7428a6c1135e2d556a96b9ade9c651b047e3db0e
[deliverable/linux.git] / drivers / mtd / nand / nandsim.c
1 /*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/delay.h>
38 #include <linux/list.h>
39 #include <linux/random.h>
40 #include <asm/div64.h>
41
42 /* Default simulator parameters values */
43 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
44 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
47 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
48 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
49 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
50 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
51 #endif
52
53 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
54 #define CONFIG_NANDSIM_ACCESS_DELAY 25
55 #endif
56 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
57 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
58 #endif
59 #ifndef CONFIG_NANDSIM_ERASE_DELAY
60 #define CONFIG_NANDSIM_ERASE_DELAY 2
61 #endif
62 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
63 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
64 #endif
65 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
66 #define CONFIG_NANDSIM_INPUT_CYCLE 50
67 #endif
68 #ifndef CONFIG_NANDSIM_BUS_WIDTH
69 #define CONFIG_NANDSIM_BUS_WIDTH 8
70 #endif
71 #ifndef CONFIG_NANDSIM_DO_DELAYS
72 #define CONFIG_NANDSIM_DO_DELAYS 0
73 #endif
74 #ifndef CONFIG_NANDSIM_LOG
75 #define CONFIG_NANDSIM_LOG 0
76 #endif
77 #ifndef CONFIG_NANDSIM_DBG
78 #define CONFIG_NANDSIM_DBG 0
79 #endif
80
81 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
82 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
83 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
84 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
85 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
86 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
87 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
88 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
89 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
90 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
91 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
92 static uint log = CONFIG_NANDSIM_LOG;
93 static uint dbg = CONFIG_NANDSIM_DBG;
94 static unsigned long parts[MAX_MTD_DEVICES];
95 static unsigned int parts_num;
96 static char *badblocks = NULL;
97 static char *weakblocks = NULL;
98 static char *weakpages = NULL;
99 static unsigned int bitflips = 0;
100 static char *gravepages = NULL;
101 static unsigned int rptwear = 0;
102 static unsigned int overridesize = 0;
103
104 module_param(first_id_byte, uint, 0400);
105 module_param(second_id_byte, uint, 0400);
106 module_param(third_id_byte, uint, 0400);
107 module_param(fourth_id_byte, uint, 0400);
108 module_param(access_delay, uint, 0400);
109 module_param(programm_delay, uint, 0400);
110 module_param(erase_delay, uint, 0400);
111 module_param(output_cycle, uint, 0400);
112 module_param(input_cycle, uint, 0400);
113 module_param(bus_width, uint, 0400);
114 module_param(do_delays, uint, 0400);
115 module_param(log, uint, 0400);
116 module_param(dbg, uint, 0400);
117 module_param_array(parts, ulong, &parts_num, 0400);
118 module_param(badblocks, charp, 0400);
119 module_param(weakblocks, charp, 0400);
120 module_param(weakpages, charp, 0400);
121 module_param(bitflips, uint, 0400);
122 module_param(gravepages, charp, 0400);
123 module_param(rptwear, uint, 0400);
124 module_param(overridesize, uint, 0400);
125
126 MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
127 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
128 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
129 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
131 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
132 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
133 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
134 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
135 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
136 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
137 MODULE_PARM_DESC(log, "Perform logging if not zero");
138 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
139 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
140 /* Page and erase block positions for the following parameters are independent of any partitions */
141 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
142 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
143 " separated by commas e.g. 113:2 means eb 113"
144 " can be erased only twice before failing");
145 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
146 " separated by commas e.g. 1401:2 means page 1401"
147 " can be written only twice before failing");
148 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
149 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
150 " separated by commas e.g. 1401:2 means page 1401"
151 " can be read only twice before failing");
152 MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
153 MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
154 "The size is specified in erase blocks and as the exponent of a power of two"
155 " e.g. 5 means a size of 32 erase blocks");
156
157 /* The largest possible page size */
158 #define NS_LARGEST_PAGE_SIZE 2048
159
160 /* The prefix for simulator output */
161 #define NS_OUTPUT_PREFIX "[nandsim]"
162
163 /* Simulator's output macros (logging, debugging, warning, error) */
164 #define NS_LOG(args...) \
165 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
166 #define NS_DBG(args...) \
167 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
168 #define NS_WARN(args...) \
169 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
170 #define NS_ERR(args...) \
171 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
172 #define NS_INFO(args...) \
173 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
174
175 /* Busy-wait delay macros (microseconds, milliseconds) */
176 #define NS_UDELAY(us) \
177 do { if (do_delays) udelay(us); } while(0)
178 #define NS_MDELAY(us) \
179 do { if (do_delays) mdelay(us); } while(0)
180
181 /* Is the nandsim structure initialized ? */
182 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
183
184 /* Good operation completion status */
185 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
186
187 /* Operation failed completion status */
188 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
189
190 /* Calculate the page offset in flash RAM image by (row, column) address */
191 #define NS_RAW_OFFSET(ns) \
192 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
193
194 /* Calculate the OOB offset in flash RAM image by (row, column) address */
195 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
196
197 /* After a command is input, the simulator goes to one of the following states */
198 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
199 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
200 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
201 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
202 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
203 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
204 #define STATE_CMD_STATUS 0x00000007 /* read status */
205 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
206 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
207 #define STATE_CMD_READID 0x0000000A /* read ID */
208 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
209 #define STATE_CMD_RESET 0x0000000C /* reset */
210 #define STATE_CMD_RNDOUT 0x0000000D /* random output command */
211 #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
212 #define STATE_CMD_MASK 0x0000000F /* command states mask */
213
214 /* After an address is input, the simulator goes to one of these states */
215 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
216 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
217 #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
218 #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
219 #define STATE_ADDR_MASK 0x00000070 /* address states mask */
220
221 /* Durind data input/output the simulator is in these states */
222 #define STATE_DATAIN 0x00000100 /* waiting for data input */
223 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
224
225 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
226 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
227 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
228 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
229 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
230
231 /* Previous operation is done, ready to accept new requests */
232 #define STATE_READY 0x00000000
233
234 /* This state is used to mark that the next state isn't known yet */
235 #define STATE_UNKNOWN 0x10000000
236
237 /* Simulator's actions bit masks */
238 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
239 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
240 #define ACTION_SECERASE 0x00300000 /* erase sector */
241 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
242 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
243 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
244 #define ACTION_MASK 0x00700000 /* action mask */
245
246 #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
247 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
248
249 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
250 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
251 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
252 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
253 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
254 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
255 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
256 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
257 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
258
259 /* Remove action bits ftom state */
260 #define NS_STATE(x) ((x) & ~ACTION_MASK)
261
262 /*
263 * Maximum previous states which need to be saved. Currently saving is
264 * only needed for page programm operation with preceeded read command
265 * (which is only valid for 512-byte pages).
266 */
267 #define NS_MAX_PREVSTATES 1
268
269 /*
270 * A union to represent flash memory contents and flash buffer.
271 */
272 union ns_mem {
273 u_char *byte; /* for byte access */
274 uint16_t *word; /* for 16-bit word access */
275 };
276
277 /*
278 * The structure which describes all the internal simulator data.
