mtd: onenand: samsung: add missing iounmap
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ECC support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
60 .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
66 .oobfree = {
67 {.offset = 8,
68 . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72 .eccbytes = 24,
73 .eccpos = {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
77 .oobfree = {
78 {.offset = 2,
79 .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
93 .length = 78} }
94 };
95
96 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
97 int new_state);
98
99 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 struct mtd_oob_ops *ops);
101
102 /*
103 * For devices which display every fart in the system on a separate LED. Is
104 * compiled away when LED support is disabled.
105 */
106 DEFINE_LED_TRIGGER(nand_led_trigger);
107
108 static int check_offs_len(struct mtd_info *mtd,
109 loff_t ofs, uint64_t len)
110 {
111 struct nand_chip *chip = mtd->priv;
112 int ret = 0;
113
114 /* Start address must align on block boundary */
115 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116 pr_debug("%s: unaligned address\n", __func__);
117 ret = -EINVAL;
118 }
119
120 /* Length must align on block boundary */
121 if (len & ((1 << chip->phys_erase_shift) - 1)) {
122 pr_debug("%s: length not block aligned\n", __func__);
123 ret = -EINVAL;
124 }
125
126 /* Do not allow past end of device */
127 if (ofs + len > mtd->size) {
128 pr_debug("%s: past end of device\n", __func__);
129 ret = -EINVAL;
130 }
131
132 return ret;
133 }
134
135 /**
136 * nand_release_device - [GENERIC] release chip
137 * @mtd: MTD device structure
138 *
139 * Deselect, release chip lock and wake up anyone waiting on the device.
140 */
141 static void nand_release_device(struct mtd_info *mtd)
142 {
143 struct nand_chip *chip = mtd->priv;
144
145 /* De-select the NAND device */
146 chip->select_chip(mtd, -1);
147
148 /* Release the controller and the chip */
149 spin_lock(&chip->controller->lock);
150 chip->controller->active = NULL;
151 chip->state = FL_READY;
152 wake_up(&chip->controller->wq);
153 spin_unlock(&chip->controller->lock);
154 }
155
156 /**
157 * nand_read_byte - [DEFAULT] read one byte from the chip
158 * @mtd: MTD device structure
159 *
160 * Default read function for 8bit buswidth
161 */
162 static uint8_t nand_read_byte(struct mtd_info *mtd)
163 {
164 struct nand_chip *chip = mtd->priv;
165 return readb(chip->IO_ADDR_R);
166 }
167
168 /**
169 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
170 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
171 * @mtd: MTD device structure
172 *
173 * Default read function for 16bit buswidth with endianness conversion.
174 *
175 */
176 static uint8_t nand_read_byte16(struct mtd_info *mtd)
177 {
178 struct nand_chip *chip = mtd->priv;
179 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
180 }
181
182 /**
183 * nand_read_word - [DEFAULT] read one word from the chip
184 * @mtd: MTD device structure
185 *
186 * Default read function for 16bit buswidth without endianness conversion.
187 */
188 static u16 nand_read_word(struct mtd_info *mtd)
189 {
190 struct nand_chip *chip = mtd->priv;
191 return readw(chip->IO_ADDR_R);
192 }
193
194 /**
195 * nand_select_chip - [DEFAULT] control CE line
196 * @mtd: MTD device structure
197 * @chipnr: chipnumber to select, -1 for deselect
198 *
199 * Default select function for 1 chip devices.
200 */
201 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
202 {
203 struct nand_chip *chip = mtd->priv;
204
205 switch (chipnr) {
206 case -1:
207 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
208 break;
209 case 0:
210 break;
211
212 default:
213 BUG();
214 }
215 }
216
217 /**
218 * nand_write_buf - [DEFAULT] write buffer to chip
219 * @mtd: MTD device structure
220 * @buf: data buffer
221 * @len: number of bytes to write
222 *
223 * Default write function for 8bit buswidth.
224 */
225 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
226 {
227 int i;
228 struct nand_chip *chip = mtd->priv;
229
230 for (i = 0; i < len; i++)
231 writeb(buf[i], chip->IO_ADDR_W);
232 }
233
234 /**
235 * nand_read_buf - [DEFAULT] read chip data into buffer
236 * @mtd: MTD device structure
237 * @buf: buffer to store date
238 * @len: number of bytes to read
239 *
240 * Default read function for 8bit buswidth.
241 */
242 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
243 {
244 int i;
245 struct nand_chip *chip = mtd->priv;
246
247 for (i = 0; i < len; i++)
248 buf[i] = readb(chip->IO_ADDR_R);
249 }
250
251 /**
252 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
253 * @mtd: MTD device structure
254 * @buf: buffer containing the data to compare
255 * @len: number of bytes to compare
256 *
257 * Default verify function for 8bit buswidth.
258 */
259 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
260 {
261 int i;
262 struct nand_chip *chip = mtd->priv;
263
264 for (i = 0; i < len; i++)
265 if (buf[i] != readb(chip->IO_ADDR_R))
266 return -EFAULT;
267 return 0;
268 }
269
270 /**
271 * nand_write_buf16 - [DEFAULT] write buffer to chip
272 * @mtd: MTD device structure
273 * @buf: data buffer
274 * @len: number of bytes to write
275 *
276 * Default write function for 16bit buswidth.
277 */
278 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280 int i;
281 struct nand_chip *chip = mtd->priv;
282 u16 *p = (u16 *) buf;
283 len >>= 1;
284
285 for (i = 0; i < len; i++)
286 writew(p[i], chip->IO_ADDR_W);
287
288 }
289
290 /**
291 * nand_read_buf16 - [DEFAULT] read chip data into buffer
292 * @mtd: MTD device structure
293 * @buf: buffer to store date
294 * @len: number of bytes to read
295 *
296 * Default read function for 16bit buswidth.
297 */
298 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
299 {
300 int i;
301 struct nand_chip *chip = mtd->priv;
302 u16 *p = (u16 *) buf;
303 len >>= 1;
304
305 for (i = 0; i < len; i++)
306 p[i] = readw(chip->IO_ADDR_R);
307 }
308
309 /**
310 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
311 * @mtd: MTD device structure
312 * @buf: buffer containing the data to compare
313 * @len: number of bytes to compare
314 *
315 * Default verify function for 16bit buswidth.
316 */
317 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
318 {
319 int i;
320 struct nand_chip *chip = mtd->priv;
321 u16 *p = (u16 *) buf;
322 len >>= 1;
323
324 for (i = 0; i < len; i++)
325 if (p[i] != readw(chip->IO_ADDR_R))
326 return -EFAULT;
327
328 return 0;
329 }
330
331 /**
332 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
333 * @mtd: MTD device structure
334 * @ofs: offset from device start
335 * @getchip: 0, if the chip is already selected
336 *
337 * Check, if the block is bad.
338 */
339 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
340 {
341 int page, chipnr, res = 0;
342 struct nand_chip *chip = mtd->priv;
343 u16 bad;
344
345 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
346 ofs += mtd->erasesize - mtd->writesize;
347
348 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
349
350 if (getchip) {
351 chipnr = (int)(ofs >> chip->chip_shift);
352
353 nand_get_device(chip, mtd, FL_READING);
354
355 /* Select the NAND device */
356 chip->select_chip(mtd, chipnr);
357 }
358
359 if (chip->options & NAND_BUSWIDTH_16) {
360 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
361 page);
362 bad = cpu_to_le16(chip->read_word(mtd));
363 if (chip->badblockpos & 0x1)
364 bad >>= 8;
365 else
366 bad &= 0xFF;
367 } else {
368 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
369 bad = chip->read_byte(mtd);
370 }
371
372 if (likely(chip->badblockbits == 8))
373 res = bad != 0xFF;
374 else
375 res = hweight8(bad) < chip->badblockbits;
376
377 if (getchip)
378 nand_release_device(mtd);
379
380 return res;
381 }
382
383 /**
384 * nand_default_block_markbad - [DEFAULT] mark a block bad
385 * @mtd: MTD device structure
386 * @ofs: offset from device start
387 *
388 * This is the default implementation, which can be overridden by a hardware
389 * specific driver.
390 */
391 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
392 {
393 struct nand_chip *chip = mtd->priv;
394 uint8_t buf[2] = { 0, 0 };
395 int block, ret, i = 0;
396
397 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
398 ofs += mtd->erasesize - mtd->writesize;
399
400 /* Get block number */
401 block = (int)(ofs >> chip->bbt_erase_shift);
402 if (chip->bbt)
403 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
404
405 /* Do we have a flash based bad block table? */
406 if (chip->bbt_options & NAND_BBT_USE_FLASH)
407 ret = nand_update_bbt(mtd, ofs);
408 else {
409 struct mtd_oob_ops ops;
410
411 nand_get_device(chip, mtd, FL_WRITING);
412
413 /*
414 * Write to first two pages if necessary. If we write to more
415 * than one location, the first error encountered quits the
416 * procedure. We write two bytes per location, so we dont have
417 * to mess with 16 bit access.
418 */
419 ops.len = ops.ooblen = 2;
420 ops.datbuf = NULL;
421 ops.oobbuf = buf;
422 ops.ooboffs = chip->badblockpos & ~0x01;
423 ops.mode = MTD_OPS_PLACE_OOB;
424 do {
425 ret = nand_do_write_oob(mtd, ofs, &ops);
426
427 i++;
428 ofs += mtd->writesize;
429 } while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) &&
430 i < 2);
431
432 nand_release_device(mtd);
433 }
434 if (!ret)
435 mtd->ecc_stats.badblocks++;
436
437 return ret;
438 }
439
440 /**
441 * nand_check_wp - [GENERIC] check if the chip is write protected
442 * @mtd: MTD device structure
443 *
444 * Check, if the device is write protected. The function expects, that the
445 * device is already selected.
446 */
447 static int nand_check_wp(struct mtd_info *mtd)
448 {
449 struct nand_chip *chip = mtd->priv;
450
451 /* Broken xD cards report WP despite being writable */
452 if (chip->options & NAND_BROKEN_XD)
453 return 0;
454
455 /* Check the WP bit */
456 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
457 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
458 }
459
460 /**
461 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
462 * @mtd: MTD device structure
463 * @ofs: offset from device start
464 * @getchip: 0, if the chip is already selected
465 * @allowbbt: 1, if its allowed to access the bbt area
466 *
467 * Check, if the block is bad. Either by reading the bad block table or
468 * calling of the scan function.
469 */
470 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
471 int allowbbt)
472 {
473 struct nand_chip *chip = mtd->priv;
474
475 if (!chip->bbt)
476 return chip->block_bad(mtd, ofs, getchip);
477
478 /* Return info from the table */
479 return nand_isbad_bbt(mtd, ofs, allowbbt);
480 }
481
482 /**
483 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
484 * @mtd: MTD device structure
485 * @timeo: Timeout
486 *
487 * Helper function for nand_wait_ready used when needing to wait in interrupt
488 * context.
489 */
490 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
491 {
492 struct nand_chip *chip = mtd->priv;
493 int i;
494
495 /* Wait for the device to get ready */
496 for (i = 0; i < timeo; i++) {
497 if (chip->dev_ready(mtd))
498 break;
499 touch_softlockup_watchdog();
500 mdelay(1);
501 }
502 }
503
504 /* Wait for the ready pin, after a command. The timeout is caught later. */
505 void nand_wait_ready(struct mtd_info *mtd)
506 {
507 struct nand_chip *chip = mtd->priv;
508 unsigned long timeo = jiffies + 2;
509
510 /* 400ms timeout */
511 if (in_interrupt() || oops_in_progress)
512 return panic_nand_wait_ready(mtd, 400);
513
514 led_trigger_event(nand_led_trigger, LED_FULL);
515 /* Wait until command is processed or timeout occurs */
516 do {
517 if (chip->dev_ready(mtd))
518 break;
519 touch_softlockup_watchdog();
520 } while (time_before(jiffies, timeo));
521 led_trigger_event(nand_led_trigger, LED_OFF);
522 }
523 EXPORT_SYMBOL_GPL(nand_wait_ready);
524
525 /**
526 * nand_command - [DEFAULT] Send command to NAND device
527 * @mtd: MTD device structure
528 * @command: the command to be sent
529 * @column: the column address for this command, -1 if none
530 * @page_addr: the page address for this command, -1 if none
531 *
532 * Send command to NAND device. This function is used for small page devices
533 * (256/512 Bytes per page).
