mtd: nand: export default read/write oob functions
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
5 *
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
8 *
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
11 *
12 * Credits:
13 * David Woodhouse for adding multichip support
14 *
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
18 * TODO:
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/mtd/partitions.h>
48 #include <linux/of_mtd.h>
49
50 /* Define default oob placement schemes for large and small page devices */
51 static struct nand_ecclayout nand_oob_8 = {
52 .eccbytes = 3,
53 .eccpos = {0, 1, 2},
54 .oobfree = {
55 {.offset = 3,
56 .length = 2},
57 {.offset = 6,
58 .length = 2} }
59 };
60
61 static struct nand_ecclayout nand_oob_16 = {
62 .eccbytes = 6,
63 .eccpos = {0, 1, 2, 3, 6, 7},
64 .oobfree = {
65 {.offset = 8,
66 . length = 8} }
67 };
68
69 static struct nand_ecclayout nand_oob_64 = {
70 .eccbytes = 24,
71 .eccpos = {
72 40, 41, 42, 43, 44, 45, 46, 47,
73 48, 49, 50, 51, 52, 53, 54, 55,
74 56, 57, 58, 59, 60, 61, 62, 63},
75 .oobfree = {
76 {.offset = 2,
77 .length = 38} }
78 };
79
80 static struct nand_ecclayout nand_oob_128 = {
81 .eccbytes = 48,
82 .eccpos = {
83 80, 81, 82, 83, 84, 85, 86, 87,
84 88, 89, 90, 91, 92, 93, 94, 95,
85 96, 97, 98, 99, 100, 101, 102, 103,
86 104, 105, 106, 107, 108, 109, 110, 111,
87 112, 113, 114, 115, 116, 117, 118, 119,
88 120, 121, 122, 123, 124, 125, 126, 127},
89 .oobfree = {
90 {.offset = 2,
91 .length = 78} }
92 };
93
94 static int nand_get_device(struct mtd_info *mtd, int new_state);
95
96 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
97 struct mtd_oob_ops *ops);
98
99 static int check_offs_len(struct mtd_info *mtd,
100 loff_t ofs, uint64_t len)
101 {
102 struct nand_chip *chip = mtd_to_nand(mtd);
103 int ret = 0;
104
105 /* Start address must align on block boundary */
106 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
107 pr_debug("%s: unaligned address\n", __func__);
108 ret = -EINVAL;
109 }
110
111 /* Length must align on block boundary */
112 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
113 pr_debug("%s: length not block aligned\n", __func__);
114 ret = -EINVAL;
115 }
116
117 return ret;
118 }
119
120 /**
121 * nand_release_device - [GENERIC] release chip
122 * @mtd: MTD device structure
123 *
124 * Release chip lock and wake up anyone waiting on the device.
125 */
126 static void nand_release_device(struct mtd_info *mtd)
127 {
128 struct nand_chip *chip = mtd_to_nand(mtd);
129
130 /* Release the controller and the chip */
131 spin_lock(&chip->controller->lock);
132 chip->controller->active = NULL;
133 chip->state = FL_READY;
134 wake_up(&chip->controller->wq);
135 spin_unlock(&chip->controller->lock);
136 }
137
138 /**
139 * nand_read_byte - [DEFAULT] read one byte from the chip
140 * @mtd: MTD device structure
141 *
142 * Default read function for 8bit buswidth
143 */
144 static uint8_t nand_read_byte(struct mtd_info *mtd)
145 {
146 struct nand_chip *chip = mtd_to_nand(mtd);
147 return readb(chip->IO_ADDR_R);
148 }
149
150 /**
151 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
152 * @mtd: MTD device structure
153 *
154 * Default read function for 16bit buswidth with endianness conversion.
155 *
156 */
157 static uint8_t nand_read_byte16(struct mtd_info *mtd)
158 {
159 struct nand_chip *chip = mtd_to_nand(mtd);
160 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
161 }
162
163 /**
164 * nand_read_word - [DEFAULT] read one word from the chip
165 * @mtd: MTD device structure
166 *
167 * Default read function for 16bit buswidth without endianness conversion.
168 */
169 static u16 nand_read_word(struct mtd_info *mtd)
170 {
171 struct nand_chip *chip = mtd_to_nand(mtd);
172 return readw(chip->IO_ADDR_R);
173 }
174
175 /**
176 * nand_select_chip - [DEFAULT] control CE line
177 * @mtd: MTD device structure
178 * @chipnr: chipnumber to select, -1 for deselect
179 *
180 * Default select function for 1 chip devices.
181 */
182 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
183 {
184 struct nand_chip *chip = mtd_to_nand(mtd);
185
186 switch (chipnr) {
187 case -1:
188 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
189 break;
190 case 0:
191 break;
192
193 default:
194 BUG();
195 }
196 }
197
198 /**
199 * nand_write_byte - [DEFAULT] write single byte to chip
200 * @mtd: MTD device structure
201 * @byte: value to write
202 *
203 * Default function to write a byte to I/O[7:0]
204 */
205 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
206 {
207 struct nand_chip *chip = mtd_to_nand(mtd);
208
209 chip->write_buf(mtd, &byte, 1);
210 }
211
212 /**
213 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
214 * @mtd: MTD device structure
215 * @byte: value to write
216 *
217 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
218 */
219 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
220 {
221 struct nand_chip *chip = mtd_to_nand(mtd);
222 uint16_t word = byte;
223
224 /*
225 * It's not entirely clear what should happen to I/O[15:8] when writing
226 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
227 *
228 * When the host supports a 16-bit bus width, only data is
229 * transferred at the 16-bit width. All address and command line
230 * transfers shall use only the lower 8-bits of the data bus. During
231 * command transfers, the host may place any value on the upper
232 * 8-bits of the data bus. During address transfers, the host shall
233 * set the upper 8-bits of the data bus to 00h.
234 *
235 * One user of the write_byte callback is nand_onfi_set_features. The
236 * four parameters are specified to be written to I/O[7:0], but this is
237 * neither an address nor a command transfer. Let's assume a 0 on the
238 * upper I/O lines is OK.
239 */
240 chip->write_buf(mtd, (uint8_t *)&word, 2);
241 }
242
243 /**
244 * nand_write_buf - [DEFAULT] write buffer to chip
245 * @mtd: MTD device structure
246 * @buf: data buffer
247 * @len: number of bytes to write
248 *
249 * Default write function for 8bit buswidth.
250 */
251 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
252 {
253 struct nand_chip *chip = mtd_to_nand(mtd);
254
255 iowrite8_rep(chip->IO_ADDR_W, buf, len);
256 }
257
258 /**
259 * nand_read_buf - [DEFAULT] read chip data into buffer
260 * @mtd: MTD device structure
261 * @buf: buffer to store date
262 * @len: number of bytes to read
263 *
264 * Default read function for 8bit buswidth.
265 */
266 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
267 {
268 struct nand_chip *chip = mtd_to_nand(mtd);
269
270 ioread8_rep(chip->IO_ADDR_R, buf, len);
271 }
272
273 /**
274 * nand_write_buf16 - [DEFAULT] write buffer to chip
275 * @mtd: MTD device structure
276 * @buf: data buffer
277 * @len: number of bytes to write
278 *
279 * Default write function for 16bit buswidth.
280 */
281 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
282 {
283 struct nand_chip *chip = mtd_to_nand(mtd);
284 u16 *p = (u16 *) buf;
285
286 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
287 }
288
289 /**
290 * nand_read_buf16 - [DEFAULT] read chip data into buffer
291 * @mtd: MTD device structure
292 * @buf: buffer to store date
293 * @len: number of bytes to read
294 *
295 * Default read function for 16bit buswidth.
296 */
297 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
298 {
299 struct nand_chip *chip = mtd_to_nand(mtd);
300 u16 *p = (u16 *) buf;
301
302 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
303 }
304
305 /**
306 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
307 * @mtd: MTD device structure
308 * @ofs: offset from device start
309 *
310 * Check, if the block is bad.
311 */
312 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
313 {
314 int page, res = 0, i = 0;
315 struct nand_chip *chip = mtd_to_nand(mtd);
316 u16 bad;
317
318 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
319 ofs += mtd->erasesize - mtd->writesize;
320
321 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
322
323 do {
324 if (chip->options & NAND_BUSWIDTH_16) {
325 chip->cmdfunc(mtd, NAND_CMD_READOOB,
326 chip->badblockpos & 0xFE, page);
327 bad = cpu_to_le16(chip->read_word(mtd));
328 if (chip->badblockpos & 0x1)
329 bad >>= 8;
330 else
331 bad &= 0xFF;
332 } else {
333 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
334 page);
335 bad = chip->read_byte(mtd);
336 }
337
338 if (likely(chip->badblockbits == 8))
339 res = bad != 0xFF;
340 else
341 res = hweight8(bad) < chip->badblockbits;
342 ofs += mtd->writesize;
343 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
344 i++;
345 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
346
347 return res;
348 }
349
350 /**
351 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
352 * @mtd: MTD device structure
353 * @ofs: offset from device start
354 *
355 * This is the default implementation, which can be overridden by a hardware
356 * specific driver. It provides the details for writing a bad block marker to a
357 * block.
358 */
359 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
360 {
361 struct nand_chip *chip = mtd_to_nand(mtd);
362 struct mtd_oob_ops ops;
363 uint8_t buf[2] = { 0, 0 };
364 int ret = 0, res, i = 0;
365
366 memset(&ops, 0, sizeof(ops));
367 ops.oobbuf = buf;
368 ops.ooboffs = chip->badblockpos;
369 if (chip->options & NAND_BUSWIDTH_16) {
370 ops.ooboffs &= ~0x01;
371 ops.len = ops.ooblen = 2;
372 } else {
373 ops.len = ops.ooblen = 1;
374 }
375 ops.mode = MTD_OPS_PLACE_OOB;
376
377 /* Write to first/last page(s) if necessary */
378 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
379 ofs += mtd->erasesize - mtd->writesize;
380 do {
381 res = nand_do_write_oob(mtd, ofs, &ops);
382 if (!ret)
383 ret = res;
384
385 i++;
386 ofs += mtd->writesize;
387 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
388
389 return ret;
390 }
391
392 /**
393 * nand_block_markbad_lowlevel - mark a block bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 *
397 * This function performs the generic NAND bad block marking steps (i.e., bad
398 * block table(s) and/or marker(s)). We only allow the hardware driver to
399 * specify how to write bad block markers to OOB (chip->block_markbad).
400 *
401 * We try operations in the following order:
402 * (1) erase the affected block, to allow OOB marker to be written cleanly
403 * (2) write bad block marker to OOB area of affected block (unless flag
404 * NAND_BBT_NO_OOB_BBM is present)
405 * (3) update the BBT
406 * Note that we retain the first error encountered in (2) or (3), finish the
407 * procedures, and dump the error in the end.
408 */
409 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
410 {
411 struct nand_chip *chip = mtd_to_nand(mtd);
412 int res, ret = 0;
413
414 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
415 struct erase_info einfo;
416
417 /* Attempt erase before marking OOB */
418 memset(&einfo, 0, sizeof(einfo));
419 einfo.mtd = mtd;
420 einfo.addr = ofs;
421 einfo.len = 1ULL << chip->phys_erase_shift;
422 nand_erase_nand(mtd, &einfo, 0);
423
424 /* Write bad block marker to OOB */
425 nand_get_device(mtd, FL_WRITING);
426 ret = chip->block_markbad(mtd, ofs);
427 nand_release_device(mtd);
428 }
429
430 /* Mark block bad in BBT */
431 if (chip->bbt) {
432 res = nand_markbad_bbt(mtd, ofs);
433 if (!ret)
434 ret = res;
435 }
436
437 if (!ret)
438 mtd->ecc_stats.badblocks++;
439
440 return ret;
441 }
442
443 /**
444 * nand_check_wp - [GENERIC] check if the chip is write protected
445 * @mtd: MTD device structure
446 *
447 * Check, if the device is write protected. The function expects, that the
448 * device is already selected.
449 */
450 static int nand_check_wp(struct mtd_info *mtd)
451 {
452 struct nand_chip *chip = mtd_to_nand(mtd);
453
454 /* Broken xD cards report WP despite being writable */
455 if (chip->options & NAND_BROKEN_XD)
456 return 0;
457
458 /* Check the WP bit */
459 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
460 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
461 }
462
463 /**
464 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
465 * @mtd: MTD device structure
466 * @ofs: offset from device start
467 *
468 * Check if the block is marked as reserved.
469 */
470 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
471 {
472 struct nand_chip *chip = mtd_to_nand(mtd);
473
474 if (!chip->bbt)
475 return 0;
476 /* Return info from the table */
477 return nand_isreserved_bbt(mtd, ofs);
478 }
479
480 /**
481 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
482 * @mtd: MTD device structure
483 * @ofs: offset from device start
484 * @allowbbt: 1, if its allowed to access the bbt area
485 *
486 * Check, if the block is bad. Either by reading the bad block table or
487 * calling of the scan function.
488 */
489 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
490 {
491 struct nand_chip *chip = mtd_to_nand(mtd);
492
493 if (!chip->bbt)
494 return chip->block_bad(mtd, ofs);
495
496 /* Return info from the table */
497 return nand_isbad_bbt(mtd, ofs, allowbbt);
498 }
499
500 /**
501 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
502 * @mtd: MTD device structure
503 * @timeo: Timeout
504 *
505 * Helper function for nand_wait_ready used when needing to wait in interrupt
506 * context.
507 */
508 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
509 {
510 struct nand_chip *chip = mtd_to_nand(mtd);
511 int i;
512
513 /* Wait for the device to get ready */
514 for (i = 0; i < timeo; i++) {
515 if (chip->dev_ready(mtd))
516 break;
517 touch_softlockup_watchdog();
518 mdelay(1);
519 }
520 }
521
522 /**
523 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
524 * @mtd: MTD device structure
525 *
526 * Wait for the ready pin after a command, and warn if a timeout occurs.
527 */
528 void nand_wait_ready(struct mtd_info *mtd)
529 {
530 struct nand_chip *chip = mtd_to_nand(mtd);
531 unsigned long timeo = 400;
532
533 if (in_interrupt() || oops_in_progress)
534 return panic_nand_wait_ready(mtd, timeo);
535
536 /* Wait until command is processed or timeout occurs */
537 timeo = jiffies + msecs_to_jiffies(timeo);
538 do {
539 if (chip->dev_ready(mtd))
540 return;
541 cond_resched();
542 } while (time_before(jiffies, timeo));
543
544 if (!chip->dev_ready(mtd))
545 pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
546 }
547 EXPORT_SYMBOL_GPL(nand_wait_ready);
548
549 /**
550 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
551 * @mtd: MTD device structure
552 * @timeo: Timeout in ms
553 *
554 * Wait for status ready (i.e. command done) or timeout.
555 */
556 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
557 {
558 register struct nand_chip *chip = mtd_to_nand(mtd);
559
560 timeo = jiffies + msecs_to_jiffies(timeo);
561 do {
562 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
563 break;
564 touch_softlockup_watchdog();
565 } while (time_before(jiffies, timeo));
566 };
567
568 /**
569 * nand_command - [DEFAULT] Send command to NAND device
570 * @mtd: MTD device structure
571 * @command: the command to be sent
572 * @column: the column address for this command, -1 if none
573 * @page_addr: the page address for this command, -1 if none
574 *
575 * Send command to NAND device. This function is used for small page devices
576 * (512 Bytes per page).
