mtd: nand: don't use {read,write}_buf for 8-bit transfers
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 *
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
10 *
11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Credits:
15 * David Woodhouse for adding multichip support
16 *
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
19 *
20 * TODO:
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/nand_bch.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <linux/io.h>
49 #include <linux/mtd/partitions.h>
50
51 /* Define default oob placement schemes for large and small page devices */
52 static struct nand_ecclayout nand_oob_8 = {
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
59 .length = 2} }
60 };
61
62 static struct nand_ecclayout nand_oob_16 = {
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
65 .oobfree = {
66 {.offset = 8,
67 . length = 8} }
68 };
69
70 static struct nand_ecclayout nand_oob_64 = {
71 .eccbytes = 24,
72 .eccpos = {
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
76 .oobfree = {
77 {.offset = 2,
78 .length = 38} }
79 };
80
81 static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
92 .length = 78} }
93 };
94
95 static int nand_get_device(struct mtd_info *mtd, int new_state);
96
97 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
100 /*
101 * For devices which display every fart in the system on a separate LED. Is
102 * compiled away when LED support is disabled.
103 */
104 DEFINE_LED_TRIGGER(nand_led_trigger);
105
106 static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108 {
109 struct nand_chip *chip = mtd->priv;
110 int ret = 0;
111
112 /* Start address must align on block boundary */
113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
114 pr_debug("%s: unaligned address\n", __func__);
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
120 pr_debug("%s: length not block aligned\n", __func__);
121 ret = -EINVAL;
122 }
123
124 return ret;
125 }
126
127 /**
128 * nand_release_device - [GENERIC] release chip
129 * @mtd: MTD device structure
130 *
131 * Release chip lock and wake up anyone waiting on the device.
132 */
133 static void nand_release_device(struct mtd_info *mtd)
134 {
135 struct nand_chip *chip = mtd->priv;
136
137 /* Release the controller and the chip */
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
143 }
144
145 /**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
147 * @mtd: MTD device structure
148 *
149 * Default read function for 8bit buswidth
150 */
151 static uint8_t nand_read_byte(struct mtd_info *mtd)
152 {
153 struct nand_chip *chip = mtd->priv;
154 return readb(chip->IO_ADDR_R);
155 }
156
157 /**
158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160 * @mtd: MTD device structure
161 *
162 * Default read function for 16bit buswidth with endianness conversion.
163 *
164 */
165 static uint8_t nand_read_byte16(struct mtd_info *mtd)
166 {
167 struct nand_chip *chip = mtd->priv;
168 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
169 }
170
171 /**
172 * nand_read_word - [DEFAULT] read one word from the chip
173 * @mtd: MTD device structure
174 *
175 * Default read function for 16bit buswidth without endianness conversion.
176 */
177 static u16 nand_read_word(struct mtd_info *mtd)
178 {
179 struct nand_chip *chip = mtd->priv;
180 return readw(chip->IO_ADDR_R);
181 }
182
183 /**
184 * nand_select_chip - [DEFAULT] control CE line
185 * @mtd: MTD device structure
186 * @chipnr: chipnumber to select, -1 for deselect
187 *
188 * Default select function for 1 chip devices.
189 */
190 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
191 {
192 struct nand_chip *chip = mtd->priv;
193
194 switch (chipnr) {
195 case -1:
196 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
197 break;
198 case 0:
199 break;
200
201 default:
202 BUG();
203 }
204 }
205
206 /**
207 * nand_write_byte - [DEFAULT] write single byte to chip
208 * @mtd: MTD device structure
209 * @byte: value to write
210 *
211 * Default function to write a byte to I/O[7:0]
212 */
213 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
214 {
215 struct nand_chip *chip = mtd->priv;
216
217 chip->write_buf(mtd, &byte, 1);
218 }
219
220 /**
221 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
222 * @mtd: MTD device structure
223 * @byte: value to write
224 *
225 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
226 */
227 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
228 {
229 struct nand_chip *chip = mtd->priv;
230 uint16_t word = byte;
231
232 /*
233 * It's not entirely clear what should happen to I/O[15:8] when writing
234 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
235 *
236 * When the host supports a 16-bit bus width, only data is
237 * transferred at the 16-bit width. All address and command line
238 * transfers shall use only the lower 8-bits of the data bus. During
239 * command transfers, the host may place any value on the upper
240 * 8-bits of the data bus. During address transfers, the host shall
241 * set the upper 8-bits of the data bus to 00h.
242 *
243 * One user of the write_byte callback is nand_onfi_set_features. The
244 * four parameters are specified to be written to I/O[7:0], but this is
245 * neither an address nor a command transfer. Let's assume a 0 on the
246 * upper I/O lines is OK.
247 */
248 chip->write_buf(mtd, (uint8_t *)&word, 2);
249 }
250
251 /**
252 * nand_write_buf - [DEFAULT] write buffer to chip
253 * @mtd: MTD device structure
254 * @buf: data buffer
255 * @len: number of bytes to write
256 *
257 * Default write function for 8bit buswidth.
258 */
259 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
260 {
261 struct nand_chip *chip = mtd->priv;
262
263 iowrite8_rep(chip->IO_ADDR_W, buf, len);
264 }
265
266 /**
267 * nand_read_buf - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
271 *
272 * Default read function for 8bit buswidth.
273 */
274 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
275 {
276 struct nand_chip *chip = mtd->priv;
277
278 ioread8_rep(chip->IO_ADDR_R, buf, len);
279 }
280
281 /**
282 * nand_write_buf16 - [DEFAULT] write buffer to chip
283 * @mtd: MTD device structure
284 * @buf: data buffer
285 * @len: number of bytes to write
286 *
287 * Default write function for 16bit buswidth.
288 */
289 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
290 {
291 struct nand_chip *chip = mtd->priv;
292 u16 *p = (u16 *) buf;
293
294 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
295 }
296
297 /**
298 * nand_read_buf16 - [DEFAULT] read chip data into buffer
299 * @mtd: MTD device structure
300 * @buf: buffer to store date
301 * @len: number of bytes to read
302 *
303 * Default read function for 16bit buswidth.
304 */
305 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
306 {
307 struct nand_chip *chip = mtd->priv;
308 u16 *p = (u16 *) buf;
309
310 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
311 }
312
313 /**
314 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
315 * @mtd: MTD device structure
316 * @ofs: offset from device start
317 * @getchip: 0, if the chip is already selected
318 *
319 * Check, if the block is bad.
320 */
321 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
322 {
323 int page, chipnr, res = 0, i = 0;
324 struct nand_chip *chip = mtd->priv;
325 u16 bad;
326
327 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
328 ofs += mtd->erasesize - mtd->writesize;
329
330 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
331
332 if (getchip) {
333 chipnr = (int)(ofs >> chip->chip_shift);
334
335 nand_get_device(mtd, FL_READING);
336
337 /* Select the NAND device */
338 chip->select_chip(mtd, chipnr);
339 }
340
341 do {
342 if (chip->options & NAND_BUSWIDTH_16) {
343 chip->cmdfunc(mtd, NAND_CMD_READOOB,
344 chip->badblockpos & 0xFE, page);
345 bad = cpu_to_le16(chip->read_word(mtd));
346 if (chip->badblockpos & 0x1)
347 bad >>= 8;
348 else
349 bad &= 0xFF;
350 } else {
351 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
352 page);
353 bad = chip->read_byte(mtd);
354 }
355
356 if (likely(chip->badblockbits == 8))
357 res = bad != 0xFF;
358 else
359 res = hweight8(bad) < chip->badblockbits;
360 ofs += mtd->writesize;
361 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
362 i++;
363 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
364
365 if (getchip) {
366 chip->select_chip(mtd, -1);
367 nand_release_device(mtd);
368 }
369
370 return res;
371 }
372
373 /**
374 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
375 * @mtd: MTD device structure
376 * @ofs: offset from device start
377 *
378 * This is the default implementation, which can be overridden by a hardware
379 * specific driver. It provides the details for writing a bad block marker to a
380 * block.
381 */
382 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
383 {
384 struct nand_chip *chip = mtd->priv;
385 struct mtd_oob_ops ops;
386 uint8_t buf[2] = { 0, 0 };
387 int ret = 0, res, i = 0;
388
389 ops.datbuf = NULL;
390 ops.oobbuf = buf;
391 ops.ooboffs = chip->badblockpos;
392 if (chip->options & NAND_BUSWIDTH_16) {
393 ops.ooboffs &= ~0x01;
394 ops.len = ops.ooblen = 2;
395 } else {
396 ops.len = ops.ooblen = 1;
397 }
398 ops.mode = MTD_OPS_PLACE_OOB;
399
400 /* Write to first/last page(s) if necessary */
401 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
402 ofs += mtd->erasesize - mtd->writesize;
403 do {
404 res = nand_do_write_oob(mtd, ofs, &ops);
405 if (!ret)
406 ret = res;
407
408 i++;
409 ofs += mtd->writesize;
410 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
411
412 return ret;
413 }
414
415 /**
416 * nand_block_markbad_lowlevel - mark a block bad
417 * @mtd: MTD device structure
418 * @ofs: offset from device start
419 *
420 * This function performs the generic NAND bad block marking steps (i.e., bad
421 * block table(s) and/or marker(s)). We only allow the hardware driver to
422 * specify how to write bad block markers to OOB (chip->block_markbad).
423 *
424 * We try operations in the following order:
425 * (1) erase the affected block, to allow OOB marker to be written cleanly
426 * (2) write bad block marker to OOB area of affected block (unless flag
427 * NAND_BBT_NO_OOB_BBM is present)
428 * (3) update the BBT
429 * Note that we retain the first error encountered in (2) or (3), finish the
430 * procedures, and dump the error in the end.
431 */
432 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
433 {
434 struct nand_chip *chip = mtd->priv;
435 int res, ret = 0;
436
437 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
438 struct erase_info einfo;
439
440 /* Attempt erase before marking OOB */
441 memset(&einfo, 0, sizeof(einfo));
442 einfo.mtd = mtd;
443 einfo.addr = ofs;
444 einfo.len = 1ULL << chip->phys_erase_shift;
445 nand_erase_nand(mtd, &einfo, 0);
446
447 /* Write bad block marker to OOB */
448 nand_get_device(mtd, FL_WRITING);
449 ret = chip->block_markbad(mtd, ofs);
450 nand_release_device(mtd);
451 }
452
453 /* Mark block bad in BBT */
454 if (chip->bbt) {
455 res = nand_markbad_bbt(mtd, ofs);
456 if (!ret)
457 ret = res;
458 }
459
460 if (!ret)
461 mtd->ecc_stats.badblocks++;
462
463 return ret;
464 }
465
466 /**
467 * nand_check_wp - [GENERIC] check if the chip is write protected
468 * @mtd: MTD device structure
469 *
470 * Check, if the device is write protected. The function expects, that the
471 * device is already selected.
472 */
473 static int nand_check_wp(struct mtd_info *mtd)
474 {
475 struct nand_chip *chip = mtd->priv;
476
477 /* Broken xD cards report WP despite being writable */
478 if (chip->options & NAND_BROKEN_XD)
479 return 0;
480
481 /* Check the WP bit */
482 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
483 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
484 }
485
486 /**
487 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
488 * @mtd: MTD device structure
489 * @ofs: offset from device start
490 * @getchip: 0, if the chip is already selected
491 * @allowbbt: 1, if its allowed to access the bbt area
492 *
493 * Check, if the block is bad. Either by reading the bad block table or
494 * calling of the scan function.
495 */
496 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
497 int allowbbt)
498 {
499 struct nand_chip *chip = mtd->priv;
500
501 if (!chip->bbt)
502 return chip->block_bad(mtd, ofs, getchip);
503
504 /* Return info from the table */
505 return nand_isbad_bbt(mtd, ofs, allowbbt);
506 }
507
508 /**
509 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
510 * @mtd: MTD device structure
511 * @timeo: Timeout
512 *
513 * Helper function for nand_wait_ready used when needing to wait in interrupt
514 * context.
515 */
516 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
517 {
518 struct nand_chip *chip = mtd->priv;
519 int i;
520
521 /* Wait for the device to get ready */
522 for (i = 0; i < timeo; i++) {
523 if (chip->dev_ready(mtd))
524 break;
525 touch_softlockup_watchdog();
526 mdelay(1);
527 }
528 }
529
530 /* Wait for the ready pin, after a command. The timeout is caught later. */
531 void nand_wait_ready(struct mtd_info *mtd)
532 {
533 struct nand_chip *chip = mtd->priv;
534 unsigned long timeo = jiffies + msecs_to_jiffies(20);
535
536 /* 400ms timeout */
537 if (in_interrupt() || oops_in_progress)
538 return panic_nand_wait_ready(mtd, 400);
539
540 led_trigger_event(nand_led_trigger, LED_FULL);
541 /* Wait until command is processed or timeout occurs */
542 do {
543 if (chip->dev_ready(mtd))
544 break;
545 touch_softlockup_watchdog();
546 } while (time_before(jiffies, timeo));
547 led_trigger_event(nand_led_trigger, LED_OFF);
548 }
549 EXPORT_SYMBOL_GPL(nand_wait_ready);
550
551 /**
552 * nand_command - [DEFAULT] Send command to NAND device
553 * @mtd: MTD device structure
554 * @command: the command to be sent
555 * @column: the column address for this command, -1 if none
556 * @page_addr: the page address for this command, -1 if none
557 *
558 * Send command to NAND device. This function is used for small page devices
559 * (512 Bytes per page).
560 */
561 static void nand_command(struct mtd_info *mtd, unsigned int command,
562 int column, int page_addr)
563 {
564 register struct nand_chip *chip = mtd->priv;
565 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
566
567 /* Write out the command to the device */
568 if (command == NAND_CMD_SEQIN) {
569 int readcmd;
570
571 if (column >= mtd->writesize) {
572 /* OOB area */
573 column -= mtd->writesize;
574 readcmd = NAND_CMD_READOOB;
575 } else if (column < 256) {
576 /* First 256 bytes --> READ0 */
577 readcmd = NAND_CMD_READ0;
578 } else {
579 column -= 256;
580 readcmd = NAND_CMD_READ1;
581 }
582 chip->cmd_ctrl(mtd, readcmd, ctrl);
583 ctrl &= ~NAND_CTRL_CHANGE;
584 }
585 chip->cmd_ctrl(mtd, command, ctrl);
586
587 /* Address cycle, when necessary */
588 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
589 /* Serially input address */
590 if (column != -1) {
591 /* Adjust columns for 16 bit buswidth */
592 if (chip->options & NAND_BUSWIDTH_16)
593 column >>= 1;
594 chip->cmd_ctrl(mtd, column, ctrl);
595 ctrl &= ~NAND_CTRL_CHANGE;
596 }
597 if (page_addr != -1) {
598 chip->cmd_ctrl(mtd, page_addr, ctrl);
599 ctrl &= ~NAND_CTRL_CHANGE;
600 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
601 /* One more address cycle for devices > 32MiB */
602 if (chip->chipsize > (32 << 20))
603 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
604 }
605 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
606
607 /*
608 * Program and erase have their own busy handlers status and sequential
609 * in needs no delay
610 */
611 switch (command) {
612
613 case NAND_CMD_PAGEPROG:
614 case NAND_CMD_ERASE1:
615 case NAND_CMD_ERASE2:
616 case NAND_CMD_SEQIN:
617 case NAND_CMD_STATUS:
618 return;
619
620 case NAND_CMD_RESET:
621 if (chip->dev_ready)
622 break;
623 udelay(chip->chip_delay);
624 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
625 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
626 chip->cmd_ctrl(mtd,
627 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
628 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
629 ;
630 return;
631
632 /* This applies to read commands */
633 default:
634 /*
635 * If we don't have access to the busy pin, we apply the given
636 * command delay
637 */
638 if (!chip->dev_ready) {
639 udelay(chip->chip_delay);
640 return;
641 }
642 }
643 /*
644 * Apply this short delay always to ensure that we do wait tWB in
645 * any case on any machine.