534 */
535 static void nand_command(struct mtd_info *mtd, unsigned int command,
536 int column, int page_addr)
537 {
538 register struct nand_chip *chip = mtd->priv;
539 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
540
541 /* Write out the command to the device */
542 if (command == NAND_CMD_SEQIN) {
543 int readcmd;
544
545 if (column >= mtd->writesize) {
546 /* OOB area */
547 column -= mtd->writesize;
548 readcmd = NAND_CMD_READOOB;
549 } else if (column < 256) {
550 /* First 256 bytes --> READ0 */
551 readcmd = NAND_CMD_READ0;
552 } else {
553 column -= 256;
554 readcmd = NAND_CMD_READ1;
555 }
556 chip->cmd_ctrl(mtd, readcmd, ctrl);
557 ctrl &= ~NAND_CTRL_CHANGE;
558 }
559 chip->cmd_ctrl(mtd, command, ctrl);
560
561 /* Address cycle, when necessary */
562 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
563 /* Serially input address */
564 if (column != -1) {
565 /* Adjust columns for 16 bit buswidth */
566 if (chip->options & NAND_BUSWIDTH_16)
567 column >>= 1;
568 chip->cmd_ctrl(mtd, column, ctrl);
569 ctrl &= ~NAND_CTRL_CHANGE;
570 }
571 if (page_addr != -1) {
572 chip->cmd_ctrl(mtd, page_addr, ctrl);
573 ctrl &= ~NAND_CTRL_CHANGE;
574 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
575 /* One more address cycle for devices > 32MiB */
576 if (chip->chipsize > (32 << 20))
577 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
578 }
579 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
580
581 /*
582 * Program and erase have their own busy handlers status and sequential
583 * in needs no delay
584 */
585 switch (command) {
586
587 case NAND_CMD_PAGEPROG:
588 case NAND_CMD_ERASE1:
589 case NAND_CMD_ERASE2:
590 case NAND_CMD_SEQIN:
591 case NAND_CMD_STATUS:
592 return;
593
594 case NAND_CMD_RESET:
595 if (chip->dev_ready)
596 break;
597 udelay(chip->chip_delay);
598 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
599 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
600 chip->cmd_ctrl(mtd,
601 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
602 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
603 ;
604 return;
605
606 /* This applies to read commands */
607 default:
608 /*
609 * If we don't have access to the busy pin, we apply the given
610 * command delay
611 */
612 if (!chip->dev_ready) {
613 udelay(chip->chip_delay);
614 return;
615 }
616 }
617 /*
618 * Apply this short delay always to ensure that we do wait tWB in
619 * any case on any machine.
620 */
621 ndelay(100);
622
623 nand_wait_ready(mtd);
624 }
625
626 /**
627 * nand_command_lp - [DEFAULT] Send command to NAND large page device
628 * @mtd: MTD device structure
629 * @command: the command to be sent
630 * @column: the column address for this command, -1 if none
631 * @page_addr: the page address for this command, -1 if none
632 *
633 * Send command to NAND device. This is the version for the new large page
634 * devices. We don't have the separate regions as we have in the small page
635 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
636 */
637 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
638 int column, int page_addr)
639 {
640 register struct nand_chip *chip = mtd->priv;
641
642 /* Emulate NAND_CMD_READOOB */
643 if (command == NAND_CMD_READOOB) {
644 column += mtd->writesize;
645 command = NAND_CMD_READ0;
646 }
647
648 /* Command latch cycle */
649 chip->cmd_ctrl(mtd, command & 0xff,
650 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
651
652 if (column != -1 || page_addr != -1) {
653 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
654
655 /* Serially input address */
656 if (column != -1) {
657 /* Adjust columns for 16 bit buswidth */
658 if (chip->options & NAND_BUSWIDTH_16)
659 column >>= 1;
660 chip->cmd_ctrl(mtd, column, ctrl);
661 ctrl &= ~NAND_CTRL_CHANGE;
662 chip->cmd_ctrl(mtd, column >> 8, ctrl);
663 }
664 if (page_addr != -1) {
665 chip->cmd_ctrl(mtd, page_addr, ctrl);
666 chip->cmd_ctrl(mtd, page_addr >> 8,
667 NAND_NCE | NAND_ALE);
668 /* One more address cycle for devices > 128MiB */
669 if (chip->chipsize > (128 << 20))
670 chip->cmd_ctrl(mtd, page_addr >> 16,
671 NAND_NCE | NAND_ALE);
672 }
673 }
674 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
675
676 /*
677 * Program and erase have their own busy handlers status, sequential
678 * in, and deplete1 need no delay.
679 */
680 switch (command) {
681
682 case NAND_CMD_CACHEDPROG:
683 case NAND_CMD_PAGEPROG:
684 case NAND_CMD_ERASE1:
685 case NAND_CMD_ERASE2:
686 case NAND_CMD_SEQIN:
687 case NAND_CMD_RNDIN:
688 case NAND_CMD_STATUS:
689 case NAND_CMD_DEPLETE1:
690 return;
691
692 case NAND_CMD_STATUS_ERROR:
693 case NAND_CMD_STATUS_ERROR0:
694 case NAND_CMD_STATUS_ERROR1:
695 case NAND_CMD_STATUS_ERROR2:
696 case NAND_CMD_STATUS_ERROR3:
697 /* Read error status commands require only a short delay */
698 udelay(chip->chip_delay);
699 return;
700
701 case NAND_CMD_RESET:
702 if (chip->dev_ready)
703 break;
704 udelay(chip->chip_delay);
705 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
706 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
707 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
708 NAND_NCE | NAND_CTRL_CHANGE);
709 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
710 ;
711 return;
712
713 case NAND_CMD_RNDOUT:
714 /* No ready / busy check necessary */
715 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
716 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
717 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
718 NAND_NCE | NAND_CTRL_CHANGE);
719 return;
720
721 case NAND_CMD_READ0:
722 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
723 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
724 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
725 NAND_NCE | NAND_CTRL_CHANGE);
726
727 /* This applies to read commands */
728 default:
729 /*
730 * If we don't have access to the busy pin, we apply the given
731 * command delay.
732 */
733 if (!chip->dev_ready) {
734 udelay(chip->chip_delay);
735 return;
736 }
737 }
738
739 /*
740 * Apply this short delay always to ensure that we do wait tWB in
741 * any case on any machine.
742 */
743 ndelay(100);
744
745 nand_wait_ready(mtd);
746 }
747
748 /**
749 * panic_nand_get_device - [GENERIC] Get chip for selected access
750 * @chip: the nand chip descriptor
751 * @mtd: MTD device structure
752 * @new_state: the state which is requested
753 *
754 * Used when in panic, no locks are taken.
755 */
756 static void panic_nand_get_device(struct nand_chip *chip,
757 struct mtd_info *mtd, int new_state)
758 {
759 /* Hardware controller shared among independent devices */
760 chip->controller->active = chip;
761 chip->state = new_state;
762 }
763
764 /**
765 * nand_get_device - [GENERIC] Get chip for selected access
766 * @chip: the nand chip descriptor
767 * @mtd: MTD device structure
768 * @new_state: the state which is requested
769 *
770 * Get the device and lock it for exclusive access
771 */
772 static int
773 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
774 {
775 spinlock_t *lock = &chip->controller->lock;
776 wait_queue_head_t *wq = &chip->controller->wq;
777 DECLARE_WAITQUEUE(wait, current);
778 retry:
779 spin_lock(lock);
780
781 /* Hardware controller shared among independent devices */
782 if (!chip->controller->active)
783 chip->controller->active = chip;
784
785 if (chip->controller->active == chip && chip->state == FL_READY) {
786 chip->state = new_state;
787 spin_unlock(lock);
788 return 0;
789 }
790 if (new_state == FL_PM_SUSPENDED) {
791 if (chip->controller->active->state == FL_PM_SUSPENDED) {
792 chip->state = FL_PM_SUSPENDED;
793 spin_unlock(lock);
794 return 0;
795 }
796 }
797 set_current_state(TASK_UNINTERRUPTIBLE);
798 add_wait_queue(wq, &wait);
799 spin_unlock(lock);
800 schedule();
801 remove_wait_queue(wq, &wait);
802 goto retry;
803 }
804
805 /**
806 * panic_nand_wait - [GENERIC] wait until the command is done
807 * @mtd: MTD device structure
808 * @chip: NAND chip structure
809 * @timeo: timeout
810 *
811 * Wait for command done. This is a helper function for nand_wait used when
812 * we are in interrupt context. May happen when in panic and trying to write
813 * an oops through mtdoops.
814 */
815 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
816 unsigned long timeo)
817 {
818 int i;
819 for (i = 0; i < timeo; i++) {
820 if (chip->dev_ready) {
821 if (chip->dev_ready(mtd))
822 break;
823 } else {
824 if (chip->read_byte(mtd) & NAND_STATUS_READY)
825 break;
826 }
827 mdelay(1);
828 }
829 }
830
831 /**
832 * nand_wait - [DEFAULT] wait until the command is done
833 * @mtd: MTD device structure
834 * @chip: NAND chip structure
835 *
836 * Wait for command done. This applies to erase and program only. Erase can
837 * take up to 400ms and program up to 20ms according to general NAND and
838 * SmartMedia specs.
839 */
840 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
841 {
842
843 unsigned long timeo = jiffies;
844 int status, state = chip->state;
845
846 if (state == FL_ERASING)
847 timeo += (HZ * 400) / 1000;
848 else
849 timeo += (HZ * 20) / 1000;
850
851 led_trigger_event(nand_led_trigger, LED_FULL);
852
853 /*
854 * Apply this short delay always to ensure that we do wait tWB in any
855 * case on any machine.
856 */
857 ndelay(100);
858
859 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
860 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
861 else
862 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
863
864 if (in_interrupt() || oops_in_progress)
865 panic_nand_wait(mtd, chip, timeo);
866 else {
867 while (time_before(jiffies, timeo)) {
868 if (chip->dev_ready) {
869 if (chip->dev_ready(mtd))
870 break;
871 } else {
872 if (chip->read_byte(mtd) & NAND_STATUS_READY)
873 break;
874 }
875 cond_resched();
876 }
877 }
878 led_trigger_event(nand_led_trigger, LED_OFF);
879
880 status = (int)chip->read_byte(mtd);
881 return status;
882 }
883
884 /**
885 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
886 * @mtd: mtd info
887 * @ofs: offset to start unlock from
888 * @len: length to unlock
889 * @invert: when = 0, unlock the range of blocks within the lower and
890 * upper boundary address
891 * when = 1, unlock the range of blocks outside the boundaries
892 * of the lower and upper boundary address
893 *
894 * Returs unlock status.
895 */
896 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
897 uint64_t len, int invert)
898 {
899 int ret = 0;
900 int status, page;
901 struct nand_chip *chip = mtd->priv;
902
903 /* Submit address of first page to unlock */
904 page = ofs >> chip->page_shift;
905 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
906
907 /* Submit address of last page to unlock */
908 page = (ofs + len) >> chip->page_shift;
909 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
910 (page | invert) & chip->pagemask);
911
912 /* Call wait ready function */
913 status = chip->waitfunc(mtd, chip);
914 /* See if device thinks it succeeded */
915 if (status & 0x01) {
916 pr_debug("%s: error status = 0x%08x\n",
917 __func__, status);
918 ret = -EIO;
919 }
920
921 return ret;
922 }
923
924 /**
925 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
926 * @mtd: mtd info
927 * @ofs: offset to start unlock from
928 * @len: length to unlock
929 *
930 * Returns unlock status.
931 */
932 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
933 {
934 int ret = 0;
935 int chipnr;
936 struct nand_chip *chip = mtd->priv;
937
938 pr_debug("%s: start = 0x%012llx, len = %llu\n",
939 __func__, (unsigned long long)ofs, len);
940
941 if (check_offs_len(mtd, ofs, len))
942 ret = -EINVAL;
943
944 /* Align to last block address if size addresses end of the device */
945 if (ofs + len == mtd->size)
946 len -= mtd->erasesize;
947
948 nand_get_device(chip, mtd, FL_UNLOCKING);
949
950 /* Shift to get chip number */
951 chipnr = ofs >> chip->chip_shift;
952
953 chip->select_chip(mtd, chipnr);
954
955 /* Check, if it is write protected */
956 if (nand_check_wp(mtd)) {
957 pr_debug("%s: device is write protected!\n",
958 __func__);
959 ret = -EIO;
960 goto out;
961 }
962
963 ret = __nand_unlock(mtd, ofs, len, 0);
964
965 out:
966 nand_release_device(mtd);
967
968 return ret;
969 }
970 EXPORT_SYMBOL(nand_unlock);
971
972 /**
973 * nand_lock - [REPLACEABLE] locks all blocks present in the device
974 * @mtd: mtd info
975 * @ofs: offset to start unlock from
976 * @len: length to unlock
977 *
978 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
979 * have this feature, but it allows only to lock all blocks, not for specified
980 * range for block. Implementing 'lock' feature by making use of 'unlock', for
981 * now.
982 *
983 * Returns lock status.