577 */
578 static void nand_command(struct mtd_info *mtd, unsigned int command,
579 int column, int page_addr)
580 {
581 register struct nand_chip *chip = mtd_to_nand(mtd);
582 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
583
584 /* Write out the command to the device */
585 if (command == NAND_CMD_SEQIN) {
586 int readcmd;
587
588 if (column >= mtd->writesize) {
589 /* OOB area */
590 column -= mtd->writesize;
591 readcmd = NAND_CMD_READOOB;
592 } else if (column < 256) {
593 /* First 256 bytes --> READ0 */
594 readcmd = NAND_CMD_READ0;
595 } else {
596 column -= 256;
597 readcmd = NAND_CMD_READ1;
598 }
599 chip->cmd_ctrl(mtd, readcmd, ctrl);
600 ctrl &= ~NAND_CTRL_CHANGE;
601 }
602 chip->cmd_ctrl(mtd, command, ctrl);
603
604 /* Address cycle, when necessary */
605 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
606 /* Serially input address */
607 if (column != -1) {
608 /* Adjust columns for 16 bit buswidth */
609 if (chip->options & NAND_BUSWIDTH_16 &&
610 !nand_opcode_8bits(command))
611 column >>= 1;
612 chip->cmd_ctrl(mtd, column, ctrl);
613 ctrl &= ~NAND_CTRL_CHANGE;
614 }
615 if (page_addr != -1) {
616 chip->cmd_ctrl(mtd, page_addr, ctrl);
617 ctrl &= ~NAND_CTRL_CHANGE;
618 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
619 /* One more address cycle for devices > 32MiB */
620 if (chip->chipsize > (32 << 20))
621 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
622 }
623 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
624
625 /*
626 * Program and erase have their own busy handlers status and sequential
627 * in needs no delay
628 */
629 switch (command) {
630
631 case NAND_CMD_PAGEPROG:
632 case NAND_CMD_ERASE1:
633 case NAND_CMD_ERASE2:
634 case NAND_CMD_SEQIN:
635 case NAND_CMD_STATUS:
636 return;
637
638 case NAND_CMD_RESET:
639 if (chip->dev_ready)
640 break;
641 udelay(chip->chip_delay);
642 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
643 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
644 chip->cmd_ctrl(mtd,
645 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
646 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
647 nand_wait_status_ready(mtd, 250);
648 return;
649
650 /* This applies to read commands */
651 default:
652 /*
653 * If we don't have access to the busy pin, we apply the given
654 * command delay
655 */
656 if (!chip->dev_ready) {
657 udelay(chip->chip_delay);
658 return;
659 }
660 }
661 /*
662 * Apply this short delay always to ensure that we do wait tWB in
663 * any case on any machine.
664 */
665 ndelay(100);
666
667 nand_wait_ready(mtd);
668 }
669
670 /**
671 * nand_command_lp - [DEFAULT] Send command to NAND large page device
672 * @mtd: MTD device structure
673 * @command: the command to be sent
674 * @column: the column address for this command, -1 if none
675 * @page_addr: the page address for this command, -1 if none
676 *
677 * Send command to NAND device. This is the version for the new large page
678 * devices. We don't have the separate regions as we have in the small page
679 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
680 */
681 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
682 int column, int page_addr)
683 {
684 register struct nand_chip *chip = mtd_to_nand(mtd);
685
686 /* Emulate NAND_CMD_READOOB */
687 if (command == NAND_CMD_READOOB) {
688 column += mtd->writesize;
689 command = NAND_CMD_READ0;
690 }
691
692 /* Command latch cycle */
693 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
694
695 if (column != -1 || page_addr != -1) {
696 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
697
698 /* Serially input address */
699 if (column != -1) {
700 /* Adjust columns for 16 bit buswidth */
701 if (chip->options & NAND_BUSWIDTH_16 &&
702 !nand_opcode_8bits(command))
703 column >>= 1;
704 chip->cmd_ctrl(mtd, column, ctrl);
705 ctrl &= ~NAND_CTRL_CHANGE;
706 chip->cmd_ctrl(mtd, column >> 8, ctrl);
707 }
708 if (page_addr != -1) {
709 chip->cmd_ctrl(mtd, page_addr, ctrl);
710 chip->cmd_ctrl(mtd, page_addr >> 8,
711 NAND_NCE | NAND_ALE);
712 /* One more address cycle for devices > 128MiB */
713 if (chip->chipsize > (128 << 20))
714 chip->cmd_ctrl(mtd, page_addr >> 16,
715 NAND_NCE | NAND_ALE);
716 }
717 }
718 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
719
720 /*
721 * Program and erase have their own busy handlers status, sequential
722 * in and status need no delay.
723 */
724 switch (command) {
725
726 case NAND_CMD_CACHEDPROG:
727 case NAND_CMD_PAGEPROG:
728 case NAND_CMD_ERASE1:
729 case NAND_CMD_ERASE2:
730 case NAND_CMD_SEQIN:
731 case NAND_CMD_RNDIN:
732 case NAND_CMD_STATUS:
733 return;
734
735 case NAND_CMD_RESET:
736 if (chip->dev_ready)
737 break;
738 udelay(chip->chip_delay);
739 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
740 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
741 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
742 NAND_NCE | NAND_CTRL_CHANGE);
743 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
744 nand_wait_status_ready(mtd, 250);
745 return;
746
747 case NAND_CMD_RNDOUT:
748 /* No ready / busy check necessary */
749 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
750 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
751 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
752 NAND_NCE | NAND_CTRL_CHANGE);
753 return;
754
755 case NAND_CMD_READ0:
756 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
757 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
758 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
759 NAND_NCE | NAND_CTRL_CHANGE);
760
761 /* This applies to read commands */
762 default:
763 /*
764 * If we don't have access to the busy pin, we apply the given
765 * command delay.
766 */
767 if (!chip->dev_ready) {
768 udelay(chip->chip_delay);
769 return;
770 }
771 }
772
773 /*
774 * Apply this short delay always to ensure that we do wait tWB in
775 * any case on any machine.
776 */
777 ndelay(100);
778
779 nand_wait_ready(mtd);
780 }
781
782 /**
783 * panic_nand_get_device - [GENERIC] Get chip for selected access
784 * @chip: the nand chip descriptor
785 * @mtd: MTD device structure
786 * @new_state: the state which is requested
787 *
788 * Used when in panic, no locks are taken.
789 */
790 static void panic_nand_get_device(struct nand_chip *chip,
791 struct mtd_info *mtd, int new_state)
792 {
793 /* Hardware controller shared among independent devices */
794 chip->controller->active = chip;
795 chip->state = new_state;
796 }
797
798 /**
799 * nand_get_device - [GENERIC] Get chip for selected access
800 * @mtd: MTD device structure
801 * @new_state: the state which is requested
802 *
803 * Get the device and lock it for exclusive access
804 */
805 static int
806 nand_get_device(struct mtd_info *mtd, int new_state)
807 {
808 struct nand_chip *chip = mtd_to_nand(mtd);
809 spinlock_t *lock = &chip->controller->lock;
810 wait_queue_head_t *wq = &chip->controller->wq;
811 DECLARE_WAITQUEUE(wait, current);
812 retry:
813 spin_lock(lock);
814
815 /* Hardware controller shared among independent devices */
816 if (!chip->controller->active)
817 chip->controller->active = chip;
818
819 if (chip->controller->active == chip && chip->state == FL_READY) {
820 chip->state = new_state;
821 spin_unlock(lock);
822 return 0;
823 }
824 if (new_state == FL_PM_SUSPENDED) {
825 if (chip->controller->active->state == FL_PM_SUSPENDED) {
826 chip->state = FL_PM_SUSPENDED;
827 spin_unlock(lock);
828 return 0;
829 }
830 }
831 set_current_state(TASK_UNINTERRUPTIBLE);
832 add_wait_queue(wq, &wait);
833 spin_unlock(lock);
834 schedule();
835 remove_wait_queue(wq, &wait);
836 goto retry;
837 }
838
839 /**
840 * panic_nand_wait - [GENERIC] wait until the command is done
841 * @mtd: MTD device structure
842 * @chip: NAND chip structure
843 * @timeo: timeout
844 *
845 * Wait for command done. This is a helper function for nand_wait used when
846 * we are in interrupt context. May happen when in panic and trying to write
847 * an oops through mtdoops.
848 */
849 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
850 unsigned long timeo)
851 {
852 int i;
853 for (i = 0; i < timeo; i++) {
854 if (chip->dev_ready) {
855 if (chip->dev_ready(mtd))
856 break;
857 } else {
858 if (chip->read_byte(mtd) & NAND_STATUS_READY)
859 break;
860 }
861 mdelay(1);
862 }
863 }
864
865 /**
866 * nand_wait - [DEFAULT] wait until the command is done
867 * @mtd: MTD device structure
868 * @chip: NAND chip structure
869 *
870 * Wait for command done. This applies to erase and program only.
871 */
872 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
873 {
874
875 int status;
876 unsigned long timeo = 400;
877
878 /*
879 * Apply this short delay always to ensure that we do wait tWB in any
880 * case on any machine.
881 */
882 ndelay(100);
883
884 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
885
886 if (in_interrupt() || oops_in_progress)
887 panic_nand_wait(mtd, chip, timeo);
888 else {
889 timeo = jiffies + msecs_to_jiffies(timeo);
890 do {
891 if (chip->dev_ready) {
892 if (chip->dev_ready(mtd))
893 break;
894 } else {
895 if (chip->read_byte(mtd) & NAND_STATUS_READY)
896 break;
897 }
898 cond_resched();
899 } while (time_before(jiffies, timeo));
900 }
901
902 status = (int)chip->read_byte(mtd);
903 /* This can happen if in case of timeout or buggy dev_ready */
904 WARN_ON(!(status & NAND_STATUS_READY));
905 return status;
906 }
907
908 /**
909 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
910 * @mtd: mtd info
911 * @ofs: offset to start unlock from
912 * @len: length to unlock
913 * @invert: when = 0, unlock the range of blocks within the lower and
914 * upper boundary address
915 * when = 1, unlock the range of blocks outside the boundaries
916 * of the lower and upper boundary address
917 *
918 * Returs unlock status.
919 */
920 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
921 uint64_t len, int invert)
922 {
923 int ret = 0;
924 int status, page;
925 struct nand_chip *chip = mtd_to_nand(mtd);
926
927 /* Submit address of first page to unlock */
928 page = ofs >> chip->page_shift;
929 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
930
931 /* Submit address of last page to unlock */
932 page = (ofs + len) >> chip->page_shift;
933 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
934 (page | invert) & chip->pagemask);
935
936 /* Call wait ready function */
937 status = chip->waitfunc(mtd, chip);
938 /* See if device thinks it succeeded */
939 if (status & NAND_STATUS_FAIL) {
940 pr_debug("%s: error status = 0x%08x\n",
941 __func__, status);
942 ret = -EIO;
943 }
944
945 return ret;
946 }
947
948 /**
949 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
950 * @mtd: mtd info
951 * @ofs: offset to start unlock from
952 * @len: length to unlock
953 *
954 * Returns unlock status.
955 */
956 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
957 {
958 int ret = 0;
959 int chipnr;
960 struct nand_chip *chip = mtd_to_nand(mtd);
961
962 pr_debug("%s: start = 0x%012llx, len = %llu\n",
963 __func__, (unsigned long long)ofs, len);
964
965 if (check_offs_len(mtd, ofs, len))
966 return -EINVAL;
967
968 /* Align to last block address if size addresses end of the device */
969 if (ofs + len == mtd->size)
970 len -= mtd->erasesize;
971
972 nand_get_device(mtd, FL_UNLOCKING);
973
974 /* Shift to get chip number */
975 chipnr = ofs >> chip->chip_shift;
976
977 chip->select_chip(mtd, chipnr);
978
979 /*
980 * Reset the chip.
981 * If we want to check the WP through READ STATUS and check the bit 7
982 * we must reset the chip
983 * some operation can also clear the bit 7 of status register
984 * eg. erase/program a locked block
985 */
986 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
987
988 /* Check, if it is write protected */
989 if (nand_check_wp(mtd)) {
990 pr_debug("%s: device is write protected!\n",
991 __func__);
992 ret = -EIO;
993 goto out;
994 }
995
996 ret = __nand_unlock(mtd, ofs, len, 0);
997
998 out:
999 chip->select_chip(mtd, -1);
1000 nand_release_device(mtd);
1001
1002 return ret;
1003 }
1004 EXPORT_SYMBOL(nand_unlock);
1005
1006 /**
1007 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1008 * @mtd: mtd info
1009 * @ofs: offset to start unlock from
1010 * @len: length to unlock
1011 *
1012 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1013 * have this feature, but it allows only to lock all blocks, not for specified
1014 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1015 * now.
1016 *
1017 * Returns lock status.
1018 */
1019 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1020 {
1021 int ret = 0;
1022 int chipnr, status, page;
1023 struct nand_chip *chip = mtd_to_nand(mtd);
1024
1025 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1026 __func__, (unsigned long long)ofs, len);
1027
1028 if (check_offs_len(mtd, ofs, len))
1029 return -EINVAL;
1030
1031 nand_get_device(mtd, FL_LOCKING);
1032
1033 /* Shift to get chip number */
1034 chipnr = ofs >> chip->chip_shift;
1035
1036 chip->select_chip(mtd, chipnr);
1037
1038 /*
1039 * Reset the chip.
1040 * If we want to check the WP through READ STATUS and check the bit 7
1041 * we must reset the chip
1042 * some operation can also clear the bit 7 of status register
1043 * eg. erase/program a locked block
1044 */
1045 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1046
1047 /* Check, if it is write protected */
1048 if (nand_check_wp(mtd)) {
1049 pr_debug("%s: device is write protected!\n",
1050 __func__);
1051 status = MTD_ERASE_FAILED;
1052 ret = -EIO;
1053 goto out;
1054 }
1055
1056 /* Submit address of first page to lock */
1057 page = ofs >> chip->page_shift;
1058 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1059
1060 /* Call wait ready function */
1061 status = chip->waitfunc(mtd, chip);
1062 /* See if device thinks it succeeded */
1063 if (status & NAND_STATUS_FAIL) {
1064 pr_debug("%s: error status = 0x%08x\n",
1065 __func__, status);
1066 ret = -EIO;
1067 goto out;
1068 }
1069
1070 ret = __nand_unlock(mtd, ofs, len, 0x1);
1071
1072 out:
1073 chip->select_chip(mtd, -1);
1074 nand_release_device(mtd);
1075
1076 return ret;
1077 }
1078 EXPORT_SYMBOL(nand_lock);
1079
1080 /**
1081 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1082 * @buf: buffer to test
1083 * @len: buffer length
1084 * @bitflips_threshold: maximum number of bitflips
1085 *
1086 * Check if a buffer contains only 0xff, which means the underlying region
1087 * has been erased and is ready to be programmed.
1088 * The bitflips_threshold specify the maximum number of bitflips before
1089 * considering the region is not erased.
1090 * Note: The logic of this function has been extracted from the memweight
1091 * implementation, except that nand_check_erased_buf function exit before
1092 * testing the whole buffer if the number of bitflips exceed the
1093 * bitflips_threshold value.
1094 *
1095 * Returns a positive number of bitflips less than or equal to
1096 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1097 * threshold.
1098 */
1099 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1100 {
1101 const unsigned char *bitmap = buf;
1102 int bitflips = 0;
1103 int weight;
1104
1105 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1106 len--, bitmap++) {
1107 weight = hweight8(*bitmap);
1108 bitflips += BITS_PER_BYTE - weight;
1109 if (unlikely(bitflips > bitflips_threshold))
1110 return -EBADMSG;
1111 }
1112
1113 for (; len >= sizeof(long);
1114 len -= sizeof(long), bitmap += sizeof(long)) {
1115 weight = hweight_long(*((unsigned long *)bitmap));
1116 bitflips += BITS_PER_LONG - weight;
1117 if (unlikely(bitflips > bitflips_threshold))
1118 return -EBADMSG;
1119 }
1120
1121 for (; len > 0; len--, bitmap++) {
1122 weight = hweight8(*bitmap);
1123 bitflips += BITS_PER_BYTE - weight;
1124 if (unlikely(bitflips > bitflips_threshold))
1125 return -EBADMSG;
1126 }
1127
1128 return bitflips;
1129 }
1130
1131 /**
1132 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1133 * 0xff data
1134 * @data: data buffer to test
1135 * @datalen: data length
1136 * @ecc: ECC buffer
1137 * @ecclen: ECC length
1138 * @extraoob: extra OOB buffer
1139 * @extraooblen: extra OOB length
1140 * @bitflips_threshold: maximum number of bitflips
1141 *
1142 * Check if a data buffer and its associated ECC and OOB data contains only
1143 * 0xff pattern, which means the underlying region has been erased and is
1144 * ready to be programmed.
1145 * The bitflips_threshold specify the maximum number of bitflips before
1146 * considering the region as not erased.
1147 *
1148 * Note:
1149 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1150 * different from the NAND page size. When fixing bitflips, ECC engines will
1151 * report the number of errors per chunk, and the NAND core infrastructure
1152 * expect you to return the maximum number of bitflips for the whole page.
1153 * This is why you should always use this function on a single chunk and
1154 * not on the whole page. After checking each chunk you should update your
1155 * max_bitflips value accordingly.
1156 * 2/ When checking for bitflips in erased pages you should not only check
1157 * the payload data but also their associated ECC data, because a user might
1158 * have programmed almost all bits to 1 but a few. In this case, we
1159 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1160 * this case.
1161 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1162 * data are protected by the ECC engine.
1163 * It could also be used if you support subpages and want to attach some
1164 * extra OOB data to an ECC chunk.
1165 *
1166 * Returns a positive number of bitflips less than or equal to
1167 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1168 * threshold. In case of success, the passed buffers are filled with 0xff.
