtd, this, FL_ERASING, status, page);
2173 }
2174
2175 /* See if block erase succeeded */
2176 if (status & NAND_STATUS_FAIL) {
2177 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
2178 instr->state = MTD_ERASE_FAILED;
2179 instr->fail_addr = (page << this->page_shift);
2180 goto erase_exit;
2181 }
2182
2183 /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */
2184 if (this->options & BBT_AUTO_REFRESH) {
2185 if (((page & BBT_PAGE_MASK) == bbt_masked_page) &&
2186 (page != this->bbt_td->pages[chipnr])) {
2187 rewrite_bbt[chipnr] = (page << this->page_shift);
2188 }
2189 }
2190
2191 /* Increment page address and decrement length */
2192 len -= (1 << this->phys_erase_shift);
2193 page += pages_per_block;
2194
2195 /* Check, if we cross a chip boundary */
2196 if (len && !(page & this->pagemask)) {
2197 chipnr++;
2198 this->select_chip(mtd, -1);
2199 this->select_chip(mtd, chipnr);
2200
2201 /* if BBT requires refresh and BBT-PERCHIP,
2202 * set the BBT page mask to see if this BBT should be rewritten */
2203 if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) {
2204 bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2205 }
2206
2207 }
2208 }
2209 instr->state = MTD_ERASE_DONE;
2210
2211 erase_exit:
2212
2213 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2214 /* Do call back function */
2215 if (!ret)
2216 mtd_erase_callback(instr);
2217
2218 /* Deselect and wake up anyone waiting on the device */
2219 nand_release_device(mtd);
2220
2221 /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */
2222 if ((this->options & BBT_AUTO_REFRESH) && (!ret)) {
2223 for (chipnr = 0; chipnr < this->numchips; chipnr++) {
2224 if (rewrite_bbt[chipnr]) {
2225 /* update the BBT for chip */
2226 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n",
2227 chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]);
2228 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2229 }
2230 }
2231 }
2232
2233 /* Return more or less happy */
2234 return ret;
2235 }
2236
2237 /**
2238 * nand_sync - [MTD Interface] sync
2239 * @mtd: MTD device structure
2240 *
2241 * Sync is actually a wait for chip ready function
2242 */
2243 static void nand_sync(struct mtd_info *mtd)
2244 {
2245 struct nand_chip *this = mtd->priv;
2246
2247 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2248
2249 /* Grab the lock and see if the device is available */
2250 nand_get_device(this, mtd, FL_SYNCING);
2251 /* Release it and go back */
2252 nand_release_device(mtd);
2253 }
2254
2255 /**
2256 * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2257 * @mtd: MTD device structure
2258 * @ofs: offset relative to mtd start
2259 */
2260 static int nand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2261 {
2262 /* Check for invalid offset */
2263 if (ofs > mtd->size)
2264 return -EINVAL;
2265
2266 return nand_block_checkbad(mtd, ofs, 1, 0);
2267 }
2268
2269 /**
2270 * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2271 * @mtd: MTD device structure
2272 * @ofs: offset relative to mtd start
2273 */
2274 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2275 {
2276 struct nand_chip *this = mtd->priv;
2277 int ret;
2278
2279 if ((ret = nand_block_isbad(mtd, ofs))) {
2280 /* If it was bad already, return success and do nothing. */
2281 if (ret > 0)
2282 return 0;
2283 return ret;
2284 }
2285
2286 return this->block_markbad(mtd, ofs);
2287 }
2288
2289 /**
2290 * nand_suspend - [MTD Interface] Suspend the NAND flash
2291 * @mtd: MTD device structure
2292 */
2293 static int nand_suspend(struct mtd_info *mtd)
2294 {
2295 struct nand_chip *this = mtd->priv;
2296
2297 return nand_get_device(this, mtd, FL_PM_SUSPENDED);
2298 }
2299
2300 /**
2301 * nand_resume - [MTD Interface] Resume the NAND flash
2302 * @mtd: MTD device structure
2303 */
2304 static void nand_resume(struct mtd_info *mtd)
2305 {
2306 struct nand_chip *this = mtd->priv;
2307
2308 if (this->state == FL_PM_SUSPENDED)
2309 nand_release_device(mtd);
2310 else
2311 printk(KERN_ERR "resume() called for the chip which is not in suspended state\n");
2312
2313 }
2314
2315 /**
2316 * nand_scan - [NAND Interface] Scan for the NAND device
2317 * @mtd: MTD device structure
2318 * @maxchips: Number of chips to scan for
2319 *
2320 * This fills out all the uninitialized function pointers
2321 * with the defaults.