279 */
280 struct nandsim {
281 struct mtd_partition partitions[MAX_MTD_DEVICES];
282 unsigned int nbparts;
283
284 uint busw; /* flash chip bus width (8 or 16) */
285 u_char ids[4]; /* chip's ID bytes */
286 uint32_t options; /* chip's characteristic bits */
287 uint32_t state; /* current chip state */
288 uint32_t nxstate; /* next expected state */
289
290 uint32_t *op; /* current operation, NULL operations isn't known yet */
291 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
292 uint16_t npstates; /* number of previous states saved */
293 uint16_t stateidx; /* current state index */
294
295 /* The simulated NAND flash pages array */
296 union ns_mem *pages;
297
298 /* Internal buffer of page + OOB size bytes */
299 union ns_mem buf;
300
301 /* NAND flash "geometry" */
302 struct nandsin_geometry {
303 uint64_t totsz; /* total flash size, bytes */
304 uint32_t secsz; /* flash sector (erase block) size, bytes */
305 uint pgsz; /* NAND flash page size, bytes */
306 uint oobsz; /* page OOB area size, bytes */
307 uint64_t totszoob; /* total flash size including OOB, bytes */
308 uint pgszoob; /* page size including OOB , bytes*/
309 uint secszoob; /* sector size including OOB, bytes */
310 uint pgnum; /* total number of pages */
311 uint pgsec; /* number of pages per sector */
312 uint secshift; /* bits number in sector size */
313 uint pgshift; /* bits number in page size */
314 uint oobshift; /* bits number in OOB size */
315 uint pgaddrbytes; /* bytes per page address */
316 uint secaddrbytes; /* bytes per sector address */
317 uint idbytes; /* the number ID bytes that this chip outputs */
318 } geom;
319
320 /* NAND flash internal registers */
321 struct nandsim_regs {
322 unsigned command; /* the command register */
323 u_char status; /* the status register */
324 uint row; /* the page number */
325 uint column; /* the offset within page */
326 uint count; /* internal counter */
327 uint num; /* number of bytes which must be processed */
328 uint off; /* fixed page offset */
329 } regs;
330
331 /* NAND flash lines state */
332 struct ns_lines_status {
333 int ce; /* chip Enable */
334 int cle; /* command Latch Enable */
335 int ale; /* address Latch Enable */
336 int wp; /* write Protect */
337 } lines;
338 };
339
340 /*
341 * Operations array. To perform any operation the simulator must pass
342 * through the correspondent states chain.
343 */
344 static struct nandsim_operations {
345 uint32_t reqopts; /* options which are required to perform the operation */
346 uint32_t states[NS_OPER_STATES]; /* operation's states */
347 } ops[NS_OPER_NUM] = {
348 /* Read page + OOB from the beginning */
349 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
350 STATE_DATAOUT, STATE_READY}},
351 /* Read page + OOB from the second half */
352 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
353 STATE_DATAOUT, STATE_READY}},
354 /* Read OOB */
355 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
356 STATE_DATAOUT, STATE_READY}},
357 /* Programm page starting from the beginning */
358 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
359 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
360 /* Programm page starting from the beginning */
361 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
362 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
363 /* Programm page starting from the second half */
364 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
365 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
366 /* Programm OOB */
367 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
368 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
369 /* Erase sector */
370 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
371 /* Read status */
372 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
373 /* Read multi-plane status */
374 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
375 /* Read ID */
376 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
377 /* Large page devices read page */
378 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
379 STATE_DATAOUT, STATE_READY}},
380 /* Large page devices random page read */
381 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
382 STATE_DATAOUT, STATE_READY}},
383 };
384
385 struct weak_block {
386 struct list_head list;
387 unsigned int erase_block_no;
388 unsigned int max_erases;
389 unsigned int erases_done;
390 };
391
392 static LIST_HEAD(weak_blocks);
393
394 struct weak_page {
395 struct list_head list;
396 unsigned int page_no;
397 unsigned int max_writes;
398 unsigned int writes_done;
399 };
400
401 static LIST_HEAD(weak_pages);
402
403 struct grave_page {
404 struct list_head list;
405 unsigned int page_no;
406 unsigned int max_reads;
407 unsigned int reads_done;
408 };
409
410 static LIST_HEAD(grave_pages);
411
412 static unsigned long *erase_block_wear = NULL;
413 static unsigned int wear_eb_count = 0;
414 static unsigned long total_wear = 0;
415 static unsigned int rptwear_cnt = 0;
416
417 /* MTD structure for NAND controller */
418 static struct mtd_info *nsmtd;
419
420 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
421
422 /*
423 * Allocate array of page pointers and initialize the array to NULL
424 * pointers.
425 *
426 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
427 */
428 static int alloc_device(struct nandsim *ns)
429 {
430 int i;
431
432 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
433 if (!ns->pages) {
434 NS_ERR("alloc_map: unable to allocate page array\n");
435 return -ENOMEM;
436 }
437 for (i = 0; i < ns->geom.pgnum; i++) {
438 ns->pages[i].byte = NULL;
439 }
440
441 return 0;
442 }
443
444 /*
445 * Free any allocated pages, and free the array of page pointers.
446 */
447 static void free_device(struct nandsim *ns)
448 {
449 int i;
450
451 if (ns->pages) {
452 for (i = 0; i < ns->geom.pgnum; i++) {
453 if (ns->pages[i].byte)
454 kfree(ns->pages[i].byte);
455 }
456 vfree(ns->pages);
457 }
458 }
459
460 static char *get_partition_name(int i)
461 {
462 char buf[64];
463 sprintf(buf, "NAND simulator partition %d", i);
464 return kstrdup(buf, GFP_KERNEL);
465 }
466
467 static u_int64_t divide(u_int64_t n, u_int32_t d)
468 {
469 do_div(n, d);
470 return n;
471 }
472
473 /*
474 * Initialize the nandsim structure.
475 *
476 * RETURNS: 0 if success, -ERRNO if failure.