1169 */
1170 int nand_check_erased_ecc_chunk(void *data, int datalen,
1171 void *ecc, int ecclen,
1172 void *extraoob, int extraooblen,
1173 int bitflips_threshold)
1174 {
1175 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1176
1177 data_bitflips = nand_check_erased_buf(data, datalen,
1178 bitflips_threshold);
1179 if (data_bitflips < 0)
1180 return data_bitflips;
1181
1182 bitflips_threshold -= data_bitflips;
1183
1184 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1185 if (ecc_bitflips < 0)
1186 return ecc_bitflips;
1187
1188 bitflips_threshold -= ecc_bitflips;
1189
1190 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1191 bitflips_threshold);
1192 if (extraoob_bitflips < 0)
1193 return extraoob_bitflips;
1194
1195 if (data_bitflips)
1196 memset(data, 0xff, datalen);
1197
1198 if (ecc_bitflips)
1199 memset(ecc, 0xff, ecclen);
1200
1201 if (extraoob_bitflips)
1202 memset(extraoob, 0xff, extraooblen);
1203
1204 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1205 }
1206 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1207
1208 /**
1209 * nand_read_page_raw - [INTERN] read raw page data without ecc
1210 * @mtd: mtd info structure
1211 * @chip: nand chip info structure
1212 * @buf: buffer to store read data
1213 * @oob_required: caller requires OOB data read to chip->oob_poi
1214 * @page: page number to read
1215 *
1216 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1217 */
1218 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1219 uint8_t *buf, int oob_required, int page)
1220 {
1221 chip->read_buf(mtd, buf, mtd->writesize);
1222 if (oob_required)
1223 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1224 return 0;
1225 }
1226
1227 /**
1228 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1229 * @mtd: mtd info structure
1230 * @chip: nand chip info structure
1231 * @buf: buffer to store read data
1232 * @oob_required: caller requires OOB data read to chip->oob_poi
1233 * @page: page number to read
1234 *
1235 * We need a special oob layout and handling even when OOB isn't used.
1236 */
1237 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1238 struct nand_chip *chip, uint8_t *buf,
1239 int oob_required, int page)
1240 {
1241 int eccsize = chip->ecc.size;
1242 int eccbytes = chip->ecc.bytes;
1243 uint8_t *oob = chip->oob_poi;
1244 int steps, size;
1245
1246 for (steps = chip->ecc.steps; steps > 0; steps--) {
1247 chip->read_buf(mtd, buf, eccsize);
1248 buf += eccsize;
1249
1250 if (chip->ecc.prepad) {
1251 chip->read_buf(mtd, oob, chip->ecc.prepad);
1252 oob += chip->ecc.prepad;
1253 }
1254
1255 chip->read_buf(mtd, oob, eccbytes);
1256 oob += eccbytes;
1257
1258 if (chip->ecc.postpad) {
1259 chip->read_buf(mtd, oob, chip->ecc.postpad);
1260 oob += chip->ecc.postpad;
1261 }
1262 }
1263
1264 size = mtd->oobsize - (oob - chip->oob_poi);
1265 if (size)
1266 chip->read_buf(mtd, oob, size);
1267
1268 return 0;
1269 }
1270
1271 /**
1272 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1273 * @mtd: mtd info structure
1274 * @chip: nand chip info structure
1275 * @buf: buffer to store read data
1276 * @oob_required: caller requires OOB data read to chip->oob_poi
1277 * @page: page number to read
1278 */
1279 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1280 uint8_t *buf, int oob_required, int page)
1281 {
1282 int i, eccsize = chip->ecc.size;
1283 int eccbytes = chip->ecc.bytes;
1284 int eccsteps = chip->ecc.steps;
1285 uint8_t *p = buf;
1286 uint8_t *ecc_calc = chip->buffers->ecccalc;
1287 uint8_t *ecc_code = chip->buffers->ecccode;
1288 uint32_t *eccpos = chip->ecc.layout->eccpos;
1289 unsigned int max_bitflips = 0;
1290
1291 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1292
1293 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1294 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1295
1296 for (i = 0; i < chip->ecc.total; i++)
1297 ecc_code[i] = chip->oob_poi[eccpos[i]];
1298
1299 eccsteps = chip->ecc.steps;
1300 p = buf;
1301
1302 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1303 int stat;
1304
1305 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1306 if (stat < 0) {
1307 mtd->ecc_stats.failed++;
1308 } else {
1309 mtd->ecc_stats.corrected += stat;
1310 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1311 }
1312 }
1313 return max_bitflips;
1314 }
1315
1316 /**
1317 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1318 * @mtd: mtd info structure
1319 * @chip: nand chip info structure
1320 * @data_offs: offset of requested data within the page
1321 * @readlen: data length
1322 * @bufpoi: buffer to store read data
1323 * @page: page number to read
1324 */
1325 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1326 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1327 int page)
1328 {
1329 int start_step, end_step, num_steps;
1330 uint32_t *eccpos = chip->ecc.layout->eccpos;
1331 uint8_t *p;
1332 int data_col_addr, i, gaps = 0;
1333 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1334 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1335 int index;
1336 unsigned int max_bitflips = 0;
1337
1338 /* Column address within the page aligned to ECC size (256bytes) */
1339 start_step = data_offs / chip->ecc.size;
1340 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1341 num_steps = end_step - start_step + 1;
1342 index = start_step * chip->ecc.bytes;
1343
1344 /* Data size aligned to ECC ecc.size */
1345 datafrag_len = num_steps * chip->ecc.size;
1346 eccfrag_len = num_steps * chip->ecc.bytes;
1347
1348 data_col_addr = start_step * chip->ecc.size;
1349 /* If we read not a page aligned data */
1350 if (data_col_addr != 0)
1351 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1352
1353 p = bufpoi + data_col_addr;
1354 chip->read_buf(mtd, p, datafrag_len);
1355
1356 /* Calculate ECC */
1357 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1358 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1359
1360 /*
1361 * The performance is faster if we position offsets according to
1362 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1363 */
1364 for (i = 0; i < eccfrag_len - 1; i++) {
1365 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1366 gaps = 1;
1367 break;
1368 }
1369 }
1370 if (gaps) {
1371 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1372 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1373 } else {
1374 /*
1375 * Send the command to read the particular ECC bytes take care
1376 * about buswidth alignment in read_buf.
1377 */
1378 aligned_pos = eccpos[index] & ~(busw - 1);
1379 aligned_len = eccfrag_len;
1380 if (eccpos[index] & (busw - 1))
1381 aligned_len++;
1382 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1383 aligned_len++;
1384
1385 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1386 mtd->writesize + aligned_pos, -1);
1387 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1388 }
1389
1390 for (i = 0; i < eccfrag_len; i++)
1391 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1392
1393 p = bufpoi + data_col_addr;
1394 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1395 int stat;
1396
1397 stat = chip->ecc.correct(mtd, p,
1398 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1399 if (stat == -EBADMSG &&
1400 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1401 /* check for empty pages with bitflips */
1402 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1403 &chip->buffers->ecccode[i],
1404 chip->ecc.bytes,
1405 NULL, 0,
1406 chip->ecc.strength);
1407 }
1408
1409 if (stat < 0) {
1410 mtd->ecc_stats.failed++;
1411 } else {
1412 mtd->ecc_stats.corrected += stat;
1413 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1414 }
1415 }
1416 return max_bitflips;
1417 }
1418
1419 /**
1420 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1421 * @mtd: mtd info structure
1422 * @chip: nand chip info structure
1423 * @buf: buffer to store read data
1424 * @oob_required: caller requires OOB data read to chip->oob_poi
1425 * @page: page number to read
1426 *
1427 * Not for syndrome calculating ECC controllers which need a special oob layout.
1428 */
1429 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1430 uint8_t *buf, int oob_required, int page)
1431 {
1432 int i, eccsize = chip->ecc.size;
1433 int eccbytes = chip->ecc.bytes;
1434 int eccsteps = chip->ecc.steps;
1435 uint8_t *p = buf;
1436 uint8_t *ecc_calc = chip->buffers->ecccalc;
1437 uint8_t *ecc_code = chip->buffers->ecccode;
1438 uint32_t *eccpos = chip->ecc.layout->eccpos;
1439 unsigned int max_bitflips = 0;
1440
1441 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1442 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1443 chip->read_buf(mtd, p, eccsize);
1444 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1445 }
1446 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1447
1448 for (i = 0; i < chip->ecc.total; i++)
1449 ecc_code[i] = chip->oob_poi[eccpos[i]];
1450
1451 eccsteps = chip->ecc.steps;
1452 p = buf;
1453
1454 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455 int stat;
1456
1457 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1458 if (stat == -EBADMSG &&
1459 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1460 /* check for empty pages with bitflips */
1461 stat = nand_check_erased_ecc_chunk(p, eccsize,
1462 &ecc_code[i], eccbytes,
1463 NULL, 0,
1464 chip->ecc.strength);
1465 }
1466
1467 if (stat < 0) {
1468 mtd->ecc_stats.failed++;
1469 } else {
1470 mtd->ecc_stats.corrected += stat;
1471 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1472 }
1473 }
1474 return max_bitflips;
1475 }
1476
1477 /**
1478 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1479 * @mtd: mtd info structure
1480 * @chip: nand chip info structure
1481 * @buf: buffer to store read data
1482 * @oob_required: caller requires OOB data read to chip->oob_poi
1483 * @page: page number to read
1484 *
1485 * Hardware ECC for large page chips, require OOB to be read first. For this
1486 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1487 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1488 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1489 * the data area, by overwriting the NAND manufacturer bad block markings.
1490 */
1491 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1492 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1493 {
1494 int i, eccsize = chip->ecc.size;
1495 int eccbytes = chip->ecc.bytes;
1496 int eccsteps = chip->ecc.steps;
1497 uint8_t *p = buf;
1498 uint8_t *ecc_code = chip->buffers->ecccode;
1499 uint32_t *eccpos = chip->ecc.layout->eccpos;
1500 uint8_t *ecc_calc = chip->buffers->ecccalc;
1501 unsigned int max_bitflips = 0;
1502
1503 /* Read the OOB area first */
1504 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1505 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1506 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1507
1508 for (i = 0; i < chip->ecc.total; i++)
1509 ecc_code[i] = chip->oob_poi[eccpos[i]];
1510
1511 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1512 int stat;
1513
1514 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1515 chip->read_buf(mtd, p, eccsize);
1516 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1517
1518 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1519 if (stat == -EBADMSG &&
1520 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1521 /* check for empty pages with bitflips */
1522 stat = nand_check_erased_ecc_chunk(p, eccsize,
1523 &ecc_code[i], eccbytes,
1524 NULL, 0,
1525 chip->ecc.strength);
1526 }
1527
1528 if (stat < 0) {
1529 mtd->ecc_stats.failed++;
1530 } else {
1531 mtd->ecc_stats.corrected += stat;
1532 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1533 }
1534 }
1535 return max_bitflips;
1536 }
1537
1538 /**
1539 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1540 * @mtd: mtd info structure
1541 * @chip: nand chip info structure
1542 * @buf: buffer to store read data
1543 * @oob_required: caller requires OOB data read to chip->oob_poi
1544 * @page: page number to read
1545 *
1546 * The hw generator calculates the error syndrome automatically. Therefore we
1547 * need a special oob layout and handling.
1548 */
1549 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1550 uint8_t *buf, int oob_required, int page)
1551 {
1552 int i, eccsize = chip->ecc.size;
1553 int eccbytes = chip->ecc.bytes;
1554 int eccsteps = chip->ecc.steps;
1555 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1556 uint8_t *p = buf;
1557 uint8_t *oob = chip->oob_poi;
1558 unsigned int max_bitflips = 0;
1559
1560 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1561 int stat;
1562
1563 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1564 chip->read_buf(mtd, p, eccsize);
1565
1566 if (chip->ecc.prepad) {
1567 chip->read_buf(mtd, oob, chip->ecc.prepad);
1568 oob += chip->ecc.prepad;
1569 }
1570
1571 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1572 chip->read_buf(mtd, oob, eccbytes);
1573 stat = chip->ecc.correct(mtd, p, oob, NULL);
1574
1575 oob += eccbytes;
1576
1577 if (chip->ecc.postpad) {
1578 chip->read_buf(mtd, oob, chip->ecc.postpad);
1579 oob += chip->ecc.postpad;
1580 }
1581
1582 if (stat == -EBADMSG &&
1583 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1584 /* check for empty pages with bitflips */
1585 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1586 oob - eccpadbytes,
1587 eccpadbytes,
1588 NULL, 0,
1589 chip->ecc.strength);
1590 }
1591
1592 if (stat < 0) {
1593 mtd->ecc_stats.failed++;
1594 } else {
1595 mtd->ecc_stats.corrected += stat;
1596 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1597 }
1598 }
1599
1600 /* Calculate remaining oob bytes */
1601 i = mtd->oobsize - (oob - chip->oob_poi);
1602 if (i)
1603 chip->read_buf(mtd, oob, i);
1604
1605 return max_bitflips;
1606 }
1607
1608 /**
1609 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1610 * @chip: nand chip structure
1611 * @oob: oob destination address
1612 * @ops: oob ops structure
1613 * @len: size of oob to transfer
1614 */
1615 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1616 struct mtd_oob_ops *ops, size_t len)
1617 {
1618 switch (ops->mode) {
1619
1620 case MTD_OPS_PLACE_OOB:
1621 case MTD_OPS_RAW:
1622 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1623 return oob + len;
1624
1625 case MTD_OPS_AUTO_OOB: {
1626 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1627 uint32_t boffs = 0, roffs = ops->ooboffs;
1628 size_t bytes = 0;
1629
1630 for (; free->length && len; free++, len -= bytes) {
1631 /* Read request not from offset 0? */
1632 if (unlikely(roffs)) {
1633 if (roffs >= free->length) {
1634 roffs -= free->length;
1635 continue;
1636 }
1637 boffs = free->offset + roffs;
1638 bytes = min_t(size_t, len,
1639 (free->length - roffs));
1640 roffs = 0;
1641 } else {
1642 bytes = min_t(size_t, len, free->length);
1643 boffs = free->offset;
1644 }
1645 memcpy(oob, chip->oob_poi + boffs, bytes);
1646 oob += bytes;
1647 }
1648 return oob;
1649 }
1650 default:
1651 BUG();
1652 }
1653 return NULL;
1654 }
1655
1656 /**
1657 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1658 * @mtd: MTD device structure
1659 * @retry_mode: the retry mode to use
1660 *
1661 * Some vendors supply a special command to shift the Vt threshold, to be used
1662 * when there are too many bitflips in a page (i.e., ECC error). After setting
1663 * a new threshold, the host should retry reading the page.
1664 */
1665 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1666 {
1667 struct nand_chip *chip = mtd_to_nand(mtd);
1668
1669 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1670
1671 if (retry_mode >= chip->read_retries)
1672 return -EINVAL;
1673
1674 if (!chip->setup_read_retry)
1675 return -EOPNOTSUPP;
1676
1677 return chip->setup_read_retry(mtd, retry_mode);
1678 }
1679
1680 /**
1681 * nand_do_read_ops - [INTERN] Read data with ECC
1682 * @mtd: MTD device structure
1683 * @from: offset to read from
1684 * @ops: oob ops structure
1685 *
1686 * Internal function. Called with chip held.
1687 */
1688 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1689 struct mtd_oob_ops *ops)
1690 {
1691 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1692 struct nand_chip *chip = mtd_to_nand(mtd);
1693 int ret = 0;
1694 uint32_t readlen = ops->len;
1695 uint32_t oobreadlen = ops->ooblen;
1696 uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1697
1698 uint8_t *bufpoi, *oob, *buf;
1699 int use_bufpoi;
1700 unsigned int max_bitflips = 0;
1701 int retry_mode = 0;
1702 bool ecc_fail = false;
1703
1704 chipnr = (int)(from >> chip->chip_shift);
1705 chip->select_chip(mtd, chipnr);
1706
1707 realpage = (int)(from >> chip->page_shift);
1708 page = realpage & chip->pagemask;
1709
1710 col = (int)(from & (mtd->writesize - 1));
1711
1712 buf = ops->datbuf;
1713 oob = ops->oobbuf;
1714 oob_required = oob ? 1 : 0;
1715
1716 while (1) {
1717 unsigned int ecc_failures = mtd->ecc_stats.failed;
1718
1719 bytes = min(mtd->writesize - col, readlen);
1720 aligned = (bytes == mtd->writesize);
1721
1722 if (!aligned)
1723 use_bufpoi = 1;
1724 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1725 use_bufpoi = !virt_addr_valid(buf);
1726 else
1727 use_bufpoi = 0;
1728
1729 /* Is the current page in the buffer? */
1730 if (realpage != chip->pagebuf || oob) {
1731 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1732
1733 if (use_bufpoi && aligned)
1734 pr_debug("%s: using read bounce buffer for buf@%p\n",
1735 __func__, buf);
1736
1737 read_retry:
1738 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1739
1740 /*
1741 * Now read the page into the buffer. Absent an error,
1742 * the read methods return max bitflips per ecc step.