2322 * The flash ID is read and the mtd/chip structures are
2323 * filled with the appropriate values. Buffers are allocated if
2324 * they are not provided by the board driver
2325 * The mtd->owner field must be set to the module of the caller
2326 *
2327 */
2328 int nand_scan(struct mtd_info *mtd, int maxchips)
2329 {
2330 int i, nand_maf_id, nand_dev_id, busw, maf_id;
2331 struct nand_chip *this = mtd->priv;
2332
2333 /* module_text_address() isn't exported. But if _this_ is a module,
2334 it's a fairly safe bet that its caller is a module too... and
2335 that means the call to module_text_address() gets optimised out
2336 without having to resort to ifdefs */
2337 if (!mtd->owner && (THIS_MODULE ||
2338 module_text_address((unsigned long)__builtin_return_address(0)))) {
2339 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2340 BUG();
2341 }
2342
2343 /* Get buswidth to select the correct functions */
2344 busw = this->options & NAND_BUSWIDTH_16;
2345
2346 /* check for proper chip_delay setup, set 20us if not */
2347 if (!this->chip_delay)
2348 this->chip_delay = 20;
2349
2350 /* check, if a user supplied command function given */
2351 if (this->cmdfunc == NULL)
2352 this->cmdfunc = nand_command;
2353
2354 /* check, if a user supplied wait function given */
2355 if (this->waitfunc == NULL)
2356 this->waitfunc = nand_wait;
2357
2358 if (!this->select_chip)
2359 this->select_chip = nand_select_chip;
2360 if (!this->write_byte)
2361 this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2362 if (!this->read_byte)
2363 this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2364 if (!this->write_word)
2365 this->write_word = nand_write_word;
2366 if (!this->read_word)
2367 this->read_word = nand_read_word;
2368 if (!this->block_bad)
2369 this->block_bad = nand_block_bad;
2370 if (!this->block_markbad)
2371 this->block_markbad = nand_default_block_markbad;
2372 if (!this->write_buf)
2373 this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2374 if (!this->read_buf)
2375 this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2376 if (!this->verify_buf)
2377 this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2378 if (!this->scan_bbt)
2379 this->scan_bbt = nand_default_bbt;
2380
2381 /* Select the device */
2382 this->select_chip(mtd, 0);
2383
2384 /* Send the command for reading device ID */
2385 this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2386
2387 /* Read manufacturer and device IDs */
2388 nand_maf_id = this->read_byte(mtd);
2389 nand_dev_id = this->read_byte(mtd);
2390
2391 /* Print and store flash device information */
2392 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2393
2394 if (nand_dev_id != nand_flash_ids[i].id)
2395 continue;
2396
2397 if (!mtd->name)
2398 mtd->name = nand_flash_ids[i].name;
2399 this->chipsize = nand_flash_ids[i].chipsize << 20;
2400
2401 /* New devices have all the information in additional id bytes */
2402 if (!nand_flash_ids[i].pagesize) {
2403 int extid;
2404 /* The 3rd id byte contains non relevant data ATM */
2405 extid = this->read_byte(mtd);
2406 /* The 4th id byte is the important one */
2407 extid = this->read_byte(mtd);
2408 /* Calc pagesize */
2409 mtd->oobblock = 1024 << (extid & 0x3);
2410 extid >>= 2;
2411 /* Calc oobsize */
2412 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock >> 9);
2413 extid >>= 2;
2414 /* Calc blocksize. Blocksize is multiples of 64KiB */