477 */
478 static int init_nandsim(struct mtd_info *mtd)
479 {
480 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
481 struct nandsim *ns = (struct nandsim *)(chip->priv);
482 int i, ret = 0;
483 u_int64_t remains;
484 u_int64_t next_offset;
485
486 if (NS_IS_INITIALIZED(ns)) {
487 NS_ERR("init_nandsim: nandsim is already initialized\n");
488 return -EIO;
489 }
490
491 /* Force mtd to not do delays */
492 chip->chip_delay = 0;
493
494 /* Initialize the NAND flash parameters */
495 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
496 ns->geom.totsz = mtd->size;
497 ns->geom.pgsz = mtd->writesize;
498 ns->geom.oobsz = mtd->oobsize;
499 ns->geom.secsz = mtd->erasesize;
500 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
501 ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
502 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
503 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
504 ns->geom.pgshift = chip->page_shift;
505 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
506 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
507 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
508 ns->options = 0;
509
510 if (ns->geom.pgsz == 256) {
511 ns->options |= OPT_PAGE256;
512 }
513 else if (ns->geom.pgsz == 512) {
514 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
515 if (ns->busw == 8)
516 ns->options |= OPT_PAGE512_8BIT;
517 } else if (ns->geom.pgsz == 2048) {
518 ns->options |= OPT_PAGE2048;
519 } else {
520 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
521 return -EIO;
522 }
523
524 if (ns->options & OPT_SMALLPAGE) {
525 if (ns->geom.totsz <= (32 << 20)) {
526 ns->geom.pgaddrbytes = 3;
527 ns->geom.secaddrbytes = 2;
528 } else {
529 ns->geom.pgaddrbytes = 4;
530 ns->geom.secaddrbytes = 3;
531 }
532 } else {
533 if (ns->geom.totsz <= (128 << 20)) {
534 ns->geom.pgaddrbytes = 4;
535 ns->geom.secaddrbytes = 2;
536 } else {
537 ns->geom.pgaddrbytes = 5;
538 ns->geom.secaddrbytes = 3;
539 }
540 }
541
542 /* Fill the partition_info structure */
543 if (parts_num > ARRAY_SIZE(ns->partitions)) {
544 NS_ERR("too many partitions.\n");
545 ret = -EINVAL;
546 goto error;
547 }
548 remains = ns->geom.totsz;
549 next_offset = 0;
550 for (i = 0; i < parts_num; ++i) {
551 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
552
553 if (!part_sz || part_sz > remains) {
554 NS_ERR("bad partition size.\n");
555 ret = -EINVAL;
556 goto error;
557 }
558 ns->partitions[i].name = get_partition_name(i);
559 ns->partitions[i].offset = next_offset;
560 ns->partitions[i].size = part_sz;
561 next_offset += ns->partitions[i].size;
562 remains -= ns->partitions[i].size;
563 }
564 ns->nbparts = parts_num;
565 if (remains) {
566 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
567 NS_ERR("too many partitions.\n");
568 ret = -EINVAL;
569 goto error;
570 }
571 ns->partitions[i].name = get_partition_name(i);
572 ns->partitions[i].offset = next_offset;
573 ns->partitions[i].size = remains;
574 ns->nbparts += 1;
575 }
576
577 /* Detect how many ID bytes the NAND chip outputs */
578 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
579 if (second_id_byte != nand_flash_ids[i].id)
580 continue;
581 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
582 ns->options |= OPT_AUTOINCR;
583 }
584
585 if (ns->busw == 16)
586 NS_WARN("16-bit flashes support wasn't tested\n");
587
588 printk("flash size: %llu MiB\n", ns->geom.totsz >> 20);
589 printk("page size: %u bytes\n", ns->geom.pgsz);
590 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
591 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
592 printk("pages number: %u\n", ns->geom.pgnum);
593 printk("pages per sector: %u\n", ns->geom.pgsec);
594 printk("bus width: %u\n", ns->busw);
595 printk("bits in sector size: %u\n", ns->geom.secshift);
596 printk("bits in page size: %u\n", ns->geom.pgshift);
597 printk("bits in OOB size: %u\n", ns->geom.oobshift);
598 printk("flash size with OOB: %llu KiB\n", ns->geom.totszoob >> 10);
599 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
600 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
601 printk("options: %#x\n", ns->options);
602
603 if ((ret = alloc_device(ns)) != 0)
604 goto error;
605
606 /* Allocate / initialize the internal buffer */
607 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
608 if (!ns->buf.byte) {
609 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
610 ns->geom.pgszoob);
611 ret = -ENOMEM;
612 goto error;
613 }
614 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
615
616 return 0;
617
618 error:
619 free_device(ns);
620
621 return ret;
622 }
623
624 /*
625 * Free the nandsim structure.
626 */
627 static void free_nandsim(struct nandsim *ns)
628 {
629 kfree(ns->buf.byte);
630 free_device(ns);
631
632 return;
633 }
634
635 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
636 {
637 char *w;
638 int zero_ok;
639 unsigned int erase_block_no;
640 loff_t offset;
641
642 if (!badblocks)
643 return 0;
644 w = badblocks;
645 do {
646 zero_ok = (*w == '0' ? 1 : 0);
647 erase_block_no = simple_strtoul(w, &w, 0);
648 if (!zero_ok && !erase_block_no) {
649 NS_ERR("invalid badblocks.\n");
650 return -EINVAL;
651 }
652 offset = erase_block_no * ns->geom.secsz;
653 if (mtd->block_markbad(mtd, offset)) {
654 NS_ERR("invalid badblocks.\n");
655 return -EINVAL;
656 }
657 if (*w == ',')
658 w += 1;
659 } while (*w);
660 return 0;
661 }
662
663 static int parse_weakblocks(void)
664 {
665 char *w;
666 int zero_ok;
667 unsigned int erase_block_no;
668 unsigned int max_erases;
669 struct weak_block *wb;
670
671 if (!weakblocks)
672 return 0;
673 w = weakblocks;
674 do {
675 zero_ok = (*w == '0' ? 1 : 0);
676 erase_block_no = simple_strtoul(w, &w, 0);
677 if (!zero_ok && !erase_block_no) {
678 NS_ERR("invalid weakblocks.\n");
679 return -EINVAL;
680 }
681 max_erases = 3;
682 if (*w == ':') {
683 w += 1;
684 max_erases = simple_strtoul(w, &w, 0);
685 }
686 if (*w == ',')
687 w += 1;
688 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
689 if (!wb) {
690 NS_ERR("unable to allocate memory.\n");
691 return -ENOMEM;
692 }
693 wb->erase_block_no = erase_block_no;
694 wb->max_erases = max_erases;
695 list_add(&wb->list, &weak_blocks);
696 } while (*w);
697 return 0;
698 }
699
700 static int erase_error(unsigned int erase_block_no)
701 {
702 struct weak_block *wb;
703
704 list_for_each_entry(wb, &weak_blocks, list)
705 if (wb->erase_block_no == erase_block_no) {
706 if (wb->erases_done >= wb->max_erases)
707 return 1;
708 wb->erases_done += 1;
709 return 0;
710 }
711 return 0;
712 }
713
714 static int parse_weakpages(void)
715 {
716 char *w;
717 int zero_ok;
718 unsigned int page_no;
719 unsigned int max_writes;
720 struct weak_page *wp;
721
722 if (!weakpages)
723 return 0;
724 w = weakpages;
725 do {
726 zero_ok = (*w == '0' ? 1 : 0);
727 page_no = simple_strtoul(w, &w, 0);
728 if (!zero_ok && !page_no) {
729 NS_ERR("invalid weakpagess.\n");
730 return -EINVAL;
731 }
732 max_writes = 3;
733 if (*w == ':') {