1743 */
1744 if (unlikely(ops->mode == MTD_OPS_RAW))
1745 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1746 oob_required,
1747 page);
1748 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1749 !oob)
1750 ret = chip->ecc.read_subpage(mtd, chip,
1751 col, bytes, bufpoi,
1752 page);
1753 else
1754 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1755 oob_required, page);
1756 if (ret < 0) {
1757 if (use_bufpoi)
1758 /* Invalidate page cache */
1759 chip->pagebuf = -1;
1760 break;
1761 }
1762
1763 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1764
1765 /* Transfer not aligned data */
1766 if (use_bufpoi) {
1767 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1768 !(mtd->ecc_stats.failed - ecc_failures) &&
1769 (ops->mode != MTD_OPS_RAW)) {
1770 chip->pagebuf = realpage;
1771 chip->pagebuf_bitflips = ret;
1772 } else {
1773 /* Invalidate page cache */
1774 chip->pagebuf = -1;
1775 }
1776 memcpy(buf, chip->buffers->databuf + col, bytes);
1777 }
1778
1779 if (unlikely(oob)) {
1780 int toread = min(oobreadlen, max_oobsize);
1781
1782 if (toread) {
1783 oob = nand_transfer_oob(chip,
1784 oob, ops, toread);
1785 oobreadlen -= toread;
1786 }
1787 }
1788
1789 if (chip->options & NAND_NEED_READRDY) {
1790 /* Apply delay or wait for ready/busy pin */
1791 if (!chip->dev_ready)
1792 udelay(chip->chip_delay);
1793 else
1794 nand_wait_ready(mtd);
1795 }
1796
1797 if (mtd->ecc_stats.failed - ecc_failures) {
1798 if (retry_mode + 1 < chip->read_retries) {
1799 retry_mode++;
1800 ret = nand_setup_read_retry(mtd,
1801 retry_mode);
1802 if (ret < 0)
1803 break;
1804
1805 /* Reset failures; retry */
1806 mtd->ecc_stats.failed = ecc_failures;
1807 goto read_retry;
1808 } else {
1809 /* No more retry modes; real failure */
1810 ecc_fail = true;
1811 }
1812 }
1813
1814 buf += bytes;
1815 } else {
1816 memcpy(buf, chip->buffers->databuf + col, bytes);
1817 buf += bytes;
1818 max_bitflips = max_t(unsigned int, max_bitflips,
1819 chip->pagebuf_bitflips);
1820 }
1821
1822 readlen -= bytes;
1823
1824 /* Reset to retry mode 0 */
1825 if (retry_mode) {
1826 ret = nand_setup_read_retry(mtd, 0);
1827 if (ret < 0)
1828 break;
1829 retry_mode = 0;
1830 }
1831
1832 if (!readlen)
1833 break;
1834
1835 /* For subsequent reads align to page boundary */
1836 col = 0;
1837 /* Increment page address */
1838 realpage++;
1839
1840 page = realpage & chip->pagemask;
1841 /* Check, if we cross a chip boundary */
1842 if (!page) {
1843 chipnr++;
1844 chip->select_chip(mtd, -1);
1845 chip->select_chip(mtd, chipnr);
1846 }
1847 }
1848 chip->select_chip(mtd, -1);
1849
1850 ops->retlen = ops->len - (size_t) readlen;
1851 if (oob)
1852 ops->oobretlen = ops->ooblen - oobreadlen;
1853
1854 if (ret < 0)
1855 return ret;
1856
1857 if (ecc_fail)
1858 return -EBADMSG;
1859
1860 return max_bitflips;
1861 }
1862
1863 /**
1864 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1865 * @mtd: MTD device structure
1866 * @from: offset to read from
1867 * @len: number of bytes to read
1868 * @retlen: pointer to variable to store the number of read bytes
1869 * @buf: the databuffer to put data
1870 *
1871 * Get hold of the chip and call nand_do_read.
1872 */
1873 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1874 size_t *retlen, uint8_t *buf)
1875 {
1876 struct mtd_oob_ops ops;
1877 int ret;
1878
1879 nand_get_device(mtd, FL_READING);
1880 memset(&ops, 0, sizeof(ops));
1881 ops.len = len;
1882 ops.datbuf = buf;
1883 ops.mode = MTD_OPS_PLACE_OOB;
1884 ret = nand_do_read_ops(mtd, from, &ops);
1885 *retlen = ops.retlen;
1886 nand_release_device(mtd);
1887 return ret;
1888 }
1889
1890 /**
1891 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1892 * @mtd: mtd info structure
1893 * @chip: nand chip info structure
1894 * @page: page number to read
1895 */
1896 int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
1897 {
1898 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1899 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1900 return 0;
1901 }
1902 EXPORT_SYMBOL(nand_read_oob_std);
1903
1904 /**
1905 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1906 * with syndromes
1907 * @mtd: mtd info structure
1908 * @chip: nand chip info structure
1909 * @page: page number to read
1910 */
1911 int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1912 int page)
1913 {
1914 int length = mtd->oobsize;
1915 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1916 int eccsize = chip->ecc.size;
1917 uint8_t *bufpoi = chip->oob_poi;
1918 int i, toread, sndrnd = 0, pos;
1919
1920 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1921 for (i = 0; i < chip->ecc.steps; i++) {
1922 if (sndrnd) {
1923 pos = eccsize + i * (eccsize + chunk);
1924 if (mtd->writesize > 512)
1925 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1926 else
1927 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1928 } else
1929 sndrnd = 1;
1930 toread = min_t(int, length, chunk);
1931 chip->read_buf(mtd, bufpoi, toread);
1932 bufpoi += toread;
1933 length -= toread;
1934 }
1935 if (length > 0)
1936 chip->read_buf(mtd, bufpoi, length);
1937
1938 return 0;
1939 }
1940 EXPORT_SYMBOL(nand_read_oob_syndrome);
1941
1942 /**
1943 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1944 * @mtd: mtd info structure
1945 * @chip: nand chip info structure
1946 * @page: page number to write
1947 */
1948 int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
1949 {
1950 int status = 0;
1951 const uint8_t *buf = chip->oob_poi;
1952 int length = mtd->oobsize;
1953
1954 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1955 chip->write_buf(mtd, buf, length);
1956 /* Send command to program the OOB data */
1957 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1958
1959 status = chip->waitfunc(mtd, chip);
1960
1961 return status & NAND_STATUS_FAIL ? -EIO : 0;
1962 }
1963 EXPORT_SYMBOL(nand_write_oob_std);
1964
1965 /**
1966 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1967 * with syndrome - only for large page flash
1968 * @mtd: mtd info structure
1969 * @chip: nand chip info structure
1970 * @page: page number to write
1971 */
1972 int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1973 int page)
1974 {
1975 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1976 int eccsize = chip->ecc.size, length = mtd->oobsize;
1977 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1978 const uint8_t *bufpoi = chip->oob_poi;
1979
1980 /*
1981 * data-ecc-data-ecc ... ecc-oob
1982 * or
1983 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1984 */
1985 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1986 pos = steps * (eccsize + chunk);
1987 steps = 0;
1988 } else
1989 pos = eccsize;
1990
1991 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1992 for (i = 0; i < steps; i++) {
1993 if (sndcmd) {
1994 if (mtd->writesize <= 512) {
1995 uint32_t fill = 0xFFFFFFFF;
1996
1997 len = eccsize;
1998 while (len > 0) {
1999 int num = min_t(int, len, 4);
2000 chip->write_buf(mtd, (uint8_t *)&fill,
2001 num);
2002 len -= num;
2003 }
2004 } else {
2005 pos = eccsize + i * (eccsize + chunk);
2006 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2007 }
2008 } else
2009 sndcmd = 1;
2010 len = min_t(int, length, chunk);
2011 chip->write_buf(mtd, bufpoi, len);
2012 bufpoi += len;
2013 length -= len;
2014 }
2015 if (length > 0)
2016 chip->write_buf(mtd, bufpoi, length);
2017
2018 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2019 status = chip->waitfunc(mtd, chip);
2020
2021 return status & NAND_STATUS_FAIL ? -EIO : 0;
2022 }
2023 EXPORT_SYMBOL(nand_write_oob_syndrome);
2024
2025 /**
2026 * nand_do_read_oob - [INTERN] NAND read out-of-band
2027 * @mtd: MTD device structure
2028 * @from: offset to read from
2029 * @ops: oob operations description structure
2030 *
2031 * NAND read out-of-band data from the spare area.
2032 */
2033 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2034 struct mtd_oob_ops *ops)
2035 {
2036 int page, realpage, chipnr;
2037 struct nand_chip *chip = mtd_to_nand(mtd);
2038 struct mtd_ecc_stats stats;
2039 int readlen = ops->ooblen;
2040 int len;
2041 uint8_t *buf = ops->oobbuf;
2042 int ret = 0;
2043
2044 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2045 __func__, (unsigned long long)from, readlen);
2046
2047 stats = mtd->ecc_stats;
2048
2049 len = mtd_oobavail(mtd, ops);
2050
2051 if (unlikely(ops->ooboffs >= len)) {
2052 pr_debug("%s: attempt to start read outside oob\n",
2053 __func__);
2054 return -EINVAL;
2055 }
2056
2057 /* Do not allow reads past end of device */
2058 if (unlikely(from >= mtd->size ||
2059 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2060 (from >> chip->page_shift)) * len)) {
2061 pr_debug("%s: attempt to read beyond end of device\n",
2062 __func__);
2063 return -EINVAL;
2064 }
2065
2066 chipnr = (int)(from >> chip->chip_shift);
2067 chip->select_chip(mtd, chipnr);
2068
2069 /* Shift to get page */
2070 realpage = (int)(from >> chip->page_shift);
2071 page = realpage & chip->pagemask;
2072
2073 while (1) {
2074 if (ops->mode == MTD_OPS_RAW)
2075 ret = chip->ecc.read_oob_raw(mtd, chip, page);
2076 else
2077 ret = chip->ecc.read_oob(mtd, chip, page);
2078
2079 if (ret < 0)
2080 break;
2081
2082 len = min(len, readlen);
2083 buf = nand_transfer_oob(chip, buf, ops, len);
2084
2085 if (chip->options & NAND_NEED_READRDY) {
2086 /* Apply delay or wait for ready/busy pin */
2087 if (!chip->dev_ready)
2088 udelay(chip->chip_delay);
2089 else
2090 nand_wait_ready(mtd);
2091 }
2092
2093 readlen -= len;
2094 if (!readlen)
2095 break;
2096
2097 /* Increment page address */
2098 realpage++;
2099
2100 page = realpage & chip->pagemask;
2101 /* Check, if we cross a chip boundary */
2102 if (!page) {
2103 chipnr++;
2104 chip->select_chip(mtd, -1);
2105 chip->select_chip(mtd, chipnr);
2106 }
2107 }
2108 chip->select_chip(mtd, -1);
2109
2110 ops->oobretlen = ops->ooblen - readlen;
2111
2112 if (ret < 0)
2113 return ret;
2114
2115 if (mtd->ecc_stats.failed - stats.failed)
2116 return -EBADMSG;
2117
2118 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2119 }
2120
2121 /**
2122 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2123 * @mtd: MTD device structure
2124 * @from: offset to read from
2125 * @ops: oob operation description structure
2126 *
2127 * NAND read data and/or out-of-band data.
2128 */
2129 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2130 struct mtd_oob_ops *ops)
2131 {
2132 int ret = -ENOTSUPP;
2133
2134 ops->retlen = 0;
2135
2136 /* Do not allow reads past end of device */
2137 if (ops->datbuf && (from + ops->len) > mtd->size) {
2138 pr_debug("%s: attempt to read beyond end of device\n",
2139 __func__);
2140 return -EINVAL;
2141 }
2142
2143 nand_get_device(mtd, FL_READING);
2144
2145 switch (ops->mode) {
2146 case MTD_OPS_PLACE_OOB:
2147 case MTD_OPS_AUTO_OOB:
2148 case MTD_OPS_RAW:
2149 break;
2150
2151 default:
2152 goto out;
2153 }
2154
2155 if (!ops->datbuf)
2156 ret = nand_do_read_oob(mtd, from, ops);
2157 else
2158 ret = nand_do_read_ops(mtd, from, ops);
2159
2160 out:
2161 nand_release_device(mtd);
2162 return ret;
2163 }
2164
2165
2166 /**
2167 * nand_write_page_raw - [INTERN] raw page write function
2168 * @mtd: mtd info structure
2169 * @chip: nand chip info structure
2170 * @buf: data buffer
2171 * @oob_required: must write chip->oob_poi to OOB
2172 * @page: page number to write
2173 *
2174 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2175 */
2176 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2177 const uint8_t *buf, int oob_required, int page)
2178 {
2179 chip->write_buf(mtd, buf, mtd->writesize);
2180 if (oob_required)
2181 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2182
2183 return 0;
2184 }
2185
2186 /**
2187 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2188 * @mtd: mtd info structure
2189 * @chip: nand chip info structure
2190 * @buf: data buffer
2191 * @oob_required: must write chip->oob_poi to OOB
2192 * @page: page number to write
2193 *
2194 * We need a special oob layout and handling even when ECC isn't checked.
2195 */
2196 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2197 struct nand_chip *chip,
2198 const uint8_t *buf, int oob_required,
2199 int page)
2200 {
2201 int eccsize = chip->ecc.size;
2202 int eccbytes = chip->ecc.bytes;
2203 uint8_t *oob = chip->oob_poi;
2204 int steps, size;
2205
2206 for (steps = chip->ecc.steps; steps > 0; steps--) {
2207 chip->write_buf(mtd, buf, eccsize);
2208 buf += eccsize;
2209
2210 if (chip->ecc.prepad) {
2211 chip->write_buf(mtd, oob, chip->ecc.prepad);
2212 oob += chip->ecc.prepad;
2213 }
2214
2215 chip->write_buf(mtd, oob, eccbytes);
2216 oob += eccbytes;
2217
2218 if (chip->ecc.postpad) {
2219 chip->write_buf(mtd, oob, chip->ecc.postpad);
2220 oob += chip->ecc.postpad;
2221 }
2222 }
2223
2224 size = mtd->oobsize - (oob - chip->oob_poi);
2225 if (size)
2226 chip->write_buf(mtd, oob, size);
2227
2228 return 0;
2229 }
2230 /**
2231 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2232 * @mtd: mtd info structure
2233 * @chip: nand chip info structure
2234 * @buf: data buffer
2235 * @oob_required: must write chip->oob_poi to OOB
2236 * @page: page number to write
2237 */
2238 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2239 const uint8_t *buf, int oob_required,
2240 int page)
2241 {
2242 int i, eccsize = chip->ecc.size;
2243 int eccbytes = chip->ecc.bytes;
2244 int eccsteps = chip->ecc.steps;
2245 uint8_t *ecc_calc = chip->buffers->ecccalc;
2246 const uint8_t *p = buf;
2247 uint32_t *eccpos = chip->ecc.layout->eccpos;
2248
2249 /* Software ECC calculation */
2250 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2251 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2252
2253 for (i = 0; i < chip->ecc.total; i++)
2254 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2255
2256 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2257 }
2258
2259 /**
2260 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2261 * @mtd: mtd info structure
2262 * @chip: nand chip info structure
2263 * @buf: data buffer
2264 * @oob_required: must write chip->oob_poi to OOB
2265 * @page: page number to write
2266 */
2267 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2268 const uint8_t *buf, int oob_required,
2269 int page)
2270 {
2271 int i, eccsize = chip->ecc.size;
2272 int eccbytes = chip->ecc.bytes;
2273 int eccsteps = chip->ecc.steps;
2274 uint8_t *ecc_calc = chip->buffers->ecccalc;
2275 const uint8_t *p = buf;
2276 uint32_t *eccpos = chip->ecc.layout->eccpos;
2277
2278 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2279 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2280 chip->write_buf(mtd, p, eccsize);
2281 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2282 }
2283
2284 for (i = 0; i < chip->ecc.total; i++)
2285 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2286
2287 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2288
2289 return 0;
2290 }
2291
2292
2293 /**
2294 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2295 * @mtd: mtd info structure
2296 * @chip: nand chip info structure
2297 * @offset: column address of subpage within the page
2298 * @data_len: data length
2299 * @buf: data buffer
2300 * @oob_required: must write chip->oob_poi to OOB
2301 * @page: page number to write
2302 */
2303 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2304 struct nand_chip *chip, uint32_t offset,
2305 uint32_t data_len, const uint8_t *buf,
2306 int oob_required, int page)
2307 {
2308 uint8_t *oob_buf = chip->oob_poi;
2309 uint8_t *ecc_calc = chip->buffers->ecccalc;
2310 int ecc_size = chip->ecc.size;
2311 int ecc_bytes = chip->ecc.bytes;
2312 int ecc_steps = chip->ecc.steps;
2313 uint32_t *eccpos = chip->ecc.layout->eccpos;
2314 uint32_t start_step = offset / ecc_size;
2315 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2316 int oob_bytes = mtd->oobsize / ecc_steps;
2317 int step, i;
2318
2319 for (step = 0; step < ecc_steps; step++) {
2320 /* configure controller for WRITE access */
2321 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2322
2323 /* write data (untouched subpages already masked by 0xFF) */
2324 chip->write_buf(mtd, buf, ecc_size);
2325
2326 /* mask ECC of un-touched subpages by padding 0xFF */
2327 if ((step < start_step) || (step > end_step))
2328 memset(ecc_calc, 0xff, ecc_bytes);
2329 else
2330 chip->ecc.calculate(mtd, buf, ecc_calc);
2331
2332 /* mask OOB of un-touched subpages by padding 0xFF */
2333 /* if oob_required, preserve OOB metadata of written subpage */
2334 if (!oob_required || (step < start_step) || (step > end_step))
2335 memset(oob_buf, 0xff, oob_bytes);
2336
2337 buf += ecc_size;
2338 ecc_calc += ecc_bytes;
2339 oob_buf += oob_bytes;
2340 }
2341
2342 /* copy calculated ECC for whole page to chip->buffer->oob */
2343 /* this include masked-value(0xFF) for unwritten subpages */
2344 ecc_calc = chip->buffers->ecccalc;
2345 for (i = 0; i < chip->ecc.total; i++)
2346 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2347
2348 /* write OOB buffer to NAND device */
2349 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2350
2351 return 0;
2352 }
2353
2354
2355 /**
2356 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2357 * @mtd: mtd info structure
2358 * @chip: nand chip info structure
2359 * @buf: data buffer
2360 * @oob_required: must write chip->oob_poi to OOB
2361 * @page: page number to write
2362 *
2363 * The hw generator calculates the error syndrome automatically. Therefore we
2364 * need a special oob layout and handling.
