Merge remote-tracking branches 'asoc/topic/rt5640', 'asoc/topic/rt5659', 'asoc/topic...
[deliverable/linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2 * Overview:
3 * This is the generic MTD driver for NAND flash devices. It should be
4 * capable of working with almost all NAND chips currently available.
5 *
6 * Additional technical information is available on
7 * http://www.linux-mtd.infradead.org/doc/nand.html
8 *
9 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
11 *
12 * Credits:
13 * David Woodhouse for adding multichip support
14 *
15 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16 * rework for 2K page size chips
17 *
18 * TODO:
19 * Enable cached programming for 2k page size chips
20 * Check, if mtd->ecctype should be set to MTD_ECC_HW
21 * if we have HW ECC support.
22 * BBT table is not serialized, has to be fixed
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
46 #include <linux/leds.h>
47 #include <linux/io.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of_mtd.h>
50
51 /* Define default oob placement schemes for large and small page devices */
52 static struct nand_ecclayout nand_oob_8 = {
53 .eccbytes = 3,
54 .eccpos = {0, 1, 2},
55 .oobfree = {
56 {.offset = 3,
57 .length = 2},
58 {.offset = 6,
59 .length = 2} }
60 };
61
62 static struct nand_ecclayout nand_oob_16 = {
63 .eccbytes = 6,
64 .eccpos = {0, 1, 2, 3, 6, 7},
65 .oobfree = {
66 {.offset = 8,
67 . length = 8} }
68 };
69
70 static struct nand_ecclayout nand_oob_64 = {
71 .eccbytes = 24,
72 .eccpos = {
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
76 .oobfree = {
77 {.offset = 2,
78 .length = 38} }
79 };
80
81 static struct nand_ecclayout nand_oob_128 = {
82 .eccbytes = 48,
83 .eccpos = {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
90 .oobfree = {
91 {.offset = 2,
92 .length = 78} }
93 };
94
95 static int nand_get_device(struct mtd_info *mtd, int new_state);
96
97 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 struct mtd_oob_ops *ops);
99
100 /*
101 * For devices which display every fart in the system on a separate LED. Is
102 * compiled away when LED support is disabled.
103 */
104 DEFINE_LED_TRIGGER(nand_led_trigger);
105
106 static int check_offs_len(struct mtd_info *mtd,
107 loff_t ofs, uint64_t len)
108 {
109 struct nand_chip *chip = mtd_to_nand(mtd);
110 int ret = 0;
111
112 /* Start address must align on block boundary */
113 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
114 pr_debug("%s: unaligned address\n", __func__);
115 ret = -EINVAL;
116 }
117
118 /* Length must align on block boundary */
119 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
120 pr_debug("%s: length not block aligned\n", __func__);
121 ret = -EINVAL;
122 }
123
124 return ret;
125 }
126
127 /**
128 * nand_release_device - [GENERIC] release chip
129 * @mtd: MTD device structure
130 *
131 * Release chip lock and wake up anyone waiting on the device.
132 */
133 static void nand_release_device(struct mtd_info *mtd)
134 {
135 struct nand_chip *chip = mtd_to_nand(mtd);
136
137 /* Release the controller and the chip */
138 spin_lock(&chip->controller->lock);
139 chip->controller->active = NULL;
140 chip->state = FL_READY;
141 wake_up(&chip->controller->wq);
142 spin_unlock(&chip->controller->lock);
143 }
144
145 /**
146 * nand_read_byte - [DEFAULT] read one byte from the chip
147 * @mtd: MTD device structure
148 *
149 * Default read function for 8bit buswidth
150 */
151 static uint8_t nand_read_byte(struct mtd_info *mtd)
152 {
153 struct nand_chip *chip = mtd_to_nand(mtd);
154 return readb(chip->IO_ADDR_R);
155 }
156
157 /**
158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
159 * @mtd: MTD device structure
160 *
161 * Default read function for 16bit buswidth with endianness conversion.
162 *
163 */
164 static uint8_t nand_read_byte16(struct mtd_info *mtd)
165 {
166 struct nand_chip *chip = mtd_to_nand(mtd);
167 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
168 }
169
170 /**
171 * nand_read_word - [DEFAULT] read one word from the chip
172 * @mtd: MTD device structure
173 *
174 * Default read function for 16bit buswidth without endianness conversion.
175 */
176 static u16 nand_read_word(struct mtd_info *mtd)
177 {
178 struct nand_chip *chip = mtd_to_nand(mtd);
179 return readw(chip->IO_ADDR_R);
180 }
181
182 /**
183 * nand_select_chip - [DEFAULT] control CE line
184 * @mtd: MTD device structure
185 * @chipnr: chipnumber to select, -1 for deselect
186 *
187 * Default select function for 1 chip devices.
188 */
189 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
190 {
191 struct nand_chip *chip = mtd_to_nand(mtd);
192
193 switch (chipnr) {
194 case -1:
195 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
196 break;
197 case 0:
198 break;
199
200 default:
201 BUG();
202 }
203 }
204
205 /**
206 * nand_write_byte - [DEFAULT] write single byte to chip
207 * @mtd: MTD device structure
208 * @byte: value to write
209 *
210 * Default function to write a byte to I/O[7:0]
211 */
212 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
213 {
214 struct nand_chip *chip = mtd_to_nand(mtd);
215
216 chip->write_buf(mtd, &byte, 1);
217 }
218
219 /**
220 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221 * @mtd: MTD device structure
222 * @byte: value to write
223 *
224 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
225 */
226 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
227 {
228 struct nand_chip *chip = mtd_to_nand(mtd);
229 uint16_t word = byte;
230
231 /*
232 * It's not entirely clear what should happen to I/O[15:8] when writing
233 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
234 *
235 * When the host supports a 16-bit bus width, only data is
236 * transferred at the 16-bit width. All address and command line
237 * transfers shall use only the lower 8-bits of the data bus. During
238 * command transfers, the host may place any value on the upper
239 * 8-bits of the data bus. During address transfers, the host shall
240 * set the upper 8-bits of the data bus to 00h.
241 *
242 * One user of the write_byte callback is nand_onfi_set_features. The
243 * four parameters are specified to be written to I/O[7:0], but this is
244 * neither an address nor a command transfer. Let's assume a 0 on the
245 * upper I/O lines is OK.
246 */
247 chip->write_buf(mtd, (uint8_t *)&word, 2);
248 }
249
250 /**
251 * nand_write_buf - [DEFAULT] write buffer to chip
252 * @mtd: MTD device structure
253 * @buf: data buffer
254 * @len: number of bytes to write
255 *
256 * Default write function for 8bit buswidth.
257 */
258 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
259 {
260 struct nand_chip *chip = mtd_to_nand(mtd);
261
262 iowrite8_rep(chip->IO_ADDR_W, buf, len);
263 }
264
265 /**
266 * nand_read_buf - [DEFAULT] read chip data into buffer
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
270 *
271 * Default read function for 8bit buswidth.
272 */
273 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
274 {
275 struct nand_chip *chip = mtd_to_nand(mtd);
276
277 ioread8_rep(chip->IO_ADDR_R, buf, len);
278 }
279
280 /**
281 * nand_write_buf16 - [DEFAULT] write buffer to chip
282 * @mtd: MTD device structure
283 * @buf: data buffer
284 * @len: number of bytes to write
285 *
286 * Default write function for 16bit buswidth.
287 */
288 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290 struct nand_chip *chip = mtd_to_nand(mtd);
291 u16 *p = (u16 *) buf;
292
293 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
294 }
295
296 /**
297 * nand_read_buf16 - [DEFAULT] read chip data into buffer
298 * @mtd: MTD device structure
299 * @buf: buffer to store date
300 * @len: number of bytes to read
301 *
302 * Default read function for 16bit buswidth.
303 */
304 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
305 {
306 struct nand_chip *chip = mtd_to_nand(mtd);
307 u16 *p = (u16 *) buf;
308
309 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
310 }
311
312 /**
313 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
314 * @mtd: MTD device structure
315 * @ofs: offset from device start
316 * @getchip: 0, if the chip is already selected
317 *
318 * Check, if the block is bad.
319 */
320 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
321 {
322 int page, chipnr, res = 0, i = 0;
323 struct nand_chip *chip = mtd_to_nand(mtd);
324 u16 bad;
325
326 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
327 ofs += mtd->erasesize - mtd->writesize;
328
329 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
330
331 if (getchip) {
332 chipnr = (int)(ofs >> chip->chip_shift);
333
334 nand_get_device(mtd, FL_READING);
335
336 /* Select the NAND device */
337 chip->select_chip(mtd, chipnr);
338 }
339
340 do {
341 if (chip->options & NAND_BUSWIDTH_16) {
342 chip->cmdfunc(mtd, NAND_CMD_READOOB,
343 chip->badblockpos & 0xFE, page);
344 bad = cpu_to_le16(chip->read_word(mtd));
345 if (chip->badblockpos & 0x1)
346 bad >>= 8;
347 else
348 bad &= 0xFF;
349 } else {
350 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
351 page);
352 bad = chip->read_byte(mtd);
353 }
354
355 if (likely(chip->badblockbits == 8))
356 res = bad != 0xFF;
357 else
358 res = hweight8(bad) < chip->badblockbits;
359 ofs += mtd->writesize;
360 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
361 i++;
362 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
363
364 if (getchip) {
365 chip->select_chip(mtd, -1);
366 nand_release_device(mtd);
367 }
368
369 return res;
370 }
371
372 /**
373 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
374 * @mtd: MTD device structure
375 * @ofs: offset from device start
376 *
377 * This is the default implementation, which can be overridden by a hardware
378 * specific driver. It provides the details for writing a bad block marker to a
379 * block.
380 */
381 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
382 {
383 struct nand_chip *chip = mtd_to_nand(mtd);
384 struct mtd_oob_ops ops;
385 uint8_t buf[2] = { 0, 0 };
386 int ret = 0, res, i = 0;
387
388 memset(&ops, 0, sizeof(ops));
389 ops.oobbuf = buf;
390 ops.ooboffs = chip->badblockpos;
391 if (chip->options & NAND_BUSWIDTH_16) {
392 ops.ooboffs &= ~0x01;
393 ops.len = ops.ooblen = 2;
394 } else {
395 ops.len = ops.ooblen = 1;
396 }
397 ops.mode = MTD_OPS_PLACE_OOB;
398
399 /* Write to first/last page(s) if necessary */
400 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
401 ofs += mtd->erasesize - mtd->writesize;
402 do {
403 res = nand_do_write_oob(mtd, ofs, &ops);
404 if (!ret)
405 ret = res;
406
407 i++;
408 ofs += mtd->writesize;
409 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
410
411 return ret;
412 }
413
414 /**
415 * nand_block_markbad_lowlevel - mark a block bad
416 * @mtd: MTD device structure
417 * @ofs: offset from device start
418 *
419 * This function performs the generic NAND bad block marking steps (i.e., bad
420 * block table(s) and/or marker(s)). We only allow the hardware driver to
421 * specify how to write bad block markers to OOB (chip->block_markbad).
422 *
423 * We try operations in the following order:
424 * (1) erase the affected block, to allow OOB marker to be written cleanly
425 * (2) write bad block marker to OOB area of affected block (unless flag
426 * NAND_BBT_NO_OOB_BBM is present)
427 * (3) update the BBT
428 * Note that we retain the first error encountered in (2) or (3), finish the
429 * procedures, and dump the error in the end.
430 */
431 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
432 {
433 struct nand_chip *chip = mtd_to_nand(mtd);
434 int res, ret = 0;
435
436 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
437 struct erase_info einfo;
438
439 /* Attempt erase before marking OOB */
440 memset(&einfo, 0, sizeof(einfo));
441 einfo.mtd = mtd;
442 einfo.addr = ofs;
443 einfo.len = 1ULL << chip->phys_erase_shift;
444 nand_erase_nand(mtd, &einfo, 0);
445
446 /* Write bad block marker to OOB */
447 nand_get_device(mtd, FL_WRITING);
448 ret = chip->block_markbad(mtd, ofs);
449 nand_release_device(mtd);
450 }
451
452 /* Mark block bad in BBT */
453 if (chip->bbt) {
454 res = nand_markbad_bbt(mtd, ofs);
455 if (!ret)
456 ret = res;
457 }
458
459 if (!ret)
460 mtd->ecc_stats.badblocks++;
461
462 return ret;
463 }
464
465 /**
466 * nand_check_wp - [GENERIC] check if the chip is write protected
467 * @mtd: MTD device structure
468 *
469 * Check, if the device is write protected. The function expects, that the
470 * device is already selected.
471 */
472 static int nand_check_wp(struct mtd_info *mtd)
473 {
474 struct nand_chip *chip = mtd_to_nand(mtd);
475
476 /* Broken xD cards report WP despite being writable */
477 if (chip->options & NAND_BROKEN_XD)
478 return 0;
479
480 /* Check the WP bit */
481 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
482 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
483 }
484
485 /**
486 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
487 * @mtd: MTD device structure
488 * @ofs: offset from device start
489 *
490 * Check if the block is marked as reserved.
491 */
492 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
493 {
494 struct nand_chip *chip = mtd_to_nand(mtd);
495
496 if (!chip->bbt)
497 return 0;
498 /* Return info from the table */
499 return nand_isreserved_bbt(mtd, ofs);
500 }
501
502 /**
503 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
504 * @mtd: MTD device structure
505 * @ofs: offset from device start
506 * @getchip: 0, if the chip is already selected
507 * @allowbbt: 1, if its allowed to access the bbt area
508 *
509 * Check, if the block is bad. Either by reading the bad block table or
510 * calling of the scan function.
511 */
512 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
513 int allowbbt)
514 {
515 struct nand_chip *chip = mtd_to_nand(mtd);
516
517 if (!chip->bbt)
518 return chip->block_bad(mtd, ofs, getchip);
519
520 /* Return info from the table */
521 return nand_isbad_bbt(mtd, ofs, allowbbt);
522 }
523
524 /**
525 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
526 * @mtd: MTD device structure
527 * @timeo: Timeout
528 *
529 * Helper function for nand_wait_ready used when needing to wait in interrupt
530 * context.
531 */
532 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
533 {
534 struct nand_chip *chip = mtd_to_nand(mtd);
535 int i;
536
537 /* Wait for the device to get ready */
538 for (i = 0; i < timeo; i++) {
539 if (chip->dev_ready(mtd))
540 break;
541 touch_softlockup_watchdog();
542 mdelay(1);
543 }
544 }
545
546 /**
547 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
548 * @mtd: MTD device structure
549 *
550 * Wait for the ready pin after a command, and warn if a timeout occurs.
551 */
552 void nand_wait_ready(struct mtd_info *mtd)
553 {
554 struct nand_chip *chip = mtd_to_nand(mtd);
555 unsigned long timeo = 400;
556
557 if (in_interrupt() || oops_in_progress)
558 return panic_nand_wait_ready(mtd, timeo);
559
560 led_trigger_event(nand_led_trigger, LED_FULL);
561 /* Wait until command is processed or timeout occurs */
562 timeo = jiffies + msecs_to_jiffies(timeo);
563 do {
564 if (chip->dev_ready(mtd))
565 goto out;
566 cond_resched();
567 } while (time_before(jiffies, timeo));
568
569 pr_warn_ratelimited(
570 "timeout while waiting for chip to become ready\n");
571 out:
572 led_trigger_event(nand_led_trigger, LED_OFF);
573 }
574 EXPORT_SYMBOL_GPL(nand_wait_ready);
575
576 /**
577 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
578 * @mtd: MTD device structure
579 * @timeo: Timeout in ms
580 *
581 * Wait for status ready (i.e. command done) or timeout.
582 */
583 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
584 {
585 register struct nand_chip *chip = mtd_to_nand(mtd);
586
587 timeo = jiffies + msecs_to_jiffies(timeo);
588 do {
589 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
590 break;
591 touch_softlockup_watchdog();
592 } while (time_before(jiffies, timeo));
593 };
594
595 /**
596 * nand_command - [DEFAULT] Send command to NAND device
597 * @mtd: MTD device structure
598 * @command: the command to be sent
599 * @column: the column address for this command, -1 if none
600 * @page_addr: the page address for this command, -1 if none
601 *
602 * Send command to NAND device. This function is used for small page devices
603 * (512 Bytes per page).