984 */
985 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
986 {
987 int ret = 0;
988 int chipnr, status, page;
989 struct nand_chip *chip = mtd->priv;
990
991 pr_debug("%s: start = 0x%012llx, len = %llu\n",
992 __func__, (unsigned long long)ofs, len);
993
994 if (check_offs_len(mtd, ofs, len))
995 ret = -EINVAL;
996
997 nand_get_device(chip, mtd, FL_LOCKING);
998
999 /* Shift to get chip number */
1000 chipnr = ofs >> chip->chip_shift;
1001
1002 chip->select_chip(mtd, chipnr);
1003
1004 /* Check, if it is write protected */
1005 if (nand_check_wp(mtd)) {
1006 pr_debug("%s: device is write protected!\n",
1007 __func__);
1008 status = MTD_ERASE_FAILED;
1009 ret = -EIO;
1010 goto out;
1011 }
1012
1013 /* Submit address of first page to lock */
1014 page = ofs >> chip->page_shift;
1015 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1016
1017 /* Call wait ready function */
1018 status = chip->waitfunc(mtd, chip);
1019 /* See if device thinks it succeeded */
1020 if (status & 0x01) {
1021 pr_debug("%s: error status = 0x%08x\n",
1022 __func__, status);
1023 ret = -EIO;
1024 goto out;
1025 }
1026
1027 ret = __nand_unlock(mtd, ofs, len, 0x1);
1028
1029 out:
1030 nand_release_device(mtd);
1031
1032 return ret;
1033 }
1034 EXPORT_SYMBOL(nand_lock);
1035
1036 /**
1037 * nand_read_page_raw - [INTERN] read raw page data without ecc
1038 * @mtd: mtd info structure
1039 * @chip: nand chip info structure
1040 * @buf: buffer to store read data
1041 * @page: page number to read
1042 *
1043 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1044 */
1045 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1046 uint8_t *buf, int page)
1047 {
1048 chip->read_buf(mtd, buf, mtd->writesize);
1049 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1050 return 0;
1051 }
1052
1053 /**
1054 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1055 * @mtd: mtd info structure
1056 * @chip: nand chip info structure
1057 * @buf: buffer to store read data
1058 * @page: page number to read
1059 *
1060 * We need a special oob layout and handling even when OOB isn't used.
1061 */
1062 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1063 struct nand_chip *chip,
1064 uint8_t *buf, int page)
1065 {
1066 int eccsize = chip->ecc.size;
1067 int eccbytes = chip->ecc.bytes;
1068 uint8_t *oob = chip->oob_poi;
1069 int steps, size;
1070
1071 for (steps = chip->ecc.steps; steps > 0; steps--) {
1072 chip->read_buf(mtd, buf, eccsize);
1073 buf += eccsize;
1074
1075 if (chip->ecc.prepad) {
1076 chip->read_buf(mtd, oob, chip->ecc.prepad);
1077 oob += chip->ecc.prepad;
1078 }
1079
1080 chip->read_buf(mtd, oob, eccbytes);
1081 oob += eccbytes;
1082
1083 if (chip->ecc.postpad) {
1084 chip->read_buf(mtd, oob, chip->ecc.postpad);
1085 oob += chip->ecc.postpad;
1086 }
1087 }
1088
1089 size = mtd->oobsize - (oob - chip->oob_poi);
1090 if (size)
1091 chip->read_buf(mtd, oob, size);
1092
1093 return 0;
1094 }
1095
1096 /**
1097 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1098 * @mtd: mtd info structure
1099 * @chip: nand chip info structure
1100 * @buf: buffer to store read data
1101 * @page: page number to read
1102 */
1103 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1104 uint8_t *buf, int page)
1105 {
1106 int i, eccsize = chip->ecc.size;
1107 int eccbytes = chip->ecc.bytes;
1108 int eccsteps = chip->ecc.steps;
1109 uint8_t *p = buf;
1110 uint8_t *ecc_calc = chip->buffers->ecccalc;
1111 uint8_t *ecc_code = chip->buffers->ecccode;
1112 uint32_t *eccpos = chip->ecc.layout->eccpos;
1113
1114 chip->ecc.read_page_raw(mtd, chip, buf, page);
1115
1116 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1117 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1118
1119 for (i = 0; i < chip->ecc.total; i++)
1120 ecc_code[i] = chip->oob_poi[eccpos[i]];
1121
1122 eccsteps = chip->ecc.steps;
1123 p = buf;
1124
1125 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1126 int stat;
1127
1128 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1129 if (stat < 0)
1130 mtd->ecc_stats.failed++;
1131 else
1132 mtd->ecc_stats.corrected += stat;
1133 }
1134 return 0;
1135 }
1136
1137 /**
1138 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1139 * @mtd: mtd info structure
1140 * @chip: nand chip info structure
1141 * @data_offs: offset of requested data within the page
1142 * @readlen: data length
1143 * @bufpoi: buffer to store read data
1144 */
1145 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1146 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1147 {
1148 int start_step, end_step, num_steps;
1149 uint32_t *eccpos = chip->ecc.layout->eccpos;
1150 uint8_t *p;
1151 int data_col_addr, i, gaps = 0;
1152 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1153 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1154 int index = 0;
1155
1156 /* Column address within the page aligned to ECC size (256bytes) */
1157 start_step = data_offs / chip->ecc.size;
1158 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1159 num_steps = end_step - start_step + 1;
1160
1161 /* Data size aligned to ECC ecc.size */
1162 datafrag_len = num_steps * chip->ecc.size;
1163 eccfrag_len = num_steps * chip->ecc.bytes;
1164
1165 data_col_addr = start_step * chip->ecc.size;
1166 /* If we read not a page aligned data */
1167 if (data_col_addr != 0)
1168 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1169
1170 p = bufpoi + data_col_addr;
1171 chip->read_buf(mtd, p, datafrag_len);
1172
1173 /* Calculate ECC */
1174 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1175 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1176
1177 /*
1178 * The performance is faster if we position offsets according to
1179 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1180 */
1181 for (i = 0; i < eccfrag_len - 1; i++) {
1182 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1183 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1184 gaps = 1;
1185 break;
1186 }
1187 }
1188 if (gaps) {
1189 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1190 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1191 } else {
1192 /*
1193 * Send the command to read the particular ECC bytes take care
1194 * about buswidth alignment in read_buf.
1195 */
1196 index = start_step * chip->ecc.bytes;
1197
1198 aligned_pos = eccpos[index] & ~(busw - 1);
1199 aligned_len = eccfrag_len;
1200 if (eccpos[index] & (busw - 1))
1201 aligned_len++;
1202 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1203 aligned_len++;
1204
1205 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1206 mtd->writesize + aligned_pos, -1);
1207 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1208 }
1209
1210 for (i = 0; i < eccfrag_len; i++)
1211 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1212
1213 p = bufpoi + data_col_addr;
1214 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1215 int stat;
1216
1217 stat = chip->ecc.correct(mtd, p,
1218 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1219 if (stat < 0)
1220 mtd->ecc_stats.failed++;
1221 else
1222 mtd->ecc_stats.corrected += stat;
1223 }
1224 return 0;
1225 }
1226
1227 /**
1228 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1229 * @mtd: mtd info structure
1230 * @chip: nand chip info structure
1231 * @buf: buffer to store read data
1232 * @page: page number to read
1233 *
1234 * Not for syndrome calculating ECC controllers which need a special oob layout.
1235 */
1236 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1237 uint8_t *buf, int page)
1238 {
1239 int i, eccsize = chip->ecc.size;
1240 int eccbytes = chip->ecc.bytes;
1241 int eccsteps = chip->ecc.steps;
1242 uint8_t *p = buf;
1243 uint8_t *ecc_calc = chip->buffers->ecccalc;
1244 uint8_t *ecc_code = chip->buffers->ecccode;
1245 uint32_t *eccpos = chip->ecc.layout->eccpos;
1246
1247 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1248 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1249 chip->read_buf(mtd, p, eccsize);
1250 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1251 }
1252 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1253
1254 for (i = 0; i < chip->ecc.total; i++)
1255 ecc_code[i] = chip->oob_poi[eccpos[i]];
1256
1257 eccsteps = chip->ecc.steps;
1258 p = buf;
1259
1260 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1261 int stat;
1262
1263 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1264 if (stat < 0)
1265 mtd->ecc_stats.failed++;
1266 else
1267 mtd->ecc_stats.corrected += stat;
1268 }
1269 return 0;
1270 }
1271
1272 /**
1273 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1274 * @mtd: mtd info structure
1275 * @chip: nand chip info structure
1276 * @buf: buffer to store read data
1277 * @page: page number to read
1278 *
1279 * Hardware ECC for large page chips, require OOB to be read first. For this
1280 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1281 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1282 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1283 * the data area, by overwriting the NAND manufacturer bad block markings.
1284 */
1285 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1286 struct nand_chip *chip, uint8_t *buf, int page)
1287 {
1288 int i, eccsize = chip->ecc.size;
1289 int eccbytes = chip->ecc.bytes;
1290 int eccsteps = chip->ecc.steps;
1291 uint8_t *p = buf;
1292 uint8_t *ecc_code = chip->buffers->ecccode;
1293 uint32_t *eccpos = chip->ecc.layout->eccpos;
1294 uint8_t *ecc_calc = chip->buffers->ecccalc;
1295
1296 /* Read the OOB area first */
1297 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1298 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1299 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1300
1301 for (i = 0; i < chip->ecc.total; i++)
1302 ecc_code[i] = chip->oob_poi[eccpos[i]];
1303
1304 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1305 int stat;
1306
1307 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1308 chip->read_buf(mtd, p, eccsize);
1309 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1310
1311 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1312 if (stat < 0)
1313 mtd->ecc_stats.failed++;
1314 else
1315 mtd->ecc_stats.corrected += stat;
1316 }
1317 return 0;
1318 }
1319
1320 /**
1321 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1322 * @mtd: mtd info structure
1323 * @chip: nand chip info structure
1324 * @buf: buffer to store read data
1325 * @page: page number to read
1326 *
1327 * The hw generator calculates the error syndrome automatically. Therefore we
1328 * need a special oob layout and handling.
1329 */
1330 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1331 uint8_t *buf, int page)
1332 {
1333 int i, eccsize = chip->ecc.size;
1334 int eccbytes = chip->ecc.bytes;
1335 int eccsteps = chip->ecc.steps;
1336 uint8_t *p = buf;
1337 uint8_t *oob = chip->oob_poi;
1338
1339 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1340 int stat;
1341
1342 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1343 chip->read_buf(mtd, p, eccsize);
1344
1345 if (chip->ecc.prepad) {
1346 chip->read_buf(mtd, oob, chip->ecc.prepad);
1347 oob += chip->ecc.prepad;
1348 }
1349
1350 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1351 chip->read_buf(mtd, oob, eccbytes);
1352 stat = chip->ecc.correct(mtd, p, oob, NULL);
1353
1354 if (stat < 0)
1355 mtd->ecc_stats.failed++;
1356 else
1357 mtd->ecc_stats.corrected += stat;
1358
1359 oob += eccbytes;
1360
1361 if (chip->ecc.postpad) {
1362 chip->read_buf(mtd, oob, chip->ecc.postpad);
1363 oob += chip->ecc.postpad;
1364 }
1365 }
1366
1367 /* Calculate remaining oob bytes */
1368 i = mtd->oobsize - (oob - chip->oob_poi);
1369 if (i)
1370 chip->read_buf(mtd, oob, i);
1371
1372 return 0;
1373 }
1374
1375 /**
1376 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1377 * @chip: nand chip structure
1378 * @oob: oob destination address
1379 * @ops: oob ops structure
1380 * @len: size of oob to transfer
1381 */
1382 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1383 struct mtd_oob_ops *ops, size_t len)
1384 {
1385 switch (ops->mode) {
1386
1387 case MTD_OPS_PLACE_OOB:
1388 case MTD_OPS_RAW:
1389 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1390 return oob + len;
1391
1392 case MTD_OPS_AUTO_OOB: {
1393 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1394 uint32_t boffs = 0, roffs = ops->ooboffs;
1395 size_t bytes = 0;
1396
1397 for (; free->length && len; free++, len -= bytes) {
1398 /* Read request not from offset 0? */
1399 if (unlikely(roffs)) {
1400 if (roffs >= free->length) {
1401 roffs -= free->length;
1402 continue;
1403 }
1404 boffs = free->offset + roffs;
1405 bytes = min_t(size_t, len,
1406 (free->length - roffs));
1407 roffs = 0;
1408 } else {
1409 bytes = min_t(size_t, len, free->length);
1410 boffs = free->offset;
1411 }
1412 memcpy(oob, chip->oob_poi + boffs, bytes);
1413 oob += bytes;
1414 }
1415 return oob;
1416 }
1417 default:
1418 BUG();
1419 }
1420 return NULL;
1421 }
1422
1423 /**
1424 * nand_do_read_ops - [INTERN] Read data with ECC
1425 * @mtd: MTD device structure
1426 * @from: offset to read from
1427 * @ops: oob ops structure
1428 *
1429 * Internal function. Called with chip held.