2365 */
2366 static int nand_write_page_syndrome(struct mtd_info *mtd,
2367 struct nand_chip *chip,
2368 const uint8_t *buf, int oob_required,
2369 int page)
2370 {
2371 int i, eccsize = chip->ecc.size;
2372 int eccbytes = chip->ecc.bytes;
2373 int eccsteps = chip->ecc.steps;
2374 const uint8_t *p = buf;
2375 uint8_t *oob = chip->oob_poi;
2376
2377 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2378
2379 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2380 chip->write_buf(mtd, p, eccsize);
2381
2382 if (chip->ecc.prepad) {
2383 chip->write_buf(mtd, oob, chip->ecc.prepad);
2384 oob += chip->ecc.prepad;
2385 }
2386
2387 chip->ecc.calculate(mtd, p, oob);
2388 chip->write_buf(mtd, oob, eccbytes);
2389 oob += eccbytes;
2390
2391 if (chip->ecc.postpad) {
2392 chip->write_buf(mtd, oob, chip->ecc.postpad);
2393 oob += chip->ecc.postpad;
2394 }
2395 }
2396
2397 /* Calculate remaining oob bytes */
2398 i = mtd->oobsize - (oob - chip->oob_poi);
2399 if (i)
2400 chip->write_buf(mtd, oob, i);
2401
2402 return 0;
2403 }
2404
2405 /**
2406 * nand_write_page - [REPLACEABLE] write one page
2407 * @mtd: MTD device structure
2408 * @chip: NAND chip descriptor
2409 * @offset: address offset within the page
2410 * @data_len: length of actual data to be written
2411 * @buf: the data to write
2412 * @oob_required: must write chip->oob_poi to OOB
2413 * @page: page number to write
2414 * @cached: cached programming
2415 * @raw: use _raw version of write_page
2416 */
2417 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2418 uint32_t offset, int data_len, const uint8_t *buf,
2419 int oob_required, int page, int cached, int raw)
2420 {
2421 int status, subpage;
2422
2423 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2424 chip->ecc.write_subpage)
2425 subpage = offset || (data_len < mtd->writesize);
2426 else
2427 subpage = 0;
2428
2429 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2430
2431 if (unlikely(raw))
2432 status = chip->ecc.write_page_raw(mtd, chip, buf,
2433 oob_required, page);
2434 else if (subpage)
2435 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2436 buf, oob_required, page);
2437 else
2438 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2439 page);
2440
2441 if (status < 0)
2442 return status;
2443
2444 /*
2445 * Cached progamming disabled for now. Not sure if it's worth the
2446 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2447 */
2448 cached = 0;
2449
2450 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2451
2452 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2453 status = chip->waitfunc(mtd, chip);
2454 /*
2455 * See if operation failed and additional status checks are
2456 * available.
2457 */
2458 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2459 status = chip->errstat(mtd, chip, FL_WRITING, status,
2460 page);
2461
2462 if (status & NAND_STATUS_FAIL)
2463 return -EIO;
2464 } else {
2465 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2466 status = chip->waitfunc(mtd, chip);
2467 }
2468
2469 return 0;
2470 }
2471
2472 /**
2473 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2474 * @mtd: MTD device structure
2475 * @oob: oob data buffer
2476 * @len: oob data write length
2477 * @ops: oob ops structure
2478 */
2479 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2480 struct mtd_oob_ops *ops)
2481 {
2482 struct nand_chip *chip = mtd_to_nand(mtd);
2483
2484 /*
2485 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2486 * data from a previous OOB read.
2487 */
2488 memset(chip->oob_poi, 0xff, mtd->oobsize);
2489
2490 switch (ops->mode) {
2491
2492 case MTD_OPS_PLACE_OOB:
2493 case MTD_OPS_RAW:
2494 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2495 return oob + len;
2496
2497 case MTD_OPS_AUTO_OOB: {
2498 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2499 uint32_t boffs = 0, woffs = ops->ooboffs;
2500 size_t bytes = 0;
2501
2502 for (; free->length && len; free++, len -= bytes) {
2503 /* Write request not from offset 0? */
2504 if (unlikely(woffs)) {
2505 if (woffs >= free->length) {
2506 woffs -= free->length;
2507 continue;
2508 }
2509 boffs = free->offset + woffs;
2510 bytes = min_t(size_t, len,
2511 (free->length - woffs));
2512 woffs = 0;
2513 } else {
2514 bytes = min_t(size_t, len, free->length);
2515 boffs = free->offset;
2516 }
2517 memcpy(chip->oob_poi + boffs, oob, bytes);
2518 oob += bytes;
2519 }
2520 return oob;
2521 }
2522 default:
2523 BUG();
2524 }
2525 return NULL;
2526 }
2527
2528 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2529
2530 /**
2531 * nand_do_write_ops - [INTERN] NAND write with ECC
2532 * @mtd: MTD device structure
2533 * @to: offset to write to
2534 * @ops: oob operations description structure
2535 *
2536 * NAND write with ECC.
2537 */
2538 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2539 struct mtd_oob_ops *ops)
2540 {
2541 int chipnr, realpage, page, blockmask, column;
2542 struct nand_chip *chip = mtd_to_nand(mtd);
2543 uint32_t writelen = ops->len;
2544
2545 uint32_t oobwritelen = ops->ooblen;
2546 uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2547
2548 uint8_t *oob = ops->oobbuf;
2549 uint8_t *buf = ops->datbuf;
2550 int ret;
2551 int oob_required = oob ? 1 : 0;
2552
2553 ops->retlen = 0;
2554 if (!writelen)
2555 return 0;
2556
2557 /* Reject writes, which are not page aligned */
2558 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2559 pr_notice("%s: attempt to write non page aligned data\n",
2560 __func__);
2561 return -EINVAL;
2562 }
2563
2564 column = to & (mtd->writesize - 1);
2565
2566 chipnr = (int)(to >> chip->chip_shift);
2567 chip->select_chip(mtd, chipnr);
2568
2569 /* Check, if it is write protected */
2570 if (nand_check_wp(mtd)) {
2571 ret = -EIO;
2572 goto err_out;
2573 }
2574
2575 realpage = (int)(to >> chip->page_shift);
2576 page = realpage & chip->pagemask;
2577 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2578
2579 /* Invalidate the page cache, when we write to the cached page */
2580 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2581 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2582 chip->pagebuf = -1;
2583
2584 /* Don't allow multipage oob writes with offset */
2585 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2586 ret = -EINVAL;
2587 goto err_out;
2588 }
2589
2590 while (1) {
2591 int bytes = mtd->writesize;
2592 int cached = writelen > bytes && page != blockmask;
2593 uint8_t *wbuf = buf;
2594 int use_bufpoi;
2595 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2596
2597 if (part_pagewr)
2598 use_bufpoi = 1;
2599 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2600 use_bufpoi = !virt_addr_valid(buf);
2601 else
2602 use_bufpoi = 0;
2603
2604 /* Partial page write?, or need to use bounce buffer */
2605 if (use_bufpoi) {
2606 pr_debug("%s: using write bounce buffer for buf@%p\n",
2607 __func__, buf);
2608 cached = 0;
2609 if (part_pagewr)
2610 bytes = min_t(int, bytes - column, writelen);
2611 chip->pagebuf = -1;
2612 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2613 memcpy(&chip->buffers->databuf[column], buf, bytes);
2614 wbuf = chip->buffers->databuf;
2615 }
2616
2617 if (unlikely(oob)) {
2618 size_t len = min(oobwritelen, oobmaxlen);
2619 oob = nand_fill_oob(mtd, oob, len, ops);
2620 oobwritelen -= len;
2621 } else {
2622 /* We still need to erase leftover OOB data */
2623 memset(chip->oob_poi, 0xff, mtd->oobsize);
2624 }
2625 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2626 oob_required, page, cached,
2627 (ops->mode == MTD_OPS_RAW));
2628 if (ret)
2629 break;
2630
2631 writelen -= bytes;
2632 if (!writelen)
2633 break;
2634
2635 column = 0;
2636 buf += bytes;
2637 realpage++;
2638
2639 page = realpage & chip->pagemask;
2640 /* Check, if we cross a chip boundary */
2641 if (!page) {
2642 chipnr++;
2643 chip->select_chip(mtd, -1);
2644 chip->select_chip(mtd, chipnr);
2645 }
2646 }
2647
2648 ops->retlen = ops->len - writelen;
2649 if (unlikely(oob))
2650 ops->oobretlen = ops->ooblen;
2651
2652 err_out:
2653 chip->select_chip(mtd, -1);
2654 return ret;
2655 }
2656
2657 /**
2658 * panic_nand_write - [MTD Interface] NAND write with ECC
2659 * @mtd: MTD device structure
2660 * @to: offset to write to
2661 * @len: number of bytes to write
2662 * @retlen: pointer to variable to store the number of written bytes
2663 * @buf: the data to write
2664 *
2665 * NAND write with ECC. Used when performing writes in interrupt context, this
2666 * may for example be called by mtdoops when writing an oops while in panic.
2667 */
2668 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2669 size_t *retlen, const uint8_t *buf)
2670 {
2671 struct nand_chip *chip = mtd_to_nand(mtd);
2672 struct mtd_oob_ops ops;
2673 int ret;
2674
2675 /* Wait for the device to get ready */
2676 panic_nand_wait(mtd, chip, 400);
2677
2678 /* Grab the device */
2679 panic_nand_get_device(chip, mtd, FL_WRITING);
2680
2681 memset(&ops, 0, sizeof(ops));
2682 ops.len = len;
2683 ops.datbuf = (uint8_t *)buf;
2684 ops.mode = MTD_OPS_PLACE_OOB;
2685
2686 ret = nand_do_write_ops(mtd, to, &ops);
2687
2688 *retlen = ops.retlen;
2689 return ret;
2690 }
2691
2692 /**
2693 * nand_write - [MTD Interface] NAND write with ECC
2694 * @mtd: MTD device structure
2695 * @to: offset to write to
2696 * @len: number of bytes to write
2697 * @retlen: pointer to variable to store the number of written bytes
2698 * @buf: the data to write
2699 *
2700 * NAND write with ECC.
2701 */
2702 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2703 size_t *retlen, const uint8_t *buf)
2704 {
2705 struct mtd_oob_ops ops;
2706 int ret;
2707
2708 nand_get_device(mtd, FL_WRITING);
2709 memset(&ops, 0, sizeof(ops));
2710 ops.len = len;
2711 ops.datbuf = (uint8_t *)buf;
2712 ops.mode = MTD_OPS_PLACE_OOB;
2713 ret = nand_do_write_ops(mtd, to, &ops);
2714 *retlen = ops.retlen;
2715 nand_release_device(mtd);
2716 return ret;
2717 }
2718
2719 /**
2720 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2721 * @mtd: MTD device structure
2722 * @to: offset to write to
2723 * @ops: oob operation description structure
2724 *
2725 * NAND write out-of-band.
2726 */
2727 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2728 struct mtd_oob_ops *ops)
2729 {
2730 int chipnr, page, status, len;
2731 struct nand_chip *chip = mtd_to_nand(mtd);
2732
2733 pr_debug("%s: to = 0x%08x, len = %i\n",
2734 __func__, (unsigned int)to, (int)ops->ooblen);
2735
2736 len = mtd_oobavail(mtd, ops);
2737
2738 /* Do not allow write past end of page */
2739 if ((ops->ooboffs + ops->ooblen) > len) {
2740 pr_debug("%s: attempt to write past end of page\n",
2741 __func__);
2742 return -EINVAL;
2743 }
2744
2745 if (unlikely(ops->ooboffs >= len)) {
2746 pr_debug("%s: attempt to start write outside oob\n",
2747 __func__);
2748 return -EINVAL;
2749 }
2750
2751 /* Do not allow write past end of device */
2752 if (unlikely(to >= mtd->size ||
2753 ops->ooboffs + ops->ooblen >
2754 ((mtd->size >> chip->page_shift) -
2755 (to >> chip->page_shift)) * len)) {
2756 pr_debug("%s: attempt to write beyond end of device\n",
2757 __func__);
2758 return -EINVAL;
2759 }
2760
2761 chipnr = (int)(to >> chip->chip_shift);
2762 chip->select_chip(mtd, chipnr);
2763
2764 /* Shift to get page */
2765 page = (int)(to >> chip->page_shift);
2766
2767 /*
2768 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2769 * of my DiskOnChip 2000 test units) will clear the whole data page too
2770 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2771 * it in the doc2000 driver in August 1999. dwmw2.
2772 */
2773 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2774
2775 /* Check, if it is write protected */
2776 if (nand_check_wp(mtd)) {
2777 chip->select_chip(mtd, -1);
2778 return -EROFS;
2779 }
2780
2781 /* Invalidate the page cache, if we write to the cached page */
2782 if (page == chip->pagebuf)
2783 chip->pagebuf = -1;
2784
2785 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2786
2787 if (ops->mode == MTD_OPS_RAW)
2788 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2789 else
2790 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2791
2792 chip->select_chip(mtd, -1);
2793
2794 if (status)
2795 return status;
2796
2797 ops->oobretlen = ops->ooblen;
2798
2799 return 0;
2800 }
2801
2802 /**
2803 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2804 * @mtd: MTD device structure
2805 * @to: offset to write to
2806 * @ops: oob operation description structure
2807 */
2808 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2809 struct mtd_oob_ops *ops)
2810 {
2811 int ret = -ENOTSUPP;
2812
2813 ops->retlen = 0;
2814
2815 /* Do not allow writes past end of device */
2816 if (ops->datbuf && (to + ops->len) > mtd->size) {
2817 pr_debug("%s: attempt to write beyond end of device\n",
2818 __func__);
2819 return -EINVAL;
2820 }
2821
2822 nand_get_device(mtd, FL_WRITING);
2823
2824 switch (ops->mode) {
2825 case MTD_OPS_PLACE_OOB:
2826 case MTD_OPS_AUTO_OOB:
2827 case MTD_OPS_RAW:
2828 break;
2829
2830 default:
2831 goto out;
2832 }
2833
2834 if (!ops->datbuf)
2835 ret = nand_do_write_oob(mtd, to, ops);
2836 else
2837 ret = nand_do_write_ops(mtd, to, ops);
2838
2839 out:
2840 nand_release_device(mtd);
2841 return ret;
2842 }
2843
2844 /**
2845 * single_erase - [GENERIC] NAND standard block erase command function
2846 * @mtd: MTD device structure
2847 * @page: the page address of the block which will be erased
2848 *
2849 * Standard erase command for NAND chips. Returns NAND status.