646 */
647 ndelay(100);
648
649 nand_wait_ready(mtd);
650 }
651
652 /**
653 * nand_command_lp - [DEFAULT] Send command to NAND large page device
654 * @mtd: MTD device structure
655 * @command: the command to be sent
656 * @column: the column address for this command, -1 if none
657 * @page_addr: the page address for this command, -1 if none
658 *
659 * Send command to NAND device. This is the version for the new large page
660 * devices. We don't have the separate regions as we have in the small page
661 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
662 */
663 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
664 int column, int page_addr)
665 {
666 register struct nand_chip *chip = mtd->priv;
667
668 /* Emulate NAND_CMD_READOOB */
669 if (command == NAND_CMD_READOOB) {
670 column += mtd->writesize;
671 command = NAND_CMD_READ0;
672 }
673
674 /* Command latch cycle */
675 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
676
677 if (column != -1 || page_addr != -1) {
678 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
679
680 /* Serially input address */
681 if (column != -1) {
682 /* Adjust columns for 16 bit buswidth */
683 if (chip->options & NAND_BUSWIDTH_16)
684 column >>= 1;
685 chip->cmd_ctrl(mtd, column, ctrl);
686 ctrl &= ~NAND_CTRL_CHANGE;
687 chip->cmd_ctrl(mtd, column >> 8, ctrl);
688 }
689 if (page_addr != -1) {
690 chip->cmd_ctrl(mtd, page_addr, ctrl);
691 chip->cmd_ctrl(mtd, page_addr >> 8,
692 NAND_NCE | NAND_ALE);
693 /* One more address cycle for devices > 128MiB */
694 if (chip->chipsize > (128 << 20))
695 chip->cmd_ctrl(mtd, page_addr >> 16,
696 NAND_NCE | NAND_ALE);
697 }
698 }
699 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
700
701 /*
702 * Program and erase have their own busy handlers status, sequential
703 * in, and deplete1 need no delay.
704 */
705 switch (command) {
706
707 case NAND_CMD_CACHEDPROG:
708 case NAND_CMD_PAGEPROG:
709 case NAND_CMD_ERASE1:
710 case NAND_CMD_ERASE2:
711 case NAND_CMD_SEQIN:
712 case NAND_CMD_RNDIN:
713 case NAND_CMD_STATUS:
714 return;
715
716 case NAND_CMD_RESET:
717 if (chip->dev_ready)
718 break;
719 udelay(chip->chip_delay);
720 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
721 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
722 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
723 NAND_NCE | NAND_CTRL_CHANGE);
724 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
725 ;
726 return;
727
728 case NAND_CMD_RNDOUT:
729 /* No ready / busy check necessary */
730 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
731 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
732 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
733 NAND_NCE | NAND_CTRL_CHANGE);
734 return;
735
736 case NAND_CMD_READ0:
737 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
738 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
739 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
740 NAND_NCE | NAND_CTRL_CHANGE);
741
742 /* This applies to read commands */
743 default:
744 /*
745 * If we don't have access to the busy pin, we apply the given
746 * command delay.
747 */
748 if (!chip->dev_ready) {
749 udelay(chip->chip_delay);
750 return;
751 }
752 }
753
754 /*
755 * Apply this short delay always to ensure that we do wait tWB in
756 * any case on any machine.
757 */
758 ndelay(100);
759
760 nand_wait_ready(mtd);
761 }
762
763 /**
764 * panic_nand_get_device - [GENERIC] Get chip for selected access
765 * @chip: the nand chip descriptor
766 * @mtd: MTD device structure
767 * @new_state: the state which is requested
768 *
769 * Used when in panic, no locks are taken.
770 */
771 static void panic_nand_get_device(struct nand_chip *chip,
772 struct mtd_info *mtd, int new_state)
773 {
774 /* Hardware controller shared among independent devices */
775 chip->controller->active = chip;
776 chip->state = new_state;
777 }
778
779 /**
780 * nand_get_device - [GENERIC] Get chip for selected access
781 * @mtd: MTD device structure
782 * @new_state: the state which is requested
783 *
784 * Get the device and lock it for exclusive access
785 */
786 static int
787 nand_get_device(struct mtd_info *mtd, int new_state)
788 {
789 struct nand_chip *chip = mtd->priv;
790 spinlock_t *lock = &chip->controller->lock;
791 wait_queue_head_t *wq = &chip->controller->wq;
792 DECLARE_WAITQUEUE(wait, current);
793 retry:
794 spin_lock(lock);
795
796 /* Hardware controller shared among independent devices */
797 if (!chip->controller->active)
798 chip->controller->active = chip;
799
800 if (chip->controller->active == chip && chip->state == FL_READY) {
801 chip->state = new_state;
802 spin_unlock(lock);
803 return 0;
804 }
805 if (new_state == FL_PM_SUSPENDED) {
806 if (chip->controller->active->state == FL_PM_SUSPENDED) {
807 chip->state = FL_PM_SUSPENDED;
808 spin_unlock(lock);
809 return 0;
810 }
811 }
812 set_current_state(TASK_UNINTERRUPTIBLE);
813 add_wait_queue(wq, &wait);
814 spin_unlock(lock);
815 schedule();
816 remove_wait_queue(wq, &wait);
817 goto retry;
818 }
819
820 /**
821 * panic_nand_wait - [GENERIC] wait until the command is done
822 * @mtd: MTD device structure
823 * @chip: NAND chip structure
824 * @timeo: timeout
825 *
826 * Wait for command done. This is a helper function for nand_wait used when
827 * we are in interrupt context. May happen when in panic and trying to write
828 * an oops through mtdoops.
829 */
830 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
831 unsigned long timeo)
832 {
833 int i;
834 for (i = 0; i < timeo; i++) {
835 if (chip->dev_ready) {
836 if (chip->dev_ready(mtd))
837 break;
838 } else {
839 if (chip->read_byte(mtd) & NAND_STATUS_READY)
840 break;
841 }
842 mdelay(1);
843 }
844 }
845
846 /**
847 * nand_wait - [DEFAULT] wait until the command is done
848 * @mtd: MTD device structure
849 * @chip: NAND chip structure
850 *
851 * Wait for command done. This applies to erase and program only. Erase can
852 * take up to 400ms and program up to 20ms according to general NAND and
853 * SmartMedia specs.
854 */
855 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
856 {
857
858 int status, state = chip->state;
859 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
860
861 led_trigger_event(nand_led_trigger, LED_FULL);
862
863 /*
864 * Apply this short delay always to ensure that we do wait tWB in any
865 * case on any machine.
866 */
867 ndelay(100);
868
869 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
870
871 if (in_interrupt() || oops_in_progress)
872 panic_nand_wait(mtd, chip, timeo);
873 else {
874 timeo = jiffies + msecs_to_jiffies(timeo);
875 while (time_before(jiffies, timeo)) {
876 if (chip->dev_ready) {
877 if (chip->dev_ready(mtd))
878 break;
879 } else {
880 if (chip->read_byte(mtd) & NAND_STATUS_READY)
881 break;
882 }
883 cond_resched();
884 }
885 }
886 led_trigger_event(nand_led_trigger, LED_OFF);
887
888 status = (int)chip->read_byte(mtd);
889 /* This can happen if in case of timeout or buggy dev_ready */
890 WARN_ON(!(status & NAND_STATUS_READY));
891 return status;
892 }
893
894 /**
895 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
896 * @mtd: mtd info
897 * @ofs: offset to start unlock from
898 * @len: length to unlock
899 * @invert: when = 0, unlock the range of blocks within the lower and
900 * upper boundary address
901 * when = 1, unlock the range of blocks outside the boundaries
902 * of the lower and upper boundary address
903 *
904 * Returs unlock status.
905 */
906 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
907 uint64_t len, int invert)
908 {
909 int ret = 0;
910 int status, page;
911 struct nand_chip *chip = mtd->priv;
912
913 /* Submit address of first page to unlock */
914 page = ofs >> chip->page_shift;
915 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
916
917 /* Submit address of last page to unlock */
918 page = (ofs + len) >> chip->page_shift;
919 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
920 (page | invert) & chip->pagemask);
921
922 /* Call wait ready function */
923 status = chip->waitfunc(mtd, chip);
924 /* See if device thinks it succeeded */
925 if (status & NAND_STATUS_FAIL) {
926 pr_debug("%s: error status = 0x%08x\n",
927 __func__, status);
928 ret = -EIO;
929 }
930
931 return ret;
932 }
933
934 /**
935 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
936 * @mtd: mtd info
937 * @ofs: offset to start unlock from
938 * @len: length to unlock
939 *
940 * Returns unlock status.
941 */
942 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
943 {
944 int ret = 0;
945 int chipnr;
946 struct nand_chip *chip = mtd->priv;
947
948 pr_debug("%s: start = 0x%012llx, len = %llu\n",
949 __func__, (unsigned long long)ofs, len);
950
951 if (check_offs_len(mtd, ofs, len))
952 ret = -EINVAL;
953
954 /* Align to last block address if size addresses end of the device */
955 if (ofs + len == mtd->size)
956 len -= mtd->erasesize;
957
958 nand_get_device(mtd, FL_UNLOCKING);
959
960 /* Shift to get chip number */
961 chipnr = ofs >> chip->chip_shift;
962
963 chip->select_chip(mtd, chipnr);
964
965 /* Check, if it is write protected */
966 if (nand_check_wp(mtd)) {
967 pr_debug("%s: device is write protected!\n",
968 __func__);
969 ret = -EIO;
970 goto out;
971 }
972
973 ret = __nand_unlock(mtd, ofs, len, 0);
974
975 out:
976 chip->select_chip(mtd, -1);
977 nand_release_device(mtd);
978
979 return ret;
980 }
981 EXPORT_SYMBOL(nand_unlock);
982
983 /**
984 * nand_lock - [REPLACEABLE] locks all blocks present in the device
985 * @mtd: mtd info
986 * @ofs: offset to start unlock from
987 * @len: length to unlock
988 *
989 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
990 * have this feature, but it allows only to lock all blocks, not for specified
991 * range for block. Implementing 'lock' feature by making use of 'unlock', for
992 * now.
993 *
994 * Returns lock status.
995 */
996 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
997 {
998 int ret = 0;
999 int chipnr, status, page;
1000 struct nand_chip *chip = mtd->priv;
1001
1002 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1003 __func__, (unsigned long long)ofs, len);
1004
1005 if (check_offs_len(mtd, ofs, len))
1006 ret = -EINVAL;
1007
1008 nand_get_device(mtd, FL_LOCKING);
1009
1010 /* Shift to get chip number */
1011 chipnr = ofs >> chip->chip_shift;
1012
1013 chip->select_chip(mtd, chipnr);
1014
1015 /* Check, if it is write protected */
1016 if (nand_check_wp(mtd)) {
1017 pr_debug("%s: device is write protected!\n",
1018 __func__);
1019 status = MTD_ERASE_FAILED;
1020 ret = -EIO;
1021 goto out;
1022 }
1023
1024 /* Submit address of first page to lock */
1025 page = ofs >> chip->page_shift;
1026 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1027
1028 /* Call wait ready function */
1029 status = chip->waitfunc(mtd, chip);
1030 /* See if device thinks it succeeded */
1031 if (status & NAND_STATUS_FAIL) {
1032 pr_debug("%s: error status = 0x%08x\n",
1033 __func__, status);
1034 ret = -EIO;
1035 goto out;
1036 }
1037
1038 ret = __nand_unlock(mtd, ofs, len, 0x1);
1039
1040 out:
1041 chip->select_chip(mtd, -1);
1042 nand_release_device(mtd);
1043
1044 return ret;
1045 }
1046 EXPORT_SYMBOL(nand_lock);
1047
1048 /**
1049 * nand_read_page_raw - [INTERN] read raw page data without ecc
1050 * @mtd: mtd info structure
1051 * @chip: nand chip info structure
1052 * @buf: buffer to store read data
1053 * @oob_required: caller requires OOB data read to chip->oob_poi
1054 * @page: page number to read
1055 *
1056 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1057 */
1058 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1059 uint8_t *buf, int oob_required, int page)
1060 {
1061 chip->read_buf(mtd, buf, mtd->writesize);
1062 if (oob_required)
1063 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1064 return 0;
1065 }
1066
1067 /**
1068 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1069 * @mtd: mtd info structure
1070 * @chip: nand chip info structure
1071 * @buf: buffer to store read data
1072 * @oob_required: caller requires OOB data read to chip->oob_poi
1073 * @page: page number to read
1074 *
1075 * We need a special oob layout and handling even when OOB isn't used.