604 */
605 static void nand_command(struct mtd_info *mtd, unsigned int command,
606 int column, int page_addr)
607 {
608 register struct nand_chip *chip = mtd_to_nand(mtd);
609 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
610
611 /* Write out the command to the device */
612 if (command == NAND_CMD_SEQIN) {
613 int readcmd;
614
615 if (column >= mtd->writesize) {
616 /* OOB area */
617 column -= mtd->writesize;
618 readcmd = NAND_CMD_READOOB;
619 } else if (column < 256) {
620 /* First 256 bytes --> READ0 */
621 readcmd = NAND_CMD_READ0;
622 } else {
623 column -= 256;
624 readcmd = NAND_CMD_READ1;
625 }
626 chip->cmd_ctrl(mtd, readcmd, ctrl);
627 ctrl &= ~NAND_CTRL_CHANGE;
628 }
629 chip->cmd_ctrl(mtd, command, ctrl);
630
631 /* Address cycle, when necessary */
632 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
633 /* Serially input address */
634 if (column != -1) {
635 /* Adjust columns for 16 bit buswidth */
636 if (chip->options & NAND_BUSWIDTH_16 &&
637 !nand_opcode_8bits(command))
638 column >>= 1;
639 chip->cmd_ctrl(mtd, column, ctrl);
640 ctrl &= ~NAND_CTRL_CHANGE;
641 }
642 if (page_addr != -1) {
643 chip->cmd_ctrl(mtd, page_addr, ctrl);
644 ctrl &= ~NAND_CTRL_CHANGE;
645 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
646 /* One more address cycle for devices > 32MiB */
647 if (chip->chipsize > (32 << 20))
648 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
649 }
650 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
651
652 /*
653 * Program and erase have their own busy handlers status and sequential
654 * in needs no delay
655 */
656 switch (command) {
657
658 case NAND_CMD_PAGEPROG:
659 case NAND_CMD_ERASE1:
660 case NAND_CMD_ERASE2:
661 case NAND_CMD_SEQIN:
662 case NAND_CMD_STATUS:
663 return;
664
665 case NAND_CMD_RESET:
666 if (chip->dev_ready)
667 break;
668 udelay(chip->chip_delay);
669 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
670 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
671 chip->cmd_ctrl(mtd,
672 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
673 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
674 nand_wait_status_ready(mtd, 250);
675 return;
676
677 /* This applies to read commands */
678 default:
679 /*
680 * If we don't have access to the busy pin, we apply the given
681 * command delay
682 */
683 if (!chip->dev_ready) {
684 udelay(chip->chip_delay);
685 return;
686 }
687 }
688 /*
689 * Apply this short delay always to ensure that we do wait tWB in
690 * any case on any machine.
691 */
692 ndelay(100);
693
694 nand_wait_ready(mtd);
695 }
696
697 /**
698 * nand_command_lp - [DEFAULT] Send command to NAND large page device
699 * @mtd: MTD device structure
700 * @command: the command to be sent
701 * @column: the column address for this command, -1 if none
702 * @page_addr: the page address for this command, -1 if none
703 *
704 * Send command to NAND device. This is the version for the new large page
705 * devices. We don't have the separate regions as we have in the small page
706 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
707 */
708 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
709 int column, int page_addr)
710 {
711 register struct nand_chip *chip = mtd_to_nand(mtd);
712
713 /* Emulate NAND_CMD_READOOB */
714 if (command == NAND_CMD_READOOB) {
715 column += mtd->writesize;
716 command = NAND_CMD_READ0;
717 }
718
719 /* Command latch cycle */
720 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
721
722 if (column != -1 || page_addr != -1) {
723 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
724
725 /* Serially input address */
726 if (column != -1) {
727 /* Adjust columns for 16 bit buswidth */
728 if (chip->options & NAND_BUSWIDTH_16 &&
729 !nand_opcode_8bits(command))
730 column >>= 1;
731 chip->cmd_ctrl(mtd, column, ctrl);
732 ctrl &= ~NAND_CTRL_CHANGE;
733 chip->cmd_ctrl(mtd, column >> 8, ctrl);
734 }
735 if (page_addr != -1) {
736 chip->cmd_ctrl(mtd, page_addr, ctrl);
737 chip->cmd_ctrl(mtd, page_addr >> 8,
738 NAND_NCE | NAND_ALE);
739 /* One more address cycle for devices > 128MiB */
740 if (chip->chipsize > (128 << 20))
741 chip->cmd_ctrl(mtd, page_addr >> 16,
742 NAND_NCE | NAND_ALE);
743 }
744 }
745 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
746
747 /*
748 * Program and erase have their own busy handlers status, sequential
749 * in and status need no delay.
750 */
751 switch (command) {
752
753 case NAND_CMD_CACHEDPROG:
754 case NAND_CMD_PAGEPROG:
755 case NAND_CMD_ERASE1:
756 case NAND_CMD_ERASE2:
757 case NAND_CMD_SEQIN:
758 case NAND_CMD_RNDIN:
759 case NAND_CMD_STATUS:
760 return;
761
762 case NAND_CMD_RESET:
763 if (chip->dev_ready)
764 break;
765 udelay(chip->chip_delay);
766 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
767 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
768 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
769 NAND_NCE | NAND_CTRL_CHANGE);
770 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
771 nand_wait_status_ready(mtd, 250);
772 return;
773
774 case NAND_CMD_RNDOUT:
775 /* No ready / busy check necessary */
776 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
777 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
778 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
779 NAND_NCE | NAND_CTRL_CHANGE);
780 return;
781
782 case NAND_CMD_READ0:
783 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
784 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
785 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
786 NAND_NCE | NAND_CTRL_CHANGE);
787
788 /* This applies to read commands */
789 default:
790 /*
791 * If we don't have access to the busy pin, we apply the given
792 * command delay.
793 */
794 if (!chip->dev_ready) {
795 udelay(chip->chip_delay);
796 return;
797 }
798 }
799
800 /*
801 * Apply this short delay always to ensure that we do wait tWB in
802 * any case on any machine.
803 */
804 ndelay(100);
805
806 nand_wait_ready(mtd);
807 }
808
809 /**
810 * panic_nand_get_device - [GENERIC] Get chip for selected access
811 * @chip: the nand chip descriptor
812 * @mtd: MTD device structure
813 * @new_state: the state which is requested
814 *
815 * Used when in panic, no locks are taken.
816 */
817 static void panic_nand_get_device(struct nand_chip *chip,
818 struct mtd_info *mtd, int new_state)
819 {
820 /* Hardware controller shared among independent devices */
821 chip->controller->active = chip;
822 chip->state = new_state;
823 }
824
825 /**
826 * nand_get_device - [GENERIC] Get chip for selected access
827 * @mtd: MTD device structure
828 * @new_state: the state which is requested
829 *
830 * Get the device and lock it for exclusive access
831 */
832 static int
833 nand_get_device(struct mtd_info *mtd, int new_state)
834 {
835 struct nand_chip *chip = mtd_to_nand(mtd);
836 spinlock_t *lock = &chip->controller->lock;
837 wait_queue_head_t *wq = &chip->controller->wq;
838 DECLARE_WAITQUEUE(wait, current);
839 retry:
840 spin_lock(lock);
841
842 /* Hardware controller shared among independent devices */
843 if (!chip->controller->active)
844 chip->controller->active = chip;
845
846 if (chip->controller->active == chip && chip->state == FL_READY) {
847 chip->state = new_state;
848 spin_unlock(lock);
849 return 0;
850 }
851 if (new_state == FL_PM_SUSPENDED) {
852 if (chip->controller->active->state == FL_PM_SUSPENDED) {
853 chip->state = FL_PM_SUSPENDED;
854 spin_unlock(lock);
855 return 0;
856 }
857 }
858 set_current_state(TASK_UNINTERRUPTIBLE);
859 add_wait_queue(wq, &wait);
860 spin_unlock(lock);
861 schedule();
862 remove_wait_queue(wq, &wait);
863 goto retry;
864 }
865
866 /**
867 * panic_nand_wait - [GENERIC] wait until the command is done
868 * @mtd: MTD device structure
869 * @chip: NAND chip structure
870 * @timeo: timeout
871 *
872 * Wait for command done. This is a helper function for nand_wait used when
873 * we are in interrupt context. May happen when in panic and trying to write
874 * an oops through mtdoops.
875 */
876 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
877 unsigned long timeo)
878 {
879 int i;
880 for (i = 0; i < timeo; i++) {
881 if (chip->dev_ready) {
882 if (chip->dev_ready(mtd))
883 break;
884 } else {
885 if (chip->read_byte(mtd) & NAND_STATUS_READY)
886 break;
887 }
888 mdelay(1);
889 }
890 }
891
892 /**
893 * nand_wait - [DEFAULT] wait until the command is done
894 * @mtd: MTD device structure
895 * @chip: NAND chip structure
896 *
897 * Wait for command done. This applies to erase and program only.
898 */
899 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
900 {
901
902 int status;
903 unsigned long timeo = 400;
904
905 led_trigger_event(nand_led_trigger, LED_FULL);
906
907 /*
908 * Apply this short delay always to ensure that we do wait tWB in any
909 * case on any machine.
910 */
911 ndelay(100);
912
913 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
914
915 if (in_interrupt() || oops_in_progress)
916 panic_nand_wait(mtd, chip, timeo);
917 else {
918 timeo = jiffies + msecs_to_jiffies(timeo);
919 do {
920 if (chip->dev_ready) {
921 if (chip->dev_ready(mtd))
922 break;
923 } else {
924 if (chip->read_byte(mtd) & NAND_STATUS_READY)
925 break;
926 }
927 cond_resched();
928 } while (time_before(jiffies, timeo));
929 }
930 led_trigger_event(nand_led_trigger, LED_OFF);
931
932 status = (int)chip->read_byte(mtd);
933 /* This can happen if in case of timeout or buggy dev_ready */
934 WARN_ON(!(status & NAND_STATUS_READY));
935 return status;
936 }
937
938 /**
939 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
940 * @mtd: mtd info
941 * @ofs: offset to start unlock from
942 * @len: length to unlock
943 * @invert: when = 0, unlock the range of blocks within the lower and
944 * upper boundary address
945 * when = 1, unlock the range of blocks outside the boundaries
946 * of the lower and upper boundary address
947 *
948 * Returs unlock status.
949 */
950 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
951 uint64_t len, int invert)
952 {
953 int ret = 0;
954 int status, page;
955 struct nand_chip *chip = mtd_to_nand(mtd);
956
957 /* Submit address of first page to unlock */
958 page = ofs >> chip->page_shift;
959 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
960
961 /* Submit address of last page to unlock */
962 page = (ofs + len) >> chip->page_shift;
963 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
964 (page | invert) & chip->pagemask);
965
966 /* Call wait ready function */
967 status = chip->waitfunc(mtd, chip);
968 /* See if device thinks it succeeded */
969 if (status & NAND_STATUS_FAIL) {
970 pr_debug("%s: error status = 0x%08x\n",
971 __func__, status);
972 ret = -EIO;
973 }
974
975 return ret;
976 }
977
978 /**
979 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
980 * @mtd: mtd info
981 * @ofs: offset to start unlock from
982 * @len: length to unlock
983 *
984 * Returns unlock status.
985 */
986 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
987 {
988 int ret = 0;
989 int chipnr;
990 struct nand_chip *chip = mtd_to_nand(mtd);
991
992 pr_debug("%s: start = 0x%012llx, len = %llu\n",
993 __func__, (unsigned long long)ofs, len);
994
995 if (check_offs_len(mtd, ofs, len))
996 return -EINVAL;
997
998 /* Align to last block address if size addresses end of the device */
999 if (ofs + len == mtd->size)
1000 len -= mtd->erasesize;
1001
1002 nand_get_device(mtd, FL_UNLOCKING);
1003
1004 /* Shift to get chip number */
1005 chipnr = ofs >> chip->chip_shift;
1006
1007 chip->select_chip(mtd, chipnr);
1008
1009 /*
1010 * Reset the chip.
1011 * If we want to check the WP through READ STATUS and check the bit 7
1012 * we must reset the chip
1013 * some operation can also clear the bit 7 of status register
1014 * eg. erase/program a locked block
1015 */
1016 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1017
1018 /* Check, if it is write protected */
1019 if (nand_check_wp(mtd)) {
1020 pr_debug("%s: device is write protected!\n",
1021 __func__);
1022 ret = -EIO;
1023 goto out;
1024 }
1025
1026 ret = __nand_unlock(mtd, ofs, len, 0);
1027
1028 out:
1029 chip->select_chip(mtd, -1);
1030 nand_release_device(mtd);
1031
1032 return ret;
1033 }
1034 EXPORT_SYMBOL(nand_unlock);
1035
1036 /**
1037 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1038 * @mtd: mtd info
1039 * @ofs: offset to start unlock from
1040 * @len: length to unlock
1041 *
1042 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1043 * have this feature, but it allows only to lock all blocks, not for specified
1044 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1045 * now.
1046 *
1047 * Returns lock status.
1048 */
1049 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1050 {
1051 int ret = 0;
1052 int chipnr, status, page;
1053 struct nand_chip *chip = mtd_to_nand(mtd);
1054
1055 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1056 __func__, (unsigned long long)ofs, len);
1057
1058 if (check_offs_len(mtd, ofs, len))
1059 return -EINVAL;
1060
1061 nand_get_device(mtd, FL_LOCKING);
1062
1063 /* Shift to get chip number */
1064 chipnr = ofs >> chip->chip_shift;
1065
1066 chip->select_chip(mtd, chipnr);
1067
1068 /*
1069 * Reset the chip.
1070 * If we want to check the WP through READ STATUS and check the bit 7
1071 * we must reset the chip
1072 * some operation can also clear the bit 7 of status register
1073 * eg. erase/program a locked block
1074 */
1075 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1076
1077 /* Check, if it is write protected */
1078 if (nand_check_wp(mtd)) {
1079 pr_debug("%s: device is write protected!\n",
1080 __func__);
1081 status = MTD_ERASE_FAILED;
1082 ret = -EIO;
1083 goto out;
1084 }
1085
1086 /* Submit address of first page to lock */
1087 page = ofs >> chip->page_shift;
1088 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1089
1090 /* Call wait ready function */
1091 status = chip->waitfunc(mtd, chip);
1092 /* See if device thinks it succeeded */
1093 if (status & NAND_STATUS_FAIL) {
1094 pr_debug("%s: error status = 0x%08x\n",
1095 __func__, status);
1096 ret = -EIO;
1097 goto out;
1098 }
1099
1100 ret = __nand_unlock(mtd, ofs, len, 0x1);
1101
1102 out:
1103 chip->select_chip(mtd, -1);
1104 nand_release_device(mtd);
1105
1106 return ret;
1107 }
1108 EXPORT_SYMBOL(nand_lock);
1109
1110 /**
1111 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1112 * @buf: buffer to test
1113 * @len: buffer length
1114 * @bitflips_threshold: maximum number of bitflips
1115 *
1116 * Check if a buffer contains only 0xff, which means the underlying region
1117 * has been erased and is ready to be programmed.
1118 * The bitflips_threshold specify the maximum number of bitflips before
1119 * considering the region is not erased.
1120 * Note: The logic of this function has been extracted from the memweight
1121 * implementation, except that nand_check_erased_buf function exit before
1122 * testing the whole buffer if the number of bitflips exceed the
1123 * bitflips_threshold value.
1124 *
1125 * Returns a positive number of bitflips less than or equal to
1126 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1127 * threshold.
1128 */
1129 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1130 {
1131 const unsigned char *bitmap = buf;
1132 int bitflips = 0;
1133 int weight;
1134
1135 for (; len && ((uintptr_t)bitmap) % sizeof(long);
1136 len--, bitmap++) {
1137 weight = hweight8(*bitmap);
1138 bitflips += BITS_PER_BYTE - weight;
1139 if (unlikely(bitflips > bitflips_threshold))
1140 return -EBADMSG;
1141 }
1142
1143 for (; len >= sizeof(long);
1144 len -= sizeof(long), bitmap += sizeof(long)) {
1145 weight = hweight_long(*((unsigned long *)bitmap));
1146 bitflips += BITS_PER_LONG - weight;
1147 if (unlikely(bitflips > bitflips_threshold))
1148 return -EBADMSG;
1149 }
1150
1151 for (; len > 0; len--, bitmap++) {
1152 weight = hweight8(*bitmap);
1153 bitflips += BITS_PER_BYTE - weight;
1154 if (unlikely(bitflips > bitflips_threshold))
1155 return -EBADMSG;
1156 }
1157
1158 return bitflips;
1159 }
1160
1161 /**
1162 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1163 * 0xff data
1164 * @data: data buffer to test
1165 * @datalen: data length
1166 * @ecc: ECC buffer
1167 * @ecclen: ECC length
1168 * @extraoob: extra OOB buffer
1169 * @extraooblen: extra OOB length
1170 * @bitflips_threshold: maximum number of bitflips
1171 *
1172 * Check if a data buffer and its associated ECC and OOB data contains only
1173 * 0xff pattern, which means the underlying region has been erased and is
1174 * ready to be programmed.
1175 * The bitflips_threshold specify the maximum number of bitflips before
1176 * considering the region as not erased.
1177 *
1178 * Note:
1179 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1180 * different from the NAND page size. When fixing bitflips, ECC engines will
1181 * report the number of errors per chunk, and the NAND core infrastructure
1182 * expect you to return the maximum number of bitflips for the whole page.