2850 */
2851 static int single_erase(struct mtd_info *mtd, int page)
2852 {
2853 struct nand_chip *chip = mtd_to_nand(mtd);
2854 /* Send commands to erase a block */
2855 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2856 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2857
2858 return chip->waitfunc(mtd, chip);
2859 }
2860
2861 /**
2862 * nand_erase - [MTD Interface] erase block(s)
2863 * @mtd: MTD device structure
2864 * @instr: erase instruction
2865 *
2866 * Erase one ore more blocks.
2867 */
2868 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2869 {
2870 return nand_erase_nand(mtd, instr, 0);
2871 }
2872
2873 /**
2874 * nand_erase_nand - [INTERN] erase block(s)
2875 * @mtd: MTD device structure
2876 * @instr: erase instruction
2877 * @allowbbt: allow erasing the bbt area
2878 *
2879 * Erase one ore more blocks.
2880 */
2881 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2882 int allowbbt)
2883 {
2884 int page, status, pages_per_block, ret, chipnr;
2885 struct nand_chip *chip = mtd_to_nand(mtd);
2886 loff_t len;
2887
2888 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2889 __func__, (unsigned long long)instr->addr,
2890 (unsigned long long)instr->len);
2891
2892 if (check_offs_len(mtd, instr->addr, instr->len))
2893 return -EINVAL;
2894
2895 /* Grab the lock and see if the device is available */
2896 nand_get_device(mtd, FL_ERASING);
2897
2898 /* Shift to get first page */
2899 page = (int)(instr->addr >> chip->page_shift);
2900 chipnr = (int)(instr->addr >> chip->chip_shift);
2901
2902 /* Calculate pages in each block */
2903 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2904
2905 /* Select the NAND device */
2906 chip->select_chip(mtd, chipnr);
2907
2908 /* Check, if it is write protected */
2909 if (nand_check_wp(mtd)) {
2910 pr_debug("%s: device is write protected!\n",
2911 __func__);
2912 instr->state = MTD_ERASE_FAILED;
2913 goto erase_exit;
2914 }
2915
2916 /* Loop through the pages */
2917 len = instr->len;
2918
2919 instr->state = MTD_ERASING;
2920
2921 while (len) {
2922 /* Check if we have a bad block, we do not erase bad blocks! */
2923 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2924 chip->page_shift, allowbbt)) {
2925 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2926 __func__, page);
2927 instr->state = MTD_ERASE_FAILED;
2928 goto erase_exit;
2929 }
2930
2931 /*
2932 * Invalidate the page cache, if we erase the block which
2933 * contains the current cached page.
2934 */
2935 if (page <= chip->pagebuf && chip->pagebuf <
2936 (page + pages_per_block))
2937 chip->pagebuf = -1;
2938
2939 status = chip->erase(mtd, page & chip->pagemask);
2940
2941 /*
2942 * See if operation failed and additional status checks are
2943 * available
2944 */
2945 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2946 status = chip->errstat(mtd, chip, FL_ERASING,
2947 status, page);
2948
2949 /* See if block erase succeeded */
2950 if (status & NAND_STATUS_FAIL) {
2951 pr_debug("%s: failed erase, page 0x%08x\n",
2952 __func__, page);
2953 instr->state = MTD_ERASE_FAILED;
2954 instr->fail_addr =
2955 ((loff_t)page << chip->page_shift);
2956 goto erase_exit;
2957 }
2958
2959 /* Increment page address and decrement length */
2960 len -= (1ULL << chip->phys_erase_shift);
2961 page += pages_per_block;
2962
2963 /* Check, if we cross a chip boundary */
2964 if (len && !(page & chip->pagemask)) {
2965 chipnr++;
2966 chip->select_chip(mtd, -1);
2967 chip->select_chip(mtd, chipnr);
2968 }
2969 }
2970 instr->state = MTD_ERASE_DONE;
2971
2972 erase_exit:
2973
2974 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2975
2976 /* Deselect and wake up anyone waiting on the device */
2977 chip->select_chip(mtd, -1);
2978 nand_release_device(mtd);
2979
2980 /* Do call back function */
2981 if (!ret)
2982 mtd_erase_callback(instr);
2983
2984 /* Return more or less happy */
2985 return ret;
2986 }
2987
2988 /**
2989 * nand_sync - [MTD Interface] sync
2990 * @mtd: MTD device structure
2991 *
2992 * Sync is actually a wait for chip ready function.
2993 */
2994 static void nand_sync(struct mtd_info *mtd)
2995 {
2996 pr_debug("%s: called\n", __func__);
2997
2998 /* Grab the lock and see if the device is available */
2999 nand_get_device(mtd, FL_SYNCING);
3000 /* Release it and go back */
3001 nand_release_device(mtd);
3002 }
3003
3004 /**
3005 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3006 * @mtd: MTD device structure
3007 * @offs: offset relative to mtd start
3008 */
3009 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3010 {
3011 struct nand_chip *chip = mtd_to_nand(mtd);
3012 int chipnr = (int)(offs >> chip->chip_shift);
3013 int ret;
3014
3015 /* Select the NAND device */
3016 nand_get_device(mtd, FL_READING);
3017 chip->select_chip(mtd, chipnr);
3018
3019 ret = nand_block_checkbad(mtd, offs, 0);
3020
3021 chip->select_chip(mtd, -1);
3022 nand_release_device(mtd);
3023
3024 return ret;
3025 }
3026
3027 /**
3028 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3029 * @mtd: MTD device structure
3030 * @ofs: offset relative to mtd start
3031 */
3032 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3033 {
3034 int ret;
3035
3036 ret = nand_block_isbad(mtd, ofs);
3037 if (ret) {
3038 /* If it was bad already, return success and do nothing */
3039 if (ret > 0)
3040 return 0;
3041 return ret;
3042 }
3043
3044 return nand_block_markbad_lowlevel(mtd, ofs);
3045 }
3046
3047 /**
3048 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3049 * @mtd: MTD device structure
3050 * @chip: nand chip info structure
3051 * @addr: feature address.
3052 * @subfeature_param: the subfeature parameters, a four bytes array.
3053 */
3054 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3055 int addr, uint8_t *subfeature_param)
3056 {
3057 int status;
3058 int i;
3059
3060 if (!chip->onfi_version ||
3061 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3062 & ONFI_OPT_CMD_SET_GET_FEATURES))
3063 return -EINVAL;
3064
3065 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3066 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3067 chip->write_byte(mtd, subfeature_param[i]);
3068
3069 status = chip->waitfunc(mtd, chip);
3070 if (status & NAND_STATUS_FAIL)
3071 return -EIO;
3072 return 0;
3073 }
3074
3075 /**
3076 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3077 * @mtd: MTD device structure
3078 * @chip: nand chip info structure
3079 * @addr: feature address.
3080 * @subfeature_param: the subfeature parameters, a four bytes array.
3081 */
3082 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3083 int addr, uint8_t *subfeature_param)
3084 {
3085 int i;
3086
3087 if (!chip->onfi_version ||
3088 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3089 & ONFI_OPT_CMD_SET_GET_FEATURES))
3090 return -EINVAL;
3091
3092 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3093 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3094 *subfeature_param++ = chip->read_byte(mtd);
3095 return 0;
3096 }
3097
3098 /**
3099 * nand_suspend - [MTD Interface] Suspend the NAND flash
3100 * @mtd: MTD device structure
3101 */
3102 static int nand_suspend(struct mtd_info *mtd)
3103 {
3104 return nand_get_device(mtd, FL_PM_SUSPENDED);
3105 }
3106
3107 /**
3108 * nand_resume - [MTD Interface] Resume the NAND flash
3109 * @mtd: MTD device structure
3110 */
3111 static void nand_resume(struct mtd_info *mtd)
3112 {
3113 struct nand_chip *chip = mtd_to_nand(mtd);
3114
3115 if (chip->state == FL_PM_SUSPENDED)
3116 nand_release_device(mtd);
3117 else
3118 pr_err("%s called for a chip which is not in suspended state\n",
3119 __func__);
3120 }
3121
3122 /**
3123 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3124 * prevent further operations
3125 * @mtd: MTD device structure
3126 */
3127 static void nand_shutdown(struct mtd_info *mtd)
3128 {
3129 nand_get_device(mtd, FL_PM_SUSPENDED);
3130 }
3131
3132 /* Set default functions */
3133 static void nand_set_defaults(struct nand_chip *chip, int busw)
3134 {
3135 /* check for proper chip_delay setup, set 20us if not */
3136 if (!chip->chip_delay)
3137 chip->chip_delay = 20;
3138
3139 /* check, if a user supplied command function given */
3140 if (chip->cmdfunc == NULL)
3141 chip->cmdfunc = nand_command;
3142
3143 /* check, if a user supplied wait function given */
3144 if (chip->waitfunc == NULL)
3145 chip->waitfunc = nand_wait;
3146
3147 if (!chip->select_chip)
3148 chip->select_chip = nand_select_chip;
3149
3150 /* set for ONFI nand */
3151 if (!chip->onfi_set_features)
3152 chip->onfi_set_features = nand_onfi_set_features;
3153 if (!chip->onfi_get_features)
3154 chip->onfi_get_features = nand_onfi_get_features;
3155
3156 /* If called twice, pointers that depend on busw may need to be reset */
3157 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3158 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3159 if (!chip->read_word)
3160 chip->read_word = nand_read_word;
3161 if (!chip->block_bad)
3162 chip->block_bad = nand_block_bad;
3163 if (!chip->block_markbad)
3164 chip->block_markbad = nand_default_block_markbad;
3165 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3166 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3167 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3168 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3169 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3170 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3171 if (!chip->scan_bbt)
3172 chip->scan_bbt = nand_default_bbt;
3173
3174 if (!chip->controller) {
3175 chip->controller = &chip->hwcontrol;
3176 spin_lock_init(&chip->controller->lock);
3177 init_waitqueue_head(&chip->controller->wq);
3178 }
3179
3180 }
3181
3182 /* Sanitize ONFI strings so we can safely print them */
3183 static void sanitize_string(uint8_t *s, size_t len)
3184 {
3185 ssize_t i;
3186
3187 /* Null terminate */
3188 s[len - 1] = 0;
3189
3190 /* Remove non printable chars */
3191 for (i = 0; i < len - 1; i++) {
3192 if (s[i] < ' ' || s[i] > 127)
3193 s[i] = '?';
3194 }
3195
3196 /* Remove trailing spaces */
3197 strim(s);
3198 }
3199
3200 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3201 {
3202 int i;
3203 while (len--) {
3204 crc ^= *p++ << 8;
3205 for (i = 0; i < 8; i++)
3206 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3207 }
3208
3209 return crc;
3210 }
3211
3212 /* Parse the Extended Parameter Page. */
3213 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3214 struct nand_chip *chip, struct nand_onfi_params *p)
3215 {
3216 struct onfi_ext_param_page *ep;
3217 struct onfi_ext_section *s;
3218 struct onfi_ext_ecc_info *ecc;
3219 uint8_t *cursor;
3220 int ret = -EINVAL;
3221 int len;
3222 int i;
3223
3224 len = le16_to_cpu(p->ext_param_page_length) * 16;
3225 ep = kmalloc(len, GFP_KERNEL);
3226 if (!ep)
3227 return -ENOMEM;
3228
3229 /* Send our own NAND_CMD_PARAM. */
3230 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3231
3232 /* Use the Change Read Column command to skip the ONFI param pages. */
3233 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3234 sizeof(*p) * p->num_of_param_pages , -1);
3235
3236 /* Read out the Extended Parameter Page. */
3237 chip->read_buf(mtd, (uint8_t *)ep, len);
3238 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3239 != le16_to_cpu(ep->crc))) {
3240 pr_debug("fail in the CRC.\n");
3241 goto ext_out;
3242 }
3243
3244 /*
3245 * Check the signature.
3246 * Do not strictly follow the ONFI spec, maybe changed in future.
3247 */
3248 if (strncmp(ep->sig, "EPPS", 4)) {
3249 pr_debug("The signature is invalid.\n");
3250 goto ext_out;
3251 }
3252
3253 /* find the ECC section. */
3254 cursor = (uint8_t *)(ep + 1);
3255 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3256 s = ep->sections + i;
3257 if (s->type == ONFI_SECTION_TYPE_2)
3258 break;
3259 cursor += s->length * 16;
3260 }
3261 if (i == ONFI_EXT_SECTION_MAX) {
3262 pr_debug("We can not find the ECC section.\n");
3263 goto ext_out;
3264 }
3265
3266 /* get the info we want. */
3267 ecc = (struct onfi_ext_ecc_info *)cursor;
3268
3269 if (!ecc->codeword_size) {
3270 pr_debug("Invalid codeword size\n");
3271 goto ext_out;
3272 }
3273
3274 chip->ecc_strength_ds = ecc->ecc_bits;
3275 chip->ecc_step_ds = 1 << ecc->codeword_size;
3276 ret = 0;
3277
3278 ext_out:
3279 kfree(ep);
3280 return ret;
3281 }
3282
3283 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3284 {
3285 struct nand_chip *chip = mtd_to_nand(mtd);
3286 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3287
3288 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3289 feature);
3290 }
3291
3292 /*
3293 * Configure chip properties from Micron vendor-specific ONFI table
3294 */
3295 static void nand_onfi_detect_micron(struct nand_chip *chip,
3296 struct nand_onfi_params *p)
3297 {
3298 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3299
3300 if (le16_to_cpu(p->vendor_revision) < 1)
3301 return;
3302
3303 chip->read_retries = micron->read_retry_options;
3304 chip->setup_read_retry = nand_setup_read_retry_micron;
3305 }
3306
3307 /*
3308 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3309 */
3310 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3311 int *busw)
3312 {
3313 struct nand_onfi_params *p = &chip->onfi_params;
3314 int i, j;
3315 int val;
3316
3317 /* Try ONFI for unknown chip or LP */
3318 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3319 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3320 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3321 return 0;
3322
3323 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3324 for (i = 0; i < 3; i++) {
3325 for (j = 0; j < sizeof(*p); j++)
3326 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3327 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3328 le16_to_cpu(p->crc)) {
3329 break;
3330 }
3331 }
3332
3333 if (i == 3) {
3334 pr_err("Could not find valid ONFI parameter page; aborting\n");
3335 return 0;
3336 }
3337
3338 /* Check version */
3339 val = le16_to_cpu(p->revision);
3340 if (val & (1 << 5))
3341 chip->onfi_version = 23;
3342 else if (val & (1 << 4))
3343 chip->onfi_version = 22;
3344 else if (val & (1 << 3))
3345 chip->onfi_version = 21;
3346 else if (val & (1 << 2))
3347 chip->onfi_version = 20;
3348 else if (val & (1 << 1))
3349 chip->onfi_version = 10;
3350
3351 if (!chip->onfi_version) {
3352 pr_info("unsupported ONFI version: %d\n", val);
3353 return 0;
3354 }
3355
3356 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3357 sanitize_string(p->model, sizeof(p->model));
3358 if (!mtd->name)
3359 mtd->name = p->model;
3360
3361 mtd->writesize = le32_to_cpu(p->byte_per_page);
3362
3363 /*
3364 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3365 * (don't ask me who thought of this...). MTD assumes that these
3366 * dimensions will be power-of-2, so just truncate the remaining area.
3367 */
3368 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3369 mtd->erasesize *= mtd->writesize;
3370
3371 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3372
3373 /* See erasesize comment */
3374 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3375 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3376 chip->bits_per_cell = p->bits_per_cell;
3377
3378 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3379 *busw = NAND_BUSWIDTH_16;
3380 else
3381 *busw = 0;
3382
3383 if (p->ecc_bits != 0xff) {
3384 chip->ecc_strength_ds = p->ecc_bits;
3385 chip->ecc_step_ds = 512;
3386 } else if (chip->onfi_version >= 21 &&
3387 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3388
3389 /*
3390 * The nand_flash_detect_ext_param_page() uses the
3391 * Change Read Column command which maybe not supported
3392 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3393 * now. We do not replace user supplied command function.