1076 */
1077 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1078 struct nand_chip *chip, uint8_t *buf,
1079 int oob_required, int page)
1080 {
1081 int eccsize = chip->ecc.size;
1082 int eccbytes = chip->ecc.bytes;
1083 uint8_t *oob = chip->oob_poi;
1084 int steps, size;
1085
1086 for (steps = chip->ecc.steps; steps > 0; steps--) {
1087 chip->read_buf(mtd, buf, eccsize);
1088 buf += eccsize;
1089
1090 if (chip->ecc.prepad) {
1091 chip->read_buf(mtd, oob, chip->ecc.prepad);
1092 oob += chip->ecc.prepad;
1093 }
1094
1095 chip->read_buf(mtd, oob, eccbytes);
1096 oob += eccbytes;
1097
1098 if (chip->ecc.postpad) {
1099 chip->read_buf(mtd, oob, chip->ecc.postpad);
1100 oob += chip->ecc.postpad;
1101 }
1102 }
1103
1104 size = mtd->oobsize - (oob - chip->oob_poi);
1105 if (size)
1106 chip->read_buf(mtd, oob, size);
1107
1108 return 0;
1109 }
1110
1111 /**
1112 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1113 * @mtd: mtd info structure
1114 * @chip: nand chip info structure
1115 * @buf: buffer to store read data
1116 * @oob_required: caller requires OOB data read to chip->oob_poi
1117 * @page: page number to read
1118 */
1119 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1120 uint8_t *buf, int oob_required, int page)
1121 {
1122 int i, eccsize = chip->ecc.size;
1123 int eccbytes = chip->ecc.bytes;
1124 int eccsteps = chip->ecc.steps;
1125 uint8_t *p = buf;
1126 uint8_t *ecc_calc = chip->buffers->ecccalc;
1127 uint8_t *ecc_code = chip->buffers->ecccode;
1128 uint32_t *eccpos = chip->ecc.layout->eccpos;
1129 unsigned int max_bitflips = 0;
1130
1131 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1132
1133 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1134 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1135
1136 for (i = 0; i < chip->ecc.total; i++)
1137 ecc_code[i] = chip->oob_poi[eccpos[i]];
1138
1139 eccsteps = chip->ecc.steps;
1140 p = buf;
1141
1142 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1143 int stat;
1144
1145 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1146 if (stat < 0) {
1147 mtd->ecc_stats.failed++;
1148 } else {
1149 mtd->ecc_stats.corrected += stat;
1150 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1151 }
1152 }
1153 return max_bitflips;
1154 }
1155
1156 /**
1157 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1158 * @mtd: mtd info structure
1159 * @chip: nand chip info structure
1160 * @data_offs: offset of requested data within the page
1161 * @readlen: data length
1162 * @bufpoi: buffer to store read data
1163 */
1164 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1165 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1166 {
1167 int start_step, end_step, num_steps;
1168 uint32_t *eccpos = chip->ecc.layout->eccpos;
1169 uint8_t *p;
1170 int data_col_addr, i, gaps = 0;
1171 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1172 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1173 int index = 0;
1174 unsigned int max_bitflips = 0;
1175
1176 /* Column address within the page aligned to ECC size (256bytes) */
1177 start_step = data_offs / chip->ecc.size;
1178 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1179 num_steps = end_step - start_step + 1;
1180
1181 /* Data size aligned to ECC ecc.size */
1182 datafrag_len = num_steps * chip->ecc.size;
1183 eccfrag_len = num_steps * chip->ecc.bytes;
1184
1185 data_col_addr = start_step * chip->ecc.size;
1186 /* If we read not a page aligned data */
1187 if (data_col_addr != 0)
1188 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1189
1190 p = bufpoi + data_col_addr;
1191 chip->read_buf(mtd, p, datafrag_len);
1192
1193 /* Calculate ECC */
1194 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1195 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1196
1197 /*
1198 * The performance is faster if we position offsets according to
1199 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1200 */
1201 for (i = 0; i < eccfrag_len - 1; i++) {
1202 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1203 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1204 gaps = 1;
1205 break;
1206 }
1207 }
1208 if (gaps) {
1209 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1210 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1211 } else {
1212 /*
1213 * Send the command to read the particular ECC bytes take care
1214 * about buswidth alignment in read_buf.
1215 */
1216 index = start_step * chip->ecc.bytes;
1217
1218 aligned_pos = eccpos[index] & ~(busw - 1);
1219 aligned_len = eccfrag_len;
1220 if (eccpos[index] & (busw - 1))
1221 aligned_len++;
1222 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1223 aligned_len++;
1224
1225 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1226 mtd->writesize + aligned_pos, -1);
1227 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1228 }
1229
1230 for (i = 0; i < eccfrag_len; i++)
1231 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1232
1233 p = bufpoi + data_col_addr;
1234 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1235 int stat;
1236
1237 stat = chip->ecc.correct(mtd, p,
1238 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1239 if (stat < 0) {
1240 mtd->ecc_stats.failed++;
1241 } else {
1242 mtd->ecc_stats.corrected += stat;
1243 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1244 }
1245 }
1246 return max_bitflips;
1247 }
1248
1249 /**
1250 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1251 * @mtd: mtd info structure
1252 * @chip: nand chip info structure
1253 * @buf: buffer to store read data
1254 * @oob_required: caller requires OOB data read to chip->oob_poi
1255 * @page: page number to read
1256 *
1257 * Not for syndrome calculating ECC controllers which need a special oob layout.
1258 */
1259 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1260 uint8_t *buf, int oob_required, int page)
1261 {
1262 int i, eccsize = chip->ecc.size;
1263 int eccbytes = chip->ecc.bytes;
1264 int eccsteps = chip->ecc.steps;
1265 uint8_t *p = buf;
1266 uint8_t *ecc_calc = chip->buffers->ecccalc;
1267 uint8_t *ecc_code = chip->buffers->ecccode;
1268 uint32_t *eccpos = chip->ecc.layout->eccpos;
1269 unsigned int max_bitflips = 0;
1270
1271 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1272 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1273 chip->read_buf(mtd, p, eccsize);
1274 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1275 }
1276 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1277
1278 for (i = 0; i < chip->ecc.total; i++)
1279 ecc_code[i] = chip->oob_poi[eccpos[i]];
1280
1281 eccsteps = chip->ecc.steps;
1282 p = buf;
1283
1284 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1285 int stat;
1286
1287 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1288 if (stat < 0) {
1289 mtd->ecc_stats.failed++;
1290 } else {
1291 mtd->ecc_stats.corrected += stat;
1292 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1293 }
1294 }
1295 return max_bitflips;
1296 }
1297
1298 /**
1299 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1300 * @mtd: mtd info structure
1301 * @chip: nand chip info structure
1302 * @buf: buffer to store read data
1303 * @oob_required: caller requires OOB data read to chip->oob_poi
1304 * @page: page number to read
1305 *
1306 * Hardware ECC for large page chips, require OOB to be read first. For this
1307 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1308 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1309 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1310 * the data area, by overwriting the NAND manufacturer bad block markings.
1311 */
1312 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1313 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1314 {
1315 int i, eccsize = chip->ecc.size;
1316 int eccbytes = chip->ecc.bytes;
1317 int eccsteps = chip->ecc.steps;
1318 uint8_t *p = buf;
1319 uint8_t *ecc_code = chip->buffers->ecccode;
1320 uint32_t *eccpos = chip->ecc.layout->eccpos;
1321 uint8_t *ecc_calc = chip->buffers->ecccalc;
1322 unsigned int max_bitflips = 0;
1323
1324 /* Read the OOB area first */
1325 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1326 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1327 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1328
1329 for (i = 0; i < chip->ecc.total; i++)
1330 ecc_code[i] = chip->oob_poi[eccpos[i]];
1331
1332 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1333 int stat;
1334
1335 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1336 chip->read_buf(mtd, p, eccsize);
1337 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1338
1339 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1340 if (stat < 0) {
1341 mtd->ecc_stats.failed++;
1342 } else {
1343 mtd->ecc_stats.corrected += stat;
1344 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1345 }
1346 }
1347 return max_bitflips;
1348 }
1349
1350 /**
1351 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1352 * @mtd: mtd info structure
1353 * @chip: nand chip info structure
1354 * @buf: buffer to store read data
1355 * @oob_required: caller requires OOB data read to chip->oob_poi
1356 * @page: page number to read
1357 *
1358 * The hw generator calculates the error syndrome automatically. Therefore we
1359 * need a special oob layout and handling.
1360 */
1361 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1362 uint8_t *buf, int oob_required, int page)
1363 {
1364 int i, eccsize = chip->ecc.size;
1365 int eccbytes = chip->ecc.bytes;
1366 int eccsteps = chip->ecc.steps;
1367 uint8_t *p = buf;
1368 uint8_t *oob = chip->oob_poi;
1369 unsigned int max_bitflips = 0;
1370
1371 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1372 int stat;
1373
1374 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1375 chip->read_buf(mtd, p, eccsize);
1376
1377 if (chip->ecc.prepad) {
1378 chip->read_buf(mtd, oob, chip->ecc.prepad);
1379 oob += chip->ecc.prepad;
1380 }
1381
1382 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1383 chip->read_buf(mtd, oob, eccbytes);
1384 stat = chip->ecc.correct(mtd, p, oob, NULL);
1385
1386 if (stat < 0) {
1387 mtd->ecc_stats.failed++;
1388 } else {
1389 mtd->ecc_stats.corrected += stat;
1390 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1391 }
1392
1393 oob += eccbytes;
1394
1395 if (chip->ecc.postpad) {
1396 chip->read_buf(mtd, oob, chip->ecc.postpad);
1397 oob += chip->ecc.postpad;
1398 }
1399 }
1400
1401 /* Calculate remaining oob bytes */
1402 i = mtd->oobsize - (oob - chip->oob_poi);
1403 if (i)
1404 chip->read_buf(mtd, oob, i);
1405
1406 return max_bitflips;
1407 }
1408
1409 /**
1410 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1411 * @chip: nand chip structure
1412 * @oob: oob destination address
1413 * @ops: oob ops structure
1414 * @len: size of oob to transfer
1415 */
1416 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1417 struct mtd_oob_ops *ops, size_t len)
1418 {
1419 switch (ops->mode) {
1420
1421 case MTD_OPS_PLACE_OOB:
1422 case MTD_OPS_RAW:
1423 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1424 return oob + len;
1425
1426 case MTD_OPS_AUTO_OOB: {
1427 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1428 uint32_t boffs = 0, roffs = ops->ooboffs;
1429 size_t bytes = 0;
1430
1431 for (; free->length && len; free++, len -= bytes) {
1432 /* Read request not from offset 0? */
1433 if (unlikely(roffs)) {
1434 if (roffs >= free->length) {
1435 roffs -= free->length;
1436 continue;
1437 }
1438 boffs = free->offset + roffs;
1439 bytes = min_t(size_t, len,
1440 (free->length - roffs));
1441 roffs = 0;
1442 } else {
1443 bytes = min_t(size_t, len, free->length);
1444 boffs = free->offset;
1445 }
1446 memcpy(oob, chip->oob_poi + boffs, bytes);
1447 oob += bytes;
1448 }
1449 return oob;
1450 }
1451 default:
1452 BUG();
1453 }
1454 return NULL;
1455 }
1456
1457 /**
1458 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1459 * @mtd: MTD device structure
1460 * @retry_mode: the retry mode to use
1461 *
1462 * Some vendors supply a special command to shift the Vt threshold, to be used
1463 * when there are too many bitflips in a page (i.e., ECC error). After setting
1464 * a new threshold, the host should retry reading the page.
1465 */
1466 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1467 {
1468 struct nand_chip *chip = mtd->priv;
1469
1470 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1471
1472 if (retry_mode >= chip->read_retries)
1473 return -EINVAL;
1474
1475 if (!chip->setup_read_retry)
1476 return -EOPNOTSUPP;
1477
1478 return chip->setup_read_retry(mtd, retry_mode);
1479 }
1480
1481 /**
1482 * nand_do_read_ops - [INTERN] Read data with ECC
1483 * @mtd: MTD device structure
1484 * @from: offset to read from
1485 * @ops: oob ops structure
1486 *
1487 * Internal function. Called with chip held.
1488 */
1489 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1490 struct mtd_oob_ops *ops)
1491 {
1492 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1493 struct nand_chip *chip = mtd->priv;
1494 int ret = 0;
1495 uint32_t readlen = ops->len;
1496 uint32_t oobreadlen = ops->ooblen;
1497 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1498 mtd->oobavail : mtd->oobsize;
1499
1500 uint8_t *bufpoi, *oob, *buf;
1501 unsigned int max_bitflips = 0;
1502 int retry_mode = 0;
1503 bool ecc_fail = false;
1504
1505 chipnr = (int)(from >> chip->chip_shift);
1506 chip->select_chip(mtd, chipnr);
1507
1508 realpage = (int)(from >> chip->page_shift);
1509 page = realpage & chip->pagemask;
1510
1511 col = (int)(from & (mtd->writesize - 1));
1512
1513 buf = ops->datbuf;
1514 oob = ops->oobbuf;
1515 oob_required = oob ? 1 : 0;
1516
1517 while (1) {
1518 unsigned int ecc_failures = mtd->ecc_stats.failed;
1519
1520 bytes = min(mtd->writesize - col, readlen);
1521 aligned = (bytes == mtd->writesize);
1522
1523 /* Is the current page in the buffer? */
1524 if (realpage != chip->pagebuf || oob) {
1525 bufpoi = aligned ? buf : chip->buffers->databuf;
1526
1527 read_retry:
1528 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1529
1530 /*
1531 * Now read the page into the buffer. Absent an error,
1532 * the read methods return max bitflips per ecc step.
1533 */
1534 if (unlikely(ops->mode == MTD_OPS_RAW))
1535 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1536 oob_required,
1537 page);
1538 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1539 !oob)
1540 ret = chip->ecc.read_subpage(mtd, chip,
1541 col, bytes, bufpoi);
1542 else
1543 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1544 oob_required, page);
1545 if (ret < 0) {
1546 if (!aligned)
1547 /* Invalidate page cache */
1548 chip->pagebuf = -1;
1549 break;
1550 }
1551
1552 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1553
1554 /* Transfer not aligned data */
1555 if (!aligned) {
1556 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1557 !(mtd->ecc_stats.failed - ecc_failures) &&
1558 (ops->mode != MTD_OPS_RAW)) {
1559 chip->pagebuf = realpage;
1560 chip->pagebuf_bitflips = ret;
1561 } else {
1562 /* Invalidate page cache */
1563 chip->pagebuf = -1;
1564 }
1565 memcpy(buf, chip->buffers->databuf + col, bytes);
1566 }
1567
1568 if (unlikely(oob)) {
1569 int toread = min(oobreadlen, max_oobsize);
1570
1571 if (toread) {
1572 oob = nand_transfer_oob(chip,
1573 oob, ops, toread);
1574 oobreadlen -= toread;
1575 }
1576 }
1577
1578 if (chip->options & NAND_NEED_READRDY) {
1579 /* Apply delay or wait for ready/busy pin */
1580 if (!chip->dev_ready)
1581 udelay(chip->chip_delay);
1582 else
1583 nand_wait_ready(mtd);
1584 }
1585
1586 if (mtd->ecc_stats.failed - ecc_failures) {
1587 if (retry_mode + 1 <= chip->read_retries) {
1588 retry_mode++;
1589 ret = nand_setup_read_retry(mtd,
1590 retry_mode);
1591 if (ret < 0)
1592 break;
1593
1594 /* Reset failures; retry */
1595 mtd->ecc_stats.failed = ecc_failures;
1596 goto read_retry;
1597 } else {
1598 /* No more retry modes; real failure */
1599 ecc_fail = true;
1600 }
1601 }
1602
1603 buf += bytes;
1604 } else {
1605 memcpy(buf, chip->buffers->databuf + col, bytes);
1606 buf += bytes;
1607 max_bitflips = max_t(unsigned int, max_bitflips,
1608 chip->pagebuf_bitflips);
1609 }
1610
1611 readlen -= bytes;
1612
1613 /* Reset to retry mode 0 */
1614 if (retry_mode) {
1615 ret = nand_setup_read_retry(mtd, 0);
1616 if (ret < 0)
1617 break;
1618 retry_mode = 0;
1619 }
1620
1621 if (!readlen)
1622 break;
1623
1624 /* For subsequent reads align to page boundary */
1625 col = 0;
1626 /* Increment page address */
1627 realpage++;
1628
1629 page = realpage & chip->pagemask;
1630 /* Check, if we cross a chip boundary */
1631 if (!page) {
1632 chipnr++;
1633 chip->select_chip(mtd, -1);
1634 chip->select_chip(mtd, chipnr);
1635 }
1636 }
1637 chip->select_chip(mtd, -1);
1638
1639 ops->retlen = ops->len - (size_t) readlen;
1640 if (oob)
1641 ops->oobretlen = ops->ooblen - oobreadlen;
1642
1643 if (ret < 0)
1644 return ret;
1645
1646 if (ecc_fail)
1647 return -EBADMSG;
1648
1649 return max_bitflips;
1650 }
1651
1652 /**
1653 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1654 * @mtd: MTD device structure
1655 * @from: offset to read from
1656 * @len: number of bytes to read
1657 * @retlen: pointer to variable to store the number of read bytes
1658 * @buf: the databuffer to put data
1659 *
1660 * Get hold of the chip and call nand_do_read.