734 w += 1;
735 max_writes = simple_strtoul(w, &w, 0);
736 }
737 if (*w == ',')
738 w += 1;
739 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
740 if (!wp) {
741 NS_ERR("unable to allocate memory.\n");
742 return -ENOMEM;
743 }
744 wp->page_no = page_no;
745 wp->max_writes = max_writes;
746 list_add(&wp->list, &weak_pages);
747 } while (*w);
748 return 0;
749 }
750
751 static int write_error(unsigned int page_no)
752 {
753 struct weak_page *wp;
754
755 list_for_each_entry(wp, &weak_pages, list)
756 if (wp->page_no == page_no) {
757 if (wp->writes_done >= wp->max_writes)
758 return 1;
759 wp->writes_done += 1;
760 return 0;
761 }
762 return 0;
763 }
764
765 static int parse_gravepages(void)
766 {
767 char *g;
768 int zero_ok;
769 unsigned int page_no;
770 unsigned int max_reads;
771 struct grave_page *gp;
772
773 if (!gravepages)
774 return 0;
775 g = gravepages;
776 do {
777 zero_ok = (*g == '0' ? 1 : 0);
778 page_no = simple_strtoul(g, &g, 0);
779 if (!zero_ok && !page_no) {
780 NS_ERR("invalid gravepagess.\n");
781 return -EINVAL;
782 }
783 max_reads = 3;
784 if (*g == ':') {
785 g += 1;
786 max_reads = simple_strtoul(g, &g, 0);
787 }
788 if (*g == ',')
789 g += 1;
790 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
791 if (!gp) {
792 NS_ERR("unable to allocate memory.\n");
793 return -ENOMEM;
794 }
795 gp->page_no = page_no;
796 gp->max_reads = max_reads;
797 list_add(&gp->list, &grave_pages);
798 } while (*g);
799 return 0;
800 }
801
802 static int read_error(unsigned int page_no)
803 {
804 struct grave_page *gp;
805
806 list_for_each_entry(gp, &grave_pages, list)
807 if (gp->page_no == page_no) {
808 if (gp->reads_done >= gp->max_reads)
809 return 1;
810 gp->reads_done += 1;
811 return 0;
812 }
813 return 0;
814 }
815
816 static void free_lists(void)
817 {
818 struct list_head *pos, *n;
819 list_for_each_safe(pos, n, &weak_blocks) {
820 list_del(pos);
821 kfree(list_entry(pos, struct weak_block, list));
822 }
823 list_for_each_safe(pos, n, &weak_pages) {
824 list_del(pos);
825 kfree(list_entry(pos, struct weak_page, list));
826 }
827 list_for_each_safe(pos, n, &grave_pages) {
828 list_del(pos);
829 kfree(list_entry(pos, struct grave_page, list));
830 }
831 kfree(erase_block_wear);
832 }
833
834 static int setup_wear_reporting(struct mtd_info *mtd)
835 {
836 size_t mem;
837
838 if (!rptwear)
839 return 0;
840 wear_eb_count = divide(mtd->size, mtd->erasesize);
841 mem = wear_eb_count * sizeof(unsigned long);
842 if (mem / sizeof(unsigned long) != wear_eb_count) {
843 NS_ERR("Too many erase blocks for wear reporting\n");
844 return -ENOMEM;
845 }
846 erase_block_wear = kzalloc(mem, GFP_KERNEL);
847 if (!erase_block_wear) {
848 NS_ERR("Too many erase blocks for wear reporting\n");
849 return -ENOMEM;
850 }
851 return 0;
852 }
853
854 static void update_wear(unsigned int erase_block_no)
855 {
856 unsigned long wmin = -1, wmax = 0, avg;
857 unsigned long deciles[10], decile_max[10], tot = 0;
858 unsigned int i;
859
860 if (!erase_block_wear)
861 return;
862 total_wear += 1;
863 if (total_wear == 0)
864 NS_ERR("Erase counter total overflow\n");
865 erase_block_wear[erase_block_no] += 1;
866 if (erase_block_wear[erase_block_no] == 0)
867 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
868 rptwear_cnt += 1;
869 if (rptwear_cnt < rptwear)
870 return;
871 rptwear_cnt = 0;
872 /* Calc wear stats */
873 for (i = 0; i < wear_eb_count; ++i) {
874 unsigned long wear = erase_block_wear[i];
875 if (wear < wmin)
876 wmin = wear;
877 if (wear > wmax)
878 wmax = wear;
879 tot += wear;
880 }
881 for (i = 0; i < 9; ++i) {
882 deciles[i] = 0;
883 decile_max[i] = (wmax * (i + 1) + 5) / 10;
884 }
885 deciles[9] = 0;
886 decile_max[9] = wmax;
887 for (i = 0; i < wear_eb_count; ++i) {
888 int d;
889 unsigned long wear = erase_block_wear[i];
890 for (d = 0; d < 10; ++d)
891 if (wear <= decile_max[d]) {
892 deciles[d] += 1;
893 break;
894 }
895 }
896 avg = tot / wear_eb_count;
897 /* Output wear report */
898 NS_INFO("*** Wear Report ***\n");
899 NS_INFO("Total numbers of erases: %lu\n", tot);
900 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
901 NS_INFO("Average number of erases: %lu\n", avg);
902 NS_INFO("Maximum number of erases: %lu\n", wmax);
903 NS_INFO("Minimum number of erases: %lu\n", wmin);
904 for (i = 0; i < 10; ++i) {
905 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
906 if (from > decile_max[i])
907 continue;
908 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
909 from,
910 decile_max[i],
911 deciles[i]);
912 }
913 NS_INFO("*** End of Wear Report ***\n");
914 }
915
916 /*
917 * Returns the string representation of 'state' state.
918 */
919 static char *get_state_name(uint32_t state)
920 {
921 switch (NS_STATE(state)) {
922 case STATE_CMD_READ0:
923 return "STATE_CMD_READ0";
924 case STATE_CMD_READ1:
925 return "STATE_CMD_READ1";
926 case STATE_CMD_PAGEPROG:
927 return "STATE_CMD_PAGEPROG";
928 case STATE_CMD_READOOB:
929 return "STATE_CMD_READOOB";
930 case STATE_CMD_READSTART:
931 return "STATE_CMD_READSTART";
932 case STATE_CMD_ERASE1:
933 return "STATE_CMD_ERASE1";
934 case STATE_CMD_STATUS:
935 return "STATE_CMD_STATUS";
936 case STATE_CMD_STATUS_M:
937 return "STATE_CMD_STATUS_M";
938 case STATE_CMD_SEQIN:
939 return "STATE_CMD_SEQIN";
940 case STATE_CMD_READID:
941 return "STATE_CMD_READID";
942 case STATE_CMD_ERASE2:
943 return "STATE_CMD_ERASE2";
944 case STATE_CMD_RESET:
945 return "STATE_CMD_RESET";
946 case STATE_CMD_RNDOUT:
947 return "STATE_CMD_RNDOUT";
948 case STATE_CMD_RNDOUTSTART:
949 return "STATE_CMD_RNDOUTSTART";
950 case STATE_ADDR_PAGE:
951 return "STATE_ADDR_PAGE";
952 case STATE_ADDR_SEC:
953 return "STATE_ADDR_SEC";
954 case STATE_ADDR_ZERO:
955 return "STATE_ADDR_ZERO";
956 case STATE_ADDR_COLUMN:
957 return "STATE_ADDR_COLUMN";
958 case STATE_DATAIN:
959 return "STATE_DATAIN";
960 case STATE_DATAOUT:
961 return "STATE_DATAOUT";
962 case STATE_DATAOUT_ID:
963 return "STATE_DATAOUT_ID";
964 case STATE_DATAOUT_STATUS:
965 return "STATE_DATAOUT_STATUS";
966 case STATE_DATAOUT_STATUS_M:
967 return "STATE_DATAOUT_STATUS_M";
968 case STATE_READY:
969 return "STATE_READY";
970 case STATE_UNKNOWN:
971 return "STATE_UNKNOWN";
972 }
973
974 NS_ERR("get_state_name: unknown state, BUG\n");
975 return NULL;
976 }
977
978 /*
979 * Check if command is valid.
980 *
981 * RETURNS: 1 if wrong command, 0 if right.
982 */
983 static int check_command(int cmd)
984 {
985 switch (cmd) {
986
987 case NAND_CMD_READ0:
988 case NAND_CMD_READ1:
989 case NAND_CMD_READSTART:
990 case NAND_CMD_PAGEPROG:
991 case NAND_CMD_READOOB:
992 case NAND_CMD_ERASE1:
993 case NAND_CMD_STATUS:
994 case NAND_CMD_SEQIN:
995 case NAND_CMD_READID:
996 case NAND_CMD_ERASE2:
997 case NAND_CMD_RESET:
998 case NAND_CMD_RNDOUT:
999 case NAND_CMD_RNDOUTSTART:
1000 return 0;
1001
1002 case NAND_CMD_STATUS_MULTI:
1003 default:
1004 return 1;
1005 }
1006 }
1007
1008 /*
1009 * Returns state after command is accepted by command number.