3394 */
3395 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3396 chip->cmdfunc = nand_command_lp;
3397
3398 /* The Extended Parameter Page is supported since ONFI 2.1. */
3399 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3400 pr_warn("Failed to detect ONFI extended param page\n");
3401 } else {
3402 pr_warn("Could not retrieve ONFI ECC requirements\n");
3403 }
3404
3405 if (p->jedec_id == NAND_MFR_MICRON)
3406 nand_onfi_detect_micron(chip, p);
3407
3408 return 1;
3409 }
3410
3411 /*
3412 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3413 */
3414 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3415 int *busw)
3416 {
3417 struct nand_jedec_params *p = &chip->jedec_params;
3418 struct jedec_ecc_info *ecc;
3419 int val;
3420 int i, j;
3421
3422 /* Try JEDEC for unknown chip or LP */
3423 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3424 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3425 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3426 chip->read_byte(mtd) != 'C')
3427 return 0;
3428
3429 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3430 for (i = 0; i < 3; i++) {
3431 for (j = 0; j < sizeof(*p); j++)
3432 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3433
3434 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3435 le16_to_cpu(p->crc))
3436 break;
3437 }
3438
3439 if (i == 3) {
3440 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3441 return 0;
3442 }
3443
3444 /* Check version */
3445 val = le16_to_cpu(p->revision);
3446 if (val & (1 << 2))
3447 chip->jedec_version = 10;
3448 else if (val & (1 << 1))
3449 chip->jedec_version = 1; /* vendor specific version */
3450
3451 if (!chip->jedec_version) {
3452 pr_info("unsupported JEDEC version: %d\n", val);
3453 return 0;
3454 }
3455
3456 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3457 sanitize_string(p->model, sizeof(p->model));
3458 if (!mtd->name)
3459 mtd->name = p->model;
3460
3461 mtd->writesize = le32_to_cpu(p->byte_per_page);
3462
3463 /* Please reference to the comment for nand_flash_detect_onfi. */
3464 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3465 mtd->erasesize *= mtd->writesize;
3466
3467 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3468
3469 /* Please reference to the comment for nand_flash_detect_onfi. */
3470 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3471 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3472 chip->bits_per_cell = p->bits_per_cell;
3473
3474 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3475 *busw = NAND_BUSWIDTH_16;
3476 else
3477 *busw = 0;
3478
3479 /* ECC info */
3480 ecc = &p->ecc_info[0];
3481
3482 if (ecc->codeword_size >= 9) {
3483 chip->ecc_strength_ds = ecc->ecc_bits;
3484 chip->ecc_step_ds = 1 << ecc->codeword_size;
3485 } else {
3486 pr_warn("Invalid codeword size\n");
3487 }
3488
3489 return 1;
3490 }
3491
3492 /*
3493 * nand_id_has_period - Check if an ID string has a given wraparound period
3494 * @id_data: the ID string
3495 * @arrlen: the length of the @id_data array
3496 * @period: the period of repitition
3497 *
3498 * Check if an ID string is repeated within a given sequence of bytes at
3499 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3500 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3501 * if the repetition has a period of @period; otherwise, returns zero.
3502 */
3503 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3504 {
3505 int i, j;
3506 for (i = 0; i < period; i++)
3507 for (j = i + period; j < arrlen; j += period)
3508 if (id_data[i] != id_data[j])
3509 return 0;
3510 return 1;
3511 }
3512
3513 /*
3514 * nand_id_len - Get the length of an ID string returned by CMD_READID
3515 * @id_data: the ID string
3516 * @arrlen: the length of the @id_data array
3517
3518 * Returns the length of the ID string, according to known wraparound/trailing
3519 * zero patterns. If no pattern exists, returns the length of the array.
3520 */
3521 static int nand_id_len(u8 *id_data, int arrlen)
3522 {
3523 int last_nonzero, period;
3524
3525 /* Find last non-zero byte */
3526 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3527 if (id_data[last_nonzero])
3528 break;
3529
3530 /* All zeros */
3531 if (last_nonzero < 0)
3532 return 0;
3533
3534 /* Calculate wraparound period */
3535 for (period = 1; period < arrlen; period++)
3536 if (nand_id_has_period(id_data, arrlen, period))
3537 break;
3538
3539 /* There's a repeated pattern */
3540 if (period < arrlen)
3541 return period;
3542
3543 /* There are trailing zeros */
3544 if (last_nonzero < arrlen - 1)
3545 return last_nonzero + 1;
3546
3547 /* No pattern detected */
3548 return arrlen;
3549 }
3550
3551 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3552 static int nand_get_bits_per_cell(u8 cellinfo)
3553 {
3554 int bits;
3555
3556 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3557 bits >>= NAND_CI_CELLTYPE_SHIFT;
3558 return bits + 1;
3559 }
3560
3561 /*
3562 * Many new NAND share similar device ID codes, which represent the size of the
3563 * chip. The rest of the parameters must be decoded according to generic or
3564 * manufacturer-specific "extended ID" decoding patterns.
3565 */
3566 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3567 u8 id_data[8], int *busw)
3568 {
3569 int extid, id_len;
3570 /* The 3rd id byte holds MLC / multichip data */
3571 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3572 /* The 4th id byte is the important one */
3573 extid = id_data[3];
3574
3575 id_len = nand_id_len(id_data, 8);
3576
3577 /*
3578 * Field definitions are in the following datasheets:
3579 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3580 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3581 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3582 *
3583 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3584 * ID to decide what to do.
3585 */
3586 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3587 !nand_is_slc(chip) && id_data[5] != 0x00) {
3588 /* Calc pagesize */
3589 mtd->writesize = 2048 << (extid & 0x03);
3590 extid >>= 2;
3591 /* Calc oobsize */
3592 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3593 case 1:
3594 mtd->oobsize = 128;
3595 break;
3596 case 2:
3597 mtd->oobsize = 218;
3598 break;
3599 case 3:
3600 mtd->oobsize = 400;
3601 break;
3602 case 4:
3603 mtd->oobsize = 436;
3604 break;
3605 case 5:
3606 mtd->oobsize = 512;
3607 break;
3608 case 6:
3609 mtd->oobsize = 640;
3610 break;
3611 case 7:
3612 default: /* Other cases are "reserved" (unknown) */
3613 mtd->oobsize = 1024;
3614 break;
3615 }
3616 extid >>= 2;
3617 /* Calc blocksize */
3618 mtd->erasesize = (128 * 1024) <<
3619 (((extid >> 1) & 0x04) | (extid & 0x03));
3620 *busw = 0;
3621 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3622 !nand_is_slc(chip)) {
3623 unsigned int tmp;
3624
3625 /* Calc pagesize */
3626 mtd->writesize = 2048 << (extid & 0x03);
3627 extid >>= 2;
3628 /* Calc oobsize */
3629 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3630 case 0:
3631 mtd->oobsize = 128;
3632 break;
3633 case 1:
3634 mtd->oobsize = 224;
3635 break;
3636 case 2:
3637 mtd->oobsize = 448;
3638 break;
3639 case 3:
3640 mtd->oobsize = 64;
3641 break;
3642 case 4:
3643 mtd->oobsize = 32;
3644 break;
3645 case 5:
3646 mtd->oobsize = 16;
3647 break;
3648 default:
3649 mtd->oobsize = 640;
3650 break;
3651 }
3652 extid >>= 2;
3653 /* Calc blocksize */
3654 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3655 if (tmp < 0x03)
3656 mtd->erasesize = (128 * 1024) << tmp;
3657 else if (tmp == 0x03)
3658 mtd->erasesize = 768 * 1024;
3659 else
3660 mtd->erasesize = (64 * 1024) << tmp;
3661 *busw = 0;
3662 } else {
3663 /* Calc pagesize */
3664 mtd->writesize = 1024 << (extid & 0x03);
3665 extid >>= 2;
3666 /* Calc oobsize */
3667 mtd->oobsize = (8 << (extid & 0x01)) *
3668 (mtd->writesize >> 9);
3669 extid >>= 2;
3670 /* Calc blocksize. Blocksize is multiples of 64KiB */
3671 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3672 extid >>= 2;
3673 /* Get buswidth information */
3674 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3675
3676 /*
3677 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3678 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3679 * follows:
3680 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3681 * 110b -> 24nm
3682 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3683 */
3684 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3685 nand_is_slc(chip) &&
3686 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3687 !(id_data[4] & 0x80) /* !BENAND */) {
3688 mtd->oobsize = 32 * mtd->writesize >> 9;
3689 }
3690
3691 }
3692 }
3693
3694 /*
3695 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3696 * decodes a matching ID table entry and assigns the MTD size parameters for
3697 * the chip.
3698 */
3699 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3700 struct nand_flash_dev *type, u8 id_data[8],
3701 int *busw)
3702 {
3703 int maf_id = id_data[0];
3704
3705 mtd->erasesize = type->erasesize;
3706 mtd->writesize = type->pagesize;
3707 mtd->oobsize = mtd->writesize / 32;
3708 *busw = type->options & NAND_BUSWIDTH_16;
3709
3710 /* All legacy ID NAND are small-page, SLC */
3711 chip->bits_per_cell = 1;
3712
3713 /*
3714 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3715 * some Spansion chips have erasesize that conflicts with size
3716 * listed in nand_ids table.
3717 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3718 */
3719 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3720 && id_data[6] == 0x00 && id_data[7] == 0x00
3721 && mtd->writesize == 512) {
3722 mtd->erasesize = 128 * 1024;
3723 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3724 }
3725 }
3726
3727 /*
3728 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3729 * heuristic patterns using various detected parameters (e.g., manufacturer,
3730 * page size, cell-type information).
3731 */
3732 static void nand_decode_bbm_options(struct mtd_info *mtd,
3733 struct nand_chip *chip, u8 id_data[8])
3734 {
3735 int maf_id = id_data[0];
3736
3737 /* Set the bad block position */
3738 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3739 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3740 else
3741 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3742
3743 /*
3744 * Bad block marker is stored in the last page of each block on Samsung
3745 * and Hynix MLC devices; stored in first two pages of each block on
3746 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3747 * AMD/Spansion, and Macronix. All others scan only the first page.
3748 */
3749 if (!nand_is_slc(chip) &&
3750 (maf_id == NAND_MFR_SAMSUNG ||
3751 maf_id == NAND_MFR_HYNIX))
3752 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3753 else if ((nand_is_slc(chip) &&
3754 (maf_id == NAND_MFR_SAMSUNG ||
3755 maf_id == NAND_MFR_HYNIX ||
3756 maf_id == NAND_MFR_TOSHIBA ||
3757 maf_id == NAND_MFR_AMD ||
3758 maf_id == NAND_MFR_MACRONIX)) ||
3759 (mtd->writesize == 2048 &&
3760 maf_id == NAND_MFR_MICRON))
3761 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3762 }
3763
3764 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3765 {
3766 return type->id_len;
3767 }
3768
3769 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3770 struct nand_flash_dev *type, u8 *id_data, int *busw)
3771 {
3772 if (!strncmp(type->id, id_data, type->id_len)) {
3773 mtd->writesize = type->pagesize;
3774 mtd->erasesize = type->erasesize;
3775 mtd->oobsize = type->oobsize;
3776
3777 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3778 chip->chipsize = (uint64_t)type->chipsize << 20;
3779 chip->options |= type->options;
3780 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3781 chip->ecc_step_ds = NAND_ECC_STEP(type);
3782 chip->onfi_timing_mode_default =
3783 type->onfi_timing_mode_default;
3784
3785 *busw = type->options & NAND_BUSWIDTH_16;
3786
3787 if (!mtd->name)
3788 mtd->name = type->name;
3789
3790 return true;
3791 }
3792 return false;
3793 }
3794
3795 /*
3796 * Get the flash and manufacturer id and lookup if the type is supported.
3797 */
3798 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3799 struct nand_chip *chip,
3800 int *maf_id, int *dev_id,
3801 struct nand_flash_dev *type)
3802 {
3803 int busw;
3804 int i, maf_idx;
3805 u8 id_data[8];
3806
3807 /* Select the device */
3808 chip->select_chip(mtd, 0);
3809
3810 /*
3811 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3812 * after power-up.
3813 */
3814 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3815
3816 /* Send the command for reading device ID */
3817 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3818
3819 /* Read manufacturer and device IDs */
3820 *maf_id = chip->read_byte(mtd);
3821 *dev_id = chip->read_byte(mtd);
3822
3823 /*
3824 * Try again to make sure, as some systems the bus-hold or other
3825 * interface concerns can cause random data which looks like a
3826 * possibly credible NAND flash to appear. If the two results do
3827 * not match, ignore the device completely.
3828 */
3829
3830 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3831
3832 /* Read entire ID string */
3833 for (i = 0; i < 8; i++)
3834 id_data[i] = chip->read_byte(mtd);
3835
3836 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3837 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3838 *maf_id, *dev_id, id_data[0], id_data[1]);
3839 return ERR_PTR(-ENODEV);
3840 }
3841
3842 if (!type)
3843 type = nand_flash_ids;
3844
3845 for (; type->name != NULL; type++) {
3846 if (is_full_id_nand(type)) {
3847 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3848 goto ident_done;
3849 } else if (*dev_id == type->dev_id) {
3850 break;
3851 }
3852 }
3853
3854 chip->onfi_version = 0;
3855 if (!type->name || !type->pagesize) {
3856 /* Check if the chip is ONFI compliant */
3857 if (nand_flash_detect_onfi(mtd, chip, &busw))
3858 goto ident_done;
3859
3860 /* Check if the chip is JEDEC compliant */
3861 if (nand_flash_detect_jedec(mtd, chip, &busw))
3862 goto ident_done;
3863 }
3864
3865 if (!type->name)
3866 return ERR_PTR(-ENODEV);
3867
3868 if (!mtd->name)
3869 mtd->name = type->name;
3870
3871 chip->chipsize = (uint64_t)type->chipsize << 20;
3872
3873 if (!type->pagesize) {
3874 /* Decode parameters from extended ID */
3875 nand_decode_ext_id(mtd, chip, id_data, &busw);
3876 } else {
3877 nand_decode_id(mtd, chip, type, id_data, &busw);
3878 }
3879 /* Get chip options */
3880 chip->options |= type->options;
3881
3882 /*
3883 * Check if chip is not a Samsung device. Do not clear the
3884 * options for chips which do not have an extended id.
3885 */
3886 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3887 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3888 ident_done:
3889
3890 /* Try to identify manufacturer */
3891 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3892 if (nand_manuf_ids[maf_idx].id == *maf_id)
3893 break;
3894 }
3895
3896 if (chip->options & NAND_BUSWIDTH_AUTO) {
3897 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3898 chip->options |= busw;
3899 nand_set_defaults(chip, busw);
3900 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3901 /*
3902 * Check, if buswidth is correct. Hardware drivers should set
3903 * chip correct!
3904 */
3905 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3906 *maf_id, *dev_id);
3907 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3908 pr_warn("bus width %d instead %d bit\n",
3909 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3910 busw ? 16 : 8);
3911 return ERR_PTR(-EINVAL);
3912 }
3913
3914 nand_decode_bbm_options(mtd, chip, id_data);
3915
3916 /* Calculate the address shift from the page size */
3917 chip->page_shift = ffs(mtd->writesize) - 1;
3918 /* Convert chipsize to number of pages per chip -1 */
3919 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3920
3921 chip->bbt_erase_shift = chip->phys_erase_shift =
3922 ffs(mtd->erasesize) - 1;
3923 if (chip->chipsize & 0xffffffff)
3924 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3925 else {
3926 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3927 chip->chip_shift += 32 - 1;
3928 }
3929
3930 chip->badblockbits = 8;
3931 chip->erase = single_erase;
3932
3933 /* Do not replace user supplied command function! */
3934 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3935 chip->cmdfunc = nand_command_lp;
3936
3937 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3938 *maf_id, *dev_id);
3939
3940 if (chip->onfi_version)
3941 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3942 chip->onfi_params.model);
3943 else if (chip->jedec_version)
3944 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3945 chip->jedec_params.model);
3946 else
3947 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3948 type->name);
3949
3950 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3951 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3952 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3953 return type;
3954 }
3955
3956 static int nand_dt_init(struct nand_chip *chip)
3957 {
3958 struct device_node *dn = nand_get_flash_node(chip);
3959 int ecc_mode, ecc_algo, ecc_strength, ecc_step;
3960
3961 if (!dn)
3962 return 0;
3963
3964 if (of_get_nand_bus_width(dn) == 16)
3965 chip->options |= NAND_BUSWIDTH_16;
3966
3967 if (of_get_nand_on_flash_bbt(dn))
3968 chip->bbt_options |= NAND_BBT_USE_FLASH;
3969
3970 ecc_mode = of_get_nand_ecc_mode(dn);
3971 ecc_algo = of_get_nand_ecc_algo(dn);
3972 ecc_strength = of_get_nand_ecc_strength(dn);
3973 ecc_step = of_get_nand_ecc_step_size(dn);
3974
3975 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3976 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3977 pr_err("must set both strength and step size in DT\n");
3978 return -EINVAL;
3979 }
3980
3981 if (ecc_mode >= 0)
3982 chip->ecc.mode = ecc_mode;
3983
3984 if (ecc_algo >= 0)
3985 chip->ecc.algo = ecc_algo;
3986
3987 if (ecc_strength >= 0)
3988 chip->ecc.strength = ecc_strength;
3989
3990 if (ecc_step > 0)
3991 chip->ecc.size = ecc_step;
3992
3993 return 0;
3994 }
3995
3996 /**
3997 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3998 * @mtd: MTD device structure
3999 * @maxchips: number of chips to scan for
4000 * @table: alternative NAND ID table
4001 *
4002 * This is the first phase of the normal nand_scan() function. It reads the
4003 * flash ID and sets up MTD fields accordingly.