1661 */
1662 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1663 size_t *retlen, uint8_t *buf)
1664 {
1665 struct mtd_oob_ops ops;
1666 int ret;
1667
1668 nand_get_device(mtd, FL_READING);
1669 ops.len = len;
1670 ops.datbuf = buf;
1671 ops.oobbuf = NULL;
1672 ops.mode = MTD_OPS_PLACE_OOB;
1673 ret = nand_do_read_ops(mtd, from, &ops);
1674 *retlen = ops.retlen;
1675 nand_release_device(mtd);
1676 return ret;
1677 }
1678
1679 /**
1680 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1681 * @mtd: mtd info structure
1682 * @chip: nand chip info structure
1683 * @page: page number to read
1684 */
1685 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1686 int page)
1687 {
1688 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1689 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1690 return 0;
1691 }
1692
1693 /**
1694 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1695 * with syndromes
1696 * @mtd: mtd info structure
1697 * @chip: nand chip info structure
1698 * @page: page number to read
1699 */
1700 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1701 int page)
1702 {
1703 uint8_t *buf = chip->oob_poi;
1704 int length = mtd->oobsize;
1705 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1706 int eccsize = chip->ecc.size;
1707 uint8_t *bufpoi = buf;
1708 int i, toread, sndrnd = 0, pos;
1709
1710 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1711 for (i = 0; i < chip->ecc.steps; i++) {
1712 if (sndrnd) {
1713 pos = eccsize + i * (eccsize + chunk);
1714 if (mtd->writesize > 512)
1715 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1716 else
1717 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1718 } else
1719 sndrnd = 1;
1720 toread = min_t(int, length, chunk);
1721 chip->read_buf(mtd, bufpoi, toread);
1722 bufpoi += toread;
1723 length -= toread;
1724 }
1725 if (length > 0)
1726 chip->read_buf(mtd, bufpoi, length);
1727
1728 return 0;
1729 }
1730
1731 /**
1732 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1733 * @mtd: mtd info structure
1734 * @chip: nand chip info structure
1735 * @page: page number to write
1736 */
1737 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1738 int page)
1739 {
1740 int status = 0;
1741 const uint8_t *buf = chip->oob_poi;
1742 int length = mtd->oobsize;
1743
1744 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1745 chip->write_buf(mtd, buf, length);
1746 /* Send command to program the OOB data */
1747 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1748
1749 status = chip->waitfunc(mtd, chip);
1750
1751 return status & NAND_STATUS_FAIL ? -EIO : 0;
1752 }
1753
1754 /**
1755 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1756 * with syndrome - only for large page flash
1757 * @mtd: mtd info structure
1758 * @chip: nand chip info structure
1759 * @page: page number to write
1760 */
1761 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1762 struct nand_chip *chip, int page)
1763 {
1764 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1765 int eccsize = chip->ecc.size, length = mtd->oobsize;
1766 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1767 const uint8_t *bufpoi = chip->oob_poi;
1768
1769 /*
1770 * data-ecc-data-ecc ... ecc-oob
1771 * or
1772 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1773 */
1774 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1775 pos = steps * (eccsize + chunk);
1776 steps = 0;
1777 } else
1778 pos = eccsize;
1779
1780 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1781 for (i = 0; i < steps; i++) {
1782 if (sndcmd) {
1783 if (mtd->writesize <= 512) {
1784 uint32_t fill = 0xFFFFFFFF;
1785
1786 len = eccsize;
1787 while (len > 0) {
1788 int num = min_t(int, len, 4);
1789 chip->write_buf(mtd, (uint8_t *)&fill,
1790 num);
1791 len -= num;
1792 }
1793 } else {
1794 pos = eccsize + i * (eccsize + chunk);
1795 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1796 }
1797 } else
1798 sndcmd = 1;
1799 len = min_t(int, length, chunk);
1800 chip->write_buf(mtd, bufpoi, len);
1801 bufpoi += len;
1802 length -= len;
1803 }
1804 if (length > 0)
1805 chip->write_buf(mtd, bufpoi, length);
1806
1807 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1808 status = chip->waitfunc(mtd, chip);
1809
1810 return status & NAND_STATUS_FAIL ? -EIO : 0;
1811 }
1812
1813 /**
1814 * nand_do_read_oob - [INTERN] NAND read out-of-band
1815 * @mtd: MTD device structure
1816 * @from: offset to read from
1817 * @ops: oob operations description structure
1818 *
1819 * NAND read out-of-band data from the spare area.
1820 */
1821 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1822 struct mtd_oob_ops *ops)
1823 {
1824 int page, realpage, chipnr;
1825 struct nand_chip *chip = mtd->priv;
1826 struct mtd_ecc_stats stats;
1827 int readlen = ops->ooblen;
1828 int len;
1829 uint8_t *buf = ops->oobbuf;
1830 int ret = 0;
1831
1832 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1833 __func__, (unsigned long long)from, readlen);
1834
1835 stats = mtd->ecc_stats;
1836
1837 if (ops->mode == MTD_OPS_AUTO_OOB)
1838 len = chip->ecc.layout->oobavail;
1839 else
1840 len = mtd->oobsize;
1841
1842 if (unlikely(ops->ooboffs >= len)) {
1843 pr_debug("%s: attempt to start read outside oob\n",
1844 __func__);
1845 return -EINVAL;
1846 }
1847
1848 /* Do not allow reads past end of device */
1849 if (unlikely(from >= mtd->size ||
1850 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1851 (from >> chip->page_shift)) * len)) {
1852 pr_debug("%s: attempt to read beyond end of device\n",
1853 __func__);
1854 return -EINVAL;
1855 }
1856
1857 chipnr = (int)(from >> chip->chip_shift);
1858 chip->select_chip(mtd, chipnr);
1859
1860 /* Shift to get page */
1861 realpage = (int)(from >> chip->page_shift);
1862 page = realpage & chip->pagemask;
1863
1864 while (1) {
1865 if (ops->mode == MTD_OPS_RAW)
1866 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1867 else
1868 ret = chip->ecc.read_oob(mtd, chip, page);
1869
1870 if (ret < 0)
1871 break;
1872
1873 len = min(len, readlen);
1874 buf = nand_transfer_oob(chip, buf, ops, len);
1875
1876 if (chip->options & NAND_NEED_READRDY) {
1877 /* Apply delay or wait for ready/busy pin */
1878 if (!chip->dev_ready)
1879 udelay(chip->chip_delay);
1880 else
1881 nand_wait_ready(mtd);
1882 }
1883
1884 readlen -= len;
1885 if (!readlen)
1886 break;
1887
1888 /* Increment page address */
1889 realpage++;
1890
1891 page = realpage & chip->pagemask;
1892 /* Check, if we cross a chip boundary */
1893 if (!page) {
1894 chipnr++;
1895 chip->select_chip(mtd, -1);
1896 chip->select_chip(mtd, chipnr);
1897 }
1898 }
1899 chip->select_chip(mtd, -1);
1900
1901 ops->oobretlen = ops->ooblen - readlen;
1902
1903 if (ret < 0)
1904 return ret;
1905
1906 if (mtd->ecc_stats.failed - stats.failed)
1907 return -EBADMSG;
1908
1909 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1910 }
1911
1912 /**
1913 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1914 * @mtd: MTD device structure
1915 * @from: offset to read from
1916 * @ops: oob operation description structure
1917 *
1918 * NAND read data and/or out-of-band data.
1919 */
1920 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1921 struct mtd_oob_ops *ops)
1922 {
1923 int ret = -ENOTSUPP;
1924
1925 ops->retlen = 0;
1926
1927 /* Do not allow reads past end of device */
1928 if (ops->datbuf && (from + ops->len) > mtd->size) {
1929 pr_debug("%s: attempt to read beyond end of device\n",
1930 __func__);
1931 return -EINVAL;
1932 }
1933
1934 nand_get_device(mtd, FL_READING);
1935
1936 switch (ops->mode) {
1937 case MTD_OPS_PLACE_OOB:
1938 case MTD_OPS_AUTO_OOB:
1939 case MTD_OPS_RAW:
1940 break;
1941
1942 default:
1943 goto out;
1944 }
1945
1946 if (!ops->datbuf)
1947 ret = nand_do_read_oob(mtd, from, ops);
1948 else
1949 ret = nand_do_read_ops(mtd, from, ops);
1950
1951 out:
1952 nand_release_device(mtd);
1953 return ret;
1954 }
1955
1956
1957 /**
1958 * nand_write_page_raw - [INTERN] raw page write function
1959 * @mtd: mtd info structure
1960 * @chip: nand chip info structure
1961 * @buf: data buffer
1962 * @oob_required: must write chip->oob_poi to OOB
1963 *
1964 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1965 */
1966 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1967 const uint8_t *buf, int oob_required)
1968 {
1969 chip->write_buf(mtd, buf, mtd->writesize);
1970 if (oob_required)
1971 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1972
1973 return 0;
1974 }
1975
1976 /**
1977 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1978 * @mtd: mtd info structure
1979 * @chip: nand chip info structure
1980 * @buf: data buffer
1981 * @oob_required: must write chip->oob_poi to OOB
1982 *
1983 * We need a special oob layout and handling even when ECC isn't checked.
1984 */
1985 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1986 struct nand_chip *chip,
1987 const uint8_t *buf, int oob_required)
1988 {
1989 int eccsize = chip->ecc.size;
1990 int eccbytes = chip->ecc.bytes;
1991 uint8_t *oob = chip->oob_poi;
1992 int steps, size;
1993
1994 for (steps = chip->ecc.steps; steps > 0; steps--) {
1995 chip->write_buf(mtd, buf, eccsize);
1996 buf += eccsize;
1997
1998 if (chip->ecc.prepad) {
1999 chip->write_buf(mtd, oob, chip->ecc.prepad);
2000 oob += chip->ecc.prepad;
2001 }
2002
2003 chip->read_buf(mtd, oob, eccbytes);
2004 oob += eccbytes;
2005
2006 if (chip->ecc.postpad) {
2007 chip->write_buf(mtd, oob, chip->ecc.postpad);
2008 oob += chip->ecc.postpad;
2009 }
2010 }
2011
2012 size = mtd->oobsize - (oob - chip->oob_poi);
2013 if (size)
2014 chip->write_buf(mtd, oob, size);
2015
2016 return 0;
2017 }
2018 /**
2019 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2020 * @mtd: mtd info structure
2021 * @chip: nand chip info structure
2022 * @buf: data buffer
2023 * @oob_required: must write chip->oob_poi to OOB
2024 */
2025 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2026 const uint8_t *buf, int oob_required)
2027 {
2028 int i, eccsize = chip->ecc.size;
2029 int eccbytes = chip->ecc.bytes;
2030 int eccsteps = chip->ecc.steps;
2031 uint8_t *ecc_calc = chip->buffers->ecccalc;
2032 const uint8_t *p = buf;
2033 uint32_t *eccpos = chip->ecc.layout->eccpos;
2034
2035 /* Software ECC calculation */
2036 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2037 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2038
2039 for (i = 0; i < chip->ecc.total; i++)
2040 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2041
2042 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2043 }
2044
2045 /**
2046 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2047 * @mtd: mtd info structure
2048 * @chip: nand chip info structure
2049 * @buf: data buffer
2050 * @oob_required: must write chip->oob_poi to OOB
2051 */
2052 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2053 const uint8_t *buf, int oob_required)
2054 {
2055 int i, eccsize = chip->ecc.size;
2056 int eccbytes = chip->ecc.bytes;
2057 int eccsteps = chip->ecc.steps;
2058 uint8_t *ecc_calc = chip->buffers->ecccalc;
2059 const uint8_t *p = buf;
2060 uint32_t *eccpos = chip->ecc.layout->eccpos;
2061
2062 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2063 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2064 chip->write_buf(mtd, p, eccsize);
2065 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2066 }
2067
2068 for (i = 0; i < chip->ecc.total; i++)
2069 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2070
2071 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2072
2073 return 0;
2074 }
2075
2076
2077 /**
2078 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2079 * @mtd: mtd info structure
2080 * @chip: nand chip info structure
2081 * @offset: column address of subpage within the page
2082 * @data_len: data length
2083 * @buf: data buffer
2084 * @oob_required: must write chip->oob_poi to OOB
2085 */
2086 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2087 struct nand_chip *chip, uint32_t offset,
2088 uint32_t data_len, const uint8_t *buf,
2089 int oob_required)
2090 {
2091 uint8_t *oob_buf = chip->oob_poi;
2092 uint8_t *ecc_calc = chip->buffers->ecccalc;
2093 int ecc_size = chip->ecc.size;
2094 int ecc_bytes = chip->ecc.bytes;
2095 int ecc_steps = chip->ecc.steps;
2096 uint32_t *eccpos = chip->ecc.layout->eccpos;
2097 uint32_t start_step = offset / ecc_size;
2098 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2099 int oob_bytes = mtd->oobsize / ecc_steps;
2100 int step, i;
2101
2102 for (step = 0; step < ecc_steps; step++) {
2103 /* configure controller for WRITE access */
2104 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2105
2106 /* write data (untouched subpages already masked by 0xFF) */
2107 chip->write_buf(mtd, buf, ecc_size);
2108
2109 /* mask ECC of un-touched subpages by padding 0xFF */
2110 if ((step < start_step) || (step > end_step))
2111 memset(ecc_calc, 0xff, ecc_bytes);
2112 else
2113 chip->ecc.calculate(mtd, buf, ecc_calc);
2114
2115 /* mask OOB of un-touched subpages by padding 0xFF */
2116 /* if oob_required, preserve OOB metadata of written subpage */
2117 if (!oob_required || (step < start_step) || (step > end_step))
2118 memset(oob_buf, 0xff, oob_bytes);
2119
2120 buf += ecc_size;
2121 ecc_calc += ecc_bytes;
2122 oob_buf += oob_bytes;
2123 }
2124
2125 /* copy calculated ECC for whole page to chip->buffer->oob */
2126 /* this include masked-value(0xFF) for unwritten subpages */
2127 ecc_calc = chip->buffers->ecccalc;
2128 for (i = 0; i < chip->ecc.total; i++)
2129 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2130
2131 /* write OOB buffer to NAND device */
2132 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2133
2134 return 0;
2135 }
2136
2137
2138 /**
2139 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2140 * @mtd: mtd info structure
2141 * @chip: nand chip info structure
2142 * @buf: data buffer
2143 * @oob_required: must write chip->oob_poi to OOB
2144 *
2145 * The hw generator calculates the error syndrome automatically. Therefore we
2146 * need a special oob layout and handling.