1430 */
1431 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1432 struct mtd_oob_ops *ops)
1433 {
1434 int chipnr, page, realpage, col, bytes, aligned;
1435 struct nand_chip *chip = mtd->priv;
1436 struct mtd_ecc_stats stats;
1437 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1438 int sndcmd = 1;
1439 int ret = 0;
1440 uint32_t readlen = ops->len;
1441 uint32_t oobreadlen = ops->ooblen;
1442 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1443 mtd->oobavail : mtd->oobsize;
1444
1445 uint8_t *bufpoi, *oob, *buf;
1446
1447 stats = mtd->ecc_stats;
1448
1449 chipnr = (int)(from >> chip->chip_shift);
1450 chip->select_chip(mtd, chipnr);
1451
1452 realpage = (int)(from >> chip->page_shift);
1453 page = realpage & chip->pagemask;
1454
1455 col = (int)(from & (mtd->writesize - 1));
1456
1457 buf = ops->datbuf;
1458 oob = ops->oobbuf;
1459
1460 while (1) {
1461 bytes = min(mtd->writesize - col, readlen);
1462 aligned = (bytes == mtd->writesize);
1463
1464 /* Is the current page in the buffer? */
1465 if (realpage != chip->pagebuf || oob) {
1466 bufpoi = aligned ? buf : chip->buffers->databuf;
1467
1468 if (likely(sndcmd)) {
1469 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1470 sndcmd = 0;
1471 }
1472
1473 /* Now read the page into the buffer */
1474 if (unlikely(ops->mode == MTD_OPS_RAW))
1475 ret = chip->ecc.read_page_raw(mtd, chip,
1476 bufpoi, page);
1477 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1478 ret = chip->ecc.read_subpage(mtd, chip,
1479 col, bytes, bufpoi);
1480 else
1481 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1482 page);
1483 if (ret < 0) {
1484 if (!aligned)
1485 /* Invalidate page cache */
1486 chip->pagebuf = -1;
1487 break;
1488 }
1489
1490 /* Transfer not aligned data */
1491 if (!aligned) {
1492 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1493 !(mtd->ecc_stats.failed - stats.failed) &&
1494 (ops->mode != MTD_OPS_RAW))
1495 chip->pagebuf = realpage;
1496 else
1497 /* Invalidate page cache */
1498 chip->pagebuf = -1;
1499 memcpy(buf, chip->buffers->databuf + col, bytes);
1500 }
1501
1502 buf += bytes;
1503
1504 if (unlikely(oob)) {
1505
1506 int toread = min(oobreadlen, max_oobsize);
1507
1508 if (toread) {
1509 oob = nand_transfer_oob(chip,
1510 oob, ops, toread);
1511 oobreadlen -= toread;
1512 }
1513 }
1514
1515 if (!(chip->options & NAND_NO_READRDY)) {
1516 /*
1517 * Apply delay or wait for ready/busy pin. Do
1518 * this before the AUTOINCR check, so no
1519 * problems arise if a chip which does auto
1520 * increment is marked as NOAUTOINCR by the
1521 * board driver.
1522 */
1523 if (!chip->dev_ready)
1524 udelay(chip->chip_delay);
1525 else
1526 nand_wait_ready(mtd);
1527 }
1528 } else {
1529 memcpy(buf, chip->buffers->databuf + col, bytes);
1530 buf += bytes;
1531 }
1532
1533 readlen -= bytes;
1534
1535 if (!readlen)
1536 break;
1537
1538 /* For subsequent reads align to page boundary */
1539 col = 0;
1540 /* Increment page address */
1541 realpage++;
1542
1543 page = realpage & chip->pagemask;
1544 /* Check, if we cross a chip boundary */
1545 if (!page) {
1546 chipnr++;
1547 chip->select_chip(mtd, -1);
1548 chip->select_chip(mtd, chipnr);
1549 }
1550
1551 /*
1552 * Check, if the chip supports auto page increment or if we
1553 * have hit a block boundary.
1554 */
1555 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1556 sndcmd = 1;
1557 }
1558
1559 ops->retlen = ops->len - (size_t) readlen;
1560 if (oob)
1561 ops->oobretlen = ops->ooblen - oobreadlen;
1562
1563 if (ret)
1564 return ret;
1565
1566 if (mtd->ecc_stats.failed - stats.failed)
1567 return -EBADMSG;
1568
1569 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1570 }
1571
1572 /**
1573 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1574 * @mtd: MTD device structure
1575 * @from: offset to read from
1576 * @len: number of bytes to read
1577 * @retlen: pointer to variable to store the number of read bytes
1578 * @buf: the databuffer to put data
1579 *
1580 * Get hold of the chip and call nand_do_read.
1581 */
1582 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1583 size_t *retlen, uint8_t *buf)
1584 {
1585 struct nand_chip *chip = mtd->priv;
1586 struct mtd_oob_ops ops;
1587 int ret;
1588
1589 /* Do not allow reads past end of device */
1590 if ((from + len) > mtd->size)
1591 return -EINVAL;
1592 if (!len)
1593 return 0;
1594
1595 nand_get_device(chip, mtd, FL_READING);
1596
1597 ops.len = len;
1598 ops.datbuf = buf;
1599 ops.oobbuf = NULL;
1600 ops.mode = 0;
1601
1602 ret = nand_do_read_ops(mtd, from, &ops);
1603
1604 *retlen = ops.retlen;
1605
1606 nand_release_device(mtd);
1607
1608 return ret;
1609 }
1610
1611 /**
1612 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1613 * @mtd: mtd info structure
1614 * @chip: nand chip info structure
1615 * @page: page number to read
1616 * @sndcmd: flag whether to issue read command or not
1617 */
1618 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1619 int page, int sndcmd)
1620 {
1621 if (sndcmd) {
1622 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1623 sndcmd = 0;
1624 }
1625 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1626 return sndcmd;
1627 }
1628
1629 /**
1630 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1631 * with syndromes
1632 * @mtd: mtd info structure
1633 * @chip: nand chip info structure
1634 * @page: page number to read
1635 * @sndcmd: flag whether to issue read command or not
1636 */
1637 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1638 int page, int sndcmd)
1639 {
1640 uint8_t *buf = chip->oob_poi;
1641 int length = mtd->oobsize;
1642 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1643 int eccsize = chip->ecc.size;
1644 uint8_t *bufpoi = buf;
1645 int i, toread, sndrnd = 0, pos;
1646
1647 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1648 for (i = 0; i < chip->ecc.steps; i++) {
1649 if (sndrnd) {
1650 pos = eccsize + i * (eccsize + chunk);
1651 if (mtd->writesize > 512)
1652 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1653 else
1654 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1655 } else
1656 sndrnd = 1;
1657 toread = min_t(int, length, chunk);
1658 chip->read_buf(mtd, bufpoi, toread);
1659 bufpoi += toread;
1660 length -= toread;
1661 }
1662 if (length > 0)
1663 chip->read_buf(mtd, bufpoi, length);
1664
1665 return 1;
1666 }
1667
1668 /**
1669 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1670 * @mtd: mtd info structure
1671 * @chip: nand chip info structure
1672 * @page: page number to write
1673 */
1674 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1675 int page)
1676 {
1677 int status = 0;
1678 const uint8_t *buf = chip->oob_poi;
1679 int length = mtd->oobsize;
1680
1681 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1682 chip->write_buf(mtd, buf, length);
1683 /* Send command to program the OOB data */
1684 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1685
1686 status = chip->waitfunc(mtd, chip);
1687
1688 return status & NAND_STATUS_FAIL ? -EIO : 0;
1689 }
1690
1691 /**
1692 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1693 * with syndrome - only for large page flash
1694 * @mtd: mtd info structure
1695 * @chip: nand chip info structure
1696 * @page: page number to write
1697 */
1698 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1699 struct nand_chip *chip, int page)
1700 {
1701 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1702 int eccsize = chip->ecc.size, length = mtd->oobsize;
1703 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1704 const uint8_t *bufpoi = chip->oob_poi;
1705
1706 /*
1707 * data-ecc-data-ecc ... ecc-oob
1708 * or
1709 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1710 */
1711 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1712 pos = steps * (eccsize + chunk);
1713 steps = 0;
1714 } else
1715 pos = eccsize;
1716
1717 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1718 for (i = 0; i < steps; i++) {
1719 if (sndcmd) {
1720 if (mtd->writesize <= 512) {
1721 uint32_t fill = 0xFFFFFFFF;
1722
1723 len = eccsize;
1724 while (len > 0) {
1725 int num = min_t(int, len, 4);
1726 chip->write_buf(mtd, (uint8_t *)&fill,
1727 num);
1728 len -= num;
1729 }
1730 } else {
1731 pos = eccsize + i * (eccsize + chunk);
1732 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1733 }
1734 } else
1735 sndcmd = 1;
1736 len = min_t(int, length, chunk);
1737 chip->write_buf(mtd, bufpoi, len);
1738 bufpoi += len;
1739 length -= len;
1740 }
1741 if (length > 0)
1742 chip->write_buf(mtd, bufpoi, length);
1743
1744 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1745 status = chip->waitfunc(mtd, chip);
1746
1747 return status & NAND_STATUS_FAIL ? -EIO : 0;
1748 }
1749
1750 /**
1751 * nand_do_read_oob - [INTERN] NAND read out-of-band
1752 * @mtd: MTD device structure
1753 * @from: offset to read from
1754 * @ops: oob operations description structure
1755 *
1756 * NAND read out-of-band data from the spare area.
1757 */
1758 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1759 struct mtd_oob_ops *ops)
1760 {
1761 int page, realpage, chipnr, sndcmd = 1;
1762 struct nand_chip *chip = mtd->priv;
1763 struct mtd_ecc_stats stats;
1764 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1765 int readlen = ops->ooblen;
1766 int len;
1767 uint8_t *buf = ops->oobbuf;
1768
1769 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1770 __func__, (unsigned long long)from, readlen);
1771
1772 stats = mtd->ecc_stats;
1773
1774 if (ops->mode == MTD_OPS_AUTO_OOB)
1775 len = chip->ecc.layout->oobavail;
1776 else
1777 len = mtd->oobsize;
1778
1779 if (unlikely(ops->ooboffs >= len)) {
1780 pr_debug("%s: attempt to start read outside oob\n",
1781 __func__);
1782 return -EINVAL;
1783 }
1784
1785 /* Do not allow reads past end of device */
1786 if (unlikely(from >= mtd->size ||
1787 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1788 (from >> chip->page_shift)) * len)) {
1789 pr_debug("%s: attempt to read beyond end of device\n",
1790 __func__);
1791 return -EINVAL;
1792 }
1793
1794 chipnr = (int)(from >> chip->chip_shift);
1795 chip->select_chip(mtd, chipnr);
1796
1797 /* Shift to get page */
1798 realpage = (int)(from >> chip->page_shift);
1799 page = realpage & chip->pagemask;
1800
1801 while (1) {
1802 if (ops->mode == MTD_OPS_RAW)
1803 sndcmd = chip->ecc.read_oob_raw(mtd, chip, page, sndcmd);
1804 else
1805 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1806
1807 len = min(len, readlen);
1808 buf = nand_transfer_oob(chip, buf, ops, len);
1809
1810 if (!(chip->options & NAND_NO_READRDY)) {
1811 /*
1812 * Apply delay or wait for ready/busy pin. Do this
1813 * before the AUTOINCR check, so no problems arise if a
1814 * chip which does auto increment is marked as
1815 * NOAUTOINCR by the board driver.
1816 */
1817 if (!chip->dev_ready)
1818 udelay(chip->chip_delay);
1819 else
1820 nand_wait_ready(mtd);
1821 }
1822
1823 readlen -= len;
1824 if (!readlen)
1825 break;
1826
1827 /* Increment page address */
1828 realpage++;
1829
1830 page = realpage & chip->pagemask;
1831 /* Check, if we cross a chip boundary */
1832 if (!page) {
1833 chipnr++;
1834 chip->select_chip(mtd, -1);
1835 chip->select_chip(mtd, chipnr);
1836 }
1837
1838 /*
1839 * Check, if the chip supports auto page increment or if we
1840 * have hit a block boundary.
1841 */
1842 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1843 sndcmd = 1;
1844 }
1845
1846 ops->oobretlen = ops->ooblen;
1847
1848 if (mtd->ecc_stats.failed - stats.failed)
1849 return -EBADMSG;
1850
1851 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1852 }
1853
1854 /**
1855 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1856 * @mtd: MTD device structure
1857 * @from: offset to read from
1858 * @ops: oob operation description structure
1859 *
1860 * NAND read data and/or out-of-band data.
1861 */
1862 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1863 struct mtd_oob_ops *ops)
1864 {
1865 struct nand_chip *chip = mtd->priv;
1866 int ret = -ENOTSUPP;
1867
1868 ops->retlen = 0;
1869
1870 /* Do not allow reads past end of device */
1871 if (ops->datbuf && (from + ops->len) > mtd->size) {
1872 pr_debug("%s: attempt to read beyond end of device\n",
1873 __func__);
1874 return -EINVAL;
1875 }
1876
1877 nand_get_device(chip, mtd, FL_READING);
1878
1879 switch (ops->mode) {
1880 case MTD_OPS_PLACE_OOB:
1881 case MTD_OPS_AUTO_OOB:
1882 case MTD_OPS_RAW:
1883 break;
1884
1885 default:
1886 goto out;
1887 }
1888
1889 if (!ops->datbuf)
1890 ret = nand_do_read_oob(mtd, from, ops);
1891 else
1892 ret = nand_do_read_ops(mtd, from, ops);
1893
1894 out:
1895 nand_release_device(mtd);
1896 return ret;
1897 }
1898
1899
1900 /**
1901 * nand_write_page_raw - [INTERN] raw page write function
1902 * @mtd: mtd info structure
1903 * @chip: nand chip info structure
1904 * @buf: data buffer
1905 *
1906 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1907 */
1908 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1909 const uint8_t *buf)
1910 {
1911 chip->write_buf(mtd, buf, mtd->writesize);
1912 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1913 }
1914
1915 /**
1916 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1917 * @mtd: mtd info structure
1918 * @chip: nand chip info structure
1919 * @buf: data buffer
1920 *
1921 * We need a special oob layout and handling even when ECC isn't checked.