4004 *
4005 * The mtd->owner field must be set to the module of the caller.
4006 */
4007 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4008 struct nand_flash_dev *table)
4009 {
4010 int i, nand_maf_id, nand_dev_id;
4011 struct nand_chip *chip = mtd_to_nand(mtd);
4012 struct nand_flash_dev *type;
4013 int ret;
4014
4015 ret = nand_dt_init(chip);
4016 if (ret)
4017 return ret;
4018
4019 if (!mtd->name && mtd->dev.parent)
4020 mtd->name = dev_name(mtd->dev.parent);
4021
4022 /* Set the default functions */
4023 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4024
4025 /* Read the flash type */
4026 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4027 &nand_dev_id, table);
4028
4029 if (IS_ERR(type)) {
4030 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4031 pr_warn("No NAND device found\n");
4032 chip->select_chip(mtd, -1);
4033 return PTR_ERR(type);
4034 }
4035
4036 chip->select_chip(mtd, -1);
4037
4038 /* Check for a chip array */
4039 for (i = 1; i < maxchips; i++) {
4040 chip->select_chip(mtd, i);
4041 /* See comment in nand_get_flash_type for reset */
4042 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
4043 /* Send the command for reading device ID */
4044 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4045 /* Read manufacturer and device IDs */
4046 if (nand_maf_id != chip->read_byte(mtd) ||
4047 nand_dev_id != chip->read_byte(mtd)) {
4048 chip->select_chip(mtd, -1);
4049 break;
4050 }
4051 chip->select_chip(mtd, -1);
4052 }
4053 if (i > 1)
4054 pr_info("%d chips detected\n", i);
4055
4056 /* Store the number of chips and calc total size for mtd */
4057 chip->numchips = i;
4058 mtd->size = i * chip->chipsize;
4059
4060 return 0;
4061 }
4062 EXPORT_SYMBOL(nand_scan_ident);
4063
4064 /*
4065 * Check if the chip configuration meet the datasheet requirements.
4066
4067 * If our configuration corrects A bits per B bytes and the minimum
4068 * required correction level is X bits per Y bytes, then we must ensure
4069 * both of the following are true:
4070 *
4071 * (1) A / B >= X / Y
4072 * (2) A >= X
4073 *
4074 * Requirement (1) ensures we can correct for the required bitflip density.
4075 * Requirement (2) ensures we can correct even when all bitflips are clumped
4076 * in the same sector.
4077 */
4078 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4079 {
4080 struct nand_chip *chip = mtd_to_nand(mtd);
4081 struct nand_ecc_ctrl *ecc = &chip->ecc;
4082 int corr, ds_corr;
4083
4084 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4085 /* Not enough information */
4086 return true;
4087
4088 /*
4089 * We get the number of corrected bits per page to compare
4090 * the correction density.
4091 */
4092 corr = (mtd->writesize * ecc->strength) / ecc->size;
4093 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4094
4095 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4096 }
4097
4098 /**
4099 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4100 * @mtd: MTD device structure
4101 *
4102 * This is the second phase of the normal nand_scan() function. It fills out
4103 * all the uninitialized function pointers with the defaults and scans for a
4104 * bad block table if appropriate.
4105 */
4106 int nand_scan_tail(struct mtd_info *mtd)
4107 {
4108 int i;
4109 struct nand_chip *chip = mtd_to_nand(mtd);
4110 struct nand_ecc_ctrl *ecc = &chip->ecc;
4111 struct nand_buffers *nbuf;
4112 int ret;
4113
4114 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4115 if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4116 !(chip->bbt_options & NAND_BBT_USE_FLASH)))
4117 return -EINVAL;
4118
4119 if (!(chip->options & NAND_OWN_BUFFERS)) {
4120 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4121 + mtd->oobsize * 3, GFP_KERNEL);
4122 if (!nbuf)
4123 return -ENOMEM;
4124 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4125 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4126 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4127
4128 chip->buffers = nbuf;
4129 } else {
4130 if (!chip->buffers)
4131 return -ENOMEM;
4132 }
4133
4134 /* Set the internal oob buffer location, just after the page data */
4135 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4136
4137 /*
4138 * If no default placement scheme is given, select an appropriate one.
4139 */
4140 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4141 switch (mtd->oobsize) {
4142 case 8:
4143 ecc->layout = &nand_oob_8;
4144 break;
4145 case 16:
4146 ecc->layout = &nand_oob_16;
4147 break;
4148 case 64:
4149 ecc->layout = &nand_oob_64;
4150 break;
4151 case 128:
4152 ecc->layout = &nand_oob_128;
4153 break;
4154 default:
4155 WARN(1, "No oob scheme defined for oobsize %d\n",
4156 mtd->oobsize);
4157 ret = -EINVAL;
4158 goto err_free;
4159 }
4160 }
4161
4162 if (!chip->write_page)
4163 chip->write_page = nand_write_page;
4164
4165 /*
4166 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4167 * selected and we have 256 byte pagesize fallback to software ECC
4168 */
4169
4170 switch (ecc->mode) {
4171 case NAND_ECC_HW_OOB_FIRST:
4172 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4173 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4174 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4175 ret = -EINVAL;
4176 goto err_free;
4177 }
4178 if (!ecc->read_page)
4179 ecc->read_page = nand_read_page_hwecc_oob_first;
4180
4181 case NAND_ECC_HW:
4182 /* Use standard hwecc read page function? */
4183 if (!ecc->read_page)
4184 ecc->read_page = nand_read_page_hwecc;
4185 if (!ecc->write_page)
4186 ecc->write_page = nand_write_page_hwecc;
4187 if (!ecc->read_page_raw)
4188 ecc->read_page_raw = nand_read_page_raw;
4189 if (!ecc->write_page_raw)
4190 ecc->write_page_raw = nand_write_page_raw;
4191 if (!ecc->read_oob)
4192 ecc->read_oob = nand_read_oob_std;
4193 if (!ecc->write_oob)
4194 ecc->write_oob = nand_write_oob_std;
4195 if (!ecc->read_subpage)
4196 ecc->read_subpage = nand_read_subpage;
4197 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4198 ecc->write_subpage = nand_write_subpage_hwecc;
4199
4200 case NAND_ECC_HW_SYNDROME:
4201 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4202 (!ecc->read_page ||
4203 ecc->read_page == nand_read_page_hwecc ||
4204 !ecc->write_page ||
4205 ecc->write_page == nand_write_page_hwecc)) {
4206 WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
4207 ret = -EINVAL;
4208 goto err_free;
4209 }
4210 /* Use standard syndrome read/write page function? */
4211 if (!ecc->read_page)
4212 ecc->read_page = nand_read_page_syndrome;
4213 if (!ecc->write_page)
4214 ecc->write_page = nand_write_page_syndrome;
4215 if (!ecc->read_page_raw)
4216 ecc->read_page_raw = nand_read_page_raw_syndrome;
4217 if (!ecc->write_page_raw)
4218 ecc->write_page_raw = nand_write_page_raw_syndrome;
4219 if (!ecc->read_oob)
4220 ecc->read_oob = nand_read_oob_syndrome;
4221 if (!ecc->write_oob)
4222 ecc->write_oob = nand_write_oob_syndrome;
4223
4224 if (mtd->writesize >= ecc->size) {
4225 if (!ecc->strength) {
4226 WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
4227 ret = -EINVAL;
4228 goto err_free;
4229 }
4230 break;
4231 }
4232 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4233 ecc->size, mtd->writesize);
4234 ecc->mode = NAND_ECC_SOFT;
4235
4236 case NAND_ECC_SOFT:
4237 ecc->calculate = nand_calculate_ecc;
4238 ecc->correct = nand_correct_data;
4239 ecc->read_page = nand_read_page_swecc;
4240 ecc->read_subpage = nand_read_subpage;
4241 ecc->write_page = nand_write_page_swecc;
4242 ecc->read_page_raw = nand_read_page_raw;
4243 ecc->write_page_raw = nand_write_page_raw;
4244 ecc->read_oob = nand_read_oob_std;
4245 ecc->write_oob = nand_write_oob_std;
4246 if (!ecc->size)
4247 ecc->size = 256;
4248 ecc->bytes = 3;
4249 ecc->strength = 1;
4250 break;
4251
4252 case NAND_ECC_SOFT_BCH:
4253 if (!mtd_nand_has_bch()) {
4254 WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4255 ret = -EINVAL;
4256 goto err_free;
4257 }
4258 ecc->calculate = nand_bch_calculate_ecc;
4259 ecc->correct = nand_bch_correct_data;
4260 ecc->read_page = nand_read_page_swecc;
4261 ecc->read_subpage = nand_read_subpage;
4262 ecc->write_page = nand_write_page_swecc;
4263 ecc->read_page_raw = nand_read_page_raw;
4264 ecc->write_page_raw = nand_write_page_raw;
4265 ecc->read_oob = nand_read_oob_std;
4266 ecc->write_oob = nand_write_oob_std;
4267 /*
4268 * Board driver should supply ecc.size and ecc.strength values
4269 * to select how many bits are correctable. Otherwise, default
4270 * to 4 bits for large page devices.
4271 */
4272 if (!ecc->size && (mtd->oobsize >= 64)) {
4273 ecc->size = 512;
4274 ecc->strength = 4;
4275 }
4276
4277 /* See nand_bch_init() for details. */
4278 ecc->bytes = 0;
4279 ecc->priv = nand_bch_init(mtd);
4280 if (!ecc->priv) {
4281 WARN(1, "BCH ECC initialization failed!\n");
4282 ret = -EINVAL;
4283 goto err_free;
4284 }
4285 break;
4286
4287 case NAND_ECC_NONE:
4288 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4289 ecc->read_page = nand_read_page_raw;
4290 ecc->write_page = nand_write_page_raw;
4291 ecc->read_oob = nand_read_oob_std;
4292 ecc->read_page_raw = nand_read_page_raw;
4293 ecc->write_page_raw = nand_write_page_raw;
4294 ecc->write_oob = nand_write_oob_std;
4295 ecc->size = mtd->writesize;
4296 ecc->bytes = 0;
4297 ecc->strength = 0;
4298 break;
4299
4300 default:
4301 WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
4302 ret = -EINVAL;
4303 goto err_free;
4304 }
4305
4306 /* For many systems, the standard OOB write also works for raw */
4307 if (!ecc->read_oob_raw)
4308 ecc->read_oob_raw = ecc->read_oob;
4309 if (!ecc->write_oob_raw)
4310 ecc->write_oob_raw = ecc->write_oob;
4311
4312 /*
4313 * The number of bytes available for a client to place data into
4314 * the out of band area.
4315 */
4316 mtd->oobavail = 0;
4317 if (ecc->layout) {
4318 for (i = 0; ecc->layout->oobfree[i].length; i++)
4319 mtd->oobavail += ecc->layout->oobfree[i].length;
4320 }
4321
4322 /* ECC sanity check: warn if it's too weak */
4323 if (!nand_ecc_strength_good(mtd))
4324 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4325 mtd->name);
4326
4327 /*
4328 * Set the number of read / write steps for one page depending on ECC
4329 * mode.
4330 */
4331 ecc->steps = mtd->writesize / ecc->size;
4332 if (ecc->steps * ecc->size != mtd->writesize) {
4333 WARN(1, "Invalid ECC parameters\n");
4334 ret = -EINVAL;
4335 goto err_free;
4336 }
4337 ecc->total = ecc->steps * ecc->bytes;
4338
4339 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4340 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4341 switch (ecc->steps) {
4342 case 2:
4343 mtd->subpage_sft = 1;
4344 break;
4345 case 4:
4346 case 8:
4347 case 16:
4348 mtd->subpage_sft = 2;
4349 break;
4350 }
4351 }
4352 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4353
4354 /* Initialize state */
4355 chip->state = FL_READY;
4356
4357 /* Invalidate the pagebuffer reference */
4358 chip->pagebuf = -1;
4359
4360 /* Large page NAND with SOFT_ECC should support subpage reads */
4361 switch (ecc->mode) {
4362 case NAND_ECC_SOFT:
4363 case NAND_ECC_SOFT_BCH:
4364 if (chip->page_shift > 9)
4365 chip->options |= NAND_SUBPAGE_READ;
4366 break;
4367
4368 default:
4369 break;
4370 }
4371
4372 /* Fill in remaining MTD driver data */
4373 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4374 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4375 MTD_CAP_NANDFLASH;
4376 mtd->_erase = nand_erase;
4377 mtd->_point = NULL;
4378 mtd->_unpoint = NULL;
4379 mtd->_read = nand_read;
4380 mtd->_write = nand_write;
4381 mtd->_panic_write = panic_nand_write;
4382 mtd->_read_oob = nand_read_oob;
4383 mtd->_write_oob = nand_write_oob;
4384 mtd->_sync = nand_sync;
4385 mtd->_lock = NULL;
4386 mtd->_unlock = NULL;
4387 mtd->_suspend = nand_suspend;
4388 mtd->_resume = nand_resume;
4389 mtd->_reboot = nand_shutdown;
4390 mtd->_block_isreserved = nand_block_isreserved;
4391 mtd->_block_isbad = nand_block_isbad;
4392 mtd->_block_markbad = nand_block_markbad;
4393 mtd->writebufsize = mtd->writesize;
4394
4395 /* propagate ecc info to mtd_info */
4396 mtd->ecclayout = ecc->layout;
4397 mtd->ecc_strength = ecc->strength;
4398 mtd->ecc_step_size = ecc->size;
4399 /*
4400 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4401 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4402 * properly set.
4403 */
4404 if (!mtd->bitflip_threshold)
4405 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4406
4407 /* Check, if we should skip the bad block table scan */
4408 if (chip->options & NAND_SKIP_BBTSCAN)
4409 return 0;
4410
4411 /* Build bad block table */
4412 return chip->scan_bbt(mtd);
4413 err_free:
4414 if (!(chip->options & NAND_OWN_BUFFERS))
4415 kfree(chip->buffers);
4416 return ret;
4417 }
4418 EXPORT_SYMBOL(nand_scan_tail);
4419
4420 /*
4421 * is_module_text_address() isn't exported, and it's mostly a pointless
4422 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4423 * to call us from in-kernel code if the core NAND support is modular.
4424 */
4425 #ifdef MODULE
4426 #define caller_is_module() (1)
4427 #else
4428 #define caller_is_module() \
4429 is_module_text_address((unsigned long)__builtin_return_address(0))
4430 #endif
4431
4432 /**
4433 * nand_scan - [NAND Interface] Scan for the NAND device
4434 * @mtd: MTD device structure
4435 * @maxchips: number of chips to scan for
4436 *
4437 * This fills out all the uninitialized function pointers with the defaults.
4438 * The flash ID is read and the mtd/chip structures are filled with the
4439 * appropriate values. The mtd->owner field must be set to the module of the
4440 * caller.
4441 */
4442 int nand_scan(struct mtd_info *mtd, int maxchips)
4443 {
4444 int ret;
4445
4446 /* Many callers got this wrong, so check for it for a while... */
4447 if (!mtd->owner && caller_is_module()) {
4448 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4449 BUG();
4450 }
4451
4452 ret = nand_scan_ident(mtd, maxchips, NULL);
4453 if (!ret)
4454 ret = nand_scan_tail(mtd);
4455 return ret;
4456 }
4457 EXPORT_SYMBOL(nand_scan);
4458
4459 /**
4460 * nand_release - [NAND Interface] Free resources held by the NAND device
4461 * @mtd: MTD device structure
4462 */
4463 void nand_release(struct mtd_info *mtd)
4464 {
4465 struct nand_chip *chip = mtd_to_nand(mtd);
4466
4467 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4468 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4469
4470 mtd_device_unregister(mtd);
4471
4472 /* Free bad block table memory */
4473 kfree(chip->bbt);
4474 if (!(chip->options & NAND_OWN_BUFFERS))
4475 kfree(chip->buffers);
4476
4477 /* Free bad block descriptor memory */
4478 if (chip->badblock_pattern && chip->badblock_pattern->options
4479 & NAND_BBT_DYNAMICSTRUCT)
4480 kfree(chip->badblock_pattern);
4481 }
4482 EXPORT_SYMBOL_GPL(nand_release);
4483
4484 MODULE_LICENSE("GPL");
4485 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4486 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4487 MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.236281 seconds and 6 git commands to generate.