2415 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2416 extid >>= 2;
2417 /* Get buswidth information */
2418 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2419
2420 } else {
2421 /* Old devices have this data hardcoded in the
2422 * device id table */
2423 mtd->erasesize = nand_flash_ids[i].erasesize;
2424 mtd->oobblock = nand_flash_ids[i].pagesize;
2425 mtd->oobsize = mtd->oobblock / 32;
2426 busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
2427 }
2428
2429 /* Try to identify manufacturer */
2430 for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
2431 if (nand_manuf_ids[maf_id].id == nand_maf_id)
2432 break;
2433 }
2434
2435 /* Check, if buswidth is correct. Hardware drivers should set
2436 * this correct ! */
2437 if (busw != (this->options & NAND_BUSWIDTH_16)) {
2438 printk(KERN_INFO "NAND device: Manufacturer ID:"
2439 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2440 nand_manuf_ids[maf_id].name, mtd->name);
2441 printk(KERN_WARNING
2442 "NAND bus width %d instead %d bit\n",
2443 (this->options & NAND_BUSWIDTH_16) ? 16 : 8, busw ? 16 : 8);
2444 this->select_chip(mtd, -1);
2445 return 1;
2446 }
2447
2448 /* Calculate the address shift from the page size */
2449 this->page_shift = ffs(mtd->oobblock) - 1;
2450 this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
2451 this->chip_shift = ffs(this->chipsize) - 1;
2452
2453 /* Set the bad block position */
2454 this->badblockpos = mtd->oobblock > 512 ? NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2455
2456 /* Get chip options, preserve non chip based options */
2457 this->options &= ~NAND_CHIPOPTIONS_MSK;
2458 this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
2459 /* Set this as a default. Board drivers can override it, if necessary */
2460 this->options |= NAND_NO_AUTOINCR;
2461 /* Check if this is a not a samsung device. Do not clear the options
2462 * for chips which are not having an extended id.
2463 */
2464 if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
2465 this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2466
2467 /* Check for AND chips with 4 page planes */
2468 if (this->options & NAND_4PAGE_ARRAY)
2469 this->erase_cmd = multi_erase_cmd;
2470 else
2471 this->erase_cmd = single_erase_cmd;
2472
2473 /* Do not replace user supplied command function ! */
2474 if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
2475 this->cmdfunc = nand_command_lp;
2476
2477 printk(KERN_INFO "NAND device: Manufacturer ID:"
2478 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
2479 nand_manuf_ids[maf_id].name, nand_flash_ids[i].name);
2480 break;
2481 }
2482
2483 if (!nand_flash_ids[i].name) {
2484 printk(KERN_WARNING "No NAND device found!!!\n");
2485 this->select_chip(mtd, -1);
2486 return 1;
2487 }
2488
2489 for (i = 1; i < maxchips; i++) {
2490 this->select_chip(mtd, i);
2491
2492 /* Send the command for reading device ID */
2493 this->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2494
2495 /* Read manufacturer and device IDs */
2496 if (nand_maf_id != this->read_byte(mtd) ||
2497 nand_dev_id != this->read_byte(mtd))
2498 break;
2499 }
2500 if (i > 1)
2501 printk(KERN_INFO "%d NAND chips detected\n", i);
2502
2503 /* Allocate buffers, if necessary */
2504 if (!this->oob_buf) {
2505 size_t len;
2506 len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
2507 this->oob_buf = kmalloc(len, GFP_KERNEL);
2508 if (!this->oob_buf) {