1922 */
1923 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1924 struct nand_chip *chip,
1925 const uint8_t *buf)
1926 {
1927 int eccsize = chip->ecc.size;
1928 int eccbytes = chip->ecc.bytes;
1929 uint8_t *oob = chip->oob_poi;
1930 int steps, size;
1931
1932 for (steps = chip->ecc.steps; steps > 0; steps--) {
1933 chip->write_buf(mtd, buf, eccsize);
1934 buf += eccsize;
1935
1936 if (chip->ecc.prepad) {
1937 chip->write_buf(mtd, oob, chip->ecc.prepad);
1938 oob += chip->ecc.prepad;
1939 }
1940
1941 chip->read_buf(mtd, oob, eccbytes);
1942 oob += eccbytes;
1943
1944 if (chip->ecc.postpad) {
1945 chip->write_buf(mtd, oob, chip->ecc.postpad);
1946 oob += chip->ecc.postpad;
1947 }
1948 }
1949
1950 size = mtd->oobsize - (oob - chip->oob_poi);
1951 if (size)
1952 chip->write_buf(mtd, oob, size);
1953 }
1954 /**
1955 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1956 * @mtd: mtd info structure
1957 * @chip: nand chip info structure
1958 * @buf: data buffer
1959 */
1960 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1961 const uint8_t *buf)
1962 {
1963 int i, eccsize = chip->ecc.size;
1964 int eccbytes = chip->ecc.bytes;
1965 int eccsteps = chip->ecc.steps;
1966 uint8_t *ecc_calc = chip->buffers->ecccalc;
1967 const uint8_t *p = buf;
1968 uint32_t *eccpos = chip->ecc.layout->eccpos;
1969
1970 /* Software ECC calculation */
1971 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1972 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1973
1974 for (i = 0; i < chip->ecc.total; i++)
1975 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1976
1977 chip->ecc.write_page_raw(mtd, chip, buf);
1978 }
1979
1980 /**
1981 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1982 * @mtd: mtd info structure
1983 * @chip: nand chip info structure
1984 * @buf: data buffer
1985 */
1986 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1987 const uint8_t *buf)
1988 {
1989 int i, eccsize = chip->ecc.size;
1990 int eccbytes = chip->ecc.bytes;
1991 int eccsteps = chip->ecc.steps;
1992 uint8_t *ecc_calc = chip->buffers->ecccalc;
1993 const uint8_t *p = buf;
1994 uint32_t *eccpos = chip->ecc.layout->eccpos;
1995
1996 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1997 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1998 chip->write_buf(mtd, p, eccsize);
1999 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2000 }
2001
2002 for (i = 0; i < chip->ecc.total; i++)
2003 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2004
2005 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2006 }
2007
2008 /**
2009 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2010 * @mtd: mtd info structure
2011 * @chip: nand chip info structure
2012 * @buf: data buffer
2013 *
2014 * The hw generator calculates the error syndrome automatically. Therefore we
2015 * need a special oob layout and handling.
2016 */
2017 static void nand_write_page_syndrome(struct mtd_info *mtd,
2018 struct nand_chip *chip, const uint8_t *buf)
2019 {
2020 int i, eccsize = chip->ecc.size;
2021 int eccbytes = chip->ecc.bytes;
2022 int eccsteps = chip->ecc.steps;
2023 const uint8_t *p = buf;
2024 uint8_t *oob = chip->oob_poi;
2025
2026 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2027
2028 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2029 chip->write_buf(mtd, p, eccsize);
2030
2031 if (chip->ecc.prepad) {
2032 chip->write_buf(mtd, oob, chip->ecc.prepad);
2033 oob += chip->ecc.prepad;
2034 }
2035
2036 chip->ecc.calculate(mtd, p, oob);
2037 chip->write_buf(mtd, oob, eccbytes);
2038 oob += eccbytes;
2039
2040 if (chip->ecc.postpad) {
2041 chip->write_buf(mtd, oob, chip->ecc.postpad);
2042 oob += chip->ecc.postpad;
2043 }
2044 }
2045
2046 /* Calculate remaining oob bytes */
2047 i = mtd->oobsize - (oob - chip->oob_poi);
2048 if (i)
2049 chip->write_buf(mtd, oob, i);
2050 }
2051
2052 /**
2053 * nand_write_page - [REPLACEABLE] write one page
2054 * @mtd: MTD device structure
2055 * @chip: NAND chip descriptor
2056 * @buf: the data to write
2057 * @page: page number to write
2058 * @cached: cached programming
2059 * @raw: use _raw version of write_page
2060 */
2061 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2062 const uint8_t *buf, int page, int cached, int raw)
2063 {
2064 int status;
2065
2066 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2067
2068 if (unlikely(raw))
2069 chip->ecc.write_page_raw(mtd, chip, buf);
2070 else
2071 chip->ecc.write_page(mtd, chip, buf);
2072
2073 /*
2074 * Cached progamming disabled for now. Not sure if it's worth the
2075 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2076 */
2077 cached = 0;
2078
2079 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2080
2081 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2082 status = chip->waitfunc(mtd, chip);
2083 /*
2084 * See if operation failed and additional status checks are
2085 * available.
2086 */
2087 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2088 status = chip->errstat(mtd, chip, FL_WRITING, status,
2089 page);
2090
2091 if (status & NAND_STATUS_FAIL)
2092 return -EIO;
2093 } else {
2094 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2095 status = chip->waitfunc(mtd, chip);
2096 }
2097
2098 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2099 /* Send command to read back the data */
2100 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2101
2102 if (chip->verify_buf(mtd, buf, mtd->writesize))
2103 return -EIO;
2104 #endif
2105 return 0;
2106 }
2107
2108 /**
2109 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2110 * @mtd: MTD device structure
2111 * @oob: oob data buffer
2112 * @len: oob data write length
2113 * @ops: oob ops structure
2114 */
2115 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2116 struct mtd_oob_ops *ops)
2117 {
2118 struct nand_chip *chip = mtd->priv;
2119
2120 /*
2121 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2122 * data from a previous OOB read.
2123 */
2124 memset(chip->oob_poi, 0xff, mtd->oobsize);
2125
2126 switch (ops->mode) {
2127
2128 case MTD_OPS_PLACE_OOB:
2129 case MTD_OPS_RAW:
2130 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2131 return oob + len;
2132
2133 case MTD_OPS_AUTO_OOB: {
2134 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2135 uint32_t boffs = 0, woffs = ops->ooboffs;
2136 size_t bytes = 0;
2137
2138 for (; free->length && len; free++, len -= bytes) {
2139 /* Write request not from offset 0? */
2140 if (unlikely(woffs)) {
2141 if (woffs >= free->length) {
2142 woffs -= free->length;
2143 continue;
2144 }
2145 boffs = free->offset + woffs;
2146 bytes = min_t(size_t, len,
2147 (free->length - woffs));
2148 woffs = 0;
2149 } else {
2150 bytes = min_t(size_t, len, free->length);
2151 boffs = free->offset;
2152 }
2153 memcpy(chip->oob_poi + boffs, oob, bytes);
2154 oob += bytes;
2155 }
2156 return oob;
2157 }
2158 default:
2159 BUG();
2160 }
2161 return NULL;
2162 }
2163
2164 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2165
2166 /**
2167 * nand_do_write_ops - [INTERN] NAND write with ECC
2168 * @mtd: MTD device structure
2169 * @to: offset to write to
2170 * @ops: oob operations description structure
2171 *
2172 * NAND write with ECC.
2173 */
2174 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2175 struct mtd_oob_ops *ops)
2176 {
2177 int chipnr, realpage, page, blockmask, column;
2178 struct nand_chip *chip = mtd->priv;
2179 uint32_t writelen = ops->len;
2180
2181 uint32_t oobwritelen = ops->ooblen;
2182 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2183 mtd->oobavail : mtd->oobsize;
2184
2185 uint8_t *oob = ops->oobbuf;
2186 uint8_t *buf = ops->datbuf;
2187 int ret, subpage;
2188
2189 ops->retlen = 0;
2190 if (!writelen)
2191 return 0;
2192
2193 /* Reject writes, which are not page aligned */
2194 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2195 pr_notice("%s: attempt to write non page aligned data\n",
2196 __func__);
2197 return -EINVAL;
2198 }
2199
2200 column = to & (mtd->writesize - 1);
2201 subpage = column || (writelen & (mtd->writesize - 1));
2202
2203 if (subpage && oob)
2204 return -EINVAL;
2205
2206 chipnr = (int)(to >> chip->chip_shift);
2207 chip->select_chip(mtd, chipnr);
2208
2209 /* Check, if it is write protected */
2210 if (nand_check_wp(mtd))
2211 return -EIO;
2212
2213 realpage = (int)(to >> chip->page_shift);
2214 page = realpage & chip->pagemask;
2215 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2216
2217 /* Invalidate the page cache, when we write to the cached page */
2218 if (to <= (chip->pagebuf << chip->page_shift) &&
2219 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2220 chip->pagebuf = -1;
2221
2222 /* Don't allow multipage oob writes with offset */
2223 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2224 return -EINVAL;
2225
2226 while (1) {
2227 int bytes = mtd->writesize;
2228 int cached = writelen > bytes && page != blockmask;
2229 uint8_t *wbuf = buf;
2230
2231 /* Partial page write? */
2232 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2233 cached = 0;
2234 bytes = min_t(int, bytes - column, (int) writelen);
2235 chip->pagebuf = -1;
2236 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2237 memcpy(&chip->buffers->databuf[column], buf, bytes);
2238 wbuf = chip->buffers->databuf;
2239 }
2240
2241 if (unlikely(oob)) {
2242 size_t len = min(oobwritelen, oobmaxlen);
2243 oob = nand_fill_oob(mtd, oob, len, ops);
2244 oobwritelen -= len;
2245 } else {
2246 /* We still need to erase leftover OOB data */
2247 memset(chip->oob_poi, 0xff, mtd->oobsize);
2248 }
2249
2250 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2251 (ops->mode == MTD_OPS_RAW));
2252 if (ret)
2253 break;
2254
2255 writelen -= bytes;
2256 if (!writelen)
2257 break;
2258
2259 column = 0;
2260 buf += bytes;
2261 realpage++;
2262
2263 page = realpage & chip->pagemask;
2264 /* Check, if we cross a chip boundary */
2265 if (!page) {
2266 chipnr++;
2267 chip->select_chip(mtd, -1);
2268 chip->select_chip(mtd, chipnr);
2269 }
2270 }
2271
2272 ops->retlen = ops->len - writelen;
2273 if (unlikely(oob))
2274 ops->oobretlen = ops->ooblen;
2275 return ret;
2276 }
2277
2278 /**
2279 * panic_nand_write - [MTD Interface] NAND write with ECC
2280 * @mtd: MTD device structure
2281 * @to: offset to write to
2282 * @len: number of bytes to write
2283 * @retlen: pointer to variable to store the number of written bytes
2284 * @buf: the data to write
2285 *
2286 * NAND write with ECC. Used when performing writes in interrupt context, this
2287 * may for example be called by mtdoops when writing an oops while in panic.
2288 */
2289 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2290 size_t *retlen, const uint8_t *buf)
2291 {
2292 struct nand_chip *chip = mtd->priv;
2293 struct mtd_oob_ops ops;
2294 int ret;
2295
2296 /* Do not allow reads past end of device */
2297 if ((to + len) > mtd->size)
2298 return -EINVAL;
2299 if (!len)
2300 return 0;
2301
2302 /* Wait for the device to get ready */
2303 panic_nand_wait(mtd, chip, 400);
2304
2305 /* Grab the device */
2306 panic_nand_get_device(chip, mtd, FL_WRITING);
2307
2308 ops.len = len;
2309 ops.datbuf = (uint8_t *)buf;
2310 ops.oobbuf = NULL;
2311 ops.mode = 0;
2312
2313 ret = nand_do_write_ops(mtd, to, &ops);
2314
2315 *retlen = ops.retlen;
2316 return ret;
2317 }
2318
2319 /**
2320 * nand_write - [MTD Interface] NAND write with ECC
2321 * @mtd: MTD device structure
2322 * @to: offset to write to
2323 * @len: number of bytes to write
2324 * @retlen: pointer to variable to store the number of written bytes
2325 * @buf: the data to write
2326 *
2327 * NAND write with ECC.