2147 */
2148 static int nand_write_page_syndrome(struct mtd_info *mtd,
2149 struct nand_chip *chip,
2150 const uint8_t *buf, int oob_required)
2151 {
2152 int i, eccsize = chip->ecc.size;
2153 int eccbytes = chip->ecc.bytes;
2154 int eccsteps = chip->ecc.steps;
2155 const uint8_t *p = buf;
2156 uint8_t *oob = chip->oob_poi;
2157
2158 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2159
2160 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2161 chip->write_buf(mtd, p, eccsize);
2162
2163 if (chip->ecc.prepad) {
2164 chip->write_buf(mtd, oob, chip->ecc.prepad);
2165 oob += chip->ecc.prepad;
2166 }
2167
2168 chip->ecc.calculate(mtd, p, oob);
2169 chip->write_buf(mtd, oob, eccbytes);
2170 oob += eccbytes;
2171
2172 if (chip->ecc.postpad) {
2173 chip->write_buf(mtd, oob, chip->ecc.postpad);
2174 oob += chip->ecc.postpad;
2175 }
2176 }
2177
2178 /* Calculate remaining oob bytes */
2179 i = mtd->oobsize - (oob - chip->oob_poi);
2180 if (i)
2181 chip->write_buf(mtd, oob, i);
2182
2183 return 0;
2184 }
2185
2186 /**
2187 * nand_write_page - [REPLACEABLE] write one page
2188 * @mtd: MTD device structure
2189 * @chip: NAND chip descriptor
2190 * @offset: address offset within the page
2191 * @data_len: length of actual data to be written
2192 * @buf: the data to write
2193 * @oob_required: must write chip->oob_poi to OOB
2194 * @page: page number to write
2195 * @cached: cached programming
2196 * @raw: use _raw version of write_page
2197 */
2198 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2199 uint32_t offset, int data_len, const uint8_t *buf,
2200 int oob_required, int page, int cached, int raw)
2201 {
2202 int status, subpage;
2203
2204 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2205 chip->ecc.write_subpage)
2206 subpage = offset || (data_len < mtd->writesize);
2207 else
2208 subpage = 0;
2209
2210 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2211
2212 if (unlikely(raw))
2213 status = chip->ecc.write_page_raw(mtd, chip, buf,
2214 oob_required);
2215 else if (subpage)
2216 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2217 buf, oob_required);
2218 else
2219 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2220
2221 if (status < 0)
2222 return status;
2223
2224 /*
2225 * Cached progamming disabled for now. Not sure if it's worth the
2226 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2227 */
2228 cached = 0;
2229
2230 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2231
2232 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2233 status = chip->waitfunc(mtd, chip);
2234 /*
2235 * See if operation failed and additional status checks are
2236 * available.
2237 */
2238 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2239 status = chip->errstat(mtd, chip, FL_WRITING, status,
2240 page);
2241
2242 if (status & NAND_STATUS_FAIL)
2243 return -EIO;
2244 } else {
2245 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2246 status = chip->waitfunc(mtd, chip);
2247 }
2248
2249 return 0;
2250 }
2251
2252 /**
2253 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2254 * @mtd: MTD device structure
2255 * @oob: oob data buffer
2256 * @len: oob data write length
2257 * @ops: oob ops structure
2258 */
2259 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2260 struct mtd_oob_ops *ops)
2261 {
2262 struct nand_chip *chip = mtd->priv;
2263
2264 /*
2265 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2266 * data from a previous OOB read.
2267 */
2268 memset(chip->oob_poi, 0xff, mtd->oobsize);
2269
2270 switch (ops->mode) {
2271
2272 case MTD_OPS_PLACE_OOB:
2273 case MTD_OPS_RAW:
2274 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2275 return oob + len;
2276
2277 case MTD_OPS_AUTO_OOB: {
2278 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2279 uint32_t boffs = 0, woffs = ops->ooboffs;
2280 size_t bytes = 0;
2281
2282 for (; free->length && len; free++, len -= bytes) {
2283 /* Write request not from offset 0? */
2284 if (unlikely(woffs)) {
2285 if (woffs >= free->length) {
2286 woffs -= free->length;
2287 continue;
2288 }
2289 boffs = free->offset + woffs;
2290 bytes = min_t(size_t, len,
2291 (free->length - woffs));
2292 woffs = 0;
2293 } else {
2294 bytes = min_t(size_t, len, free->length);
2295 boffs = free->offset;
2296 }
2297 memcpy(chip->oob_poi + boffs, oob, bytes);
2298 oob += bytes;
2299 }
2300 return oob;
2301 }
2302 default:
2303 BUG();
2304 }
2305 return NULL;
2306 }
2307
2308 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2309
2310 /**
2311 * nand_do_write_ops - [INTERN] NAND write with ECC
2312 * @mtd: MTD device structure
2313 * @to: offset to write to
2314 * @ops: oob operations description structure
2315 *
2316 * NAND write with ECC.
2317 */
2318 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2319 struct mtd_oob_ops *ops)
2320 {
2321 int chipnr, realpage, page, blockmask, column;
2322 struct nand_chip *chip = mtd->priv;
2323 uint32_t writelen = ops->len;
2324
2325 uint32_t oobwritelen = ops->ooblen;
2326 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2327 mtd->oobavail : mtd->oobsize;
2328
2329 uint8_t *oob = ops->oobbuf;
2330 uint8_t *buf = ops->datbuf;
2331 int ret;
2332 int oob_required = oob ? 1 : 0;
2333
2334 ops->retlen = 0;
2335 if (!writelen)
2336 return 0;
2337
2338 /* Reject writes, which are not page aligned */
2339 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2340 pr_notice("%s: attempt to write non page aligned data\n",
2341 __func__);
2342 return -EINVAL;
2343 }
2344
2345 column = to & (mtd->writesize - 1);
2346
2347 chipnr = (int)(to >> chip->chip_shift);
2348 chip->select_chip(mtd, chipnr);
2349
2350 /* Check, if it is write protected */
2351 if (nand_check_wp(mtd)) {
2352 ret = -EIO;
2353 goto err_out;
2354 }
2355
2356 realpage = (int)(to >> chip->page_shift);
2357 page = realpage & chip->pagemask;
2358 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2359
2360 /* Invalidate the page cache, when we write to the cached page */
2361 if (to <= (chip->pagebuf << chip->page_shift) &&
2362 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2363 chip->pagebuf = -1;
2364
2365 /* Don't allow multipage oob writes with offset */
2366 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2367 ret = -EINVAL;
2368 goto err_out;
2369 }
2370
2371 while (1) {
2372 int bytes = mtd->writesize;
2373 int cached = writelen > bytes && page != blockmask;
2374 uint8_t *wbuf = buf;
2375
2376 /* Partial page write? */
2377 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2378 cached = 0;
2379 bytes = min_t(int, bytes - column, (int) writelen);
2380 chip->pagebuf = -1;
2381 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2382 memcpy(&chip->buffers->databuf[column], buf, bytes);
2383 wbuf = chip->buffers->databuf;
2384 }
2385
2386 if (unlikely(oob)) {
2387 size_t len = min(oobwritelen, oobmaxlen);
2388 oob = nand_fill_oob(mtd, oob, len, ops);
2389 oobwritelen -= len;
2390 } else {
2391 /* We still need to erase leftover OOB data */
2392 memset(chip->oob_poi, 0xff, mtd->oobsize);
2393 }
2394 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2395 oob_required, page, cached,
2396 (ops->mode == MTD_OPS_RAW));
2397 if (ret)
2398 break;
2399
2400 writelen -= bytes;
2401 if (!writelen)
2402 break;
2403
2404 column = 0;
2405 buf += bytes;
2406 realpage++;
2407
2408 page = realpage & chip->pagemask;
2409 /* Check, if we cross a chip boundary */
2410 if (!page) {
2411 chipnr++;
2412 chip->select_chip(mtd, -1);
2413 chip->select_chip(mtd, chipnr);
2414 }
2415 }
2416
2417 ops->retlen = ops->len - writelen;
2418 if (unlikely(oob))
2419 ops->oobretlen = ops->ooblen;
2420
2421 err_out:
2422 chip->select_chip(mtd, -1);
2423 return ret;
2424 }
2425
2426 /**
2427 * panic_nand_write - [MTD Interface] NAND write with ECC
2428 * @mtd: MTD device structure
2429 * @to: offset to write to
2430 * @len: number of bytes to write
2431 * @retlen: pointer to variable to store the number of written bytes
2432 * @buf: the data to write
2433 *
2434 * NAND write with ECC. Used when performing writes in interrupt context, this
2435 * may for example be called by mtdoops when writing an oops while in panic.
2436 */
2437 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2438 size_t *retlen, const uint8_t *buf)
2439 {
2440 struct nand_chip *chip = mtd->priv;
2441 struct mtd_oob_ops ops;
2442 int ret;
2443
2444 /* Wait for the device to get ready */
2445 panic_nand_wait(mtd, chip, 400);
2446
2447 /* Grab the device */
2448 panic_nand_get_device(chip, mtd, FL_WRITING);
2449
2450 ops.len = len;
2451 ops.datbuf = (uint8_t *)buf;
2452 ops.oobbuf = NULL;
2453 ops.mode = MTD_OPS_PLACE_OOB;
2454
2455 ret = nand_do_write_ops(mtd, to, &ops);
2456
2457 *retlen = ops.retlen;
2458 return ret;
2459 }
2460
2461 /**
2462 * nand_write - [MTD Interface] NAND write with ECC
2463 * @mtd: MTD device structure
2464 * @to: offset to write to
2465 * @len: number of bytes to write
2466 * @retlen: pointer to variable to store the number of written bytes
2467 * @buf: the data to write
2468 *
2469 * NAND write with ECC.
2470 */
2471 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2472 size_t *retlen, const uint8_t *buf)
2473 {
2474 struct mtd_oob_ops ops;
2475 int ret;
2476
2477 nand_get_device(mtd, FL_WRITING);
2478 ops.len = len;
2479 ops.datbuf = (uint8_t *)buf;
2480 ops.oobbuf = NULL;
2481 ops.mode = MTD_OPS_PLACE_OOB;
2482 ret = nand_do_write_ops(mtd, to, &ops);
2483 *retlen = ops.retlen;
2484 nand_release_device(mtd);
2485 return ret;
2486 }
2487
2488 /**
2489 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2490 * @mtd: MTD device structure
2491 * @to: offset to write to
2492 * @ops: oob operation description structure
2493 *
2494 * NAND write out-of-band.
2495 */
2496 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2497 struct mtd_oob_ops *ops)
2498 {
2499 int chipnr, page, status, len;
2500 struct nand_chip *chip = mtd->priv;
2501
2502 pr_debug("%s: to = 0x%08x, len = %i\n",
2503 __func__, (unsigned int)to, (int)ops->ooblen);
2504
2505 if (ops->mode == MTD_OPS_AUTO_OOB)
2506 len = chip->ecc.layout->oobavail;
2507 else
2508 len = mtd->oobsize;
2509
2510 /* Do not allow write past end of page */
2511 if ((ops->ooboffs + ops->ooblen) > len) {
2512 pr_debug("%s: attempt to write past end of page\n",
2513 __func__);
2514 return -EINVAL;
2515 }
2516
2517 if (unlikely(ops->ooboffs >= len)) {
2518 pr_debug("%s: attempt to start write outside oob\n",
2519 __func__);
2520 return -EINVAL;
2521 }
2522
2523 /* Do not allow write past end of device */
2524 if (unlikely(to >= mtd->size ||
2525 ops->ooboffs + ops->ooblen >
2526 ((mtd->size >> chip->page_shift) -
2527 (to >> chip->page_shift)) * len)) {
2528 pr_debug("%s: attempt to write beyond end of device\n",
2529 __func__);
2530 return -EINVAL;
2531 }
2532
2533 chipnr = (int)(to >> chip->chip_shift);
2534 chip->select_chip(mtd, chipnr);
2535
2536 /* Shift to get page */
2537 page = (int)(to >> chip->page_shift);
2538
2539 /*
2540 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2541 * of my DiskOnChip 2000 test units) will clear the whole data page too
2542 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2543 * it in the doc2000 driver in August 1999. dwmw2.
2544 */
2545 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2546
2547 /* Check, if it is write protected */
2548 if (nand_check_wp(mtd)) {
2549 chip->select_chip(mtd, -1);
2550 return -EROFS;
2551 }
2552
2553 /* Invalidate the page cache, if we write to the cached page */
2554 if (page == chip->pagebuf)
2555 chip->pagebuf = -1;
2556
2557 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2558
2559 if (ops->mode == MTD_OPS_RAW)
2560 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2561 else
2562 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2563
2564 chip->select_chip(mtd, -1);
2565
2566 if (status)
2567 return status;
2568
2569 ops->oobretlen = ops->ooblen;
2570
2571 return 0;
2572 }
2573
2574 /**
2575 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2576 * @mtd: MTD device structure
2577 * @to: offset to write to
2578 * @ops: oob operation description structure
2579 */
2580 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2581 struct mtd_oob_ops *ops)
2582 {
2583 int ret = -ENOTSUPP;
2584
2585 ops->retlen = 0;
2586
2587 /* Do not allow writes past end of device */
2588 if (ops->datbuf && (to + ops->len) > mtd->size) {
2589 pr_debug("%s: attempt to write beyond end of device\n",
2590 __func__);
2591 return -EINVAL;
2592 }
2593
2594 nand_get_device(mtd, FL_WRITING);
2595
2596 switch (ops->mode) {
2597 case MTD_OPS_PLACE_OOB:
2598 case MTD_OPS_AUTO_OOB:
2599 case MTD_OPS_RAW:
2600 break;
2601
2602 default:
2603 goto out;
2604 }
2605
2606 if (!ops->datbuf)
2607 ret = nand_do_write_oob(mtd, to, ops);
2608 else
2609 ret = nand_do_write_ops(mtd, to, ops);
2610
2611 out:
2612 nand_release_device(mtd);
2613 return ret;
2614 }
2615
2616 /**
2617 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2618 * @mtd: MTD device structure
2619 * @page: the page address of the block which will be erased
2620 *
2621 * Standard erase command for NAND chips.