1183 * This is why you should always use this function on a single chunk and
1184 * not on the whole page. After checking each chunk you should update your
1185 * max_bitflips value accordingly.
1186 * 2/ When checking for bitflips in erased pages you should not only check
1187 * the payload data but also their associated ECC data, because a user might
1188 * have programmed almost all bits to 1 but a few. In this case, we
1189 * shouldn't consider the chunk as erased, and checking ECC bytes prevent
1190 * this case.
1191 * 3/ The extraoob argument is optional, and should be used if some of your OOB
1192 * data are protected by the ECC engine.
1193 * It could also be used if you support subpages and want to attach some
1194 * extra OOB data to an ECC chunk.
1195 *
1196 * Returns a positive number of bitflips less than or equal to
1197 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1198 * threshold. In case of success, the passed buffers are filled with 0xff.
1199 */
1200 int nand_check_erased_ecc_chunk(void *data, int datalen,
1201 void *ecc, int ecclen,
1202 void *extraoob, int extraooblen,
1203 int bitflips_threshold)
1204 {
1205 int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1206
1207 data_bitflips = nand_check_erased_buf(data, datalen,
1208 bitflips_threshold);
1209 if (data_bitflips < 0)
1210 return data_bitflips;
1211
1212 bitflips_threshold -= data_bitflips;
1213
1214 ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1215 if (ecc_bitflips < 0)
1216 return ecc_bitflips;
1217
1218 bitflips_threshold -= ecc_bitflips;
1219
1220 extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1221 bitflips_threshold);
1222 if (extraoob_bitflips < 0)
1223 return extraoob_bitflips;
1224
1225 if (data_bitflips)
1226 memset(data, 0xff, datalen);
1227
1228 if (ecc_bitflips)
1229 memset(ecc, 0xff, ecclen);
1230
1231 if (extraoob_bitflips)
1232 memset(extraoob, 0xff, extraooblen);
1233
1234 return data_bitflips + ecc_bitflips + extraoob_bitflips;
1235 }
1236 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1237
1238 /**
1239 * nand_read_page_raw - [INTERN] read raw page data without ecc
1240 * @mtd: mtd info structure
1241 * @chip: nand chip info structure
1242 * @buf: buffer to store read data
1243 * @oob_required: caller requires OOB data read to chip->oob_poi
1244 * @page: page number to read
1245 *
1246 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1247 */
1248 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1249 uint8_t *buf, int oob_required, int page)
1250 {
1251 chip->read_buf(mtd, buf, mtd->writesize);
1252 if (oob_required)
1253 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1254 return 0;
1255 }
1256
1257 /**
1258 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1259 * @mtd: mtd info structure
1260 * @chip: nand chip info structure
1261 * @buf: buffer to store read data
1262 * @oob_required: caller requires OOB data read to chip->oob_poi
1263 * @page: page number to read
1264 *
1265 * We need a special oob layout and handling even when OOB isn't used.
1266 */
1267 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1268 struct nand_chip *chip, uint8_t *buf,
1269 int oob_required, int page)
1270 {
1271 int eccsize = chip->ecc.size;
1272 int eccbytes = chip->ecc.bytes;
1273 uint8_t *oob = chip->oob_poi;
1274 int steps, size;
1275
1276 for (steps = chip->ecc.steps; steps > 0; steps--) {
1277 chip->read_buf(mtd, buf, eccsize);
1278 buf += eccsize;
1279
1280 if (chip->ecc.prepad) {
1281 chip->read_buf(mtd, oob, chip->ecc.prepad);
1282 oob += chip->ecc.prepad;
1283 }
1284
1285 chip->read_buf(mtd, oob, eccbytes);
1286 oob += eccbytes;
1287
1288 if (chip->ecc.postpad) {
1289 chip->read_buf(mtd, oob, chip->ecc.postpad);
1290 oob += chip->ecc.postpad;
1291 }
1292 }
1293
1294 size = mtd->oobsize - (oob - chip->oob_poi);
1295 if (size)
1296 chip->read_buf(mtd, oob, size);
1297
1298 return 0;
1299 }
1300
1301 /**
1302 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1303 * @mtd: mtd info structure
1304 * @chip: nand chip info structure
1305 * @buf: buffer to store read data
1306 * @oob_required: caller requires OOB data read to chip->oob_poi
1307 * @page: page number to read
1308 */
1309 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1310 uint8_t *buf, int oob_required, int page)
1311 {
1312 int i, eccsize = chip->ecc.size;
1313 int eccbytes = chip->ecc.bytes;
1314 int eccsteps = chip->ecc.steps;
1315 uint8_t *p = buf;
1316 uint8_t *ecc_calc = chip->buffers->ecccalc;
1317 uint8_t *ecc_code = chip->buffers->ecccode;
1318 uint32_t *eccpos = chip->ecc.layout->eccpos;
1319 unsigned int max_bitflips = 0;
1320
1321 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1322
1323 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1324 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1325
1326 for (i = 0; i < chip->ecc.total; i++)
1327 ecc_code[i] = chip->oob_poi[eccpos[i]];
1328
1329 eccsteps = chip->ecc.steps;
1330 p = buf;
1331
1332 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1333 int stat;
1334
1335 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1336 if (stat < 0) {
1337 mtd->ecc_stats.failed++;
1338 } else {
1339 mtd->ecc_stats.corrected += stat;
1340 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1341 }
1342 }
1343 return max_bitflips;
1344 }
1345
1346 /**
1347 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1348 * @mtd: mtd info structure
1349 * @chip: nand chip info structure
1350 * @data_offs: offset of requested data within the page
1351 * @readlen: data length
1352 * @bufpoi: buffer to store read data
1353 * @page: page number to read
1354 */
1355 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1356 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1357 int page)
1358 {
1359 int start_step, end_step, num_steps;
1360 uint32_t *eccpos = chip->ecc.layout->eccpos;
1361 uint8_t *p;
1362 int data_col_addr, i, gaps = 0;
1363 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1364 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1365 int index;
1366 unsigned int max_bitflips = 0;
1367
1368 /* Column address within the page aligned to ECC size (256bytes) */
1369 start_step = data_offs / chip->ecc.size;
1370 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1371 num_steps = end_step - start_step + 1;
1372 index = start_step * chip->ecc.bytes;
1373
1374 /* Data size aligned to ECC ecc.size */
1375 datafrag_len = num_steps * chip->ecc.size;
1376 eccfrag_len = num_steps * chip->ecc.bytes;
1377
1378 data_col_addr = start_step * chip->ecc.size;
1379 /* If we read not a page aligned data */
1380 if (data_col_addr != 0)
1381 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1382
1383 p = bufpoi + data_col_addr;
1384 chip->read_buf(mtd, p, datafrag_len);
1385
1386 /* Calculate ECC */
1387 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1388 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1389
1390 /*
1391 * The performance is faster if we position offsets according to
1392 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1393 */
1394 for (i = 0; i < eccfrag_len - 1; i++) {
1395 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1396 gaps = 1;
1397 break;
1398 }
1399 }
1400 if (gaps) {
1401 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1402 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1403 } else {
1404 /*
1405 * Send the command to read the particular ECC bytes take care
1406 * about buswidth alignment in read_buf.
1407 */
1408 aligned_pos = eccpos[index] & ~(busw - 1);
1409 aligned_len = eccfrag_len;
1410 if (eccpos[index] & (busw - 1))
1411 aligned_len++;
1412 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1413 aligned_len++;
1414
1415 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1416 mtd->writesize + aligned_pos, -1);
1417 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1418 }
1419
1420 for (i = 0; i < eccfrag_len; i++)
1421 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1422
1423 p = bufpoi + data_col_addr;
1424 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1425 int stat;
1426
1427 stat = chip->ecc.correct(mtd, p,
1428 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1429 if (stat == -EBADMSG &&
1430 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1431 /* check for empty pages with bitflips */
1432 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1433 &chip->buffers->ecccode[i],
1434 chip->ecc.bytes,
1435 NULL, 0,
1436 chip->ecc.strength);
1437 }
1438
1439 if (stat < 0) {
1440 mtd->ecc_stats.failed++;
1441 } else {
1442 mtd->ecc_stats.corrected += stat;
1443 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1444 }
1445 }
1446 return max_bitflips;
1447 }
1448
1449 /**
1450 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1451 * @mtd: mtd info structure
1452 * @chip: nand chip info structure
1453 * @buf: buffer to store read data
1454 * @oob_required: caller requires OOB data read to chip->oob_poi
1455 * @page: page number to read
1456 *
1457 * Not for syndrome calculating ECC controllers which need a special oob layout.
1458 */
1459 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1460 uint8_t *buf, int oob_required, int page)
1461 {
1462 int i, eccsize = chip->ecc.size;
1463 int eccbytes = chip->ecc.bytes;
1464 int eccsteps = chip->ecc.steps;
1465 uint8_t *p = buf;
1466 uint8_t *ecc_calc = chip->buffers->ecccalc;
1467 uint8_t *ecc_code = chip->buffers->ecccode;
1468 uint32_t *eccpos = chip->ecc.layout->eccpos;
1469 unsigned int max_bitflips = 0;
1470
1471 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1472 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1473 chip->read_buf(mtd, p, eccsize);
1474 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1475 }
1476 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1477
1478 for (i = 0; i < chip->ecc.total; i++)
1479 ecc_code[i] = chip->oob_poi[eccpos[i]];
1480
1481 eccsteps = chip->ecc.steps;
1482 p = buf;
1483
1484 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1485 int stat;
1486
1487 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1488 if (stat == -EBADMSG &&
1489 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1490 /* check for empty pages with bitflips */
1491 stat = nand_check_erased_ecc_chunk(p, eccsize,
1492 &ecc_code[i], eccbytes,
1493 NULL, 0,
1494 chip->ecc.strength);
1495 }
1496
1497 if (stat < 0) {
1498 mtd->ecc_stats.failed++;
1499 } else {
1500 mtd->ecc_stats.corrected += stat;
1501 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1502 }
1503 }
1504 return max_bitflips;
1505 }
1506
1507 /**
1508 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1509 * @mtd: mtd info structure
1510 * @chip: nand chip info structure
1511 * @buf: buffer to store read data
1512 * @oob_required: caller requires OOB data read to chip->oob_poi
1513 * @page: page number to read
1514 *
1515 * Hardware ECC for large page chips, require OOB to be read first. For this
1516 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1517 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1518 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1519 * the data area, by overwriting the NAND manufacturer bad block markings.
1520 */
1521 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1522 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1523 {
1524 int i, eccsize = chip->ecc.size;
1525 int eccbytes = chip->ecc.bytes;
1526 int eccsteps = chip->ecc.steps;
1527 uint8_t *p = buf;
1528 uint8_t *ecc_code = chip->buffers->ecccode;
1529 uint32_t *eccpos = chip->ecc.layout->eccpos;
1530 uint8_t *ecc_calc = chip->buffers->ecccalc;
1531 unsigned int max_bitflips = 0;
1532
1533 /* Read the OOB area first */
1534 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1535 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1536 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1537
1538 for (i = 0; i < chip->ecc.total; i++)
1539 ecc_code[i] = chip->oob_poi[eccpos[i]];
1540
1541 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1542 int stat;
1543
1544 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1545 chip->read_buf(mtd, p, eccsize);
1546 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1547
1548 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1549 if (stat == -EBADMSG &&
1550 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1551 /* check for empty pages with bitflips */
1552 stat = nand_check_erased_ecc_chunk(p, eccsize,
1553 &ecc_code[i], eccbytes,
1554 NULL, 0,
1555 chip->ecc.strength);
1556 }
1557
1558 if (stat < 0) {
1559 mtd->ecc_stats.failed++;
1560 } else {
1561 mtd->ecc_stats.corrected += stat;
1562 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1563 }
1564 }
1565 return max_bitflips;
1566 }
1567
1568 /**
1569 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1570 * @mtd: mtd info structure
1571 * @chip: nand chip info structure
1572 * @buf: buffer to store read data
1573 * @oob_required: caller requires OOB data read to chip->oob_poi
1574 * @page: page number to read
1575 *
1576 * The hw generator calculates the error syndrome automatically. Therefore we
1577 * need a special oob layout and handling.
1578 */
1579 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1580 uint8_t *buf, int oob_required, int page)
1581 {
1582 int i, eccsize = chip->ecc.size;
1583 int eccbytes = chip->ecc.bytes;
1584 int eccsteps = chip->ecc.steps;
1585 int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1586 uint8_t *p = buf;
1587 uint8_t *oob = chip->oob_poi;
1588 unsigned int max_bitflips = 0;
1589
1590 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1591 int stat;
1592
1593 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1594 chip->read_buf(mtd, p, eccsize);
1595
1596 if (chip->ecc.prepad) {
1597 chip->read_buf(mtd, oob, chip->ecc.prepad);
1598 oob += chip->ecc.prepad;
1599 }
1600
1601 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1602 chip->read_buf(mtd, oob, eccbytes);
1603 stat = chip->ecc.correct(mtd, p, oob, NULL);
1604
1605 oob += eccbytes;
1606
1607 if (chip->ecc.postpad) {
1608 chip->read_buf(mtd, oob, chip->ecc.postpad);
1609 oob += chip->ecc.postpad;
1610 }
1611
1612 if (stat == -EBADMSG &&
1613 (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1614 /* check for empty pages with bitflips */
1615 stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1616 oob - eccpadbytes,
1617 eccpadbytes,
1618 NULL, 0,
1619 chip->ecc.strength);
1620 }
1621
1622 if (stat < 0) {
1623 mtd->ecc_stats.failed++;
1624 } else {
1625 mtd->ecc_stats.corrected += stat;
1626 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1627 }
1628 }
1629
1630 /* Calculate remaining oob bytes */
1631 i = mtd->oobsize - (oob - chip->oob_poi);
1632 if (i)
1633 chip->read_buf(mtd, oob, i);
1634
1635 return max_bitflips;
1636 }
1637
1638 /**
1639 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1640 * @chip: nand chip structure
1641 * @oob: oob destination address
1642 * @ops: oob ops structure
1643 * @len: size of oob to transfer
1644 */
1645 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1646 struct mtd_oob_ops *ops, size_t len)
1647 {
1648 switch (ops->mode) {
1649
1650 case MTD_OPS_PLACE_OOB:
1651 case MTD_OPS_RAW:
1652 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1653 return oob + len;
1654
1655 case MTD_OPS_AUTO_OOB: {
1656 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1657 uint32_t boffs = 0, roffs = ops->ooboffs;
1658 size_t bytes = 0;
1659
1660 for (; free->length && len; free++, len -= bytes) {
1661 /* Read request not from offset 0? */
1662 if (unlikely(roffs)) {
1663 if (roffs >= free->length) {
1664 roffs -= free->length;
1665 continue;
1666 }
1667 boffs = free->offset + roffs;
1668 bytes = min_t(size_t, len,
1669 (free->length - roffs));
1670 roffs = 0;
1671 } else {
1672 bytes = min_t(size_t, len, free->length);
1673 boffs = free->offset;
1674 }
1675 memcpy(oob, chip->oob_poi + boffs, bytes);
1676 oob += bytes;
1677 }
1678 return oob;
1679 }
1680 default:
1681 BUG();
1682 }
1683 return NULL;
1684 }
1685
1686 /**
1687 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1688 * @mtd: MTD device structure
1689 * @retry_mode: the retry mode to use
1690 *
1691 * Some vendors supply a special command to shift the Vt threshold, to be used
1692 * when there are too many bitflips in a page (i.e., ECC error). After setting
1693 * a new threshold, the host should retry reading the page.
1694 */
1695 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1696 {
1697 struct nand_chip *chip = mtd_to_nand(mtd);
1698
1699 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1700
1701 if (retry_mode >= chip->read_retries)
1702 return -EINVAL;
1703
1704 if (!chip->setup_read_retry)
1705 return -EOPNOTSUPP;
1706
1707 return chip->setup_read_retry(mtd, retry_mode);
1708 }
1709
1710 /**
1711 * nand_do_read_ops - [INTERN] Read data with ECC
1712 * @mtd: MTD device structure
1713 * @from: offset to read from
1714 * @ops: oob ops structure
1715 *
1716 * Internal function. Called with chip held.