2328 */
2329 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2330 size_t *retlen, const uint8_t *buf)
2331 {
2332 struct nand_chip *chip = mtd->priv;
2333 struct mtd_oob_ops ops;
2334 int ret;
2335
2336 /* Do not allow reads past end of device */
2337 if ((to + len) > mtd->size)
2338 return -EINVAL;
2339 if (!len)
2340 return 0;
2341
2342 nand_get_device(chip, mtd, FL_WRITING);
2343
2344 ops.len = len;
2345 ops.datbuf = (uint8_t *)buf;
2346 ops.oobbuf = NULL;
2347 ops.mode = 0;
2348
2349 ret = nand_do_write_ops(mtd, to, &ops);
2350
2351 *retlen = ops.retlen;
2352
2353 nand_release_device(mtd);
2354
2355 return ret;
2356 }
2357
2358 /**
2359 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2360 * @mtd: MTD device structure
2361 * @to: offset to write to
2362 * @ops: oob operation description structure
2363 *
2364 * NAND write out-of-band.
2365 */
2366 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2367 struct mtd_oob_ops *ops)
2368 {
2369 int chipnr, page, status, len;
2370 struct nand_chip *chip = mtd->priv;
2371
2372 pr_debug("%s: to = 0x%08x, len = %i\n",
2373 __func__, (unsigned int)to, (int)ops->ooblen);
2374
2375 if (ops->mode == MTD_OPS_AUTO_OOB)
2376 len = chip->ecc.layout->oobavail;
2377 else
2378 len = mtd->oobsize;
2379
2380 /* Do not allow write past end of page */
2381 if ((ops->ooboffs + ops->ooblen) > len) {
2382 pr_debug("%s: attempt to write past end of page\n",
2383 __func__);
2384 return -EINVAL;
2385 }
2386
2387 if (unlikely(ops->ooboffs >= len)) {
2388 pr_debug("%s: attempt to start write outside oob\n",
2389 __func__);
2390 return -EINVAL;
2391 }
2392
2393 /* Do not allow write past end of device */
2394 if (unlikely(to >= mtd->size ||
2395 ops->ooboffs + ops->ooblen >
2396 ((mtd->size >> chip->page_shift) -
2397 (to >> chip->page_shift)) * len)) {
2398 pr_debug("%s: attempt to write beyond end of device\n",
2399 __func__);
2400 return -EINVAL;
2401 }
2402
2403 chipnr = (int)(to >> chip->chip_shift);
2404 chip->select_chip(mtd, chipnr);
2405
2406 /* Shift to get page */
2407 page = (int)(to >> chip->page_shift);
2408
2409 /*
2410 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2411 * of my DiskOnChip 2000 test units) will clear the whole data page too
2412 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2413 * it in the doc2000 driver in August 1999. dwmw2.
2414 */
2415 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2416
2417 /* Check, if it is write protected */
2418 if (nand_check_wp(mtd))
2419 return -EROFS;
2420
2421 /* Invalidate the page cache, if we write to the cached page */
2422 if (page == chip->pagebuf)
2423 chip->pagebuf = -1;
2424
2425 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2426
2427 if (ops->mode == MTD_OPS_RAW)
2428 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2429 else
2430 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2431
2432 if (status)
2433 return status;
2434
2435 ops->oobretlen = ops->ooblen;
2436
2437 return 0;
2438 }
2439
2440 /**
2441 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2442 * @mtd: MTD device structure
2443 * @to: offset to write to
2444 * @ops: oob operation description structure
2445 */
2446 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2447 struct mtd_oob_ops *ops)
2448 {
2449 struct nand_chip *chip = mtd->priv;
2450 int ret = -ENOTSUPP;
2451
2452 ops->retlen = 0;
2453
2454 /* Do not allow writes past end of device */
2455 if (ops->datbuf && (to + ops->len) > mtd->size) {
2456 pr_debug("%s: attempt to write beyond end of device\n",
2457 __func__);
2458 return -EINVAL;
2459 }
2460
2461 nand_get_device(chip, mtd, FL_WRITING);
2462
2463 switch (ops->mode) {
2464 case MTD_OPS_PLACE_OOB:
2465 case MTD_OPS_AUTO_OOB:
2466 case MTD_OPS_RAW:
2467 break;
2468
2469 default:
2470 goto out;
2471 }
2472
2473 if (!ops->datbuf)
2474 ret = nand_do_write_oob(mtd, to, ops);
2475 else
2476 ret = nand_do_write_ops(mtd, to, ops);
2477
2478 out:
2479 nand_release_device(mtd);
2480 return ret;
2481 }
2482
2483 /**
2484 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2485 * @mtd: MTD device structure
2486 * @page: the page address of the block which will be erased
2487 *
2488 * Standard erase command for NAND chips.
2489 */
2490 static void single_erase_cmd(struct mtd_info *mtd, int page)
2491 {
2492 struct nand_chip *chip = mtd->priv;
2493 /* Send commands to erase a block */
2494 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2495 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2496 }
2497
2498 /**
2499 * multi_erase_cmd - [GENERIC] AND specific block erase command function
2500 * @mtd: MTD device structure
2501 * @page: the page address of the block which will be erased
2502 *
2503 * AND multi block erase command function. Erase 4 consecutive blocks.
2504 */
2505 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2506 {
2507 struct nand_chip *chip = mtd->priv;
2508 /* Send commands to erase a block */
2509 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2510 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2511 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2512 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2513 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2514 }
2515
2516 /**
2517 * nand_erase - [MTD Interface] erase block(s)
2518 * @mtd: MTD device structure
2519 * @instr: erase instruction
2520 *
2521 * Erase one ore more blocks.
2522 */
2523 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2524 {
2525 return nand_erase_nand(mtd, instr, 0);
2526 }
2527
2528 #define BBT_PAGE_MASK 0xffffff3f
2529 /**
2530 * nand_erase_nand - [INTERN] erase block(s)
2531 * @mtd: MTD device structure
2532 * @instr: erase instruction
2533 * @allowbbt: allow erasing the bbt area
2534 *
2535 * Erase one ore more blocks.
2536 */
2537 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2538 int allowbbt)
2539 {
2540 int page, status, pages_per_block, ret, chipnr;
2541 struct nand_chip *chip = mtd->priv;
2542 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2543 unsigned int bbt_masked_page = 0xffffffff;
2544 loff_t len;
2545
2546 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2547 __func__, (unsigned long long)instr->addr,
2548 (unsigned long long)instr->len);
2549
2550 if (check_offs_len(mtd, instr->addr, instr->len))
2551 return -EINVAL;
2552
2553 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2554
2555 /* Grab the lock and see if the device is available */
2556 nand_get_device(chip, mtd, FL_ERASING);
2557
2558 /* Shift to get first page */
2559 page = (int)(instr->addr >> chip->page_shift);
2560 chipnr = (int)(instr->addr >> chip->chip_shift);
2561
2562 /* Calculate pages in each block */
2563 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2564
2565 /* Select the NAND device */
2566 chip->select_chip(mtd, chipnr);
2567
2568 /* Check, if it is write protected */
2569 if (nand_check_wp(mtd)) {
2570 pr_debug("%s: device is write protected!\n",
2571 __func__);
2572 instr->state = MTD_ERASE_FAILED;
2573 goto erase_exit;
2574 }
2575
2576 /*
2577 * If BBT requires refresh, set the BBT page mask to see if the BBT
2578 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2579 * can not be matched. This is also done when the bbt is actually
2580 * erased to avoid recursive updates.
2581 */
2582 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2583 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2584
2585 /* Loop through the pages */
2586 len = instr->len;
2587
2588 instr->state = MTD_ERASING;
2589
2590 while (len) {
2591 /* Check if we have a bad block, we do not erase bad blocks! */
2592 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2593 chip->page_shift, 0, allowbbt)) {
2594 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2595 __func__, page);
2596 instr->state = MTD_ERASE_FAILED;
2597 goto erase_exit;
2598 }
2599
2600 /*
2601 * Invalidate the page cache, if we erase the block which
2602 * contains the current cached page.
2603 */
2604 if (page <= chip->pagebuf && chip->pagebuf <
2605 (page + pages_per_block))
2606 chip->pagebuf = -1;
2607
2608 chip->erase_cmd(mtd, page & chip->pagemask);
2609
2610 status = chip->waitfunc(mtd, chip);
2611
2612 /*
2613 * See if operation failed and additional status checks are
2614 * available
2615 */
2616 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2617 status = chip->errstat(mtd, chip, FL_ERASING,
2618 status, page);
2619
2620 /* See if block erase succeeded */
2621 if (status & NAND_STATUS_FAIL) {
2622 pr_debug("%s: failed erase, page 0x%08x\n",
2623 __func__, page);
2624 instr->state = MTD_ERASE_FAILED;
2625 instr->fail_addr =
2626 ((loff_t)page << chip->page_shift);
2627 goto erase_exit;
2628 }
2629
2630 /*
2631 * If BBT requires refresh, set the BBT rewrite flag to the
2632 * page being erased.
2633 */
2634 if (bbt_masked_page != 0xffffffff &&
2635 (page & BBT_PAGE_MASK) == bbt_masked_page)
2636 rewrite_bbt[chipnr] =
2637 ((loff_t)page << chip->page_shift);
2638
2639 /* Increment page address and decrement length */
2640 len -= (1 << chip->phys_erase_shift);
2641 page += pages_per_block;
2642
2643 /* Check, if we cross a chip boundary */
2644 if (len && !(page & chip->pagemask)) {
2645 chipnr++;
2646 chip->select_chip(mtd, -1);
2647 chip->select_chip(mtd, chipnr);
2648
2649 /*
2650 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2651 * page mask to see if this BBT should be rewritten.
2652 */
2653 if (bbt_masked_page != 0xffffffff &&
2654 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2655 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2656 BBT_PAGE_MASK;
2657 }
2658 }
2659 instr->state = MTD_ERASE_DONE;
2660
2661 erase_exit:
2662
2663 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2664
2665 /* Deselect and wake up anyone waiting on the device */
2666 nand_release_device(mtd);
2667
2668 /* Do call back function */
2669 if (!ret)
2670 mtd_erase_callback(instr);
2671
2672 /*
2673 * If BBT requires refresh and erase was successful, rewrite any
2674 * selected bad block tables.
2675 */
2676 if (bbt_masked_page == 0xffffffff || ret)
2677 return ret;
2678
2679 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2680 if (!rewrite_bbt[chipnr])
2681 continue;
2682 /* Update the BBT for chip */
2683 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2684 __func__, chipnr, rewrite_bbt[chipnr],
2685 chip->bbt_td->pages[chipnr]);
2686 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2687 }
2688
2689 /* Return more or less happy */
2690 return ret;
2691 }
2692
2693 /**
2694 * nand_sync - [MTD Interface] sync
2695 * @mtd: MTD device structure
2696 *
2697 * Sync is actually a wait for chip ready function.