2622 */
2623 static void single_erase_cmd(struct mtd_info *mtd, int page)
2624 {
2625 struct nand_chip *chip = mtd->priv;
2626 /* Send commands to erase a block */
2627 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2628 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2629 }
2630
2631 /**
2632 * nand_erase - [MTD Interface] erase block(s)
2633 * @mtd: MTD device structure
2634 * @instr: erase instruction
2635 *
2636 * Erase one ore more blocks.
2637 */
2638 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2639 {
2640 return nand_erase_nand(mtd, instr, 0);
2641 }
2642
2643 /**
2644 * nand_erase_nand - [INTERN] erase block(s)
2645 * @mtd: MTD device structure
2646 * @instr: erase instruction
2647 * @allowbbt: allow erasing the bbt area
2648 *
2649 * Erase one ore more blocks.
2650 */
2651 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2652 int allowbbt)
2653 {
2654 int page, status, pages_per_block, ret, chipnr;
2655 struct nand_chip *chip = mtd->priv;
2656 loff_t len;
2657
2658 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2659 __func__, (unsigned long long)instr->addr,
2660 (unsigned long long)instr->len);
2661
2662 if (check_offs_len(mtd, instr->addr, instr->len))
2663 return -EINVAL;
2664
2665 /* Grab the lock and see if the device is available */
2666 nand_get_device(mtd, FL_ERASING);
2667
2668 /* Shift to get first page */
2669 page = (int)(instr->addr >> chip->page_shift);
2670 chipnr = (int)(instr->addr >> chip->chip_shift);
2671
2672 /* Calculate pages in each block */
2673 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2674
2675 /* Select the NAND device */
2676 chip->select_chip(mtd, chipnr);
2677
2678 /* Check, if it is write protected */
2679 if (nand_check_wp(mtd)) {
2680 pr_debug("%s: device is write protected!\n",
2681 __func__);
2682 instr->state = MTD_ERASE_FAILED;
2683 goto erase_exit;
2684 }
2685
2686 /* Loop through the pages */
2687 len = instr->len;
2688
2689 instr->state = MTD_ERASING;
2690
2691 while (len) {
2692 /* Check if we have a bad block, we do not erase bad blocks! */
2693 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2694 chip->page_shift, 0, allowbbt)) {
2695 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2696 __func__, page);
2697 instr->state = MTD_ERASE_FAILED;
2698 goto erase_exit;
2699 }
2700
2701 /*
2702 * Invalidate the page cache, if we erase the block which
2703 * contains the current cached page.
2704 */
2705 if (page <= chip->pagebuf && chip->pagebuf <
2706 (page + pages_per_block))
2707 chip->pagebuf = -1;
2708
2709 chip->erase_cmd(mtd, page & chip->pagemask);
2710
2711 status = chip->waitfunc(mtd, chip);
2712
2713 /*
2714 * See if operation failed and additional status checks are
2715 * available
2716 */
2717 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2718 status = chip->errstat(mtd, chip, FL_ERASING,
2719 status, page);
2720
2721 /* See if block erase succeeded */
2722 if (status & NAND_STATUS_FAIL) {
2723 pr_debug("%s: failed erase, page 0x%08x\n",
2724 __func__, page);
2725 instr->state = MTD_ERASE_FAILED;
2726 instr->fail_addr =
2727 ((loff_t)page << chip->page_shift);
2728 goto erase_exit;
2729 }
2730
2731 /* Increment page address and decrement length */
2732 len -= (1ULL << chip->phys_erase_shift);
2733 page += pages_per_block;
2734
2735 /* Check, if we cross a chip boundary */
2736 if (len && !(page & chip->pagemask)) {
2737 chipnr++;
2738 chip->select_chip(mtd, -1);
2739 chip->select_chip(mtd, chipnr);
2740 }
2741 }
2742 instr->state = MTD_ERASE_DONE;
2743
2744 erase_exit:
2745
2746 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2747
2748 /* Deselect and wake up anyone waiting on the device */
2749 chip->select_chip(mtd, -1);
2750 nand_release_device(mtd);
2751
2752 /* Do call back function */
2753 if (!ret)
2754 mtd_erase_callback(instr);
2755
2756 /* Return more or less happy */
2757 return ret;
2758 }
2759
2760 /**
2761 * nand_sync - [MTD Interface] sync
2762 * @mtd: MTD device structure
2763 *
2764 * Sync is actually a wait for chip ready function.
2765 */
2766 static void nand_sync(struct mtd_info *mtd)
2767 {
2768 pr_debug("%s: called\n", __func__);
2769
2770 /* Grab the lock and see if the device is available */
2771 nand_get_device(mtd, FL_SYNCING);
2772 /* Release it and go back */
2773 nand_release_device(mtd);
2774 }
2775
2776 /**
2777 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2778 * @mtd: MTD device structure
2779 * @offs: offset relative to mtd start
2780 */
2781 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2782 {
2783 return nand_block_checkbad(mtd, offs, 1, 0);
2784 }
2785
2786 /**
2787 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2788 * @mtd: MTD device structure
2789 * @ofs: offset relative to mtd start
2790 */
2791 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2792 {
2793 int ret;
2794
2795 ret = nand_block_isbad(mtd, ofs);
2796 if (ret) {
2797 /* If it was bad already, return success and do nothing */
2798 if (ret > 0)
2799 return 0;
2800 return ret;
2801 }
2802
2803 return nand_block_markbad_lowlevel(mtd, ofs);
2804 }
2805
2806 /**
2807 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2808 * @mtd: MTD device structure
2809 * @chip: nand chip info structure
2810 * @addr: feature address.
2811 * @subfeature_param: the subfeature parameters, a four bytes array.
2812 */
2813 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2814 int addr, uint8_t *subfeature_param)
2815 {
2816 int status;
2817 int i;
2818
2819 if (!chip->onfi_version ||
2820 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2821 & ONFI_OPT_CMD_SET_GET_FEATURES))
2822 return -EINVAL;
2823
2824 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2825 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2826 chip->write_byte(mtd, subfeature_param[i]);
2827
2828 status = chip->waitfunc(mtd, chip);
2829 if (status & NAND_STATUS_FAIL)
2830 return -EIO;
2831 return 0;
2832 }
2833
2834 /**
2835 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2836 * @mtd: MTD device structure
2837 * @chip: nand chip info structure
2838 * @addr: feature address.
2839 * @subfeature_param: the subfeature parameters, a four bytes array.
2840 */
2841 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2842 int addr, uint8_t *subfeature_param)
2843 {
2844 int i;
2845
2846 if (!chip->onfi_version ||
2847 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2848 & ONFI_OPT_CMD_SET_GET_FEATURES))
2849 return -EINVAL;
2850
2851 /* clear the sub feature parameters */
2852 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2853
2854 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2855 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2856 *subfeature_param++ = chip->read_byte(mtd);
2857 return 0;
2858 }
2859
2860 /**
2861 * nand_suspend - [MTD Interface] Suspend the NAND flash
2862 * @mtd: MTD device structure
2863 */
2864 static int nand_suspend(struct mtd_info *mtd)
2865 {
2866 return nand_get_device(mtd, FL_PM_SUSPENDED);
2867 }
2868
2869 /**
2870 * nand_resume - [MTD Interface] Resume the NAND flash
2871 * @mtd: MTD device structure
2872 */
2873 static void nand_resume(struct mtd_info *mtd)
2874 {
2875 struct nand_chip *chip = mtd->priv;
2876
2877 if (chip->state == FL_PM_SUSPENDED)
2878 nand_release_device(mtd);
2879 else
2880 pr_err("%s called for a chip which is not in suspended state\n",
2881 __func__);
2882 }
2883
2884 /* Set default functions */
2885 static void nand_set_defaults(struct nand_chip *chip, int busw)
2886 {
2887 /* check for proper chip_delay setup, set 20us if not */
2888 if (!chip->chip_delay)
2889 chip->chip_delay = 20;
2890
2891 /* check, if a user supplied command function given */
2892 if (chip->cmdfunc == NULL)
2893 chip->cmdfunc = nand_command;
2894
2895 /* check, if a user supplied wait function given */
2896 if (chip->waitfunc == NULL)
2897 chip->waitfunc = nand_wait;
2898
2899 if (!chip->select_chip)
2900 chip->select_chip = nand_select_chip;
2901
2902 /* set for ONFI nand */
2903 if (!chip->onfi_set_features)
2904 chip->onfi_set_features = nand_onfi_set_features;
2905 if (!chip->onfi_get_features)
2906 chip->onfi_get_features = nand_onfi_get_features;
2907
2908 /* If called twice, pointers that depend on busw may need to be reset */
2909 if (!chip->read_byte || chip->read_byte == nand_read_byte)
2910 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2911 if (!chip->read_word)
2912 chip->read_word = nand_read_word;
2913 if (!chip->block_bad)
2914 chip->block_bad = nand_block_bad;
2915 if (!chip->block_markbad)
2916 chip->block_markbad = nand_default_block_markbad;
2917 if (!chip->write_buf || chip->write_buf == nand_write_buf)
2918 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2919 if (!chip->write_byte || chip->write_byte == nand_write_byte)
2920 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
2921 if (!chip->read_buf || chip->read_buf == nand_read_buf)
2922 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2923 if (!chip->scan_bbt)
2924 chip->scan_bbt = nand_default_bbt;
2925
2926 if (!chip->controller) {
2927 chip->controller = &chip->hwcontrol;
2928 spin_lock_init(&chip->controller->lock);
2929 init_waitqueue_head(&chip->controller->wq);
2930 }
2931
2932 }
2933
2934 /* Sanitize ONFI strings so we can safely print them */
2935 static void sanitize_string(uint8_t *s, size_t len)
2936 {
2937 ssize_t i;
2938
2939 /* Null terminate */
2940 s[len - 1] = 0;
2941
2942 /* Remove non printable chars */
2943 for (i = 0; i < len - 1; i++) {
2944 if (s[i] < ' ' || s[i] > 127)
2945 s[i] = '?';
2946 }
2947
2948 /* Remove trailing spaces */
2949 strim(s);
2950 }
2951
2952 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2953 {
2954 int i;
2955 while (len--) {
2956 crc ^= *p++ << 8;
2957 for (i = 0; i < 8; i++)
2958 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2959 }
2960
2961 return crc;
2962 }
2963
2964 /* Parse the Extended Parameter Page. */
2965 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2966 struct nand_chip *chip, struct nand_onfi_params *p)
2967 {
2968 struct onfi_ext_param_page *ep;
2969 struct onfi_ext_section *s;
2970 struct onfi_ext_ecc_info *ecc;
2971 uint8_t *cursor;
2972 int ret = -EINVAL;
2973 int len;
2974 int i;
2975
2976 len = le16_to_cpu(p->ext_param_page_length) * 16;
2977 ep = kmalloc(len, GFP_KERNEL);
2978 if (!ep)
2979 return -ENOMEM;
2980
2981 /* Send our own NAND_CMD_PARAM. */
2982 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2983
2984 /* Use the Change Read Column command to skip the ONFI param pages. */
2985 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2986 sizeof(*p) * p->num_of_param_pages , -1);
2987
2988 /* Read out the Extended Parameter Page. */
2989 chip->read_buf(mtd, (uint8_t *)ep, len);
2990 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2991 != le16_to_cpu(ep->crc))) {
2992 pr_debug("fail in the CRC.\n");
2993 goto ext_out;
2994 }
2995
2996 /*
2997 * Check the signature.
2998 * Do not strictly follow the ONFI spec, maybe changed in future.
2999 */
3000 if (strncmp(ep->sig, "EPPS", 4)) {
3001 pr_debug("The signature is invalid.\n");
3002 goto ext_out;
3003 }
3004
3005 /* find the ECC section. */
3006 cursor = (uint8_t *)(ep + 1);
3007 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3008 s = ep->sections + i;
3009 if (s->type == ONFI_SECTION_TYPE_2)
3010 break;
3011 cursor += s->length * 16;
3012 }
3013 if (i == ONFI_EXT_SECTION_MAX) {
3014 pr_debug("We can not find the ECC section.\n");
3015 goto ext_out;
3016 }
3017
3018 /* get the info we want. */
3019 ecc = (struct onfi_ext_ecc_info *)cursor;
3020
3021 if (!ecc->codeword_size) {
3022 pr_debug("Invalid codeword size\n");
3023 goto ext_out;
3024 }
3025
3026 chip->ecc_strength_ds = ecc->ecc_bits;
3027 chip->ecc_step_ds = 1 << ecc->codeword_size;
3028 ret = 0;
3029
3030 ext_out:
3031 kfree(ep);
3032 return ret;
3033 }
3034
3035 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3036 {
3037 struct nand_chip *chip = mtd->priv;
3038 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3039
3040 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3041 feature);
3042 }
3043
3044 /*
3045 * Configure chip properties from Micron vendor-specific ONFI table
3046 */
3047 static void nand_onfi_detect_micron(struct nand_chip *chip,
3048 struct nand_onfi_params *p)
3049 {
3050 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3051
3052 if (le16_to_cpu(p->vendor_revision) < 1)
3053 return;
3054
3055 chip->read_retries = micron->read_retry_options;
3056 chip->setup_read_retry = nand_setup_read_retry_micron;
3057 }
3058
3059 /*
3060 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3061 */
3062 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3063 int *busw)
3064 {
3065 struct nand_onfi_params *p = &chip->onfi_params;
3066 int i;
3067 int val;
3068
3069 /* Try ONFI for unknown chip or LP */
3070 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3071 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3072 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3073 return 0;
3074
3075 /*
3076 * ONFI must be probed in 8-bit mode or with NAND_BUSWIDTH_AUTO, not
3077 * with NAND_BUSWIDTH_16
3078 */
3079 if (chip->options & NAND_BUSWIDTH_16) {
3080 pr_err("ONFI cannot be probed in 16-bit mode; aborting\n");
3081 return 0;
3082 }
3083
3084 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3085 for (i = 0; i < 3; i++) {
3086 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
3087 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3088 le16_to_cpu(p->crc)) {
3089 break;
3090 }
3091 }
3092
3093 if (i == 3) {
3094 pr_err("Could not find valid ONFI parameter page; aborting\n");
3095 return 0;
3096 }
3097
3098 /* Check version */
3099 val = le16_to_cpu(p->revision);
3100 if (val & (1 << 5))
3101 chip->onfi_version = 23;
3102 else if (val & (1 << 4))
3103 chip->onfi_version = 22;
3104 else if (val & (1 << 3))
3105 chip->onfi_version = 21;
3106 else if (val & (1 << 2))
3107 chip->onfi_version = 20;
3108 else if (val & (1 << 1))
3109 chip->onfi_version = 10;
3110
3111 if (!chip->onfi_version) {
3112 pr_info("unsupported ONFI version: %d\n", val);
3113 return 0;
3114 }
3115
3116 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3117 sanitize_string(p->model, sizeof(p->model));
3118 if (!mtd->name)
3119 mtd->name = p->model;
3120
3121 mtd->writesize = le32_to_cpu(p->byte_per_page);
3122
3123 /*
3124 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3125 * (don't ask me who thought of this...). MTD assumes that these
3126 * dimensions will be power-of-2, so just truncate the remaining area.