1010 */
1011 static uint32_t get_state_by_command(unsigned command)
1012 {
1013 switch (command) {
1014 case NAND_CMD_READ0:
1015 return STATE_CMD_READ0;
1016 case NAND_CMD_READ1:
1017 return STATE_CMD_READ1;
1018 case NAND_CMD_PAGEPROG:
1019 return STATE_CMD_PAGEPROG;
1020 case NAND_CMD_READSTART:
1021 return STATE_CMD_READSTART;
1022 case NAND_CMD_READOOB:
1023 return STATE_CMD_READOOB;
1024 case NAND_CMD_ERASE1:
1025 return STATE_CMD_ERASE1;
1026 case NAND_CMD_STATUS:
1027 return STATE_CMD_STATUS;
1028 case NAND_CMD_STATUS_MULTI:
1029 return STATE_CMD_STATUS_M;
1030 case NAND_CMD_SEQIN:
1031 return STATE_CMD_SEQIN;
1032 case NAND_CMD_READID:
1033 return STATE_CMD_READID;
1034 case NAND_CMD_ERASE2:
1035 return STATE_CMD_ERASE2;
1036 case NAND_CMD_RESET:
1037 return STATE_CMD_RESET;
1038 case NAND_CMD_RNDOUT:
1039 return STATE_CMD_RNDOUT;
1040 case NAND_CMD_RNDOUTSTART:
1041 return STATE_CMD_RNDOUTSTART;
1042 }
1043
1044 NS_ERR("get_state_by_command: unknown command, BUG\n");
1045 return 0;
1046 }
1047
1048 /*
1049 * Move an address byte to the correspondent internal register.
1050 */
1051 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1052 {
1053 uint byte = (uint)bt;
1054
1055 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1056 ns->regs.column |= (byte << 8 * ns->regs.count);
1057 else {
1058 ns->regs.row |= (byte << 8 * (ns->regs.count -
1059 ns->geom.pgaddrbytes +
1060 ns->geom.secaddrbytes));
1061 }
1062
1063 return;
1064 }
1065
1066 /*
1067 * Switch to STATE_READY state.
1068 */
1069 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1070 {
1071 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1072
1073 ns->state = STATE_READY;
1074 ns->nxstate = STATE_UNKNOWN;
1075 ns->op = NULL;
1076 ns->npstates = 0;
1077 ns->stateidx = 0;
1078 ns->regs.num = 0;
1079 ns->regs.count = 0;
1080 ns->regs.off = 0;
1081 ns->regs.row = 0;
1082 ns->regs.column = 0;
1083 ns->regs.status = status;
1084 }
1085
1086 /*
1087 * If the operation isn't known yet, try to find it in the global array
1088 * of supported operations.
1089 *
1090 * Operation can be unknown because of the following.
1091 * 1. New command was accepted and this is the firs call to find the
1092 * correspondent states chain. In this case ns->npstates = 0;
1093 * 2. There is several operations which begin with the same command(s)
1094 * (for example program from the second half and read from the
1095 * second half operations both begin with the READ1 command). In this
1096 * case the ns->pstates[] array contains previous states.
1097 *
1098 * Thus, the function tries to find operation containing the following
1099 * states (if the 'flag' parameter is 0):
1100 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1101 *
1102 * If (one and only one) matching operation is found, it is accepted (
1103 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1104 * zeroed).
1105 *
1106 * If there are several maches, the current state is pushed to the
1107 * ns->pstates.
1108 *
1109 * The operation can be unknown only while commands are input to the chip.
1110 * As soon as address command is accepted, the operation must be known.
1111 * In such situation the function is called with 'flag' != 0, and the
1112 * operation is searched using the following pattern:
1113 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1114 *
1115 * It is supposed that this pattern must either match one operation on
1116 * none. There can't be ambiguity in that case.
1117 *
1118 * If no matches found, the functions does the following:
1119 * 1. if there are saved states present, try to ignore them and search
1120 * again only using the last command. If nothing was found, switch
1121 * to the STATE_READY state.
1122 * 2. if there are no saved states, switch to the STATE_READY state.
1123 *
1124 * RETURNS: -2 - no matched operations found.
1125 * -1 - several matches.
1126 * 0 - operation is found.
1127 */
1128 static int find_operation(struct nandsim *ns, uint32_t flag)
1129 {
1130 int opsfound = 0;
1131 int i, j, idx = 0;
1132
1133 for (i = 0; i < NS_OPER_NUM; i++) {
1134
1135 int found = 1;
1136
1137 if (!(ns->options & ops[i].reqopts))
1138 /* Ignore operations we can't perform */
1139 continue;
1140
1141 if (flag) {
1142 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1143 continue;
1144 } else {
1145 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1146 continue;
1147 }
1148
1149 for (j = 0; j < ns->npstates; j++)
1150 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1151 && (ns->options & ops[idx].reqopts)) {
1152 found = 0;
1153 break;
1154 }
1155
1156 if (found) {
1157 idx = i;
1158 opsfound += 1;
1159 }
1160 }
1161
1162 if (opsfound == 1) {
1163 /* Exact match */
1164 ns->op = &ops[idx].states[0];
1165 if (flag) {
1166 /*
1167 * In this case the find_operation function was
1168 * called when address has just began input. But it isn't
1169 * yet fully input and the current state must
1170 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1171 * state must be the next state (ns->nxstate).
1172 */
1173 ns->stateidx = ns->npstates - 1;
1174 } else {
1175 ns->stateidx = ns->npstates;
1176 }
1177 ns->npstates = 0;
1178 ns->state = ns->op[ns->stateidx];
1179 ns->nxstate = ns->op[ns->stateidx + 1];
1180 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1181 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1182 return 0;
1183 }
1184
1185 if (opsfound == 0) {
1186 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1187 if (ns->npstates != 0) {
1188 NS_DBG("find_operation: no operation found, try again with state %s\n",
1189 get_state_name(ns->state));
1190 ns->npstates = 0;
1191 return find_operation(ns, 0);
1192
1193 }
1194 NS_DBG("find_operation: no operations found\n");
1195 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1196 return -2;
1197 }
1198
1199 if (flag) {
1200 /* This shouldn't happen */
1201 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1202 return -2;
1203 }
1204
1205 NS_DBG("find_operation: there is still ambiguity\n");
1206
1207 ns->pstates[ns->npstates++] = ns->state;
1208
1209 return -1;
1210 }
1211
1212 /*
1213 * Returns a pointer to the current page.
1214 */
1215 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1216 {
1217 return &(ns->pages[ns->regs.row]);
1218 }
1219
1220 /*
1221 * Retuns a pointer to the current byte, within the current page.
1222 */
1223 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1224 {
1225 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1226 }
1227
1228 /*
1229 * Fill the NAND buffer with data read from the specified page.
1230 */
1231 static void read_page(struct nandsim *ns, int num)
1232 {
1233 union ns_mem *mypage;
1234
1235 mypage = NS_GET_PAGE(ns);
1236 if (mypage->byte == NULL) {
1237 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1238 memset(ns->buf.byte, 0xFF, num);
1239 } else {
1240 unsigned int page_no = ns->regs.row;
1241 NS_DBG("read_page: page %d allocated, reading from %d\n",
1242 ns->regs.row, ns->regs.column + ns->regs.off);
1243 if (read_error(page_no)) {
1244 int i;
1245 memset(ns->buf.byte, 0xFF, num);
1246 for (i = 0; i < num; ++i)
1247 ns->buf.byte[i] = random32();
1248 NS_WARN("simulating read error in page %u\n", page_no);
1249 return;
1250 }
1251 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1252 if (bitflips && random32() < (1 << 22)) {
1253 int flips = 1;
1254 if (bitflips > 1)
1255 flips = (random32() % (int) bitflips) + 1;
1256 while (flips--) {
1257 int pos = random32() % (num * 8);
1258 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1259 NS_WARN("read_page: flipping bit %d in page %d "
1260 "reading from %d ecc: corrected=%u failed=%u\n",
1261 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1262 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1263 }
1264 }
1265 }
1266 }
1267
1268 /*
1269 * Erase all pages in the specified sector.