2698 */
2699 static void nand_sync(struct mtd_info *mtd)
2700 {
2701 struct nand_chip *chip = mtd->priv;
2702
2703 pr_debug("%s: called\n", __func__);
2704
2705 /* Grab the lock and see if the device is available */
2706 nand_get_device(chip, mtd, FL_SYNCING);
2707 /* Release it and go back */
2708 nand_release_device(mtd);
2709 }
2710
2711 /**
2712 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2713 * @mtd: MTD device structure
2714 * @offs: offset relative to mtd start
2715 */
2716 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2717 {
2718 /* Check for invalid offset */
2719 if (offs > mtd->size)
2720 return -EINVAL;
2721
2722 return nand_block_checkbad(mtd, offs, 1, 0);
2723 }
2724
2725 /**
2726 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2727 * @mtd: MTD device structure
2728 * @ofs: offset relative to mtd start
2729 */
2730 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2731 {
2732 struct nand_chip *chip = mtd->priv;
2733 int ret;
2734
2735 ret = nand_block_isbad(mtd, ofs);
2736 if (ret) {
2737 /* If it was bad already, return success and do nothing */
2738 if (ret > 0)
2739 return 0;
2740 return ret;
2741 }
2742
2743 return chip->block_markbad(mtd, ofs);
2744 }
2745
2746 /**
2747 * nand_suspend - [MTD Interface] Suspend the NAND flash
2748 * @mtd: MTD device structure
2749 */
2750 static int nand_suspend(struct mtd_info *mtd)
2751 {
2752 struct nand_chip *chip = mtd->priv;
2753
2754 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2755 }
2756
2757 /**
2758 * nand_resume - [MTD Interface] Resume the NAND flash
2759 * @mtd: MTD device structure
2760 */
2761 static void nand_resume(struct mtd_info *mtd)
2762 {
2763 struct nand_chip *chip = mtd->priv;
2764
2765 if (chip->state == FL_PM_SUSPENDED)
2766 nand_release_device(mtd);
2767 else
2768 pr_err("%s called for a chip which is not in suspended state\n",
2769 __func__);
2770 }
2771
2772 /* Set default functions */
2773 static void nand_set_defaults(struct nand_chip *chip, int busw)
2774 {
2775 /* check for proper chip_delay setup, set 20us if not */
2776 if (!chip->chip_delay)
2777 chip->chip_delay = 20;
2778
2779 /* check, if a user supplied command function given */
2780 if (chip->cmdfunc == NULL)
2781 chip->cmdfunc = nand_command;
2782
2783 /* check, if a user supplied wait function given */
2784 if (chip->waitfunc == NULL)
2785 chip->waitfunc = nand_wait;
2786
2787 if (!chip->select_chip)
2788 chip->select_chip = nand_select_chip;
2789 if (!chip->read_byte)
2790 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2791 if (!chip->read_word)
2792 chip->read_word = nand_read_word;
2793 if (!chip->block_bad)
2794 chip->block_bad = nand_block_bad;
2795 if (!chip->block_markbad)
2796 chip->block_markbad = nand_default_block_markbad;
2797 if (!chip->write_buf)
2798 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2799 if (!chip->read_buf)
2800 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2801 if (!chip->verify_buf)
2802 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2803 if (!chip->scan_bbt)
2804 chip->scan_bbt = nand_default_bbt;
2805
2806 if (!chip->controller) {
2807 chip->controller = &chip->hwcontrol;
2808 spin_lock_init(&chip->controller->lock);
2809 init_waitqueue_head(&chip->controller->wq);
2810 }
2811
2812 }
2813
2814 /* Sanitize ONFI strings so we can safely print them */
2815 static void sanitize_string(uint8_t *s, size_t len)
2816 {
2817 ssize_t i;
2818
2819 /* Null terminate */
2820 s[len - 1] = 0;
2821
2822 /* Remove non printable chars */
2823 for (i = 0; i < len - 1; i++) {
2824 if (s[i] < ' ' || s[i] > 127)
2825 s[i] = '?';
2826 }
2827
2828 /* Remove trailing spaces */
2829 strim(s);
2830 }
2831
2832 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2833 {
2834 int i;
2835 while (len--) {
2836 crc ^= *p++ << 8;
2837 for (i = 0; i < 8; i++)
2838 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2839 }
2840
2841 return crc;
2842 }
2843
2844 /*
2845 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2846 */
2847 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2848 int *busw)
2849 {
2850 struct nand_onfi_params *p = &chip->onfi_params;
2851 int i;
2852 int val;
2853
2854 /* Try ONFI for unknown chip or LP */
2855 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2856 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2857 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2858 return 0;
2859
2860 pr_info("ONFI flash detected\n");
2861 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2862 for (i = 0; i < 3; i++) {
2863 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2864 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2865 le16_to_cpu(p->crc)) {
2866 pr_info("ONFI param page %d valid\n", i);
2867 break;
2868 }
2869 }
2870
2871 if (i == 3)
2872 return 0;
2873
2874 /* Check version */
2875 val = le16_to_cpu(p->revision);
2876 if (val & (1 << 5))
2877 chip->onfi_version = 23;
2878 else if (val & (1 << 4))
2879 chip->onfi_version = 22;
2880 else if (val & (1 << 3))
2881 chip->onfi_version = 21;
2882 else if (val & (1 << 2))
2883 chip->onfi_version = 20;
2884 else if (val & (1 << 1))
2885 chip->onfi_version = 10;
2886 else
2887 chip->onfi_version = 0;
2888
2889 if (!chip->onfi_version) {
2890 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2891 return 0;
2892 }
2893
2894 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2895 sanitize_string(p->model, sizeof(p->model));
2896 if (!mtd->name)
2897 mtd->name = p->model;
2898 mtd->writesize = le32_to_cpu(p->byte_per_page);
2899 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2900 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2901 chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2902 *busw = 0;
2903 if (le16_to_cpu(p->features) & 1)
2904 *busw = NAND_BUSWIDTH_16;
2905
2906 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2907 chip->options |= (NAND_NO_READRDY |
2908 NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2909
2910 return 1;
2911 }
2912
2913 /*
2914 * Get the flash and manufacturer id and lookup if the type is supported.
2915 */
2916 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2917 struct nand_chip *chip,
2918 int busw,
2919 int *maf_id, int *dev_id,
2920 struct nand_flash_dev *type)
2921 {
2922 int i, maf_idx;
2923 u8 id_data[8];
2924 int ret;
2925
2926 /* Select the device */
2927 chip->select_chip(mtd, 0);
2928
2929 /*
2930 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2931 * after power-up.
2932 */
2933 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2934
2935 /* Send the command for reading device ID */
2936 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2937
2938 /* Read manufacturer and device IDs */
2939 *maf_id = chip->read_byte(mtd);
2940 *dev_id = chip->read_byte(mtd);
2941
2942 /*
2943 * Try again to make sure, as some systems the bus-hold or other
2944 * interface concerns can cause random data which looks like a
2945 * possibly credible NAND flash to appear. If the two results do
2946 * not match, ignore the device completely.
2947 */
2948
2949 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2950
2951 for (i = 0; i < 2; i++)
2952 id_data[i] = chip->read_byte(mtd);
2953
2954 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2955 pr_info("%s: second ID read did not match "
2956 "%02x,%02x against %02x,%02x\n", __func__,
2957 *maf_id, *dev_id, id_data[0], id_data[1]);
2958 return ERR_PTR(-ENODEV);
2959 }
2960
2961 if (!type)
2962 type = nand_flash_ids;
2963
2964 for (; type->name != NULL; type++)
2965 if (*dev_id == type->id)
2966 break;
2967
2968 chip->onfi_version = 0;
2969 if (!type->name || !type->pagesize) {
2970 /* Check is chip is ONFI compliant */
2971 ret = nand_flash_detect_onfi(mtd, chip, &busw);
2972 if (ret)
2973 goto ident_done;
2974 }
2975
2976 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2977
2978 /* Read entire ID string */
2979
2980 for (i = 0; i < 8; i++)
2981 id_data[i] = chip->read_byte(mtd);
2982
2983 if (!type->name)
2984 return ERR_PTR(-ENODEV);
2985
2986 if (!mtd->name)
2987 mtd->name = type->name;
2988
2989 chip->chipsize = (uint64_t)type->chipsize << 20;
2990
2991 if (!type->pagesize && chip->init_size) {
2992 /* Set the pagesize, oobsize, erasesize by the driver */
2993 busw = chip->init_size(mtd, chip, id_data);
2994 } else if (!type->pagesize) {
2995 int extid;
2996 /* The 3rd id byte holds MLC / multichip data */
2997 chip->cellinfo = id_data[2];
2998 /* The 4th id byte is the important one */
2999 extid = id_data[3];
3000
3001 /*
3002 * Field definitions are in the following datasheets:
3003 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3004 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
3005 *
3006 * Check for wraparound + Samsung ID + nonzero 6th byte
3007 * to decide what to do.
3008 */
3009 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3010 id_data[0] == NAND_MFR_SAMSUNG &&
3011 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3012 id_data[5] != 0x00) {
3013 /* Calc pagesize */
3014 mtd->writesize = 2048 << (extid & 0x03);
3015 extid >>= 2;
3016 /* Calc oobsize */
3017 switch (extid & 0x03) {
3018 case 1:
3019 mtd->oobsize = 128;
3020 break;
3021 case 2:
3022 mtd->oobsize = 218;
3023 break;
3024 case 3:
3025 mtd->oobsize = 400;
3026 break;
3027 default:
3028 mtd->oobsize = 436;
3029 break;
3030 }
3031 extid >>= 2;
3032 /* Calc blocksize */
3033 mtd->erasesize = (128 * 1024) <<
3034 (((extid >> 1) & 0x04) | (extid & 0x03));
3035 busw = 0;
3036 } else {
3037 /* Calc pagesize */
3038 mtd->writesize = 1024 << (extid & 0x03);
3039 extid >>= 2;
3040 /* Calc oobsize */
3041 mtd->oobsize = (8 << (extid & 0x01)) *
3042 (mtd->writesize >> 9);
3043 extid >>= 2;
3044 /* Calc blocksize. Blocksize is multiples of 64KiB */
3045 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3046 extid >>= 2;
3047 /* Get buswidth information */
3048 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3049 }
3050 } else {
3051 /*
3052 * Old devices have chip data hardcoded in the device id table.
3053 */
3054 mtd->erasesize = type->erasesize;
3055 mtd->writesize = type->pagesize;
3056 mtd->oobsize = mtd->writesize / 32;
3057 busw = type->options & NAND_BUSWIDTH_16;
3058
3059 /*
3060 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3061 * some Spansion chips have erasesize that conflicts with size
3062 * listed in nand_ids table.
3063 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3064 */
3065 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3066 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3067 id_data[7] == 0x00 && mtd->writesize == 512) {
3068 mtd->erasesize = 128 * 1024;
3069 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3070 }
3071 }
3072 /* Get chip options, preserve non chip based options */
3073 chip->options &= ~NAND_CHIPOPTIONS_MSK;
3074 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3075
3076 /*
3077 * Check if chip is not a Samsung device. Do not clear the
3078 * options for chips which do not have an extended id.
3079 */
3080 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3081 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3082 ident_done:
3083
3084 /*
3085 * Set chip as a default. Board drivers can override it, if necessary.
3086 */
3087 chip->options |= NAND_NO_AUTOINCR;
3088
3089 /* Try to identify manufacturer */
3090 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3091 if (nand_manuf_ids[maf_idx].id == *maf_id)
3092 break;
3093 }
3094
3095 /*
3096 * Check, if buswidth is correct. Hardware drivers should set
3097 * chip correct!
3098 */
3099 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3100 pr_info("NAND device: Manufacturer ID:"
3101 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3102 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3103 pr_warn("NAND bus width %d instead %d bit\n",
3104 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3105 busw ? 16 : 8);
3106 return ERR_PTR(-EINVAL);
3107 }
3108
3109 /* Calculate the address shift from the page size */
3110 chip->page_shift = ffs(mtd->writesize) - 1;
3111 /* Convert chipsize to number of pages per chip -1 */
3112 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3113
3114 chip->bbt_erase_shift = chip->phys_erase_shift =
3115 ffs(mtd->erasesize) - 1;
3116 if (chip->chipsize & 0xffffffff)
3117 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3118 else {
3119 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3120 chip->chip_shift += 32 - 1;
3121 }
3122
3123 chip->badblockbits = 8;
3124
3125 /* Set the bad block position */
3126 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3127 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3128 else
3129 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3130
3131 /*
3132 * Bad block marker is stored in the last page of each block
3133 * on Samsung and Hynix MLC devices; stored in first two pages
3134 * of each block on Micron devices with 2KiB pages and on
3135 * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3136 * All others scan only the first page.
3137 */
3138 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3139 (*maf_id == NAND_MFR_SAMSUNG ||
3140 *maf_id == NAND_MFR_HYNIX))
3141 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3142 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3143 (*maf_id == NAND_MFR_SAMSUNG ||
3144 *maf_id == NAND_MFR_HYNIX ||
3145 *maf_id == NAND_MFR_TOSHIBA ||
3146 *maf_id == NAND_MFR_AMD ||
3147 *maf_id == NAND_MFR_MACRONIX)) ||
3148 (mtd->writesize == 2048 &&
3149 *maf_id == NAND_MFR_MICRON))
3150 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3151
3152 /* Check for AND chips with 4 page planes */
3153 if (chip->options & NAND_4PAGE_ARRAY)
3154 chip->erase_cmd = multi_erase_cmd;
3155 else
3156 chip->erase_cmd = single_erase_cmd;
3157
3158 /* Do not replace user supplied command function! */
3159 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3160 chip->cmdfunc = nand_command_lp;
3161
3162 pr_info("NAND device: Manufacturer ID:"
3163 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3164 nand_manuf_ids[maf_idx].name,
3165 chip->onfi_version ? chip->onfi_params.model : type->name);
3166
3167 return type;
3168 }
3169
3170 /**
3171 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3172 * @mtd: MTD device structure
3173 * @maxchips: number of chips to scan for
3174 * @table: alternative NAND ID table
3175 *
3176 * This is the first phase of the normal nand_scan() function. It reads the
3177 * flash ID and sets up MTD fields accordingly.
3178 *
3179 * The mtd->owner field must be set to the module of the caller.
3180 */
3181 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3182 struct nand_flash_dev *table)
3183 {
3184 int i, busw, nand_maf_id, nand_dev_id;
3185 struct nand_chip *chip = mtd->priv;
3186 struct nand_flash_dev *type;
3187
3188 /* Get buswidth to select the correct functions */
3189 busw = chip->options & NAND_BUSWIDTH_16;
3190 /* Set the default functions */
3191 nand_set_defaults(chip, busw);
3192
3193 /* Read the flash type */
3194 type = nand_get_flash_type(mtd, chip, busw,
3195 &nand_maf_id, &nand_dev_id, table);
3196
3197 if (IS_ERR(type)) {
3198 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3199 pr_warn("No NAND device found\n");
3200 chip->select_chip(mtd, -1);
3201 return PTR_ERR(type);
3202 }
3203
3204 /* Check for a chip array */
3205 for (i = 1; i < maxchips; i++) {
3206 chip->select_chip(mtd, i);
3207 /* See comment in nand_get_flash_type for reset */
3208 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3209 /* Send the command for reading device ID */
3210 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3211 /* Read manufacturer and device IDs */
3212 if (nand_maf_id != chip->read_byte(mtd) ||
3213 nand_dev_id != chip->read_byte(mtd))
3214 break;
3215 }
3216 if (i > 1)
3217 pr_info("%d NAND chips detected\n", i);
3218
3219 /* Store the number of chips and calc total size for mtd */
3220 chip->numchips = i;
3221 mtd->size = i * chip->chipsize;
3222
3223 return 0;
3224 }
3225 EXPORT_SYMBOL(nand_scan_ident);
3226
3227
3228 /**
3229 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3230 * @mtd: MTD device structure
3231 *
3232 * This is the second phase of the normal nand_scan() function. It fills out
3233 * all the uninitialized function pointers with the defaults and scans for a
3234 * bad block table if appropriate.