1717 */
1718 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1719 struct mtd_oob_ops *ops)
1720 {
1721 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1722 struct nand_chip *chip = mtd_to_nand(mtd);
1723 int ret = 0;
1724 uint32_t readlen = ops->len;
1725 uint32_t oobreadlen = ops->ooblen;
1726 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1727 mtd->oobavail : mtd->oobsize;
1728
1729 uint8_t *bufpoi, *oob, *buf;
1730 int use_bufpoi;
1731 unsigned int max_bitflips = 0;
1732 int retry_mode = 0;
1733 bool ecc_fail = false;
1734
1735 chipnr = (int)(from >> chip->chip_shift);
1736 chip->select_chip(mtd, chipnr);
1737
1738 realpage = (int)(from >> chip->page_shift);
1739 page = realpage & chip->pagemask;
1740
1741 col = (int)(from & (mtd->writesize - 1));
1742
1743 buf = ops->datbuf;
1744 oob = ops->oobbuf;
1745 oob_required = oob ? 1 : 0;
1746
1747 while (1) {
1748 unsigned int ecc_failures = mtd->ecc_stats.failed;
1749
1750 bytes = min(mtd->writesize - col, readlen);
1751 aligned = (bytes == mtd->writesize);
1752
1753 if (!aligned)
1754 use_bufpoi = 1;
1755 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1756 use_bufpoi = !virt_addr_valid(buf);
1757 else
1758 use_bufpoi = 0;
1759
1760 /* Is the current page in the buffer? */
1761 if (realpage != chip->pagebuf || oob) {
1762 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1763
1764 if (use_bufpoi && aligned)
1765 pr_debug("%s: using read bounce buffer for buf@%p\n",
1766 __func__, buf);
1767
1768 read_retry:
1769 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1770
1771 /*
1772 * Now read the page into the buffer. Absent an error,
1773 * the read methods return max bitflips per ecc step.
1774 */
1775 if (unlikely(ops->mode == MTD_OPS_RAW))
1776 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1777 oob_required,
1778 page);
1779 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1780 !oob)
1781 ret = chip->ecc.read_subpage(mtd, chip,
1782 col, bytes, bufpoi,
1783 page);
1784 else
1785 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1786 oob_required, page);
1787 if (ret < 0) {
1788 if (use_bufpoi)
1789 /* Invalidate page cache */
1790 chip->pagebuf = -1;
1791 break;
1792 }
1793
1794 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1795
1796 /* Transfer not aligned data */
1797 if (use_bufpoi) {
1798 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1799 !(mtd->ecc_stats.failed - ecc_failures) &&
1800 (ops->mode != MTD_OPS_RAW)) {
1801 chip->pagebuf = realpage;
1802 chip->pagebuf_bitflips = ret;
1803 } else {
1804 /* Invalidate page cache */
1805 chip->pagebuf = -1;
1806 }
1807 memcpy(buf, chip->buffers->databuf + col, bytes);
1808 }
1809
1810 if (unlikely(oob)) {
1811 int toread = min(oobreadlen, max_oobsize);
1812
1813 if (toread) {
1814 oob = nand_transfer_oob(chip,
1815 oob, ops, toread);
1816 oobreadlen -= toread;
1817 }
1818 }
1819
1820 if (chip->options & NAND_NEED_READRDY) {
1821 /* Apply delay or wait for ready/busy pin */
1822 if (!chip->dev_ready)
1823 udelay(chip->chip_delay);
1824 else
1825 nand_wait_ready(mtd);
1826 }
1827
1828 if (mtd->ecc_stats.failed - ecc_failures) {
1829 if (retry_mode + 1 < chip->read_retries) {
1830 retry_mode++;
1831 ret = nand_setup_read_retry(mtd,
1832 retry_mode);
1833 if (ret < 0)
1834 break;
1835
1836 /* Reset failures; retry */
1837 mtd->ecc_stats.failed = ecc_failures;
1838 goto read_retry;
1839 } else {
1840 /* No more retry modes; real failure */
1841 ecc_fail = true;
1842 }
1843 }
1844
1845 buf += bytes;
1846 } else {
1847 memcpy(buf, chip->buffers->databuf + col, bytes);
1848 buf += bytes;
1849 max_bitflips = max_t(unsigned int, max_bitflips,
1850 chip->pagebuf_bitflips);
1851 }
1852
1853 readlen -= bytes;
1854
1855 /* Reset to retry mode 0 */
1856 if (retry_mode) {
1857 ret = nand_setup_read_retry(mtd, 0);
1858 if (ret < 0)
1859 break;
1860 retry_mode = 0;
1861 }
1862
1863 if (!readlen)
1864 break;
1865
1866 /* For subsequent reads align to page boundary */
1867 col = 0;
1868 /* Increment page address */
1869 realpage++;
1870
1871 page = realpage & chip->pagemask;
1872 /* Check, if we cross a chip boundary */
1873 if (!page) {
1874 chipnr++;
1875 chip->select_chip(mtd, -1);
1876 chip->select_chip(mtd, chipnr);
1877 }
1878 }
1879 chip->select_chip(mtd, -1);
1880
1881 ops->retlen = ops->len - (size_t) readlen;
1882 if (oob)
1883 ops->oobretlen = ops->ooblen - oobreadlen;
1884
1885 if (ret < 0)
1886 return ret;
1887
1888 if (ecc_fail)
1889 return -EBADMSG;
1890
1891 return max_bitflips;
1892 }
1893
1894 /**
1895 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1896 * @mtd: MTD device structure
1897 * @from: offset to read from
1898 * @len: number of bytes to read
1899 * @retlen: pointer to variable to store the number of read bytes
1900 * @buf: the databuffer to put data
1901 *
1902 * Get hold of the chip and call nand_do_read.
1903 */
1904 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1905 size_t *retlen, uint8_t *buf)
1906 {
1907 struct mtd_oob_ops ops;
1908 int ret;
1909
1910 nand_get_device(mtd, FL_READING);
1911 memset(&ops, 0, sizeof(ops));
1912 ops.len = len;
1913 ops.datbuf = buf;
1914 ops.mode = MTD_OPS_PLACE_OOB;
1915 ret = nand_do_read_ops(mtd, from, &ops);
1916 *retlen = ops.retlen;
1917 nand_release_device(mtd);
1918 return ret;
1919 }
1920
1921 /**
1922 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1923 * @mtd: mtd info structure
1924 * @chip: nand chip info structure
1925 * @page: page number to read
1926 */
1927 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1928 int page)
1929 {
1930 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1931 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1932 return 0;
1933 }
1934
1935 /**
1936 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1937 * with syndromes
1938 * @mtd: mtd info structure
1939 * @chip: nand chip info structure
1940 * @page: page number to read
1941 */
1942 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1943 int page)
1944 {
1945 int length = mtd->oobsize;
1946 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1947 int eccsize = chip->ecc.size;
1948 uint8_t *bufpoi = chip->oob_poi;
1949 int i, toread, sndrnd = 0, pos;
1950
1951 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1952 for (i = 0; i < chip->ecc.steps; i++) {
1953 if (sndrnd) {
1954 pos = eccsize + i * (eccsize + chunk);
1955 if (mtd->writesize > 512)
1956 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1957 else
1958 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1959 } else
1960 sndrnd = 1;
1961 toread = min_t(int, length, chunk);
1962 chip->read_buf(mtd, bufpoi, toread);
1963 bufpoi += toread;
1964 length -= toread;
1965 }
1966 if (length > 0)
1967 chip->read_buf(mtd, bufpoi, length);
1968
1969 return 0;
1970 }
1971
1972 /**
1973 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1974 * @mtd: mtd info structure
1975 * @chip: nand chip info structure
1976 * @page: page number to write
1977 */
1978 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1979 int page)
1980 {
1981 int status = 0;
1982 const uint8_t *buf = chip->oob_poi;
1983 int length = mtd->oobsize;
1984
1985 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1986 chip->write_buf(mtd, buf, length);
1987 /* Send command to program the OOB data */
1988 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1989
1990 status = chip->waitfunc(mtd, chip);
1991
1992 return status & NAND_STATUS_FAIL ? -EIO : 0;
1993 }
1994
1995 /**
1996 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1997 * with syndrome - only for large page flash
1998 * @mtd: mtd info structure
1999 * @chip: nand chip info structure
2000 * @page: page number to write
2001 */
2002 static int nand_write_oob_syndrome(struct mtd_info *mtd,
2003 struct nand_chip *chip, int page)
2004 {
2005 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
2006 int eccsize = chip->ecc.size, length = mtd->oobsize;
2007 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
2008 const uint8_t *bufpoi = chip->oob_poi;
2009
2010 /*
2011 * data-ecc-data-ecc ... ecc-oob
2012 * or
2013 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
2014 */
2015 if (!chip->ecc.prepad && !chip->ecc.postpad) {
2016 pos = steps * (eccsize + chunk);
2017 steps = 0;
2018 } else
2019 pos = eccsize;
2020
2021 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
2022 for (i = 0; i < steps; i++) {
2023 if (sndcmd) {
2024 if (mtd->writesize <= 512) {
2025 uint32_t fill = 0xFFFFFFFF;
2026
2027 len = eccsize;
2028 while (len > 0) {
2029 int num = min_t(int, len, 4);
2030 chip->write_buf(mtd, (uint8_t *)&fill,
2031 num);
2032 len -= num;
2033 }
2034 } else {
2035 pos = eccsize + i * (eccsize + chunk);
2036 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
2037 }
2038 } else
2039 sndcmd = 1;
2040 len = min_t(int, length, chunk);
2041 chip->write_buf(mtd, bufpoi, len);
2042 bufpoi += len;
2043 length -= len;
2044 }
2045 if (length > 0)
2046 chip->write_buf(mtd, bufpoi, length);
2047
2048 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2049 status = chip->waitfunc(mtd, chip);
2050
2051 return status & NAND_STATUS_FAIL ? -EIO : 0;
2052 }
2053
2054 /**
2055 * nand_do_read_oob - [INTERN] NAND read out-of-band
2056 * @mtd: MTD device structure
2057 * @from: offset to read from
2058 * @ops: oob operations description structure
2059 *
2060 * NAND read out-of-band data from the spare area.
2061 */
2062 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2063 struct mtd_oob_ops *ops)
2064 {
2065 int page, realpage, chipnr;
2066 struct nand_chip *chip = mtd_to_nand(mtd);
2067 struct mtd_ecc_stats stats;
2068 int readlen = ops->ooblen;
2069 int len;
2070 uint8_t *buf = ops->oobbuf;
2071 int ret = 0;
2072
2073 pr_debug("%s: from = 0x%08Lx, len = %i\n",
2074 __func__, (unsigned long long)from, readlen);
2075
2076 stats = mtd->ecc_stats;
2077
2078 if (ops->mode == MTD_OPS_AUTO_OOB)
2079 len = chip->ecc.layout->oobavail;
2080 else
2081 len = mtd->oobsize;
2082
2083 if (unlikely(ops->ooboffs >= len)) {
2084 pr_debug("%s: attempt to start read outside oob\n",
2085 __func__);
2086 return -EINVAL;
2087 }
2088
2089 /* Do not allow reads past end of device */
2090 if (unlikely(from >= mtd->size ||
2091 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2092 (from >> chip->page_shift)) * len)) {
2093 pr_debug("%s: attempt to read beyond end of device\n",
2094 __func__);
2095 return -EINVAL;
2096 }
2097
2098 chipnr = (int)(from >> chip->chip_shift);
2099 chip->select_chip(mtd, chipnr);
2100
2101 /* Shift to get page */
2102 realpage = (int)(from >> chip->page_shift);
2103 page = realpage & chip->pagemask;
2104
2105 while (1) {
2106 if (ops->mode == MTD_OPS_RAW)
2107 ret = chip->ecc.read_oob_raw(mtd, chip, page);
2108 else
2109 ret = chip->ecc.read_oob(mtd, chip, page);
2110
2111 if (ret < 0)
2112 break;
2113
2114 len = min(len, readlen);
2115 buf = nand_transfer_oob(chip, buf, ops, len);
2116
2117 if (chip->options & NAND_NEED_READRDY) {
2118 /* Apply delay or wait for ready/busy pin */
2119 if (!chip->dev_ready)
2120 udelay(chip->chip_delay);
2121 else
2122 nand_wait_ready(mtd);
2123 }
2124
2125 readlen -= len;
2126 if (!readlen)
2127 break;
2128
2129 /* Increment page address */
2130 realpage++;
2131
2132 page = realpage & chip->pagemask;
2133 /* Check, if we cross a chip boundary */
2134 if (!page) {
2135 chipnr++;
2136 chip->select_chip(mtd, -1);
2137 chip->select_chip(mtd, chipnr);
2138 }
2139 }
2140 chip->select_chip(mtd, -1);
2141
2142 ops->oobretlen = ops->ooblen - readlen;
2143
2144 if (ret < 0)
2145 return ret;
2146
2147 if (mtd->ecc_stats.failed - stats.failed)
2148 return -EBADMSG;
2149
2150 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2151 }
2152
2153 /**
2154 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2155 * @mtd: MTD device structure
2156 * @from: offset to read from
2157 * @ops: oob operation description structure
2158 *
2159 * NAND read data and/or out-of-band data.
2160 */
2161 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2162 struct mtd_oob_ops *ops)
2163 {
2164 int ret = -ENOTSUPP;
2165
2166 ops->retlen = 0;
2167
2168 /* Do not allow reads past end of device */
2169 if (ops->datbuf && (from + ops->len) > mtd->size) {
2170 pr_debug("%s: attempt to read beyond end of device\n",
2171 __func__);
2172 return -EINVAL;
2173 }
2174
2175 nand_get_device(mtd, FL_READING);
2176
2177 switch (ops->mode) {
2178 case MTD_OPS_PLACE_OOB:
2179 case MTD_OPS_AUTO_OOB:
2180 case MTD_OPS_RAW:
2181 break;
2182
2183 default:
2184 goto out;
2185 }
2186
2187 if (!ops->datbuf)
2188 ret = nand_do_read_oob(mtd, from, ops);
2189 else
2190 ret = nand_do_read_ops(mtd, from, ops);
2191
2192 out:
2193 nand_release_device(mtd);
2194 return ret;
2195 }
2196
2197
2198 /**
2199 * nand_write_page_raw - [INTERN] raw page write function
2200 * @mtd: mtd info structure
2201 * @chip: nand chip info structure
2202 * @buf: data buffer
2203 * @oob_required: must write chip->oob_poi to OOB
2204 * @page: page number to write
2205 *
2206 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2207 */
2208 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2209 const uint8_t *buf, int oob_required, int page)
2210 {
2211 chip->write_buf(mtd, buf, mtd->writesize);
2212 if (oob_required)
2213 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2214
2215 return 0;
2216 }
2217
2218 /**
2219 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2220 * @mtd: mtd info structure
2221 * @chip: nand chip info structure
2222 * @buf: data buffer
2223 * @oob_required: must write chip->oob_poi to OOB
2224 * @page: page number to write
2225 *
2226 * We need a special oob layout and handling even when ECC isn't checked.