1270 */
1271 static void erase_sector(struct nandsim *ns)
1272 {
1273 union ns_mem *mypage;
1274 int i;
1275
1276 mypage = NS_GET_PAGE(ns);
1277 for (i = 0; i < ns->geom.pgsec; i++) {
1278 if (mypage->byte != NULL) {
1279 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1280 kfree(mypage->byte);
1281 mypage->byte = NULL;
1282 }
1283 mypage++;
1284 }
1285 }
1286
1287 /*
1288 * Program the specified page with the contents from the NAND buffer.
1289 */
1290 static int prog_page(struct nandsim *ns, int num)
1291 {
1292 int i;
1293 union ns_mem *mypage;
1294 u_char *pg_off;
1295
1296 mypage = NS_GET_PAGE(ns);
1297 if (mypage->byte == NULL) {
1298 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1299 /*
1300 * We allocate memory with GFP_NOFS because a flash FS may
1301 * utilize this. If it is holding an FS lock, then gets here,
1302 * then kmalloc runs writeback which goes to the FS again
1303 * and deadlocks. This was seen in practice.
1304 */
1305 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
1306 if (mypage->byte == NULL) {
1307 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1308 return -1;
1309 }
1310 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1311 }
1312
1313 pg_off = NS_PAGE_BYTE_OFF(ns);
1314 for (i = 0; i < num; i++)
1315 pg_off[i] &= ns->buf.byte[i];
1316
1317 return 0;
1318 }
1319
1320 /*
1321 * If state has any action bit, perform this action.
1322 *
1323 * RETURNS: 0 if success, -1 if error.
1324 */
1325 static int do_state_action(struct nandsim *ns, uint32_t action)
1326 {
1327 int num;
1328 int busdiv = ns->busw == 8 ? 1 : 2;
1329 unsigned int erase_block_no, page_no;
1330
1331 action &= ACTION_MASK;
1332
1333 /* Check that page address input is correct */
1334 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1335 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1336 return -1;
1337 }
1338
1339 switch (action) {
1340
1341 case ACTION_CPY:
1342 /*
1343 * Copy page data to the internal buffer.
1344 */
1345
1346 /* Column shouldn't be very large */
1347 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1348 NS_ERR("do_state_action: column number is too large\n");
1349 break;
1350 }
1351 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1352 read_page(ns, num);
1353
1354 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1355 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1356
1357 if (ns->regs.off == 0)
1358 NS_LOG("read page %d\n", ns->regs.row);
1359 else if (ns->regs.off < ns->geom.pgsz)
1360 NS_LOG("read page %d (second half)\n", ns->regs.row);
1361 else
1362 NS_LOG("read OOB of page %d\n", ns->regs.row);
1363
1364 NS_UDELAY(access_delay);
1365 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1366
1367 break;
1368
1369 case ACTION_SECERASE:
1370 /*
1371 * Erase sector.
1372 */
1373
1374 if (ns->lines.wp) {
1375 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1376 return -1;
1377 }
1378
1379 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1380 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1381 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1382 return -1;
1383 }
1384
1385 ns->regs.row = (ns->regs.row <<
1386 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1387 ns->regs.column = 0;
1388
1389 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1390
1391 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1392 ns->regs.row, NS_RAW_OFFSET(ns));
1393 NS_LOG("erase sector %u\n", erase_block_no);
1394
1395 erase_sector(ns);
1396
1397 NS_MDELAY(erase_delay);
1398
1399 if (erase_block_wear)
1400 update_wear(erase_block_no);
1401
1402 if (erase_error(erase_block_no)) {
1403 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1404 return -1;
1405 }
1406
1407 break;
1408
1409 case ACTION_PRGPAGE:
1410 /*
1411 * Programm page - move internal buffer data to the page.
1412 */
1413
1414 if (ns->lines.wp) {
1415 NS_WARN("do_state_action: device is write-protected, programm\n");
1416 return -1;
1417 }
1418
1419 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1420 if (num != ns->regs.count) {
1421 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1422 ns->regs.count, num);
1423 return -1;
1424 }
1425
1426 if (prog_page(ns, num) == -1)
1427 return -1;
1428
1429 page_no = ns->regs.row;
1430
1431 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1432 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1433 NS_LOG("programm page %d\n", ns->regs.row);
1434
1435 NS_UDELAY(programm_delay);
1436 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1437
1438 if (write_error(page_no)) {
1439 NS_WARN("simulating write failure in page %u\n", page_no);
1440 return -1;
1441 }
1442
1443 break;
1444
1445 case ACTION_ZEROOFF:
1446 NS_DBG("do_state_action: set internal offset to 0\n");
1447 ns->regs.off = 0;
1448 break;
1449
1450 case ACTION_HALFOFF:
1451 if (!(ns->options & OPT_PAGE512_8BIT)) {
1452 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1453 "byte page size 8x chips\n");
1454 return -1;
1455 }
1456 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1457 ns->regs.off = ns->geom.pgsz/2;
1458 break;
1459
1460 case ACTION_OOBOFF:
1461 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1462 ns->regs.off = ns->geom.pgsz;
1463 break;
1464
1465 default:
1466 NS_DBG("do_state_action: BUG! unknown action\n");
1467 }
1468
1469 return 0;
1470 }
1471
1472 /*
1473 * Switch simulator's state.
1474 */
1475 static void switch_state(struct nandsim *ns)
1476 {
1477 if (ns->op) {
1478 /*
1479 * The current operation have already been identified.
1480 * Just follow the states chain.
1481 */
1482
1483 ns->stateidx += 1;
1484 ns->state = ns->nxstate;
1485 ns->nxstate = ns->op[ns->stateidx + 1];
1486
1487 NS_DBG("switch_state: operation is known, switch to the next state, "
1488 "state: %s, nxstate: %s\n",
1489 get_state_name(ns->state), get_state_name(ns->nxstate));
1490
1491 /* See, whether we need to do some action */
1492 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1493 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1494 return;
1495 }
1496
1497 } else {
1498 /*
1499 * We don't yet know which operation we perform.
1500 * Try to identify it.
1501 */
1502
1503 /*
1504 * The only event causing the switch_state function to
1505 * be called with yet unknown operation is new command.