3235 */
3236 int nand_scan_tail(struct mtd_info *mtd)
3237 {
3238 int i;
3239 struct nand_chip *chip = mtd->priv;
3240
3241 if (!(chip->options & NAND_OWN_BUFFERS))
3242 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3243 if (!chip->buffers)
3244 return -ENOMEM;
3245
3246 /* Set the internal oob buffer location, just after the page data */
3247 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3248
3249 /*
3250 * If no default placement scheme is given, select an appropriate one.
3251 */
3252 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3253 switch (mtd->oobsize) {
3254 case 8:
3255 chip->ecc.layout = &nand_oob_8;
3256 break;
3257 case 16:
3258 chip->ecc.layout = &nand_oob_16;
3259 break;
3260 case 64:
3261 chip->ecc.layout = &nand_oob_64;
3262 break;
3263 case 128:
3264 chip->ecc.layout = &nand_oob_128;
3265 break;
3266 default:
3267 pr_warn("No oob scheme defined for oobsize %d\n",
3268 mtd->oobsize);
3269 BUG();
3270 }
3271 }
3272
3273 if (!chip->write_page)
3274 chip->write_page = nand_write_page;
3275
3276 /*
3277 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3278 * selected and we have 256 byte pagesize fallback to software ECC
3279 */
3280
3281 switch (chip->ecc.mode) {
3282 case NAND_ECC_HW_OOB_FIRST:
3283 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3284 if (!chip->ecc.calculate || !chip->ecc.correct ||
3285 !chip->ecc.hwctl) {
3286 pr_warn("No ECC functions supplied; "
3287 "hardware ECC not possible\n");
3288 BUG();
3289 }
3290 if (!chip->ecc.read_page)
3291 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3292
3293 case NAND_ECC_HW:
3294 /* Use standard hwecc read page function? */
3295 if (!chip->ecc.read_page)
3296 chip->ecc.read_page = nand_read_page_hwecc;
3297 if (!chip->ecc.write_page)
3298 chip->ecc.write_page = nand_write_page_hwecc;
3299 if (!chip->ecc.read_page_raw)
3300 chip->ecc.read_page_raw = nand_read_page_raw;
3301 if (!chip->ecc.write_page_raw)
3302 chip->ecc.write_page_raw = nand_write_page_raw;
3303 if (!chip->ecc.read_oob)
3304 chip->ecc.read_oob = nand_read_oob_std;
3305 if (!chip->ecc.write_oob)
3306 chip->ecc.write_oob = nand_write_oob_std;
3307
3308 case NAND_ECC_HW_SYNDROME:
3309 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3310 !chip->ecc.hwctl) &&
3311 (!chip->ecc.read_page ||
3312 chip->ecc.read_page == nand_read_page_hwecc ||
3313 !chip->ecc.write_page ||
3314 chip->ecc.write_page == nand_write_page_hwecc)) {
3315 pr_warn("No ECC functions supplied; "
3316 "hardware ECC not possible\n");
3317 BUG();
3318 }
3319 /* Use standard syndrome read/write page function? */
3320 if (!chip->ecc.read_page)
3321 chip->ecc.read_page = nand_read_page_syndrome;
3322 if (!chip->ecc.write_page)
3323 chip->ecc.write_page = nand_write_page_syndrome;
3324 if (!chip->ecc.read_page_raw)
3325 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3326 if (!chip->ecc.write_page_raw)
3327 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3328 if (!chip->ecc.read_oob)
3329 chip->ecc.read_oob = nand_read_oob_syndrome;
3330 if (!chip->ecc.write_oob)
3331 chip->ecc.write_oob = nand_write_oob_syndrome;
3332
3333 if (mtd->writesize >= chip->ecc.size)
3334 break;
3335 pr_warn("%d byte HW ECC not possible on "
3336 "%d byte page size, fallback to SW ECC\n",
3337 chip->ecc.size, mtd->writesize);
3338 chip->ecc.mode = NAND_ECC_SOFT;
3339
3340 case NAND_ECC_SOFT:
3341 chip->ecc.calculate = nand_calculate_ecc;
3342 chip->ecc.correct = nand_correct_data;
3343 chip->ecc.read_page = nand_read_page_swecc;
3344 chip->ecc.read_subpage = nand_read_subpage;
3345 chip->ecc.write_page = nand_write_page_swecc;
3346 chip->ecc.read_page_raw = nand_read_page_raw;
3347 chip->ecc.write_page_raw = nand_write_page_raw;
3348 chip->ecc.read_oob = nand_read_oob_std;
3349 chip->ecc.write_oob = nand_write_oob_std;
3350 if (!chip->ecc.size)
3351 chip->ecc.size = 256;
3352 chip->ecc.bytes = 3;
3353 break;
3354
3355 case NAND_ECC_SOFT_BCH:
3356 if (!mtd_nand_has_bch()) {
3357 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3358 BUG();
3359 }
3360 chip->ecc.calculate = nand_bch_calculate_ecc;
3361 chip->ecc.correct = nand_bch_correct_data;
3362 chip->ecc.read_page = nand_read_page_swecc;
3363 chip->ecc.read_subpage = nand_read_subpage;
3364 chip->ecc.write_page = nand_write_page_swecc;
3365 chip->ecc.read_page_raw = nand_read_page_raw;
3366 chip->ecc.write_page_raw = nand_write_page_raw;
3367 chip->ecc.read_oob = nand_read_oob_std;
3368 chip->ecc.write_oob = nand_write_oob_std;
3369 /*
3370 * Board driver should supply ecc.size and ecc.bytes values to
3371 * select how many bits are correctable; see nand_bch_init()
3372 * for details. Otherwise, default to 4 bits for large page
3373 * devices.
3374 */
3375 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3376 chip->ecc.size = 512;
3377 chip->ecc.bytes = 7;
3378 }
3379 chip->ecc.priv = nand_bch_init(mtd,
3380 chip->ecc.size,
3381 chip->ecc.bytes,
3382 &chip->ecc.layout);
3383 if (!chip->ecc.priv) {
3384 pr_warn("BCH ECC initialization failed!\n");
3385 BUG();
3386 }
3387 break;
3388
3389 case NAND_ECC_NONE:
3390 pr_warn("NAND_ECC_NONE selected by board driver. "
3391 "This is not recommended!\n");
3392 chip->ecc.read_page = nand_read_page_raw;
3393 chip->ecc.write_page = nand_write_page_raw;
3394 chip->ecc.read_oob = nand_read_oob_std;
3395 chip->ecc.read_page_raw = nand_read_page_raw;
3396 chip->ecc.write_page_raw = nand_write_page_raw;
3397 chip->ecc.write_oob = nand_write_oob_std;
3398 chip->ecc.size = mtd->writesize;
3399 chip->ecc.bytes = 0;
3400 break;
3401
3402 default:
3403 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3404 BUG();
3405 }
3406
3407 /* For many systems, the standard OOB write also works for raw */
3408 if (!chip->ecc.read_oob_raw)
3409 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3410 if (!chip->ecc.write_oob_raw)
3411 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3412
3413 /*
3414 * The number of bytes available for a client to place data into
3415 * the out of band area.
3416 */
3417 chip->ecc.layout->oobavail = 0;
3418 for (i = 0; chip->ecc.layout->oobfree[i].length
3419 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3420 chip->ecc.layout->oobavail +=
3421 chip->ecc.layout->oobfree[i].length;
3422 mtd->oobavail = chip->ecc.layout->oobavail;
3423
3424 /*
3425 * Set the number of read / write steps for one page depending on ECC
3426 * mode.
3427 */
3428 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3429 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3430 pr_warn("Invalid ECC parameters\n");
3431 BUG();
3432 }
3433 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3434
3435 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3436 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3437 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3438 switch (chip->ecc.steps) {
3439 case 2:
3440 mtd->subpage_sft = 1;
3441 break;
3442 case 4:
3443 case 8:
3444 case 16:
3445 mtd->subpage_sft = 2;
3446 break;
3447 }
3448 }
3449 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3450
3451 /* Initialize state */
3452 chip->state = FL_READY;
3453
3454 /* De-select the device */
3455 chip->select_chip(mtd, -1);
3456
3457 /* Invalidate the pagebuffer reference */
3458 chip->pagebuf = -1;
3459
3460 /* Fill in remaining MTD driver data */
3461 mtd->type = MTD_NANDFLASH;
3462 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3463 MTD_CAP_NANDFLASH;
3464 mtd->erase = nand_erase;
3465 mtd->point = NULL;
3466 mtd->unpoint = NULL;
3467 mtd->read = nand_read;
3468 mtd->write = nand_write;
3469 mtd->panic_write = panic_nand_write;
3470 mtd->read_oob = nand_read_oob;
3471 mtd->write_oob = nand_write_oob;
3472 mtd->sync = nand_sync;
3473 mtd->lock = NULL;
3474 mtd->unlock = NULL;
3475 mtd->suspend = nand_suspend;
3476 mtd->resume = nand_resume;
3477 mtd->block_isbad = nand_block_isbad;
3478 mtd->block_markbad = nand_block_markbad;
3479 mtd->writebufsize = mtd->writesize;
3480
3481 /* propagate ecc.layout to mtd_info */
3482 mtd->ecclayout = chip->ecc.layout;
3483
3484 /* Check, if we should skip the bad block table scan */
3485 if (chip->options & NAND_SKIP_BBTSCAN)
3486 return 0;
3487
3488 /* Build bad block table */
3489 return chip->scan_bbt(mtd);
3490 }
3491 EXPORT_SYMBOL(nand_scan_tail);
3492
3493 /*
3494 * is_module_text_address() isn't exported, and it's mostly a pointless
3495 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3496 * to call us from in-kernel code if the core NAND support is modular.
3497 */
3498 #ifdef MODULE
3499 #define caller_is_module() (1)
3500 #else
3501 #define caller_is_module() \
3502 is_module_text_address((unsigned long)__builtin_return_address(0))
3503 #endif
3504
3505 /**
3506 * nand_scan - [NAND Interface] Scan for the NAND device
3507 * @mtd: MTD device structure
3508 * @maxchips: number of chips to scan for
3509 *
3510 * This fills out all the uninitialized function pointers with the defaults.
3511 * The flash ID is read and the mtd/chip structures are filled with the
3512 * appropriate values. The mtd->owner field must be set to the module of the
3513 * caller.
3514 */
3515 int nand_scan(struct mtd_info *mtd, int maxchips)
3516 {
3517 int ret;
3518
3519 /* Many callers got this wrong, so check for it for a while... */
3520 if (!mtd->owner && caller_is_module()) {
3521 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3522 BUG();
3523 }
3524
3525 ret = nand_scan_ident(mtd, maxchips, NULL);
3526 if (!ret)
3527 ret = nand_scan_tail(mtd);
3528 return ret;
3529 }
3530 EXPORT_SYMBOL(nand_scan);
3531
3532 /**
3533 * nand_release - [NAND Interface] Free resources held by the NAND device
3534 * @mtd: MTD device structure
3535 */
3536 void nand_release(struct mtd_info *mtd)
3537 {
3538 struct nand_chip *chip = mtd->priv;
3539
3540 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3541 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3542
3543 mtd_device_unregister(mtd);
3544
3545 /* Free bad block table memory */
3546 kfree(chip->bbt);
3547 if (!(chip->options & NAND_OWN_BUFFERS))
3548 kfree(chip->buffers);
3549
3550 /* Free bad block descriptor memory */
3551 if (chip->badblock_pattern && chip->badblock_pattern->options
3552 & NAND_BBT_DYNAMICSTRUCT)
3553 kfree(chip->badblock_pattern);
3554 }
3555 EXPORT_SYMBOL_GPL(nand_release);
3556
3557 static int __init nand_base_init(void)
3558 {
3559 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3560 return 0;
3561 }
3562
3563 static void __exit nand_base_exit(void)
3564 {
3565 led_trigger_unregister_simple(nand_led_trigger);
3566 }
3567
3568 module_init(nand_base_init);
3569 module_exit(nand_base_exit);
3570
3571 MODULE_LICENSE("GPL");
3572 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3573 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3574 MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.179098 seconds and 5 git commands to generate.