2227 */
2228 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2229 struct nand_chip *chip,
2230 const uint8_t *buf, int oob_required,
2231 int page)
2232 {
2233 int eccsize = chip->ecc.size;
2234 int eccbytes = chip->ecc.bytes;
2235 uint8_t *oob = chip->oob_poi;
2236 int steps, size;
2237
2238 for (steps = chip->ecc.steps; steps > 0; steps--) {
2239 chip->write_buf(mtd, buf, eccsize);
2240 buf += eccsize;
2241
2242 if (chip->ecc.prepad) {
2243 chip->write_buf(mtd, oob, chip->ecc.prepad);
2244 oob += chip->ecc.prepad;
2245 }
2246
2247 chip->write_buf(mtd, oob, eccbytes);
2248 oob += eccbytes;
2249
2250 if (chip->ecc.postpad) {
2251 chip->write_buf(mtd, oob, chip->ecc.postpad);
2252 oob += chip->ecc.postpad;
2253 }
2254 }
2255
2256 size = mtd->oobsize - (oob - chip->oob_poi);
2257 if (size)
2258 chip->write_buf(mtd, oob, size);
2259
2260 return 0;
2261 }
2262 /**
2263 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2264 * @mtd: mtd info structure
2265 * @chip: nand chip info structure
2266 * @buf: data buffer
2267 * @oob_required: must write chip->oob_poi to OOB
2268 * @page: page number to write
2269 */
2270 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2271 const uint8_t *buf, int oob_required,
2272 int page)
2273 {
2274 int i, eccsize = chip->ecc.size;
2275 int eccbytes = chip->ecc.bytes;
2276 int eccsteps = chip->ecc.steps;
2277 uint8_t *ecc_calc = chip->buffers->ecccalc;
2278 const uint8_t *p = buf;
2279 uint32_t *eccpos = chip->ecc.layout->eccpos;
2280
2281 /* Software ECC calculation */
2282 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2283 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2284
2285 for (i = 0; i < chip->ecc.total; i++)
2286 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2287
2288 return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2289 }
2290
2291 /**
2292 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2293 * @mtd: mtd info structure
2294 * @chip: nand chip info structure
2295 * @buf: data buffer
2296 * @oob_required: must write chip->oob_poi to OOB
2297 * @page: page number to write
2298 */
2299 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2300 const uint8_t *buf, int oob_required,
2301 int page)
2302 {
2303 int i, eccsize = chip->ecc.size;
2304 int eccbytes = chip->ecc.bytes;
2305 int eccsteps = chip->ecc.steps;
2306 uint8_t *ecc_calc = chip->buffers->ecccalc;
2307 const uint8_t *p = buf;
2308 uint32_t *eccpos = chip->ecc.layout->eccpos;
2309
2310 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2311 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2312 chip->write_buf(mtd, p, eccsize);
2313 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2314 }
2315
2316 for (i = 0; i < chip->ecc.total; i++)
2317 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2318
2319 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2320
2321 return 0;
2322 }
2323
2324
2325 /**
2326 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2327 * @mtd: mtd info structure
2328 * @chip: nand chip info structure
2329 * @offset: column address of subpage within the page
2330 * @data_len: data length
2331 * @buf: data buffer
2332 * @oob_required: must write chip->oob_poi to OOB
2333 * @page: page number to write
2334 */
2335 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2336 struct nand_chip *chip, uint32_t offset,
2337 uint32_t data_len, const uint8_t *buf,
2338 int oob_required, int page)
2339 {
2340 uint8_t *oob_buf = chip->oob_poi;
2341 uint8_t *ecc_calc = chip->buffers->ecccalc;
2342 int ecc_size = chip->ecc.size;
2343 int ecc_bytes = chip->ecc.bytes;
2344 int ecc_steps = chip->ecc.steps;
2345 uint32_t *eccpos = chip->ecc.layout->eccpos;
2346 uint32_t start_step = offset / ecc_size;
2347 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2348 int oob_bytes = mtd->oobsize / ecc_steps;
2349 int step, i;
2350
2351 for (step = 0; step < ecc_steps; step++) {
2352 /* configure controller for WRITE access */
2353 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2354
2355 /* write data (untouched subpages already masked by 0xFF) */
2356 chip->write_buf(mtd, buf, ecc_size);
2357
2358 /* mask ECC of un-touched subpages by padding 0xFF */
2359 if ((step < start_step) || (step > end_step))
2360 memset(ecc_calc, 0xff, ecc_bytes);
2361 else
2362 chip->ecc.calculate(mtd, buf, ecc_calc);
2363
2364 /* mask OOB of un-touched subpages by padding 0xFF */
2365 /* if oob_required, preserve OOB metadata of written subpage */
2366 if (!oob_required || (step < start_step) || (step > end_step))
2367 memset(oob_buf, 0xff, oob_bytes);
2368
2369 buf += ecc_size;
2370 ecc_calc += ecc_bytes;
2371 oob_buf += oob_bytes;
2372 }
2373
2374 /* copy calculated ECC for whole page to chip->buffer->oob */
2375 /* this include masked-value(0xFF) for unwritten subpages */
2376 ecc_calc = chip->buffers->ecccalc;
2377 for (i = 0; i < chip->ecc.total; i++)
2378 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2379
2380 /* write OOB buffer to NAND device */
2381 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2382
2383 return 0;
2384 }
2385
2386
2387 /**
2388 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2389 * @mtd: mtd info structure
2390 * @chip: nand chip info structure
2391 * @buf: data buffer
2392 * @oob_required: must write chip->oob_poi to OOB
2393 * @page: page number to write
2394 *
2395 * The hw generator calculates the error syndrome automatically. Therefore we
2396 * need a special oob layout and handling.
2397 */
2398 static int nand_write_page_syndrome(struct mtd_info *mtd,
2399 struct nand_chip *chip,
2400 const uint8_t *buf, int oob_required,
2401 int page)
2402 {
2403 int i, eccsize = chip->ecc.size;
2404 int eccbytes = chip->ecc.bytes;
2405 int eccsteps = chip->ecc.steps;
2406 const uint8_t *p = buf;
2407 uint8_t *oob = chip->oob_poi;
2408
2409 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2410
2411 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2412 chip->write_buf(mtd, p, eccsize);
2413
2414 if (chip->ecc.prepad) {
2415 chip->write_buf(mtd, oob, chip->ecc.prepad);
2416 oob += chip->ecc.prepad;
2417 }
2418
2419 chip->ecc.calculate(mtd, p, oob);
2420 chip->write_buf(mtd, oob, eccbytes);
2421 oob += eccbytes;
2422
2423 if (chip->ecc.postpad) {
2424 chip->write_buf(mtd, oob, chip->ecc.postpad);
2425 oob += chip->ecc.postpad;
2426 }
2427 }
2428
2429 /* Calculate remaining oob bytes */
2430 i = mtd->oobsize - (oob - chip->oob_poi);
2431 if (i)
2432 chip->write_buf(mtd, oob, i);
2433
2434 return 0;
2435 }
2436
2437 /**
2438 * nand_write_page - [REPLACEABLE] write one page
2439 * @mtd: MTD device structure
2440 * @chip: NAND chip descriptor
2441 * @offset: address offset within the page
2442 * @data_len: length of actual data to be written
2443 * @buf: the data to write
2444 * @oob_required: must write chip->oob_poi to OOB
2445 * @page: page number to write
2446 * @cached: cached programming
2447 * @raw: use _raw version of write_page
2448 */
2449 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2450 uint32_t offset, int data_len, const uint8_t *buf,
2451 int oob_required, int page, int cached, int raw)
2452 {
2453 int status, subpage;
2454
2455 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2456 chip->ecc.write_subpage)
2457 subpage = offset || (data_len < mtd->writesize);
2458 else
2459 subpage = 0;
2460
2461 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2462
2463 if (unlikely(raw))
2464 status = chip->ecc.write_page_raw(mtd, chip, buf,
2465 oob_required, page);
2466 else if (subpage)
2467 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2468 buf, oob_required, page);
2469 else
2470 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2471 page);
2472
2473 if (status < 0)
2474 return status;
2475
2476 /*
2477 * Cached progamming disabled for now. Not sure if it's worth the
2478 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2479 */
2480 cached = 0;
2481
2482 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2483
2484 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2485 status = chip->waitfunc(mtd, chip);
2486 /*
2487 * See if operation failed and additional status checks are
2488 * available.
2489 */
2490 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2491 status = chip->errstat(mtd, chip, FL_WRITING, status,
2492 page);
2493
2494 if (status & NAND_STATUS_FAIL)
2495 return -EIO;
2496 } else {
2497 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2498 status = chip->waitfunc(mtd, chip);
2499 }
2500
2501 return 0;
2502 }
2503
2504 /**
2505 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2506 * @mtd: MTD device structure
2507 * @oob: oob data buffer
2508 * @len: oob data write length
2509 * @ops: oob ops structure
2510 */
2511 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2512 struct mtd_oob_ops *ops)
2513 {
2514 struct nand_chip *chip = mtd_to_nand(mtd);
2515
2516 /*
2517 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2518 * data from a previous OOB read.
2519 */
2520 memset(chip->oob_poi, 0xff, mtd->oobsize);
2521
2522 switch (ops->mode) {
2523
2524 case MTD_OPS_PLACE_OOB:
2525 case MTD_OPS_RAW:
2526 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2527 return oob + len;
2528
2529 case MTD_OPS_AUTO_OOB: {
2530 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2531 uint32_t boffs = 0, woffs = ops->ooboffs;
2532 size_t bytes = 0;
2533
2534 for (; free->length && len; free++, len -= bytes) {
2535 /* Write request not from offset 0? */
2536 if (unlikely(woffs)) {
2537 if (woffs >= free->length) {
2538 woffs -= free->length;
2539 continue;
2540 }
2541 boffs = free->offset + woffs;
2542 bytes = min_t(size_t, len,
2543 (free->length - woffs));
2544 woffs = 0;
2545 } else {
2546 bytes = min_t(size_t, len, free->length);
2547 boffs = free->offset;
2548 }
2549 memcpy(chip->oob_poi + boffs, oob, bytes);
2550 oob += bytes;
2551 }
2552 return oob;
2553 }
2554 default:
2555 BUG();
2556 }
2557 return NULL;
2558 }
2559
2560 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2561
2562 /**
2563 * nand_do_write_ops - [INTERN] NAND write with ECC
2564 * @mtd: MTD device structure
2565 * @to: offset to write to
2566 * @ops: oob operations description structure
2567 *
2568 * NAND write with ECC.
2569 */
2570 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2571 struct mtd_oob_ops *ops)
2572 {
2573 int chipnr, realpage, page, blockmask, column;
2574 struct nand_chip *chip = mtd_to_nand(mtd);
2575 uint32_t writelen = ops->len;
2576
2577 uint32_t oobwritelen = ops->ooblen;
2578 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2579 mtd->oobavail : mtd->oobsize;
2580
2581 uint8_t *oob = ops->oobbuf;
2582 uint8_t *buf = ops->datbuf;
2583 int ret;
2584 int oob_required = oob ? 1 : 0;
2585
2586 ops->retlen = 0;
2587 if (!writelen)
2588 return 0;
2589
2590 /* Reject writes, which are not page aligned */
2591 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2592 pr_notice("%s: attempt to write non page aligned data\n",
2593 __func__);
2594 return -EINVAL;
2595 }
2596
2597 column = to & (mtd->writesize - 1);
2598
2599 chipnr = (int)(to >> chip->chip_shift);
2600 chip->select_chip(mtd, chipnr);
2601
2602 /* Check, if it is write protected */
2603 if (nand_check_wp(mtd)) {
2604 ret = -EIO;
2605 goto err_out;
2606 }
2607
2608 realpage = (int)(to >> chip->page_shift);
2609 page = realpage & chip->pagemask;
2610 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2611
2612 /* Invalidate the page cache, when we write to the cached page */
2613 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2614 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2615 chip->pagebuf = -1;
2616
2617 /* Don't allow multipage oob writes with offset */
2618 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2619 ret = -EINVAL;
2620 goto err_out;
2621 }
2622
2623 while (1) {
2624 int bytes = mtd->writesize;
2625 int cached = writelen > bytes && page != blockmask;
2626 uint8_t *wbuf = buf;
2627 int use_bufpoi;
2628 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2629
2630 if (part_pagewr)
2631 use_bufpoi = 1;
2632 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2633 use_bufpoi = !virt_addr_valid(buf);
2634 else
2635 use_bufpoi = 0;
2636
2637 /* Partial page write?, or need to use bounce buffer */
2638 if (use_bufpoi) {
2639 pr_debug("%s: using write bounce buffer for buf@%p\n",
2640 __func__, buf);
2641 cached = 0;
2642 if (part_pagewr)
2643 bytes = min_t(int, bytes - column, writelen);
2644 chip->pagebuf = -1;
2645 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2646 memcpy(&chip->buffers->databuf[column], buf, bytes);
2647 wbuf = chip->buffers->databuf;
2648 }
2649
2650 if (unlikely(oob)) {
2651 size_t len = min(oobwritelen, oobmaxlen);
2652 oob = nand_fill_oob(mtd, oob, len, ops);
2653 oobwritelen -= len;
2654 } else {
2655 /* We still need to erase leftover OOB data */
2656 memset(chip->oob_poi, 0xff, mtd->oobsize);
2657 }
2658 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2659 oob_required, page, cached,
2660 (ops->mode == MTD_OPS_RAW));
2661 if (ret)
2662 break;
2663
2664 writelen -= bytes;
2665 if (!writelen)
2666 break;
2667
2668 column = 0;
2669 buf += bytes;
2670 realpage++;
2671
2672 page = realpage & chip->pagemask;
2673 /* Check, if we cross a chip boundary */
2674 if (!page) {
2675 chipnr++;
2676 chip->select_chip(mtd, -1);
2677 chip->select_chip(mtd, chipnr);
2678 }
2679 }
2680
2681 ops->retlen = ops->len - writelen;
2682 if (unlikely(oob))
2683 ops->oobretlen = ops->ooblen;
2684
2685 err_out:
2686 chip->select_chip(mtd, -1);
2687 return ret;
2688 }
2689
2690 /**
2691 * panic_nand_write - [MTD Interface] NAND write with ECC
2692 * @mtd: MTD device structure
2693 * @to: offset to write to
2694 * @len: number of bytes to write
2695 * @retlen: pointer to variable to store the number of written bytes
2696 * @buf: the data to write
2697 *
2698 * NAND write with ECC. Used when performing writes in interrupt context, this
2699 * may for example be called by mtdoops when writing an oops while in panic.
2700 */
2701 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2702 size_t *retlen, const uint8_t *buf)
2703 {
2704 struct nand_chip *chip = mtd_to_nand(mtd);
2705 struct mtd_oob_ops ops;
2706 int ret;
2707
2708 /* Wait for the device to get ready */
2709 panic_nand_wait(mtd, chip, 400);
2710
2711 /* Grab the device */
2712 panic_nand_get_device(chip, mtd, FL_WRITING);
2713
2714 memset(&ops, 0, sizeof(ops));
2715 ops.len = len;
2716 ops.datbuf = (uint8_t *)buf;
2717 ops.mode = MTD_OPS_PLACE_OOB;
2718
2719 ret = nand_do_write_ops(mtd, to, &ops);
2720
2721 *retlen = ops.retlen;
2722 return ret;
2723 }
2724
2725 /**
2726 * nand_write - [MTD Interface] NAND write with ECC
2727 * @mtd: MTD device structure
2728 * @to: offset to write to
2729 * @len: number of bytes to write
2730 * @retlen: pointer to variable to store the number of written bytes
2731 * @buf: the data to write
2732 *
2733 * NAND write with ECC.
2734 */
2735 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2736 size_t *retlen, const uint8_t *buf)
2737 {
2738 struct mtd_oob_ops ops;
2739 int ret;
2740
2741 nand_get_device(mtd, FL_WRITING);
2742 memset(&ops, 0, sizeof(ops));
2743 ops.len = len;
2744 ops.datbuf = (uint8_t *)buf;
2745 ops.mode = MTD_OPS_PLACE_OOB;
2746 ret = nand_do_write_ops(mtd, to, &ops);
2747 *retlen = ops.retlen;
2748 nand_release_device(mtd);
2749 return ret;
2750 }
2751
2752 /**
2753 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2754 * @mtd: MTD device structure
2755 * @to: offset to write to
2756 * @ops: oob operation description structure
2757 *
2758 * NAND write out-of-band.
2759 */
2760 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2761 struct mtd_oob_ops *ops)
2762 {
2763 int chipnr, page, status, len;
2764 struct nand_chip *chip = mtd_to_nand(mtd);
2765
2766 pr_debug("%s: to = 0x%08x, len = %i\n",
2767 __func__, (unsigned int)to, (int)ops->ooblen);
2768
2769 if (ops->mode == MTD_OPS_AUTO_OOB)
2770 len = chip->ecc.layout->oobavail;
2771 else
2772 len = mtd->oobsize;
2773
2774 /* Do not allow write past end of page */
2775 if ((ops->ooboffs + ops->ooblen) > len) {
2776 pr_debug("%s: attempt to write past end of page\n",
2777 __func__);
2778 return -EINVAL;
2779 }
2780
2781 if (unlikely(ops->ooboffs >= len)) {
2782 pr_debug("%s: attempt to start write outside oob\n",
2783 __func__);
2784 return -EINVAL;
2785 }
2786
2787 /* Do not allow write past end of device */
2788 if (unlikely(to >= mtd->size ||
2789 ops->ooboffs + ops->ooblen >
2790 ((mtd->size >> chip->page_shift) -
2791 (to >> chip->page_shift)) * len)) {
2792 pr_debug("%s: attempt to write beyond end of device\n",
2793 __func__);
2794 return -EINVAL;
2795 }
2796
2797 chipnr = (int)(to >> chip->chip_shift);
2798 chip->select_chip(mtd, chipnr);
2799
2800 /* Shift to get page */
2801 page = (int)(to >> chip->page_shift);
2802
2803 /*
2804 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2805 * of my DiskOnChip 2000 test units) will clear the whole data page too
2806 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2807 * it in the doc2000 driver in August 1999. dwmw2.
2808 */
2809 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2810
2811 /* Check, if it is write protected */
2812 if (nand_check_wp(mtd)) {
2813 chip->select_chip(mtd, -1);
2814 return -EROFS;
2815 }
2816
2817 /* Invalidate the page cache, if we write to the cached page */
2818 if (page == chip->pagebuf)
2819 chip->pagebuf = -1;
2820
2821 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2822
2823 if (ops->mode == MTD_OPS_RAW)
2824 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2825 else
2826 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2827
2828 chip->select_chip(mtd, -1);
2829
2830 if (status)
2831 return status;
2832
2833 ops->oobretlen = ops->ooblen;
2834
2835 return 0;
2836 }
2837
2838 /**
2839 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2840 * @mtd: MTD device structure
2841 * @to: offset to write to
2842 * @ops: oob operation description structure
2843 */
2844 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2845 struct mtd_oob_ops *ops)
2846 {
2847 int ret = -ENOTSUPP;
2848
2849 ops->retlen = 0;
2850
2851 /* Do not allow writes past end of device */
2852 if (ops->datbuf && (to + ops->len) > mtd->size) {
2853 pr_debug("%s: attempt to write beyond end of device\n",
2854 __func__);
2855 return -EINVAL;
2856 }
2857
2858 nand_get_device(mtd, FL_WRITING);
2859
2860 switch (ops->mode) {
2861 case MTD_OPS_PLACE_OOB:
2862 case MTD_OPS_AUTO_OOB:
2863 case MTD_OPS_RAW:
2864 break;
2865
2866 default:
2867 goto out;
2868 }
2869
2870 if (!ops->datbuf)
2871 ret = nand_do_write_oob(mtd, to, ops);
2872 else
2873 ret = nand_do_write_ops(mtd, to, ops);
2874
2875 out:
2876 nand_release_device(mtd);
2877 return ret;
2878 }
2879
2880 /**
2881 * single_erase - [GENERIC] NAND standard block erase command function
2882 * @mtd: MTD device structure
2883 * @page: the page address of the block which will be erased
2884 *
2885 * Standard erase command for NAND chips. Returns NAND status.