3127 */
3128 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3129 mtd->erasesize *= mtd->writesize;
3130
3131 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3132
3133 /* See erasesize comment */
3134 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3135 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3136 chip->bits_per_cell = p->bits_per_cell;
3137
3138 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3139 *busw = NAND_BUSWIDTH_16;
3140 else
3141 *busw = 0;
3142
3143 if (p->ecc_bits != 0xff) {
3144 chip->ecc_strength_ds = p->ecc_bits;
3145 chip->ecc_step_ds = 512;
3146 } else if (chip->onfi_version >= 21 &&
3147 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3148
3149 /*
3150 * The nand_flash_detect_ext_param_page() uses the
3151 * Change Read Column command which maybe not supported
3152 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3153 * now. We do not replace user supplied command function.
3154 */
3155 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3156 chip->cmdfunc = nand_command_lp;
3157
3158 /* The Extended Parameter Page is supported since ONFI 2.1. */
3159 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3160 pr_warn("Failed to detect ONFI extended param page\n");
3161 } else {
3162 pr_warn("Could not retrieve ONFI ECC requirements\n");
3163 }
3164
3165 if (p->jedec_id == NAND_MFR_MICRON)
3166 nand_onfi_detect_micron(chip, p);
3167
3168 return 1;
3169 }
3170
3171 /*
3172 * nand_id_has_period - Check if an ID string has a given wraparound period
3173 * @id_data: the ID string
3174 * @arrlen: the length of the @id_data array
3175 * @period: the period of repitition
3176 *
3177 * Check if an ID string is repeated within a given sequence of bytes at
3178 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3179 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3180 * if the repetition has a period of @period; otherwise, returns zero.
3181 */
3182 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3183 {
3184 int i, j;
3185 for (i = 0; i < period; i++)
3186 for (j = i + period; j < arrlen; j += period)
3187 if (id_data[i] != id_data[j])
3188 return 0;
3189 return 1;
3190 }
3191
3192 /*
3193 * nand_id_len - Get the length of an ID string returned by CMD_READID
3194 * @id_data: the ID string
3195 * @arrlen: the length of the @id_data array
3196
3197 * Returns the length of the ID string, according to known wraparound/trailing
3198 * zero patterns. If no pattern exists, returns the length of the array.
3199 */
3200 static int nand_id_len(u8 *id_data, int arrlen)
3201 {
3202 int last_nonzero, period;
3203
3204 /* Find last non-zero byte */
3205 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3206 if (id_data[last_nonzero])
3207 break;
3208
3209 /* All zeros */
3210 if (last_nonzero < 0)
3211 return 0;
3212
3213 /* Calculate wraparound period */
3214 for (period = 1; period < arrlen; period++)
3215 if (nand_id_has_period(id_data, arrlen, period))
3216 break;
3217
3218 /* There's a repeated pattern */
3219 if (period < arrlen)
3220 return period;
3221
3222 /* There are trailing zeros */
3223 if (last_nonzero < arrlen - 1)
3224 return last_nonzero + 1;
3225
3226 /* No pattern detected */
3227 return arrlen;
3228 }
3229
3230 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3231 static int nand_get_bits_per_cell(u8 cellinfo)
3232 {
3233 int bits;
3234
3235 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3236 bits >>= NAND_CI_CELLTYPE_SHIFT;
3237 return bits + 1;
3238 }
3239
3240 /*
3241 * Many new NAND share similar device ID codes, which represent the size of the
3242 * chip. The rest of the parameters must be decoded according to generic or
3243 * manufacturer-specific "extended ID" decoding patterns.
3244 */
3245 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3246 u8 id_data[8], int *busw)
3247 {
3248 int extid, id_len;
3249 /* The 3rd id byte holds MLC / multichip data */
3250 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3251 /* The 4th id byte is the important one */
3252 extid = id_data[3];
3253
3254 id_len = nand_id_len(id_data, 8);
3255
3256 /*
3257 * Field definitions are in the following datasheets:
3258 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3259 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3260 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3261 *
3262 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3263 * ID to decide what to do.
3264 */
3265 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3266 !nand_is_slc(chip) && id_data[5] != 0x00) {
3267 /* Calc pagesize */
3268 mtd->writesize = 2048 << (extid & 0x03);
3269 extid >>= 2;
3270 /* Calc oobsize */
3271 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3272 case 1:
3273 mtd->oobsize = 128;
3274 break;
3275 case 2:
3276 mtd->oobsize = 218;
3277 break;
3278 case 3:
3279 mtd->oobsize = 400;
3280 break;
3281 case 4:
3282 mtd->oobsize = 436;
3283 break;
3284 case 5:
3285 mtd->oobsize = 512;
3286 break;
3287 case 6:
3288 default: /* Other cases are "reserved" (unknown) */
3289 mtd->oobsize = 640;
3290 break;
3291 }
3292 extid >>= 2;
3293 /* Calc blocksize */
3294 mtd->erasesize = (128 * 1024) <<
3295 (((extid >> 1) & 0x04) | (extid & 0x03));
3296 *busw = 0;
3297 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3298 !nand_is_slc(chip)) {
3299 unsigned int tmp;
3300
3301 /* Calc pagesize */
3302 mtd->writesize = 2048 << (extid & 0x03);
3303 extid >>= 2;
3304 /* Calc oobsize */
3305 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3306 case 0:
3307 mtd->oobsize = 128;
3308 break;
3309 case 1:
3310 mtd->oobsize = 224;
3311 break;
3312 case 2:
3313 mtd->oobsize = 448;
3314 break;
3315 case 3:
3316 mtd->oobsize = 64;
3317 break;
3318 case 4:
3319 mtd->oobsize = 32;
3320 break;
3321 case 5:
3322 mtd->oobsize = 16;
3323 break;
3324 default:
3325 mtd->oobsize = 640;
3326 break;
3327 }
3328 extid >>= 2;
3329 /* Calc blocksize */
3330 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3331 if (tmp < 0x03)
3332 mtd->erasesize = (128 * 1024) << tmp;
3333 else if (tmp == 0x03)
3334 mtd->erasesize = 768 * 1024;
3335 else
3336 mtd->erasesize = (64 * 1024) << tmp;
3337 *busw = 0;
3338 } else {
3339 /* Calc pagesize */
3340 mtd->writesize = 1024 << (extid & 0x03);
3341 extid >>= 2;
3342 /* Calc oobsize */
3343 mtd->oobsize = (8 << (extid & 0x01)) *
3344 (mtd->writesize >> 9);
3345 extid >>= 2;
3346 /* Calc blocksize. Blocksize is multiples of 64KiB */
3347 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3348 extid >>= 2;
3349 /* Get buswidth information */
3350 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3351
3352 /*
3353 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3354 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3355 * follows:
3356 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3357 * 110b -> 24nm
3358 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3359 */
3360 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3361 nand_is_slc(chip) &&
3362 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3363 !(id_data[4] & 0x80) /* !BENAND */) {
3364 mtd->oobsize = 32 * mtd->writesize >> 9;
3365 }
3366
3367 }
3368 }
3369
3370 /*
3371 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3372 * decodes a matching ID table entry and assigns the MTD size parameters for
3373 * the chip.
3374 */
3375 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3376 struct nand_flash_dev *type, u8 id_data[8],
3377 int *busw)
3378 {
3379 int maf_id = id_data[0];
3380
3381 mtd->erasesize = type->erasesize;
3382 mtd->writesize = type->pagesize;
3383 mtd->oobsize = mtd->writesize / 32;
3384 *busw = type->options & NAND_BUSWIDTH_16;
3385
3386 /* All legacy ID NAND are small-page, SLC */
3387 chip->bits_per_cell = 1;
3388
3389 /*
3390 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3391 * some Spansion chips have erasesize that conflicts with size
3392 * listed in nand_ids table.
3393 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3394 */
3395 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3396 && id_data[6] == 0x00 && id_data[7] == 0x00
3397 && mtd->writesize == 512) {
3398 mtd->erasesize = 128 * 1024;
3399 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3400 }
3401 }
3402
3403 /*
3404 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3405 * heuristic patterns using various detected parameters (e.g., manufacturer,
3406 * page size, cell-type information).
3407 */
3408 static void nand_decode_bbm_options(struct mtd_info *mtd,
3409 struct nand_chip *chip, u8 id_data[8])
3410 {
3411 int maf_id = id_data[0];
3412
3413 /* Set the bad block position */
3414 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3415 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3416 else
3417 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3418
3419 /*
3420 * Bad block marker is stored in the last page of each block on Samsung
3421 * and Hynix MLC devices; stored in first two pages of each block on
3422 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3423 * AMD/Spansion, and Macronix. All others scan only the first page.
3424 */
3425 if (!nand_is_slc(chip) &&
3426 (maf_id == NAND_MFR_SAMSUNG ||
3427 maf_id == NAND_MFR_HYNIX))
3428 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3429 else if ((nand_is_slc(chip) &&
3430 (maf_id == NAND_MFR_SAMSUNG ||
3431 maf_id == NAND_MFR_HYNIX ||
3432 maf_id == NAND_MFR_TOSHIBA ||
3433 maf_id == NAND_MFR_AMD ||
3434 maf_id == NAND_MFR_MACRONIX)) ||
3435 (mtd->writesize == 2048 &&
3436 maf_id == NAND_MFR_MICRON))
3437 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3438 }
3439
3440 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3441 {
3442 return type->id_len;
3443 }
3444
3445 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3446 struct nand_flash_dev *type, u8 *id_data, int *busw)
3447 {
3448 if (!strncmp(type->id, id_data, type->id_len)) {
3449 mtd->writesize = type->pagesize;
3450 mtd->erasesize = type->erasesize;
3451 mtd->oobsize = type->oobsize;
3452
3453 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3454 chip->chipsize = (uint64_t)type->chipsize << 20;
3455 chip->options |= type->options;
3456 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3457 chip->ecc_step_ds = NAND_ECC_STEP(type);
3458
3459 *busw = type->options & NAND_BUSWIDTH_16;
3460
3461 if (!mtd->name)
3462 mtd->name = type->name;
3463
3464 return true;
3465 }
3466 return false;
3467 }
3468
3469 /*
3470 * Get the flash and manufacturer id and lookup if the type is supported.
3471 */
3472 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3473 struct nand_chip *chip,
3474 int busw,
3475 int *maf_id, int *dev_id,
3476 struct nand_flash_dev *type)
3477 {
3478 int i, maf_idx;
3479 u8 id_data[8];
3480
3481 /* Select the device */
3482 chip->select_chip(mtd, 0);
3483
3484 /*
3485 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3486 * after power-up.
3487 */
3488 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3489
3490 /* Send the command for reading device ID */
3491 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3492
3493 /* Read manufacturer and device IDs */
3494 *maf_id = chip->read_byte(mtd);
3495 *dev_id = chip->read_byte(mtd);
3496
3497 /*
3498 * Try again to make sure, as some systems the bus-hold or other
3499 * interface concerns can cause random data which looks like a
3500 * possibly credible NAND flash to appear. If the two results do
3501 * not match, ignore the device completely.
3502 */
3503
3504 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3505
3506 /* Read entire ID string */
3507 for (i = 0; i < 8; i++)
3508 id_data[i] = chip->read_byte(mtd);
3509
3510 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3511 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3512 *maf_id, *dev_id, id_data[0], id_data[1]);
3513 return ERR_PTR(-ENODEV);
3514 }
3515
3516 if (!type)
3517 type = nand_flash_ids;
3518
3519 for (; type->name != NULL; type++) {
3520 if (is_full_id_nand(type)) {
3521 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3522 goto ident_done;
3523 } else if (*dev_id == type->dev_id) {
3524 break;
3525 }
3526 }
3527
3528 chip->onfi_version = 0;
3529 if (!type->name || !type->pagesize) {
3530 /* Check is chip is ONFI compliant */
3531 if (nand_flash_detect_onfi(mtd, chip, &busw))
3532 goto ident_done;
3533 }
3534
3535 if (!type->name)
3536 return ERR_PTR(-ENODEV);
3537
3538 if (!mtd->name)
3539 mtd->name = type->name;
3540
3541 chip->chipsize = (uint64_t)type->chipsize << 20;
3542
3543 if (!type->pagesize && chip->init_size) {
3544 /* Set the pagesize, oobsize, erasesize by the driver */
3545 busw = chip->init_size(mtd, chip, id_data);
3546 } else if (!type->pagesize) {
3547 /* Decode parameters from extended ID */
3548 nand_decode_ext_id(mtd, chip, id_data, &busw);
3549 } else {
3550 nand_decode_id(mtd, chip, type, id_data, &busw);
3551 }
3552 /* Get chip options */
3553 chip->options |= type->options;
3554
3555 /*
3556 * Check if chip is not a Samsung device. Do not clear the
3557 * options for chips which do not have an extended id.
3558 */
3559 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3560 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3561 ident_done:
3562
3563 /* Try to identify manufacturer */
3564 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3565 if (nand_manuf_ids[maf_idx].id == *maf_id)
3566 break;
3567 }
3568
3569 if (chip->options & NAND_BUSWIDTH_AUTO) {
3570 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3571 chip->options |= busw;
3572 nand_set_defaults(chip, busw);
3573 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3574 /*
3575 * Check, if buswidth is correct. Hardware drivers should set
3576 * chip correct!
3577 */
3578 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3579 *maf_id, *dev_id);
3580 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3581 pr_warn("bus width %d instead %d bit\n",
3582 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3583 busw ? 16 : 8);
3584 return ERR_PTR(-EINVAL);
3585 }
3586
3587 nand_decode_bbm_options(mtd, chip, id_data);
3588
3589 /* Calculate the address shift from the page size */
3590 chip->page_shift = ffs(mtd->writesize) - 1;
3591 /* Convert chipsize to number of pages per chip -1 */
3592 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3593
3594 chip->bbt_erase_shift = chip->phys_erase_shift =
3595 ffs(mtd->erasesize) - 1;
3596 if (chip->chipsize & 0xffffffff)
3597 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3598 else {
3599 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3600 chip->chip_shift += 32 - 1;
3601 }
3602
3603 chip->badblockbits = 8;
3604 chip->erase_cmd = single_erase_cmd;
3605
3606 /* Do not replace user supplied command function! */
3607 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3608 chip->cmdfunc = nand_command_lp;
3609
3610 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3611 *maf_id, *dev_id);
3612 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3613 chip->onfi_version ? chip->onfi_params.model : type->name);
3614 pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3615 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3616 mtd->writesize, mtd->oobsize);
3617 return type;
3618 }
3619
3620 /**
3621 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3622 * @mtd: MTD device structure
3623 * @maxchips: number of chips to scan for
3624 * @table: alternative NAND ID table
3625 *
3626 * This is the first phase of the normal nand_scan() function. It reads the
3627 * flash ID and sets up MTD fields accordingly.