1506 */
1507 ns->state = get_state_by_command(ns->regs.command);
1508
1509 NS_DBG("switch_state: operation is unknown, try to find it\n");
1510
1511 if (find_operation(ns, 0) != 0)
1512 return;
1513
1514 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1515 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1516 return;
1517 }
1518 }
1519
1520 /* For 16x devices column means the page offset in words */
1521 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1522 NS_DBG("switch_state: double the column number for 16x device\n");
1523 ns->regs.column <<= 1;
1524 }
1525
1526 if (NS_STATE(ns->nxstate) == STATE_READY) {
1527 /*
1528 * The current state is the last. Return to STATE_READY
1529 */
1530
1531 u_char status = NS_STATUS_OK(ns);
1532
1533 /* In case of data states, see if all bytes were input/output */
1534 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1535 && ns->regs.count != ns->regs.num) {
1536 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1537 ns->regs.num - ns->regs.count);
1538 status = NS_STATUS_FAILED(ns);
1539 }
1540
1541 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1542
1543 switch_to_ready_state(ns, status);
1544
1545 return;
1546 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1547 /*
1548 * If the next state is data input/output, switch to it now
1549 */
1550
1551 ns->state = ns->nxstate;
1552 ns->nxstate = ns->op[++ns->stateidx + 1];
1553 ns->regs.num = ns->regs.count = 0;
1554
1555 NS_DBG("switch_state: the next state is data I/O, switch, "
1556 "state: %s, nxstate: %s\n",
1557 get_state_name(ns->state), get_state_name(ns->nxstate));
1558
1559 /*
1560 * Set the internal register to the count of bytes which
1561 * are expected to be input or output
1562 */
1563 switch (NS_STATE(ns->state)) {
1564 case STATE_DATAIN:
1565 case STATE_DATAOUT:
1566 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1567 break;
1568
1569 case STATE_DATAOUT_ID:
1570 ns->regs.num = ns->geom.idbytes;
1571 break;
1572
1573 case STATE_DATAOUT_STATUS:
1574 case STATE_DATAOUT_STATUS_M:
1575 ns->regs.count = ns->regs.num = 0;
1576 break;
1577
1578 default:
1579 NS_ERR("switch_state: BUG! unknown data state\n");
1580 }
1581
1582 } else if (ns->nxstate & STATE_ADDR_MASK) {
1583 /*
1584 * If the next state is address input, set the internal
1585 * register to the number of expected address bytes
1586 */
1587
1588 ns->regs.count = 0;
1589
1590 switch (NS_STATE(ns->nxstate)) {
1591 case STATE_ADDR_PAGE:
1592 ns->regs.num = ns->geom.pgaddrbytes;
1593
1594 break;
1595 case STATE_ADDR_SEC:
1596 ns->regs.num = ns->geom.secaddrbytes;
1597 break;
1598
1599 case STATE_ADDR_ZERO:
1600 ns->regs.num = 1;
1601 break;
1602
1603 case STATE_ADDR_COLUMN:
1604 /* Column address is always 2 bytes */
1605 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1606 break;
1607
1608 default:
1609 NS_ERR("switch_state: BUG! unknown address state\n");
1610 }
1611 } else {
1612 /*
1613 * Just reset internal counters.
1614 */
1615
1616 ns->regs.num = 0;
1617 ns->regs.count = 0;
1618 }
1619 }
1620
1621 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1622 {
1623 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1624 u_char outb = 0x00;
1625
1626 /* Sanity and correctness checks */
1627 if (!ns->lines.ce) {
1628 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1629 return outb;
1630 }
1631 if (ns->lines.ale || ns->lines.cle) {
1632 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1633 return outb;
1634 }
1635 if (!(ns->state & STATE_DATAOUT_MASK)) {
1636 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1637 "return %#x\n", get_state_name(ns->state), (uint)outb);
1638 return outb;
1639 }
1640
1641 /* Status register may be read as many times as it is wanted */
1642 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1643 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1644 return ns->regs.status;
1645 }
1646
1647 /* Check if there is any data in the internal buffer which may be read */
1648 if (ns->regs.count == ns->regs.num) {
1649 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1650 return outb;
1651 }
1652
1653 switch (NS_STATE(ns->state)) {
1654 case STATE_DATAOUT:
1655 if (ns->busw == 8) {
1656 outb = ns->buf.byte[ns->regs.count];
1657 ns->regs.count += 1;
1658 } else {
1659 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1660 ns->regs.count += 2;
1661 }
1662 break;
1663 case STATE_DATAOUT_ID:
1664 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1665 outb = ns->ids[ns->regs.count];
1666 ns->regs.count += 1;
1667 break;
1668 default:
1669 BUG();
1670 }
1671
1672 if (ns->regs.count == ns->regs.num) {
1673 NS_DBG("read_byte: all bytes were read\n");
1674
1675 /*
1676 * The OPT_AUTOINCR allows to read next conseqitive pages without
1677 * new read operation cycle.
1678 */
1679 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1680 ns->regs.count = 0;
1681 if (ns->regs.row + 1 < ns->geom.pgnum)
1682 ns->regs.row += 1;
1683 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1684 do_state_action(ns, ACTION_CPY);
1685 }
1686 else if (NS_STATE(ns->nxstate) == STATE_READY)
1687 switch_state(ns);
1688
1689 }
1690
1691 return outb;
1692 }
1693
1694 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1695 {
1696 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1697
1698 /* Sanity and correctness checks */
1699 if (!ns->lines.ce) {
1700 NS_ERR("write_byte: chip is disabled, ignore write\n");
1701 return;
1702 }
1703 if (ns->lines.ale && ns->lines.cle) {
1704 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1705 return;
1706 }
1707
1708 if (ns->lines.cle == 1) {
1709 /*
1710 * The byte written is a command.
1711 */
1712
1713 if (byte == NAND_CMD_RESET) {
1714 NS_LOG("reset chip\n");
1715 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1716 return;
1717 }
1718
1719 /* Check that the command byte is correct */
1720 if (check_command(byte)) {
1721 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1722 return;
1723 }
1724
1725 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1726 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1727 || NS_STATE(ns->state) == STATE_DATAOUT) {
1728 int row = ns->regs.row;
1729
1730 switch_state(ns);
1731 if (byte == NAND_CMD_RNDOUT)
1732 ns->regs.row = row;
1733 }
1734
1735 /* Check if chip is expecting command */
1736 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1737 /*
1738 * We are in situation when something else (not command)
1739 * was expected but command was input. In this case ignore
1740 * previous command(s)/state(s) and accept the last one.
1741 */
1742 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1743 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1744 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1745 }
1746
1747 NS_DBG("command byte corresponding to %s state accepted\n",
1748 get_state_name(get_state_by_command(byte)));
1749 ns->regs.command = byte;
1750 switch_state(ns);
1751
1752 } else if (ns->lines.ale == 1) {
1753 /*
1754 * The byte written is an address.
1755 */
1756
1757 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1758
1759 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1760
1761 if (find_operation(ns, 1) < 0)
1762 return;
1763
1764 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1765 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1766 return;
1767 }
1768
1769 ns->regs.count = 0;
1770 switch (NS_STATE(ns->nxstate)) {
1771 case STATE_ADDR_PAGE:
1772 ns->regs.num = ns->geom.pgaddrbytes;
1773 break;
1774 case STATE_ADDR_SEC:
1775 ns->regs.num = ns->geom.secaddrbytes;
1776 break;
1777 case STATE_ADDR_ZERO:
1778 ns->regs.num = 1;
1779 break;
1780 default:
1781 BUG();
1782 }
1783 }
1784
1785 /* Check that chip is expecting address */
1786 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1787 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1788 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1789 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1790 return;
1791 }
1792
1793 /* Check if this is expected byte */
1794 if (ns->regs.count == ns->regs.num) {
1795 NS_ERR("write_byte: no more address bytes expected\n");
1796 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1797 return;
1798 }
1799
1800 accept_addr_byte(ns, byte);
1801
1802 ns->regs.count += 1;
1803
1804 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1805 (uint)byte, ns->regs.count, ns->regs.num);
1806
1807 if (ns->regs.count == ns->regs.num) {
1808 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1809 switch_state(ns);
1810 }
1811
1812 } else {
1813 /*
1814 * The byte written is an input data.