2886 */
2887 static int single_erase(struct mtd_info *mtd, int page)
2888 {
2889 struct nand_chip *chip = mtd_to_nand(mtd);
2890 /* Send commands to erase a block */
2891 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2892 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2893
2894 return chip->waitfunc(mtd, chip);
2895 }
2896
2897 /**
2898 * nand_erase - [MTD Interface] erase block(s)
2899 * @mtd: MTD device structure
2900 * @instr: erase instruction
2901 *
2902 * Erase one ore more blocks.
2903 */
2904 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2905 {
2906 return nand_erase_nand(mtd, instr, 0);
2907 }
2908
2909 /**
2910 * nand_erase_nand - [INTERN] erase block(s)
2911 * @mtd: MTD device structure
2912 * @instr: erase instruction
2913 * @allowbbt: allow erasing the bbt area
2914 *
2915 * Erase one ore more blocks.
2916 */
2917 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2918 int allowbbt)
2919 {
2920 int page, status, pages_per_block, ret, chipnr;
2921 struct nand_chip *chip = mtd_to_nand(mtd);
2922 loff_t len;
2923
2924 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2925 __func__, (unsigned long long)instr->addr,
2926 (unsigned long long)instr->len);
2927
2928 if (check_offs_len(mtd, instr->addr, instr->len))
2929 return -EINVAL;
2930
2931 /* Grab the lock and see if the device is available */
2932 nand_get_device(mtd, FL_ERASING);
2933
2934 /* Shift to get first page */
2935 page = (int)(instr->addr >> chip->page_shift);
2936 chipnr = (int)(instr->addr >> chip->chip_shift);
2937
2938 /* Calculate pages in each block */
2939 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2940
2941 /* Select the NAND device */
2942 chip->select_chip(mtd, chipnr);
2943
2944 /* Check, if it is write protected */
2945 if (nand_check_wp(mtd)) {
2946 pr_debug("%s: device is write protected!\n",
2947 __func__);
2948 instr->state = MTD_ERASE_FAILED;
2949 goto erase_exit;
2950 }
2951
2952 /* Loop through the pages */
2953 len = instr->len;
2954
2955 instr->state = MTD_ERASING;
2956
2957 while (len) {
2958 /* Check if we have a bad block, we do not erase bad blocks! */
2959 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2960 chip->page_shift, 0, allowbbt)) {
2961 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2962 __func__, page);
2963 instr->state = MTD_ERASE_FAILED;
2964 goto erase_exit;
2965 }
2966
2967 /*
2968 * Invalidate the page cache, if we erase the block which
2969 * contains the current cached page.
2970 */
2971 if (page <= chip->pagebuf && chip->pagebuf <
2972 (page + pages_per_block))
2973 chip->pagebuf = -1;
2974
2975 status = chip->erase(mtd, page & chip->pagemask);
2976
2977 /*
2978 * See if operation failed and additional status checks are
2979 * available
2980 */
2981 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2982 status = chip->errstat(mtd, chip, FL_ERASING,
2983 status, page);
2984
2985 /* See if block erase succeeded */
2986 if (status & NAND_STATUS_FAIL) {
2987 pr_debug("%s: failed erase, page 0x%08x\n",
2988 __func__, page);
2989 instr->state = MTD_ERASE_FAILED;
2990 instr->fail_addr =
2991 ((loff_t)page << chip->page_shift);
2992 goto erase_exit;
2993 }
2994
2995 /* Increment page address and decrement length */
2996 len -= (1ULL << chip->phys_erase_shift);
2997 page += pages_per_block;
2998
2999 /* Check, if we cross a chip boundary */
3000 if (len && !(page & chip->pagemask)) {
3001 chipnr++;
3002 chip->select_chip(mtd, -1);
3003 chip->select_chip(mtd, chipnr);
3004 }
3005 }
3006 instr->state = MTD_ERASE_DONE;
3007
3008 erase_exit:
3009
3010 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
3011
3012 /* Deselect and wake up anyone waiting on the device */
3013 chip->select_chip(mtd, -1);
3014 nand_release_device(mtd);
3015
3016 /* Do call back function */
3017 if (!ret)
3018 mtd_erase_callback(instr);
3019
3020 /* Return more or less happy */
3021 return ret;
3022 }
3023
3024 /**
3025 * nand_sync - [MTD Interface] sync
3026 * @mtd: MTD device structure
3027 *
3028 * Sync is actually a wait for chip ready function.
3029 */
3030 static void nand_sync(struct mtd_info *mtd)
3031 {
3032 pr_debug("%s: called\n", __func__);
3033
3034 /* Grab the lock and see if the device is available */
3035 nand_get_device(mtd, FL_SYNCING);
3036 /* Release it and go back */
3037 nand_release_device(mtd);
3038 }
3039
3040 /**
3041 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3042 * @mtd: MTD device structure
3043 * @offs: offset relative to mtd start
3044 */
3045 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3046 {
3047 return nand_block_checkbad(mtd, offs, 1, 0);
3048 }
3049
3050 /**
3051 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3052 * @mtd: MTD device structure
3053 * @ofs: offset relative to mtd start
3054 */
3055 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3056 {
3057 int ret;
3058
3059 ret = nand_block_isbad(mtd, ofs);
3060 if (ret) {
3061 /* If it was bad already, return success and do nothing */
3062 if (ret > 0)
3063 return 0;
3064 return ret;
3065 }
3066
3067 return nand_block_markbad_lowlevel(mtd, ofs);
3068 }
3069
3070 /**
3071 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3072 * @mtd: MTD device structure
3073 * @chip: nand chip info structure
3074 * @addr: feature address.
3075 * @subfeature_param: the subfeature parameters, a four bytes array.
3076 */
3077 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3078 int addr, uint8_t *subfeature_param)
3079 {
3080 int status;
3081 int i;
3082
3083 if (!chip->onfi_version ||
3084 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3085 & ONFI_OPT_CMD_SET_GET_FEATURES))
3086 return -EINVAL;
3087
3088 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3089 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3090 chip->write_byte(mtd, subfeature_param[i]);
3091
3092 status = chip->waitfunc(mtd, chip);
3093 if (status & NAND_STATUS_FAIL)
3094 return -EIO;
3095 return 0;
3096 }
3097
3098 /**
3099 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3100 * @mtd: MTD device structure
3101 * @chip: nand chip info structure
3102 * @addr: feature address.
3103 * @subfeature_param: the subfeature parameters, a four bytes array.
3104 */
3105 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3106 int addr, uint8_t *subfeature_param)
3107 {
3108 int i;
3109
3110 if (!chip->onfi_version ||
3111 !(le16_to_cpu(chip->onfi_params.opt_cmd)
3112 & ONFI_OPT_CMD_SET_GET_FEATURES))
3113 return -EINVAL;
3114
3115 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3116 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3117 *subfeature_param++ = chip->read_byte(mtd);
3118 return 0;
3119 }
3120
3121 /**
3122 * nand_suspend - [MTD Interface] Suspend the NAND flash
3123 * @mtd: MTD device structure
3124 */
3125 static int nand_suspend(struct mtd_info *mtd)
3126 {
3127 return nand_get_device(mtd, FL_PM_SUSPENDED);
3128 }
3129
3130 /**
3131 * nand_resume - [MTD Interface] Resume the NAND flash
3132 * @mtd: MTD device structure
3133 */
3134 static void nand_resume(struct mtd_info *mtd)
3135 {
3136 struct nand_chip *chip = mtd_to_nand(mtd);
3137
3138 if (chip->state == FL_PM_SUSPENDED)
3139 nand_release_device(mtd);
3140 else
3141 pr_err("%s called for a chip which is not in suspended state\n",
3142 __func__);
3143 }
3144
3145 /**
3146 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3147 * prevent further operations
3148 * @mtd: MTD device structure
3149 */
3150 static void nand_shutdown(struct mtd_info *mtd)
3151 {
3152 nand_get_device(mtd, FL_PM_SUSPENDED);
3153 }
3154
3155 /* Set default functions */
3156 static void nand_set_defaults(struct nand_chip *chip, int busw)
3157 {
3158 /* check for proper chip_delay setup, set 20us if not */
3159 if (!chip->chip_delay)
3160 chip->chip_delay = 20;
3161
3162 /* check, if a user supplied command function given */
3163 if (chip->cmdfunc == NULL)
3164 chip->cmdfunc = nand_command;
3165
3166 /* check, if a user supplied wait function given */
3167 if (chip->waitfunc == NULL)
3168 chip->waitfunc = nand_wait;
3169
3170 if (!chip->select_chip)
3171 chip->select_chip = nand_select_chip;
3172
3173 /* set for ONFI nand */
3174 if (!chip->onfi_set_features)
3175 chip->onfi_set_features = nand_onfi_set_features;
3176 if (!chip->onfi_get_features)
3177 chip->onfi_get_features = nand_onfi_get_features;
3178
3179 /* If called twice, pointers that depend on busw may need to be reset */
3180 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3181 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3182 if (!chip->read_word)
3183 chip->read_word = nand_read_word;
3184 if (!chip->block_bad)
3185 chip->block_bad = nand_block_bad;
3186 if (!chip->block_markbad)
3187 chip->block_markbad = nand_default_block_markbad;
3188 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3189 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3190 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3191 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3192 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3193 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3194 if (!chip->scan_bbt)
3195 chip->scan_bbt = nand_default_bbt;
3196
3197 if (!chip->controller) {
3198 chip->controller = &chip->hwcontrol;
3199 spin_lock_init(&chip->controller->lock);
3200 init_waitqueue_head(&chip->controller->wq);
3201 }
3202
3203 }
3204
3205 /* Sanitize ONFI strings so we can safely print them */
3206 static void sanitize_string(uint8_t *s, size_t len)
3207 {
3208 ssize_t i;
3209
3210 /* Null terminate */
3211 s[len - 1] = 0;
3212
3213 /* Remove non printable chars */
3214 for (i = 0; i < len - 1; i++) {
3215 if (s[i] < ' ' || s[i] > 127)
3216 s[i] = '?';
3217 }
3218
3219 /* Remove trailing spaces */
3220 strim(s);
3221 }
3222
3223 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3224 {
3225 int i;
3226 while (len--) {
3227 crc ^= *p++ << 8;
3228 for (i = 0; i < 8; i++)
3229 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3230 }
3231
3232 return crc;
3233 }
3234
3235 /* Parse the Extended Parameter Page. */
3236 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3237 struct nand_chip *chip, struct nand_onfi_params *p)
3238 {
3239 struct onfi_ext_param_page *ep;
3240 struct onfi_ext_section *s;
3241 struct onfi_ext_ecc_info *ecc;
3242 uint8_t *cursor;
3243 int ret = -EINVAL;
3244 int len;
3245 int i;
3246
3247 len = le16_to_cpu(p->ext_param_page_length) * 16;
3248 ep = kmalloc(len, GFP_KERNEL);
3249 if (!ep)
3250 return -ENOMEM;
3251
3252 /* Send our own NAND_CMD_PARAM. */
3253 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3254
3255 /* Use the Change Read Column command to skip the ONFI param pages. */
3256 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3257 sizeof(*p) * p->num_of_param_pages , -1);
3258
3259 /* Read out the Extended Parameter Page. */
3260 chip->read_buf(mtd, (uint8_t *)ep, len);
3261 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3262 != le16_to_cpu(ep->crc))) {
3263 pr_debug("fail in the CRC.\n");
3264 goto ext_out;
3265 }
3266
3267 /*
3268 * Check the signature.
3269 * Do not strictly follow the ONFI spec, maybe changed in future.
3270 */
3271 if (strncmp(ep->sig, "EPPS", 4)) {
3272 pr_debug("The signature is invalid.\n");
3273 goto ext_out;
3274 }
3275
3276 /* find the ECC section. */
3277 cursor = (uint8_t *)(ep + 1);
3278 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3279 s = ep->sections + i;
3280 if (s->type == ONFI_SECTION_TYPE_2)
3281 break;
3282 cursor += s->length * 16;
3283 }
3284 if (i == ONFI_EXT_SECTION_MAX) {
3285 pr_debug("We can not find the ECC section.\n");
3286 goto ext_out;
3287 }
3288
3289 /* get the info we want. */
3290 ecc = (struct onfi_ext_ecc_info *)cursor;
3291
3292 if (!ecc->codeword_size) {
3293 pr_debug("Invalid codeword size\n");
3294 goto ext_out;
3295 }
3296
3297 chip->ecc_strength_ds = ecc->ecc_bits;
3298 chip->ecc_step_ds = 1 << ecc->codeword_size;
3299 ret = 0;
3300
3301 ext_out:
3302 kfree(ep);
3303 return ret;
3304 }
3305
3306 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3307 {
3308 struct nand_chip *chip = mtd_to_nand(mtd);
3309 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3310
3311 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3312 feature);
3313 }
3314
3315 /*
3316 * Configure chip properties from Micron vendor-specific ONFI table
3317 */
3318 static void nand_onfi_detect_micron(struct nand_chip *chip,
3319 struct nand_onfi_params *p)
3320 {
3321 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3322
3323 if (le16_to_cpu(p->vendor_revision) < 1)
3324 return;
3325
3326 chip->read_retries = micron->read_retry_options;
3327 chip->setup_read_retry = nand_setup_read_retry_micron;
3328 }
3329
3330 /*
3331 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3332 */
3333 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3334 int *busw)
3335 {
3336 struct nand_onfi_params *p = &chip->onfi_params;
3337 int i, j;
3338 int val;
3339
3340 /* Try ONFI for unknown chip or LP */
3341 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3342 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3343 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3344 return 0;
3345
3346 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3347 for (i = 0; i < 3; i++) {
3348 for (j = 0; j < sizeof(*p); j++)
3349 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3350 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3351 le16_to_cpu(p->crc)) {
3352 break;
3353 }
3354 }
3355
3356 if (i == 3) {
3357 pr_err("Could not find valid ONFI parameter page; aborting\n");
3358 return 0;
3359 }
3360
3361 /* Check version */
3362 val = le16_to_cpu(p->revision);
3363 if (val & (1 << 5))
3364 chip->onfi_version = 23;
3365 else if (val & (1 << 4))
3366 chip->onfi_version = 22;
3367 else if (val & (1 << 3))
3368 chip->onfi_version = 21;
3369 else if (val & (1 << 2))
3370 chip->onfi_version = 20;
3371 else if (val & (1 << 1))
3372 chip->onfi_version = 10;
3373
3374 if (!chip->onfi_version) {
3375 pr_info("unsupported ONFI version: %d\n", val);
3376 return 0;
3377 }
3378
3379 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3380 sanitize_string(p->model, sizeof(p->model));
3381 if (!mtd->name)
3382 mtd->name = p->model;
3383
3384 mtd->writesize = le32_to_cpu(p->byte_per_page);
3385
3386 /*
3387 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3388 * (don't ask me who thought of this...). MTD assumes that these
3389 * dimensions will be power-of-2, so just truncate the remaining area.
3390 */
3391 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3392 mtd->erasesize *= mtd->writesize;
3393
3394 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3395
3396 /* See erasesize comment */
3397 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3398 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3399 chip->bits_per_cell = p->bits_per_cell;
3400
3401 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3402 *busw = NAND_BUSWIDTH_16;
3403 else
3404 *busw = 0;
3405
3406 if (p->ecc_bits != 0xff) {
3407 chip->ecc_strength_ds = p->ecc_bits;
3408 chip->ecc_step_ds = 512;
3409 } else if (chip->onfi_version >= 21 &&
3410 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3411
3412 /*
3413 * The nand_flash_detect_ext_param_page() uses the
3414 * Change Read Column command which maybe not supported
3415 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3416 * now. We do not replace user supplied command function.