3628 *
3629 * The mtd->owner field must be set to the module of the caller.
3630 */
3631 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3632 struct nand_flash_dev *table)
3633 {
3634 int i, busw, nand_maf_id, nand_dev_id;
3635 struct nand_chip *chip = mtd->priv;
3636 struct nand_flash_dev *type;
3637
3638 /* Get buswidth to select the correct functions */
3639 busw = chip->options & NAND_BUSWIDTH_16;
3640 /* Set the default functions */
3641 nand_set_defaults(chip, busw);
3642
3643 /* Read the flash type */
3644 type = nand_get_flash_type(mtd, chip, busw,
3645 &nand_maf_id, &nand_dev_id, table);
3646
3647 if (IS_ERR(type)) {
3648 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3649 pr_warn("No NAND device found\n");
3650 chip->select_chip(mtd, -1);
3651 return PTR_ERR(type);
3652 }
3653
3654 chip->select_chip(mtd, -1);
3655
3656 /* Check for a chip array */
3657 for (i = 1; i < maxchips; i++) {
3658 chip->select_chip(mtd, i);
3659 /* See comment in nand_get_flash_type for reset */
3660 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3661 /* Send the command for reading device ID */
3662 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3663 /* Read manufacturer and device IDs */
3664 if (nand_maf_id != chip->read_byte(mtd) ||
3665 nand_dev_id != chip->read_byte(mtd)) {
3666 chip->select_chip(mtd, -1);
3667 break;
3668 }
3669 chip->select_chip(mtd, -1);
3670 }
3671 if (i > 1)
3672 pr_info("%d chips detected\n", i);
3673
3674 /* Store the number of chips and calc total size for mtd */
3675 chip->numchips = i;
3676 mtd->size = i * chip->chipsize;
3677
3678 return 0;
3679 }
3680 EXPORT_SYMBOL(nand_scan_ident);
3681
3682
3683 /**
3684 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3685 * @mtd: MTD device structure
3686 *
3687 * This is the second phase of the normal nand_scan() function. It fills out
3688 * all the uninitialized function pointers with the defaults and scans for a
3689 * bad block table if appropriate.
3690 */
3691 int nand_scan_tail(struct mtd_info *mtd)
3692 {
3693 int i;
3694 struct nand_chip *chip = mtd->priv;
3695 struct nand_ecc_ctrl *ecc = &chip->ecc;
3696
3697 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3698 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3699 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3700
3701 if (!(chip->options & NAND_OWN_BUFFERS))
3702 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3703 if (!chip->buffers)
3704 return -ENOMEM;
3705
3706 /* Set the internal oob buffer location, just after the page data */
3707 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3708
3709 /*
3710 * If no default placement scheme is given, select an appropriate one.
3711 */
3712 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3713 switch (mtd->oobsize) {
3714 case 8:
3715 ecc->layout = &nand_oob_8;
3716 break;
3717 case 16:
3718 ecc->layout = &nand_oob_16;
3719 break;
3720 case 64:
3721 ecc->layout = &nand_oob_64;
3722 break;
3723 case 128:
3724 ecc->layout = &nand_oob_128;
3725 break;
3726 default:
3727 pr_warn("No oob scheme defined for oobsize %d\n",
3728 mtd->oobsize);
3729 BUG();
3730 }
3731 }
3732
3733 if (!chip->write_page)
3734 chip->write_page = nand_write_page;
3735
3736 /*
3737 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3738 * selected and we have 256 byte pagesize fallback to software ECC
3739 */
3740
3741 switch (ecc->mode) {
3742 case NAND_ECC_HW_OOB_FIRST:
3743 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3744 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3745 pr_warn("No ECC functions supplied; "
3746 "hardware ECC not possible\n");
3747 BUG();
3748 }
3749 if (!ecc->read_page)
3750 ecc->read_page = nand_read_page_hwecc_oob_first;
3751
3752 case NAND_ECC_HW:
3753 /* Use standard hwecc read page function? */
3754 if (!ecc->read_page)
3755 ecc->read_page = nand_read_page_hwecc;
3756 if (!ecc->write_page)
3757 ecc->write_page = nand_write_page_hwecc;
3758 if (!ecc->read_page_raw)
3759 ecc->read_page_raw = nand_read_page_raw;
3760 if (!ecc->write_page_raw)
3761 ecc->write_page_raw = nand_write_page_raw;
3762 if (!ecc->read_oob)
3763 ecc->read_oob = nand_read_oob_std;
3764 if (!ecc->write_oob)
3765 ecc->write_oob = nand_write_oob_std;
3766 if (!ecc->read_subpage)
3767 ecc->read_subpage = nand_read_subpage;
3768 if (!ecc->write_subpage)
3769 ecc->write_subpage = nand_write_subpage_hwecc;
3770
3771 case NAND_ECC_HW_SYNDROME:
3772 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3773 (!ecc->read_page ||
3774 ecc->read_page == nand_read_page_hwecc ||
3775 !ecc->write_page ||
3776 ecc->write_page == nand_write_page_hwecc)) {
3777 pr_warn("No ECC functions supplied; "
3778 "hardware ECC not possible\n");
3779 BUG();
3780 }
3781 /* Use standard syndrome read/write page function? */
3782 if (!ecc->read_page)
3783 ecc->read_page = nand_read_page_syndrome;
3784 if (!ecc->write_page)
3785 ecc->write_page = nand_write_page_syndrome;
3786 if (!ecc->read_page_raw)
3787 ecc->read_page_raw = nand_read_page_raw_syndrome;
3788 if (!ecc->write_page_raw)
3789 ecc->write_page_raw = nand_write_page_raw_syndrome;
3790 if (!ecc->read_oob)
3791 ecc->read_oob = nand_read_oob_syndrome;
3792 if (!ecc->write_oob)
3793 ecc->write_oob = nand_write_oob_syndrome;
3794
3795 if (mtd->writesize >= ecc->size) {
3796 if (!ecc->strength) {
3797 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3798 BUG();
3799 }
3800 break;
3801 }
3802 pr_warn("%d byte HW ECC not possible on "
3803 "%d byte page size, fallback to SW ECC\n",
3804 ecc->size, mtd->writesize);
3805 ecc->mode = NAND_ECC_SOFT;
3806
3807 case NAND_ECC_SOFT:
3808 ecc->calculate = nand_calculate_ecc;
3809 ecc->correct = nand_correct_data;
3810 ecc->read_page = nand_read_page_swecc;
3811 ecc->read_subpage = nand_read_subpage;
3812 ecc->write_page = nand_write_page_swecc;
3813 ecc->read_page_raw = nand_read_page_raw;
3814 ecc->write_page_raw = nand_write_page_raw;
3815 ecc->read_oob = nand_read_oob_std;
3816 ecc->write_oob = nand_write_oob_std;
3817 if (!ecc->size)
3818 ecc->size = 256;
3819 ecc->bytes = 3;
3820 ecc->strength = 1;
3821 break;
3822
3823 case NAND_ECC_SOFT_BCH:
3824 if (!mtd_nand_has_bch()) {
3825 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3826 BUG();
3827 }
3828 ecc->calculate = nand_bch_calculate_ecc;
3829 ecc->correct = nand_bch_correct_data;
3830 ecc->read_page = nand_read_page_swecc;
3831 ecc->read_subpage = nand_read_subpage;
3832 ecc->write_page = nand_write_page_swecc;
3833 ecc->read_page_raw = nand_read_page_raw;
3834 ecc->write_page_raw = nand_write_page_raw;
3835 ecc->read_oob = nand_read_oob_std;
3836 ecc->write_oob = nand_write_oob_std;
3837 /*
3838 * Board driver should supply ecc.size and ecc.bytes values to
3839 * select how many bits are correctable; see nand_bch_init()
3840 * for details. Otherwise, default to 4 bits for large page
3841 * devices.
3842 */
3843 if (!ecc->size && (mtd->oobsize >= 64)) {
3844 ecc->size = 512;
3845 ecc->bytes = 7;
3846 }
3847 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
3848 &ecc->layout);
3849 if (!ecc->priv) {
3850 pr_warn("BCH ECC initialization failed!\n");
3851 BUG();
3852 }
3853 ecc->strength = ecc->bytes * 8 / fls(8 * ecc->size);
3854 break;
3855
3856 case NAND_ECC_NONE:
3857 pr_warn("NAND_ECC_NONE selected by board driver. "
3858 "This is not recommended!\n");
3859 ecc->read_page = nand_read_page_raw;
3860 ecc->write_page = nand_write_page_raw;
3861 ecc->read_oob = nand_read_oob_std;
3862 ecc->read_page_raw = nand_read_page_raw;
3863 ecc->write_page_raw = nand_write_page_raw;
3864 ecc->write_oob = nand_write_oob_std;
3865 ecc->size = mtd->writesize;
3866 ecc->bytes = 0;
3867 ecc->strength = 0;
3868 break;
3869
3870 default:
3871 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
3872 BUG();
3873 }
3874
3875 /* For many systems, the standard OOB write also works for raw */
3876 if (!ecc->read_oob_raw)
3877 ecc->read_oob_raw = ecc->read_oob;
3878 if (!ecc->write_oob_raw)
3879 ecc->write_oob_raw = ecc->write_oob;
3880
3881 /*
3882 * The number of bytes available for a client to place data into
3883 * the out of band area.
3884 */
3885 ecc->layout->oobavail = 0;
3886 for (i = 0; ecc->layout->oobfree[i].length
3887 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
3888 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
3889 mtd->oobavail = ecc->layout->oobavail;
3890
3891 /*
3892 * Set the number of read / write steps for one page depending on ECC
3893 * mode.
3894 */
3895 ecc->steps = mtd->writesize / ecc->size;
3896 if (ecc->steps * ecc->size != mtd->writesize) {
3897 pr_warn("Invalid ECC parameters\n");
3898 BUG();
3899 }
3900 ecc->total = ecc->steps * ecc->bytes;
3901
3902 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3903 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
3904 switch (ecc->steps) {
3905 case 2:
3906 mtd->subpage_sft = 1;
3907 break;
3908 case 4:
3909 case 8:
3910 case 16:
3911 mtd->subpage_sft = 2;
3912 break;
3913 }
3914 }
3915 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3916
3917 /* Initialize state */
3918 chip->state = FL_READY;
3919
3920 /* Invalidate the pagebuffer reference */
3921 chip->pagebuf = -1;
3922
3923 /* Large page NAND with SOFT_ECC should support subpage reads */
3924 if ((ecc->mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3925 chip->options |= NAND_SUBPAGE_READ;
3926
3927 /* Fill in remaining MTD driver data */
3928 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
3929 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3930 MTD_CAP_NANDFLASH;
3931 mtd->_erase = nand_erase;
3932 mtd->_point = NULL;
3933 mtd->_unpoint = NULL;
3934 mtd->_read = nand_read;
3935 mtd->_write = nand_write;
3936 mtd->_panic_write = panic_nand_write;
3937 mtd->_read_oob = nand_read_oob;
3938 mtd->_write_oob = nand_write_oob;
3939 mtd->_sync = nand_sync;
3940 mtd->_lock = NULL;
3941 mtd->_unlock = NULL;
3942 mtd->_suspend = nand_suspend;
3943 mtd->_resume = nand_resume;
3944 mtd->_block_isbad = nand_block_isbad;
3945 mtd->_block_markbad = nand_block_markbad;
3946 mtd->writebufsize = mtd->writesize;
3947
3948 /* propagate ecc info to mtd_info */
3949 mtd->ecclayout = ecc->layout;
3950 mtd->ecc_strength = ecc->strength;
3951 mtd->ecc_step_size = ecc->size;
3952 /*
3953 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3954 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3955 * properly set.
3956 */
3957 if (!mtd->bitflip_threshold)
3958 mtd->bitflip_threshold = mtd->ecc_strength;
3959
3960 /* Check, if we should skip the bad block table scan */
3961 if (chip->options & NAND_SKIP_BBTSCAN)
3962 return 0;
3963
3964 /* Build bad block table */
3965 return chip->scan_bbt(mtd);
3966 }
3967 EXPORT_SYMBOL(nand_scan_tail);
3968
3969 /*
3970 * is_module_text_address() isn't exported, and it's mostly a pointless
3971 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3972 * to call us from in-kernel code if the core NAND support is modular.
3973 */
3974 #ifdef MODULE
3975 #define caller_is_module() (1)
3976 #else
3977 #define caller_is_module() \
3978 is_module_text_address((unsigned long)__builtin_return_address(0))
3979 #endif
3980
3981 /**
3982 * nand_scan - [NAND Interface] Scan for the NAND device
3983 * @mtd: MTD device structure
3984 * @maxchips: number of chips to scan for
3985 *
3986 * This fills out all the uninitialized function pointers with the defaults.
3987 * The flash ID is read and the mtd/chip structures are filled with the
3988 * appropriate values. The mtd->owner field must be set to the module of the
3989 * caller.
3990 */
3991 int nand_scan(struct mtd_info *mtd, int maxchips)
3992 {
3993 int ret;
3994
3995 /* Many callers got this wrong, so check for it for a while... */
3996 if (!mtd->owner && caller_is_module()) {
3997 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3998 BUG();
3999 }
4000
4001 ret = nand_scan_ident(mtd, maxchips, NULL);
4002 if (!ret)
4003 ret = nand_scan_tail(mtd);
4004 return ret;
4005 }
4006 EXPORT_SYMBOL(nand_scan);
4007
4008 /**
4009 * nand_release - [NAND Interface] Free resources held by the NAND device
4010 * @mtd: MTD device structure
4011 */
4012 void nand_release(struct mtd_info *mtd)
4013 {
4014 struct nand_chip *chip = mtd->priv;
4015
4016 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4017 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4018
4019 mtd_device_unregister(mtd);
4020
4021 /* Free bad block table memory */
4022 kfree(chip->bbt);
4023 if (!(chip->options & NAND_OWN_BUFFERS))
4024 kfree(chip->buffers);
4025
4026 /* Free bad block descriptor memory */
4027 if (chip->badblock_pattern && chip->badblock_pattern->options
4028 & NAND_BBT_DYNAMICSTRUCT)
4029 kfree(chip->badblock_pattern);
4030 }
4031 EXPORT_SYMBOL_GPL(nand_release);
4032
4033 static int __init nand_base_init(void)
4034 {
4035 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4036 return 0;
4037 }
4038
4039 static void __exit nand_base_exit(void)
4040 {
4041 led_trigger_unregister_simple(nand_led_trigger);
4042 }
4043
4044 module_init(nand_base_init);
4045 module_exit(nand_base_exit);
4046
4047 MODULE_LICENSE("GPL");
4048 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4049 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4050 MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.209449 seconds and 5 git commands to generate.