1815 */
1816
1817 /* Check that chip is expecting data input */
1818 if (!(ns->state & STATE_DATAIN_MASK)) {
1819 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1820 "switch to %s\n", (uint)byte,
1821 get_state_name(ns->state), get_state_name(STATE_READY));
1822 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1823 return;
1824 }
1825
1826 /* Check if this is expected byte */
1827 if (ns->regs.count == ns->regs.num) {
1828 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1829 ns->regs.num);
1830 return;
1831 }
1832
1833 if (ns->busw == 8) {
1834 ns->buf.byte[ns->regs.count] = byte;
1835 ns->regs.count += 1;
1836 } else {
1837 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1838 ns->regs.count += 2;
1839 }
1840 }
1841
1842 return;
1843 }
1844
1845 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1846 {
1847 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1848
1849 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1850 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1851 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1852
1853 if (cmd != NAND_CMD_NONE)
1854 ns_nand_write_byte(mtd, cmd);
1855 }
1856
1857 static int ns_device_ready(struct mtd_info *mtd)
1858 {
1859 NS_DBG("device_ready\n");
1860 return 1;
1861 }
1862
1863 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1864 {
1865 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1866
1867 NS_DBG("read_word\n");
1868
1869 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1870 }
1871
1872 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1873 {
1874 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1875
1876 /* Check that chip is expecting data input */
1877 if (!(ns->state & STATE_DATAIN_MASK)) {
1878 NS_ERR("write_buf: data input isn't expected, state is %s, "
1879 "switch to STATE_READY\n", get_state_name(ns->state));
1880 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1881 return;
1882 }
1883
1884 /* Check if these are expected bytes */
1885 if (ns->regs.count + len > ns->regs.num) {
1886 NS_ERR("write_buf: too many input bytes\n");
1887 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1888 return;
1889 }
1890
1891 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1892 ns->regs.count += len;
1893
1894 if (ns->regs.count == ns->regs.num) {
1895 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1896 }
1897 }
1898
1899 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1900 {
1901 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1902
1903 /* Sanity and correctness checks */
1904 if (!ns->lines.ce) {
1905 NS_ERR("read_buf: chip is disabled\n");
1906 return;
1907 }
1908 if (ns->lines.ale || ns->lines.cle) {
1909 NS_ERR("read_buf: ALE or CLE pin is high\n");
1910 return;
1911 }
1912 if (!(ns->state & STATE_DATAOUT_MASK)) {
1913 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1914 get_state_name(ns->state));
1915 return;
1916 }
1917
1918 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1919 int i;
1920
1921 for (i = 0; i < len; i++)
1922 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1923
1924 return;
1925 }
1926
1927 /* Check if these are expected bytes */
1928 if (ns->regs.count + len > ns->regs.num) {
1929 NS_ERR("read_buf: too many bytes to read\n");
1930 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1931 return;
1932 }
1933
1934 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1935 ns->regs.count += len;
1936
1937 if (ns->regs.count == ns->regs.num) {
1938 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1939 ns->regs.count = 0;
1940 if (ns->regs.row + 1 < ns->geom.pgnum)
1941 ns->regs.row += 1;
1942 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1943 do_state_action(ns, ACTION_CPY);
1944 }
1945 else if (NS_STATE(ns->nxstate) == STATE_READY)
1946 switch_state(ns);
1947 }
1948
1949 return;
1950 }
1951
1952 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1953 {
1954 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1955
1956 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1957 NS_DBG("verify_buf: the buffer is OK\n");
1958 return 0;
1959 } else {
1960 NS_DBG("verify_buf: the buffer is wrong\n");
1961 return -EFAULT;
1962 }
1963 }
1964
1965 /*
1966 * Module initialization function
1967 */
1968 static int __init ns_init_module(void)
1969 {
1970 struct nand_chip *chip;
1971 struct nandsim *nand;
1972 int retval = -ENOMEM, i;
1973
1974 if (bus_width != 8 && bus_width != 16) {
1975 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1976 return -EINVAL;
1977 }
1978
1979 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1980 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1981 + sizeof(struct nandsim), GFP_KERNEL);
1982 if (!nsmtd) {
1983 NS_ERR("unable to allocate core structures.\n");
1984 return -ENOMEM;
1985 }
1986 chip = (struct nand_chip *)(nsmtd + 1);
1987 nsmtd->priv = (void *)chip;
1988 nand = (struct nandsim *)(chip + 1);
1989 chip->priv = (void *)nand;
1990
1991 /*
1992 * Register simulator's callbacks.
1993 */
1994 chip->cmd_ctrl = ns_hwcontrol;
1995 chip->read_byte = ns_nand_read_byte;
1996 chip->dev_ready = ns_device_ready;
1997 chip->write_buf = ns_nand_write_buf;
1998 chip->read_buf = ns_nand_read_buf;
1999 chip->verify_buf = ns_nand_verify_buf;
2000 chip->read_word = ns_nand_read_word;
2001 chip->ecc.mode = NAND_ECC_SOFT;
2002 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2003 /* and 'badblocks' parameters to work */
2004 chip->options |= NAND_SKIP_BBTSCAN;
2005
2006 /*
2007 * Perform minimum nandsim structure initialization to handle
2008 * the initial ID read command correctly
2009 */
2010 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2011 nand->geom.idbytes = 4;
2012 else
2013 nand->geom.idbytes = 2;
2014 nand->regs.status = NS_STATUS_OK(nand);
2015 nand->nxstate = STATE_UNKNOWN;
2016 nand->options |= OPT_PAGE256; /* temporary value */
2017 nand->ids[0] = first_id_byte;
2018 nand->ids[1] = second_id_byte;
2019 nand->ids[2] = third_id_byte;
2020 nand->ids[3] = fourth_id_byte;
2021 if (bus_width == 16) {
2022 nand->busw = 16;
2023 chip->options |= NAND_BUSWIDTH_16;
2024 }
2025
2026 nsmtd->owner = THIS_MODULE;
2027
2028 if ((retval = parse_weakblocks()) != 0)
2029 goto error;
2030
2031 if ((retval = parse_weakpages()) != 0)
2032 goto error;
2033
2034 if ((retval = parse_gravepages()) != 0)
2035 goto error;
2036
2037 if ((retval = nand_scan(nsmtd, 1)) != 0) {
2038 NS_ERR("can't register NAND Simulator\n");
2039 if (retval > 0)
2040 retval = -ENXIO;
2041 goto error;
2042 }
2043
2044 if (overridesize) {
2045 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
2046 if (new_size >> overridesize != nsmtd->erasesize) {
2047 NS_ERR("overridesize is too big\n");
2048 goto err_exit;
2049 }
2050 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2051 nsmtd->size = new_size;
2052 chip->chipsize = new_size;
2053 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2054 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2055 }
2056
2057 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2058 goto err_exit;
2059
2060 if ((retval = init_nandsim(nsmtd)) != 0)
2061 goto err_exit;
2062
2063 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2064 goto err_exit;
2065
2066 if ((retval = nand_default_bbt(nsmtd)) != 0)
2067 goto err_exit;
2068
2069 /* Register NAND partitions */
2070 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2071 goto err_exit;
2072
2073 return 0;
2074
2075 err_exit:
2076 free_nandsim(nand);
2077 nand_release(nsmtd);
2078 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2079 kfree(nand->partitions[i].name);
2080 error:
2081 kfree(nsmtd);
2082 free_lists();
2083
2084 return retval;
2085 }
2086
2087 module_init(ns_init_module);
2088
2089 /*
2090 * Module clean-up function
2091 */
2092 static void __exit ns_cleanup_module(void)
2093 {
2094 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2095 int i;
2096
2097 free_nandsim(ns); /* Free nandsim private resources */
2098 nand_release(nsmtd); /* Unregister driver */
2099 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2100 kfree(ns->partitions[i].name);
2101 kfree(nsmtd); /* Free other structures */
2102 free_lists();
2103 }
2104
2105 module_exit(ns_cleanup_module);
2106
2107 MODULE_LICENSE ("GPL");
2108 MODULE_AUTHOR ("Artem B. Bityuckiy");
2109 MODULE_DESCRIPTION ("The NAND flash simulator");
This page took 0.147957 seconds and 4 git commands to generate.