3417 */
3418 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3419 chip->cmdfunc = nand_command_lp;
3420
3421 /* The Extended Parameter Page is supported since ONFI 2.1. */
3422 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3423 pr_warn("Failed to detect ONFI extended param page\n");
3424 } else {
3425 pr_warn("Could not retrieve ONFI ECC requirements\n");
3426 }
3427
3428 if (p->jedec_id == NAND_MFR_MICRON)
3429 nand_onfi_detect_micron(chip, p);
3430
3431 return 1;
3432 }
3433
3434 /*
3435 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3436 */
3437 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3438 int *busw)
3439 {
3440 struct nand_jedec_params *p = &chip->jedec_params;
3441 struct jedec_ecc_info *ecc;
3442 int val;
3443 int i, j;
3444
3445 /* Try JEDEC for unknown chip or LP */
3446 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3447 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3448 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3449 chip->read_byte(mtd) != 'C')
3450 return 0;
3451
3452 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3453 for (i = 0; i < 3; i++) {
3454 for (j = 0; j < sizeof(*p); j++)
3455 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3456
3457 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3458 le16_to_cpu(p->crc))
3459 break;
3460 }
3461
3462 if (i == 3) {
3463 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3464 return 0;
3465 }
3466
3467 /* Check version */
3468 val = le16_to_cpu(p->revision);
3469 if (val & (1 << 2))
3470 chip->jedec_version = 10;
3471 else if (val & (1 << 1))
3472 chip->jedec_version = 1; /* vendor specific version */
3473
3474 if (!chip->jedec_version) {
3475 pr_info("unsupported JEDEC version: %d\n", val);
3476 return 0;
3477 }
3478
3479 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3480 sanitize_string(p->model, sizeof(p->model));
3481 if (!mtd->name)
3482 mtd->name = p->model;
3483
3484 mtd->writesize = le32_to_cpu(p->byte_per_page);
3485
3486 /* Please reference to the comment for nand_flash_detect_onfi. */
3487 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3488 mtd->erasesize *= mtd->writesize;
3489
3490 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3491
3492 /* Please reference to the comment for nand_flash_detect_onfi. */
3493 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3494 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3495 chip->bits_per_cell = p->bits_per_cell;
3496
3497 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3498 *busw = NAND_BUSWIDTH_16;
3499 else
3500 *busw = 0;
3501
3502 /* ECC info */
3503 ecc = &p->ecc_info[0];
3504
3505 if (ecc->codeword_size >= 9) {
3506 chip->ecc_strength_ds = ecc->ecc_bits;
3507 chip->ecc_step_ds = 1 << ecc->codeword_size;
3508 } else {
3509 pr_warn("Invalid codeword size\n");
3510 }
3511
3512 return 1;
3513 }
3514
3515 /*
3516 * nand_id_has_period - Check if an ID string has a given wraparound period
3517 * @id_data: the ID string
3518 * @arrlen: the length of the @id_data array
3519 * @period: the period of repitition
3520 *
3521 * Check if an ID string is repeated within a given sequence of bytes at
3522 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3523 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3524 * if the repetition has a period of @period; otherwise, returns zero.
3525 */
3526 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3527 {
3528 int i, j;
3529 for (i = 0; i < period; i++)
3530 for (j = i + period; j < arrlen; j += period)
3531 if (id_data[i] != id_data[j])
3532 return 0;
3533 return 1;
3534 }
3535
3536 /*
3537 * nand_id_len - Get the length of an ID string returned by CMD_READID
3538 * @id_data: the ID string
3539 * @arrlen: the length of the @id_data array
3540
3541 * Returns the length of the ID string, according to known wraparound/trailing
3542 * zero patterns. If no pattern exists, returns the length of the array.
3543 */
3544 static int nand_id_len(u8 *id_data, int arrlen)
3545 {
3546 int last_nonzero, period;
3547
3548 /* Find last non-zero byte */
3549 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3550 if (id_data[last_nonzero])
3551 break;
3552
3553 /* All zeros */
3554 if (last_nonzero < 0)
3555 return 0;
3556
3557 /* Calculate wraparound period */
3558 for (period = 1; period < arrlen; period++)
3559 if (nand_id_has_period(id_data, arrlen, period))
3560 break;
3561
3562 /* There's a repeated pattern */
3563 if (period < arrlen)
3564 return period;
3565
3566 /* There are trailing zeros */
3567 if (last_nonzero < arrlen - 1)
3568 return last_nonzero + 1;
3569
3570 /* No pattern detected */
3571 return arrlen;
3572 }
3573
3574 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3575 static int nand_get_bits_per_cell(u8 cellinfo)
3576 {
3577 int bits;
3578
3579 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3580 bits >>= NAND_CI_CELLTYPE_SHIFT;
3581 return bits + 1;
3582 }
3583
3584 /*
3585 * Many new NAND share similar device ID codes, which represent the size of the
3586 * chip. The rest of the parameters must be decoded according to generic or
3587 * manufacturer-specific "extended ID" decoding patterns.
3588 */
3589 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3590 u8 id_data[8], int *busw)
3591 {
3592 int extid, id_len;
3593 /* The 3rd id byte holds MLC / multichip data */
3594 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3595 /* The 4th id byte is the important one */
3596 extid = id_data[3];
3597
3598 id_len = nand_id_len(id_data, 8);
3599
3600 /*
3601 * Field definitions are in the following datasheets:
3602 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3603 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3604 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3605 *
3606 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3607 * ID to decide what to do.
3608 */
3609 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3610 !nand_is_slc(chip) && id_data[5] != 0x00) {
3611 /* Calc pagesize */
3612 mtd->writesize = 2048 << (extid & 0x03);
3613 extid >>= 2;
3614 /* Calc oobsize */
3615 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3616 case 1:
3617 mtd->oobsize = 128;
3618 break;
3619 case 2:
3620 mtd->oobsize = 218;
3621 break;
3622 case 3:
3623 mtd->oobsize = 400;
3624 break;
3625 case 4:
3626 mtd->oobsize = 436;
3627 break;
3628 case 5:
3629 mtd->oobsize = 512;
3630 break;
3631 case 6:
3632 mtd->oobsize = 640;
3633 break;
3634 case 7:
3635 default: /* Other cases are "reserved" (unknown) */
3636 mtd->oobsize = 1024;
3637 break;
3638 }
3639 extid >>= 2;
3640 /* Calc blocksize */
3641 mtd->erasesize = (128 * 1024) <<
3642 (((extid >> 1) & 0x04) | (extid & 0x03));
3643 *busw = 0;
3644 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3645 !nand_is_slc(chip)) {
3646 unsigned int tmp;
3647
3648 /* Calc pagesize */
3649 mtd->writesize = 2048 << (extid & 0x03);
3650 extid >>= 2;
3651 /* Calc oobsize */
3652 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3653 case 0:
3654 mtd->oobsize = 128;
3655 break;
3656 case 1:
3657 mtd->oobsize = 224;
3658 break;
3659 case 2:
3660 mtd->oobsize = 448;
3661 break;
3662 case 3:
3663 mtd->oobsize = 64;
3664 break;
3665 case 4:
3666 mtd->oobsize = 32;
3667 break;
3668 case 5:
3669 mtd->oobsize = 16;
3670 break;
3671 default:
3672 mtd->oobsize = 640;
3673 break;
3674 }
3675 extid >>= 2;
3676 /* Calc blocksize */
3677 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3678 if (tmp < 0x03)
3679 mtd->erasesize = (128 * 1024) << tmp;
3680 else if (tmp == 0x03)
3681 mtd->erasesize = 768 * 1024;
3682 else
3683 mtd->erasesize = (64 * 1024) << tmp;
3684 *busw = 0;
3685 } else {
3686 /* Calc pagesize */
3687 mtd->writesize = 1024 << (extid & 0x03);
3688 extid >>= 2;
3689 /* Calc oobsize */
3690 mtd->oobsize = (8 << (extid & 0x01)) *
3691 (mtd->writesize >> 9);
3692 extid >>= 2;
3693 /* Calc blocksize. Blocksize is multiples of 64KiB */
3694 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3695 extid >>= 2;
3696 /* Get buswidth information */
3697 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3698
3699 /*
3700 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3701 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3702 * follows:
3703 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3704 * 110b -> 24nm
3705 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3706 */
3707 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3708 nand_is_slc(chip) &&
3709 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3710 !(id_data[4] & 0x80) /* !BENAND */) {
3711 mtd->oobsize = 32 * mtd->writesize >> 9;
3712 }
3713
3714 }
3715 }
3716
3717 /*
3718 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3719 * decodes a matching ID table entry and assigns the MTD size parameters for
3720 * the chip.
3721 */
3722 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3723 struct nand_flash_dev *type, u8 id_data[8],
3724 int *busw)
3725 {
3726 int maf_id = id_data[0];
3727
3728 mtd->erasesize = type->erasesize;
3729 mtd->writesize = type->pagesize;
3730 mtd->oobsize = mtd->writesize / 32;
3731 *busw = type->options & NAND_BUSWIDTH_16;
3732
3733 /* All legacy ID NAND are small-page, SLC */
3734 chip->bits_per_cell = 1;
3735
3736 /*
3737 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3738 * some Spansion chips have erasesize that conflicts with size
3739 * listed in nand_ids table.
3740 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3741 */
3742 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3743 && id_data[6] == 0x00 && id_data[7] == 0x00
3744 && mtd->writesize == 512) {
3745 mtd->erasesize = 128 * 1024;
3746 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3747 }
3748 }
3749
3750 /*
3751 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3752 * heuristic patterns using various detected parameters (e.g., manufacturer,
3753 * page size, cell-type information).
3754 */
3755 static void nand_decode_bbm_options(struct mtd_info *mtd,
3756 struct nand_chip *chip, u8 id_data[8])
3757 {
3758 int maf_id = id_data[0];
3759
3760 /* Set the bad block position */
3761 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3762 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3763 else
3764 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3765
3766 /*
3767 * Bad block marker is stored in the last page of each block on Samsung
3768 * and Hynix MLC devices; stored in first two pages of each block on
3769 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3770 * AMD/Spansion, and Macronix. All others scan only the first page.
3771 */
3772 if (!nand_is_slc(chip) &&
3773 (maf_id == NAND_MFR_SAMSUNG ||
3774 maf_id == NAND_MFR_HYNIX))
3775 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3776 else if ((nand_is_slc(chip) &&
3777 (maf_id == NAND_MFR_SAMSUNG ||
3778 maf_id == NAND_MFR_HYNIX ||
3779 maf_id == NAND_MFR_TOSHIBA ||
3780 maf_id == NAND_MFR_AMD ||
3781 maf_id == NAND_MFR_MACRONIX)) ||
3782 (mtd->writesize == 2048 &&
3783 maf_id == NAND_MFR_MICRON))
3784 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3785 }
3786
3787 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3788 {
3789 return type->id_len;
3790 }
3791
3792 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3793 struct nand_flash_dev *type, u8 *id_data, int *busw)
3794 {
3795 if (!strncmp(type->id, id_data, type->id_len)) {
3796 mtd->writesize = type->pagesize;
3797 mtd->erasesize = type->erasesize;
3798 mtd->oobsize = type->oobsize;
3799
3800 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3801 chip->chipsize = (uint64_t)type->chipsize << 20;
3802 chip->options |= type->options;
3803 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3804 chip->ecc_step_ds = NAND_ECC_STEP(type);
3805 chip->onfi_timing_mode_default =
3806 type->onfi_timing_mode_default;
3807
3808 *busw = type->options & NAND_BUSWIDTH_16;
3809
3810 if (!mtd->name)
3811 mtd->name = type->name;
3812
3813 return true;
3814 }
3815 return false;
3816 }
3817
3818 /*
3819 * Get the flash and manufacturer id and lookup if the type is supported.
3820 */
3821 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3822 struct nand_chip *chip,
3823 int *maf_id, int *dev_id,
3824 struct nand_flash_dev *type)
3825 {
3826 int busw;
3827 int i, maf_idx;
3828 u8 id_data[8];
3829
3830 /* Select the device */
3831 chip->select_chip(mtd, 0);
3832
3833 /*
3834 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3835 * after power-up.
3836 */
3837 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3838
3839 /* Send the command for reading device ID */
3840 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3841
3842 /* Read manufacturer and device IDs */
3843 *maf_id = chip->read_byte(mtd);
3844 *dev_id = chip->read_byte(mtd);
3845
3846 /*
3847 * Try again to make sure, as some systems the bus-hold or other
3848 * interface concerns can cause random data which looks like a
3849 * possibly credible NAND flash to appear. If the two results do
3850 * not match, ignore the device completely.
3851 */
3852
3853 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3854
3855 /* Read entire ID string */
3856 for (i = 0; i < 8; i++)
3857 id_data[i] = chip->read_byte(mtd);
3858
3859 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3860 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3861 *maf_id, *dev_id, id_data[0], id_data[1]);
3862 return ERR_PTR(-ENODEV);
3863 }
3864
3865 if (!type)
3866 type = nand_flash_ids;
3867
3868 for (; type->name != NULL; type++) {
3869 if (is_full_id_nand(type)) {
3870 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3871 goto ident_done;
3872 } else if (*dev_id == type->dev_id) {
3873 break;
3874 }
3875 }
3876
3877 chip->onfi_version = 0;
3878 if (!type->name || !type->pagesize) {
3879 /* Check if the chip is ONFI compliant */
3880 if (nand_flash_detect_onfi(mtd, chip, &busw))
3881 goto ident_done;
3882
3883 /* Check if the chip is JEDEC compliant */
3884 if (nand_flash_detect_jedec(mtd, chip, &busw))
3885 goto ident_done;
3886 }
3887
3888 if (!type->name)
3889 return ERR_PTR(-ENODEV);
3890
3891 if (!mtd->name)
3892 mtd->name = type->name;
3893
3894 chip->chipsize = (uint64_t)type->chipsize << 20;
3895
3896 if (!type->pagesize) {
3897 /* Decode parameters from extended ID */
3898 nand_decode_ext_id(mtd, chip, id_data, &busw);
3899 } else {
3900 nand_decode_id(mtd, chip, type, id_data, &busw);
3901 }
3902 /* Get chip options */
3903 chip->options |= type->options;
3904
3905 /*
3906 * Check if chip is not a Samsung device. Do not clear the
3907 * options for chips which do not have an extended id.
3908 */
3909 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3910 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3911 ident_done:
3912
3913 /* Try to identify manufacturer */
3914 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3915 if (nand_manuf_ids[maf_idx].id == *maf_id)
3916 break;
3917 }
3918
3919 if (chip->options & NAND_BUSWIDTH_AUTO) {
3920 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3921 chip->options |= busw;
3922 nand_set_defaults(chip, busw);
3923 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3924 /*
3925 * Check, if buswidth is correct. Hardware drivers should set
3926 * chip correct!
3927 */
3928 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3929 *maf_id, *dev_id);
3930 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3931 pr_warn("bus width %d instead %d bit\n",
3932 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3933 busw ? 16 : 8);
3934 return ERR_PTR(-EINVAL);
3935 }
3936
3937 nand_decode_bbm_options(mtd, chip, id_data);
3938
3939 /* Calculate the address shift from the page size */
3940 chip->page_shift = ffs(mtd->writesize) - 1;
3941 /* Convert chipsize to number of pages per chip -1 */
3942 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3943
3944 chip->bbt_erase_shift = chip->phys_erase_shift =
3945 ffs(mtd->erasesize) - 1;
3946 if (chip->chipsize & 0xffffffff)
3947 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3948 else {
3949 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3950 chip->chip_shift += 32 - 1;
3951 }
3952
3953 chip->badblockbits = 8;
3954 chip->erase = single_erase;
3955
3956 /* Do not replace user supplied command function! */
3957 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3958 chip->cmdfunc = nand_command_lp;
3959
3960 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3961 *maf_id, *dev_id);
3962
3963 if (chip->onfi_version)
3964 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3965 chip->onfi_params.model);
3966 else if (chip->jedec_version)
3967 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3968 chip->jedec_params.model);
3969 else
3970 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3971 type->name);
3972
3973 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3974 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3975 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3976 return type;
3977 }
3978
3979 static int nand_dt_init(struct nand_chip *chip)
3980 {
3981 struct device_node *dn = nand_get_flash_node(chip);
3982 int ecc_mode, ecc_strength, ecc_step;
3983
3984 if (!dn)
3985 return 0;
3986
3987 if (of_get_nand_bus_width(dn) == 16)
3988 chip->options |= NAND_BUSWIDTH_16;
3989
3990 if (of_get_nand_on_flash_bbt(dn))
3991 chip->bbt_options |= NAND_BBT_USE_FLASH;
3992
3993 ecc_mode = of_get_nand_ecc_mode(dn);
3994 ecc_strength = of_get_nand_ecc_strength(dn);
3995 ecc_step = of_get_nand_ecc_step_size(dn);
3996
3997 if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3998 (!(ecc_step >= 0) && ecc_strength >= 0)) {
3999 pr_err("must set both strength and step size in DT\n");
4000 return -EINVAL;
4001 }
4002
4003 if (ecc_mode >= 0)
4004 chip->ecc.mode = ecc_mode;
4005
4006 if (ecc_strength >= 0)
4007 chip->ecc.strength = ecc_strength;
4008
4009 if (ecc_step > 0)
4010 chip->ecc.size = ecc_step;
4011
4012 return 0;
4013 }
4014
4015 /**
4016 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4017 * @mtd: MTD device structure
4018 * @maxchips: number of chips to scan for
4019 * @table: alternative NAND ID table
4020 *
4021 * This is the first phase of the normal nand_scan() function. It reads the
4022 * flash ID and sets up MTD fields accordingly.