2509 printk(KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
2510 return -ENOMEM;
2511 }
2512 this->options |= NAND_OOBBUF_ALLOC;
2513 }
2514
2515 if (!this->data_buf) {
2516 size_t len;
2517 len = mtd->oobblock + mtd->oobsize;
2518 this->data_buf = kmalloc(len, GFP_KERNEL);
2519 if (!this->data_buf) {
2520 if (this->options & NAND_OOBBUF_ALLOC)
2521 kfree(this->oob_buf);
2522 printk(KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
2523 return -ENOMEM;
2524 }
2525 this->options |= NAND_DATABUF_ALLOC;
2526 }
2527
2528 /* Store the number of chips and calc total size for mtd */
2529 this->numchips = i;
2530 mtd->size = i * this->chipsize;
2531 /* Convert chipsize to number of pages per chip -1. */
2532 this->pagemask = (this->chipsize >> this->page_shift) - 1;
2533 /* Preset the internal oob buffer */
2534 memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
2535
2536 /* If no default placement scheme is given, select an
2537 * appropriate one */
2538 if (!this->autooob) {
2539 /* Select the appropriate default oob placement scheme for
2540 * placement agnostic filesystems */
2541 switch (mtd->oobsize) {
2542 case 8:
2543 this->autooob = &nand_oob_8;
2544 break;
2545 case 16:
2546 this->autooob = &nand_oob_16;
2547 break;
2548 case 64:
2549 this->autooob = &nand_oob_64;
2550 break;
2551 default:
2552 printk(KERN_WARNING "No oob scheme defined for oobsize %d\n", mtd->oobsize);
2553 BUG();
2554 }
2555 }
2556
2557 /* The number of bytes available for the filesystem to place fs dependend
2558 * oob data */
2559 mtd->oobavail = 0;
2560 for (i = 0; this->autooob->oobfree[i][1]; i++)
2561 mtd->oobavail += this->autooob->oobfree[i][1];
2562
2563 /*
2564 * check ECC mode, default to software
2565 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
2566 * fallback to software ECC
2567 */
2568 this->eccsize = 256; /* set default eccsize */
2569 this->eccbytes = 3;
2570
2571 switch (this->eccmode) {
2572 case NAND_ECC_HW12_2048:
2573 if (mtd->oobblock < 2048) {
2574 printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
2575 mtd->oobblock);
2576 this->eccmode = NAND_ECC_SOFT;
2577 this->calculate_ecc = nand_calculate_ecc;
2578 this->correct_data = nand_correct_data;
2579 } else
2580 this->eccsize = 2048;
2581 break;
2582
2583 case NAND_ECC_HW3_512:
2584 case NAND_ECC_HW6_512:
2585 case NAND_ECC_HW8_512:
2586 if (mtd->oobblock == 256) {
2587 printk(KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
2588 this->eccmode = NAND_ECC_SOFT;
2589 this->calculate_ecc = nand_calculate_ecc;
2590 this->correct_data = nand_correct_data;
2591 } else
2592 this->eccsize = 512; /* set eccsize to 512 */
2593 break;
2594
2595 case NAND_ECC_HW3_256:
2596 break;
2597
2598 case NAND_ECC_NONE:
2599 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
2600 this->eccmode = NAND_ECC_NONE;
2601 break;
2602
2603 case NAND_ECC_SOFT:
2604 this->calculate_ecc = nand_calculate_ecc;
2605 this->correct_data = nand_correct_data;
2606 break;
2607
2608 default:
2609 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
2610 BUG();
2611 }
2612
2613 /* Check hardware ecc function availability and adjust number of ecc bytes per
2614 * calculation step
2615 */
2616 switch (this->eccmode) {
2617 case NAND_ECC_HW12_2048:
2618 this->eccbytes += 4;
2619 case NAND_ECC_HW8_512:
2620 this->eccbytes += 2;
2621 case NAND_ECC_HW6_512:
2622 this->eccbytes += 3;
2623 case NAND_ECC_HW3_512:
2624 case NAND_ECC_HW3_256:
2625 if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
2626 break;
2627 printk(KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
2628 BUG();
2629 }
2630
2631 mtd->eccsize = this->eccsize;
2632
2633 /* Set the number of read / write steps for one page to ensure ECC generation */
2634 switch (this->eccmode) {
2635 case NAND_ECC_HW12_2048:
2636 this->eccsteps = mtd->oobblock / 2048;
2637 break;
2638 case NAND_ECC_HW3_512:
2639 case NAND_ECC_HW6_512:
2640 case NAND_ECC_HW8_512:
2641 this->eccsteps = mtd->oobblock / 512;
2642 break;
2643 case NAND_ECC_HW3_256:
2644 case NAND_ECC_SOFT:
2645 this->eccsteps = mtd->oobblock / 256;
2646 break;
2647
2648 case NAND_ECC_NONE:
2649 this->eccsteps = 1;
2650 break;
2651 }
2652
2653 /* Initialize state, waitqueue and spinlock */
2654 this->state = FL_READY;
2655 init_waitqueue_head(&this->wq);
2656 spin_lock_init(&this->chip_lock);
2657
2658 /* De-select the device */
2659 this->select_chip(mtd, -1);
2660
2661 /* Invalidate the pagebuffer reference */
2662 this->pagebuf = -1;
2663
2664 /* Fill in remaining MTD driver data */
2665 mtd->type = MTD_NANDFLASH;
2666 mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
2667 mtd->ecctype = MTD_ECC_SW;
2668 mtd->erase = nand_erase;
2669 mtd->point = NULL;
2670 mtd->unpoint = NULL;
2671 mtd->read = nand_read;
2672 mtd->write = nand_write;
2673 mtd->read_ecc = nand_read_ecc;
2674 mtd->write_ecc = nand_write_ecc;
2675 mtd->read_oob = nand_read_oob;
2676 mtd->write_oob = nand_write_oob;
2677 mtd->readv = NULL;
2678 mtd->writev = nand_writev;
2679 mtd->writev_ecc = nand_writev_ecc;
2680 mtd->sync = nand_sync;
2681 mtd->lock = NULL;
2682 mtd->unlock = NULL;
2683 mtd->suspend = nand_suspend;
2684 mtd->resume = nand_resume;
2685 mtd->block_isbad = nand_block_isbad;
2686 mtd->block_markbad = nand_block_markbad;
2687
2688 /* and make the autooob the default one */
2689 memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
2690
2691 /* Check, if we should skip the bad block table scan */
2692 if (this->options & NAND_SKIP_BBTSCAN)
2693 return 0;
2694
2695 /* Build bad block table */
2696 return this->scan_bbt(mtd);
2697 }
2698
2699 /**
2700 * nand_release - [NAND Interface] Free resources held by the NAND device
2701 * @mtd: MTD device structure
2702 */
2703 void nand_release(struct mtd_info *mtd)
2704 {
2705 struct nand_chip *this = mtd->priv;
2706
2707 #ifdef CONFIG_MTD_PARTITIONS
2708 /* Deregister partitions */
2709 del_mtd_partitions(mtd);
2710 #endif
2711 /* Deregister the device */
2712 del_mtd_device(mtd);
2713
2714 /* Free bad block table memory */
2715 kfree(this->bbt);
2716 /* Buffer allocated by nand_scan ? */
2717 if (this->options & NAND_OOBBUF_ALLOC)
2718 kfree(this->oob_buf);
2719 /* Buffer allocated by nand_scan ? */
2720 if (this->options & NAND_DATABUF_ALLOC)
2721 kfree(this->data_buf);
2722 }
2723
2724 EXPORT_SYMBOL_GPL(nand_scan);
2725 EXPORT_SYMBOL_GPL(nand_release);
2726
2727 static int __init nand_base_init(void)
2728 {
2729 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2730 return 0;
2731 }
2732
2733 static void __exit nand_base_exit(void)
2734 {
2735 led_trigger_unregister_simple(nand_led_trigger);
2736 }
2737
2738 module_init(nand_base_init);
2739 module_exit(nand_base_exit);
2740
2741 MODULE_LICENSE("GPL");
2742 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2743 MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.129002 seconds and 5 git commands to generate.