4023 *
4024 * The mtd->owner field must be set to the module of the caller.
4025 */
4026 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
4027 struct nand_flash_dev *table)
4028 {
4029 int i, nand_maf_id, nand_dev_id;
4030 struct nand_chip *chip = mtd_to_nand(mtd);
4031 struct nand_flash_dev *type;
4032 int ret;
4033
4034 ret = nand_dt_init(chip);
4035 if (ret)
4036 return ret;
4037
4038 if (!mtd->name && mtd->dev.parent)
4039 mtd->name = dev_name(mtd->dev.parent);
4040
4041 /* Set the default functions */
4042 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4043
4044 /* Read the flash type */
4045 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4046 &nand_dev_id, table);
4047
4048 if (IS_ERR(type)) {
4049 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4050 pr_warn("No NAND device found\n");
4051 chip->select_chip(mtd, -1);
4052 return PTR_ERR(type);
4053 }
4054
4055 chip->select_chip(mtd, -1);
4056
4057 /* Check for a chip array */
4058 for (i = 1; i < maxchips; i++) {
4059 chip->select_chip(mtd, i);
4060 /* See comment in nand_get_flash_type for reset */
4061 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
4062 /* Send the command for reading device ID */
4063 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4064 /* Read manufacturer and device IDs */
4065 if (nand_maf_id != chip->read_byte(mtd) ||
4066 nand_dev_id != chip->read_byte(mtd)) {
4067 chip->select_chip(mtd, -1);
4068 break;
4069 }
4070 chip->select_chip(mtd, -1);
4071 }
4072 if (i > 1)
4073 pr_info("%d chips detected\n", i);
4074
4075 /* Store the number of chips and calc total size for mtd */
4076 chip->numchips = i;
4077 mtd->size = i * chip->chipsize;
4078
4079 return 0;
4080 }
4081 EXPORT_SYMBOL(nand_scan_ident);
4082
4083 /*
4084 * Check if the chip configuration meet the datasheet requirements.
4085
4086 * If our configuration corrects A bits per B bytes and the minimum
4087 * required correction level is X bits per Y bytes, then we must ensure
4088 * both of the following are true:
4089 *
4090 * (1) A / B >= X / Y
4091 * (2) A >= X
4092 *
4093 * Requirement (1) ensures we can correct for the required bitflip density.
4094 * Requirement (2) ensures we can correct even when all bitflips are clumped
4095 * in the same sector.
4096 */
4097 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4098 {
4099 struct nand_chip *chip = mtd_to_nand(mtd);
4100 struct nand_ecc_ctrl *ecc = &chip->ecc;
4101 int corr, ds_corr;
4102
4103 if (ecc->size == 0 || chip->ecc_step_ds == 0)
4104 /* Not enough information */
4105 return true;
4106
4107 /*
4108 * We get the number of corrected bits per page to compare
4109 * the correction density.
4110 */
4111 corr = (mtd->writesize * ecc->strength) / ecc->size;
4112 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4113
4114 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4115 }
4116
4117 /**
4118 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4119 * @mtd: MTD device structure
4120 *
4121 * This is the second phase of the normal nand_scan() function. It fills out
4122 * all the uninitialized function pointers with the defaults and scans for a
4123 * bad block table if appropriate.
4124 */
4125 int nand_scan_tail(struct mtd_info *mtd)
4126 {
4127 int i;
4128 struct nand_chip *chip = mtd_to_nand(mtd);
4129 struct nand_ecc_ctrl *ecc = &chip->ecc;
4130 struct nand_buffers *nbuf;
4131
4132 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
4133 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4134 !(chip->bbt_options & NAND_BBT_USE_FLASH));
4135
4136 if (!(chip->options & NAND_OWN_BUFFERS)) {
4137 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4138 + mtd->oobsize * 3, GFP_KERNEL);
4139 if (!nbuf)
4140 return -ENOMEM;
4141 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4142 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4143 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4144
4145 chip->buffers = nbuf;
4146 } else {
4147 if (!chip->buffers)
4148 return -ENOMEM;
4149 }
4150
4151 /* Set the internal oob buffer location, just after the page data */
4152 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4153
4154 /*
4155 * If no default placement scheme is given, select an appropriate one.
4156 */
4157 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4158 switch (mtd->oobsize) {
4159 case 8:
4160 ecc->layout = &nand_oob_8;
4161 break;
4162 case 16:
4163 ecc->layout = &nand_oob_16;
4164 break;
4165 case 64:
4166 ecc->layout = &nand_oob_64;
4167 break;
4168 case 128:
4169 ecc->layout = &nand_oob_128;
4170 break;
4171 default:
4172 pr_warn("No oob scheme defined for oobsize %d\n",
4173 mtd->oobsize);
4174 BUG();
4175 }
4176 }
4177
4178 if (!chip->write_page)
4179 chip->write_page = nand_write_page;
4180
4181 /*
4182 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4183 * selected and we have 256 byte pagesize fallback to software ECC
4184 */
4185
4186 switch (ecc->mode) {
4187 case NAND_ECC_HW_OOB_FIRST:
4188 /* Similar to NAND_ECC_HW, but a separate read_page handle */
4189 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4190 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4191 BUG();
4192 }
4193 if (!ecc->read_page)
4194 ecc->read_page = nand_read_page_hwecc_oob_first;
4195
4196 case NAND_ECC_HW:
4197 /* Use standard hwecc read page function? */
4198 if (!ecc->read_page)
4199 ecc->read_page = nand_read_page_hwecc;
4200 if (!ecc->write_page)
4201 ecc->write_page = nand_write_page_hwecc;
4202 if (!ecc->read_page_raw)
4203 ecc->read_page_raw = nand_read_page_raw;
4204 if (!ecc->write_page_raw)
4205 ecc->write_page_raw = nand_write_page_raw;
4206 if (!ecc->read_oob)
4207 ecc->read_oob = nand_read_oob_std;
4208 if (!ecc->write_oob)
4209 ecc->write_oob = nand_write_oob_std;
4210 if (!ecc->read_subpage)
4211 ecc->read_subpage = nand_read_subpage;
4212 if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4213 ecc->write_subpage = nand_write_subpage_hwecc;
4214
4215 case NAND_ECC_HW_SYNDROME:
4216 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4217 (!ecc->read_page ||
4218 ecc->read_page == nand_read_page_hwecc ||
4219 !ecc->write_page ||
4220 ecc->write_page == nand_write_page_hwecc)) {
4221 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4222 BUG();
4223 }
4224 /* Use standard syndrome read/write page function? */
4225 if (!ecc->read_page)
4226 ecc->read_page = nand_read_page_syndrome;
4227 if (!ecc->write_page)
4228 ecc->write_page = nand_write_page_syndrome;
4229 if (!ecc->read_page_raw)
4230 ecc->read_page_raw = nand_read_page_raw_syndrome;
4231 if (!ecc->write_page_raw)
4232 ecc->write_page_raw = nand_write_page_raw_syndrome;
4233 if (!ecc->read_oob)
4234 ecc->read_oob = nand_read_oob_syndrome;
4235 if (!ecc->write_oob)
4236 ecc->write_oob = nand_write_oob_syndrome;
4237
4238 if (mtd->writesize >= ecc->size) {
4239 if (!ecc->strength) {
4240 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4241 BUG();
4242 }
4243 break;
4244 }
4245 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4246 ecc->size, mtd->writesize);
4247 ecc->mode = NAND_ECC_SOFT;
4248
4249 case NAND_ECC_SOFT:
4250 ecc->calculate = nand_calculate_ecc;
4251 ecc->correct = nand_correct_data;
4252 ecc->read_page = nand_read_page_swecc;
4253 ecc->read_subpage = nand_read_subpage;
4254 ecc->write_page = nand_write_page_swecc;
4255 ecc->read_page_raw = nand_read_page_raw;
4256 ecc->write_page_raw = nand_write_page_raw;
4257 ecc->read_oob = nand_read_oob_std;
4258 ecc->write_oob = nand_write_oob_std;
4259 if (!ecc->size)
4260 ecc->size = 256;
4261 ecc->bytes = 3;
4262 ecc->strength = 1;
4263 break;
4264
4265 case NAND_ECC_SOFT_BCH:
4266 if (!mtd_nand_has_bch()) {
4267 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4268 BUG();
4269 }
4270 ecc->calculate = nand_bch_calculate_ecc;
4271 ecc->correct = nand_bch_correct_data;
4272 ecc->read_page = nand_read_page_swecc;
4273 ecc->read_subpage = nand_read_subpage;
4274 ecc->write_page = nand_write_page_swecc;
4275 ecc->read_page_raw = nand_read_page_raw;
4276 ecc->write_page_raw = nand_write_page_raw;
4277 ecc->read_oob = nand_read_oob_std;
4278 ecc->write_oob = nand_write_oob_std;
4279 /*
4280 * Board driver should supply ecc.size and ecc.strength values
4281 * to select how many bits are correctable. Otherwise, default
4282 * to 4 bits for large page devices.
4283 */
4284 if (!ecc->size && (mtd->oobsize >= 64)) {
4285 ecc->size = 512;
4286 ecc->strength = 4;
4287 }
4288
4289 /* See nand_bch_init() for details. */
4290 ecc->bytes = DIV_ROUND_UP(
4291 ecc->strength * fls(8 * ecc->size), 8);
4292 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4293 &ecc->layout);
4294 if (!ecc->priv) {
4295 pr_warn("BCH ECC initialization failed!\n");
4296 BUG();
4297 }
4298 break;
4299
4300 case NAND_ECC_NONE:
4301 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4302 ecc->read_page = nand_read_page_raw;
4303 ecc->write_page = nand_write_page_raw;
4304 ecc->read_oob = nand_read_oob_std;
4305 ecc->read_page_raw = nand_read_page_raw;
4306 ecc->write_page_raw = nand_write_page_raw;
4307 ecc->write_oob = nand_write_oob_std;
4308 ecc->size = mtd->writesize;
4309 ecc->bytes = 0;
4310 ecc->strength = 0;
4311 break;
4312
4313 default:
4314 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4315 BUG();
4316 }
4317
4318 /* For many systems, the standard OOB write also works for raw */
4319 if (!ecc->read_oob_raw)
4320 ecc->read_oob_raw = ecc->read_oob;
4321 if (!ecc->write_oob_raw)
4322 ecc->write_oob_raw = ecc->write_oob;
4323
4324 /*
4325 * The number of bytes available for a client to place data into
4326 * the out of band area.
4327 */
4328 ecc->layout->oobavail = 0;
4329 for (i = 0; ecc->layout->oobfree[i].length
4330 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4331 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4332 mtd->oobavail = ecc->layout->oobavail;
4333
4334 /* ECC sanity check: warn if it's too weak */
4335 if (!nand_ecc_strength_good(mtd))
4336 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4337 mtd->name);
4338
4339 /*
4340 * Set the number of read / write steps for one page depending on ECC
4341 * mode.
4342 */
4343 ecc->steps = mtd->writesize / ecc->size;
4344 if (ecc->steps * ecc->size != mtd->writesize) {
4345 pr_warn("Invalid ECC parameters\n");
4346 BUG();
4347 }
4348 ecc->total = ecc->steps * ecc->bytes;
4349
4350 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4351 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4352 switch (ecc->steps) {
4353 case 2:
4354 mtd->subpage_sft = 1;
4355 break;
4356 case 4:
4357 case 8:
4358 case 16:
4359 mtd->subpage_sft = 2;
4360 break;
4361 }
4362 }
4363 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4364
4365 /* Initialize state */
4366 chip->state = FL_READY;
4367
4368 /* Invalidate the pagebuffer reference */
4369 chip->pagebuf = -1;
4370
4371 /* Large page NAND with SOFT_ECC should support subpage reads */
4372 switch (ecc->mode) {
4373 case NAND_ECC_SOFT:
4374 case NAND_ECC_SOFT_BCH:
4375 if (chip->page_shift > 9)
4376 chip->options |= NAND_SUBPAGE_READ;
4377 break;
4378
4379 default:
4380 break;
4381 }
4382
4383 /* Fill in remaining MTD driver data */
4384 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4385 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4386 MTD_CAP_NANDFLASH;
4387 mtd->_erase = nand_erase;
4388 mtd->_point = NULL;
4389 mtd->_unpoint = NULL;
4390 mtd->_read = nand_read;
4391 mtd->_write = nand_write;
4392 mtd->_panic_write = panic_nand_write;
4393 mtd->_read_oob = nand_read_oob;
4394 mtd->_write_oob = nand_write_oob;
4395 mtd->_sync = nand_sync;
4396 mtd->_lock = NULL;
4397 mtd->_unlock = NULL;
4398 mtd->_suspend = nand_suspend;
4399 mtd->_resume = nand_resume;
4400 mtd->_reboot = nand_shutdown;
4401 mtd->_block_isreserved = nand_block_isreserved;
4402 mtd->_block_isbad = nand_block_isbad;
4403 mtd->_block_markbad = nand_block_markbad;
4404 mtd->writebufsize = mtd->writesize;
4405
4406 /* propagate ecc info to mtd_info */
4407 mtd->ecclayout = ecc->layout;
4408 mtd->ecc_strength = ecc->strength;
4409 mtd->ecc_step_size = ecc->size;
4410 /*
4411 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4412 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4413 * properly set.
4414 */
4415 if (!mtd->bitflip_threshold)
4416 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4417
4418 /* Check, if we should skip the bad block table scan */
4419 if (chip->options & NAND_SKIP_BBTSCAN)
4420 return 0;
4421
4422 /* Build bad block table */
4423 return chip->scan_bbt(mtd);
4424 }
4425 EXPORT_SYMBOL(nand_scan_tail);
4426
4427 /*
4428 * is_module_text_address() isn't exported, and it's mostly a pointless
4429 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4430 * to call us from in-kernel code if the core NAND support is modular.
4431 */
4432 #ifdef MODULE
4433 #define caller_is_module() (1)
4434 #else
4435 #define caller_is_module() \
4436 is_module_text_address((unsigned long)__builtin_return_address(0))
4437 #endif
4438
4439 /**
4440 * nand_scan - [NAND Interface] Scan for the NAND device
4441 * @mtd: MTD device structure
4442 * @maxchips: number of chips to scan for
4443 *
4444 * This fills out all the uninitialized function pointers with the defaults.
4445 * The flash ID is read and the mtd/chip structures are filled with the
4446 * appropriate values. The mtd->owner field must be set to the module of the
4447 * caller.
4448 */
4449 int nand_scan(struct mtd_info *mtd, int maxchips)
4450 {
4451 int ret;
4452
4453 /* Many callers got this wrong, so check for it for a while... */
4454 if (!mtd->owner && caller_is_module()) {
4455 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4456 BUG();
4457 }
4458
4459 ret = nand_scan_ident(mtd, maxchips, NULL);
4460 if (!ret)
4461 ret = nand_scan_tail(mtd);
4462 return ret;
4463 }
4464 EXPORT_SYMBOL(nand_scan);
4465
4466 /**
4467 * nand_release - [NAND Interface] Free resources held by the NAND device
4468 * @mtd: MTD device structure
4469 */
4470 void nand_release(struct mtd_info *mtd)
4471 {
4472 struct nand_chip *chip = mtd_to_nand(mtd);
4473
4474 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4475 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4476
4477 mtd_device_unregister(mtd);
4478
4479 /* Free bad block table memory */
4480 kfree(chip->bbt);
4481 if (!(chip->options & NAND_OWN_BUFFERS))
4482 kfree(chip->buffers);
4483
4484 /* Free bad block descriptor memory */
4485 if (chip->badblock_pattern && chip->badblock_pattern->options
4486 & NAND_BBT_DYNAMICSTRUCT)
4487 kfree(chip->badblock_pattern);
4488 }
4489 EXPORT_SYMBOL_GPL(nand_release);
4490
4491 static int __init nand_base_init(void)
4492 {
4493 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4494 return 0;
4495 }
4496
4497 static void __exit nand_base_exit(void)
4498 {
4499 led_trigger_unregister_simple(nand_led_trigger);
4500 }
4501
4502 module_init(nand_base_init);
4503 module_exit(nand_base_exit);
4504
4505 MODULE_LICENSE("GPL");
4506 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4507 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4508 MODULE_DESCRIPTION("Generic NAND flash driver code");
This page took 0.208289 seconds and 6 git commands to generate.