Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shaggy...
[deliverable/linux.git] / drivers / mtd / nand / nandsim.c
1 /*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 *
25 * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
26 */
27
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #ifdef CONFIG_NS_ABS_POS
41 #include <asm/io.h>
42 #endif
43
44
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #endif
55
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
58 #endif
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
61 #endif
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
64 #endif
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
67 #endif
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE 50
70 #endif
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH 8
73 #endif
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS 0
76 #endif
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG 0
79 #endif
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG 0
82 #endif
83
84 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
85 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
86 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
87 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
88 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
89 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
90 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
91 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
92 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
93 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
94 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
95 static uint log = CONFIG_NANDSIM_LOG;
96 static uint dbg = CONFIG_NANDSIM_DBG;
97
98 module_param(first_id_byte, uint, 0400);
99 module_param(second_id_byte, uint, 0400);
100 module_param(third_id_byte, uint, 0400);
101 module_param(fourth_id_byte, uint, 0400);
102 module_param(access_delay, uint, 0400);
103 module_param(programm_delay, uint, 0400);
104 module_param(erase_delay, uint, 0400);
105 module_param(output_cycle, uint, 0400);
106 module_param(input_cycle, uint, 0400);
107 module_param(bus_width, uint, 0400);
108 module_param(do_delays, uint, 0400);
109 module_param(log, uint, 0400);
110 module_param(dbg, uint, 0400);
111
112 MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
113 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
114 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
115 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
116 MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
117 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
118 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
119 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
120 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
121 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
122 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
123 MODULE_PARM_DESC(log, "Perform logging if not zero");
124 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
125
126 /* The largest possible page size */
127 #define NS_LARGEST_PAGE_SIZE 2048
128
129 /* The prefix for simulator output */
130 #define NS_OUTPUT_PREFIX "[nandsim]"
131
132 /* Simulator's output macros (logging, debugging, warning, error) */
133 #define NS_LOG(args...) \
134 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
135 #define NS_DBG(args...) \
136 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
137 #define NS_WARN(args...) \
138 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
139 #define NS_ERR(args...) \
140 do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
141
142 /* Busy-wait delay macros (microseconds, milliseconds) */
143 #define NS_UDELAY(us) \
144 do { if (do_delays) udelay(us); } while(0)
145 #define NS_MDELAY(us) \
146 do { if (do_delays) mdelay(us); } while(0)
147
148 /* Is the nandsim structure initialized ? */
149 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
150
151 /* Good operation completion status */
152 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
153
154 /* Operation failed completion status */
155 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
156
157 /* Calculate the page offset in flash RAM image by (row, column) address */
158 #define NS_RAW_OFFSET(ns) \
159 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
160
161 /* Calculate the OOB offset in flash RAM image by (row, column) address */
162 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
163
164 /* After a command is input, the simulator goes to one of the following states */
165 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
166 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
167 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
168 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
169 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
170 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
171 #define STATE_CMD_STATUS 0x00000007 /* read status */
172 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
173 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
174 #define STATE_CMD_READID 0x0000000A /* read ID */
175 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
176 #define STATE_CMD_RESET 0x0000000C /* reset */
177 #define STATE_CMD_MASK 0x0000000F /* command states mask */
178
179 /* After an addres is input, the simulator goes to one of these states */
180 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
181 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
182 #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
183 #define STATE_ADDR_MASK 0x00000030 /* address states mask */
184
185 /* Durind data input/output the simulator is in these states */
186 #define STATE_DATAIN 0x00000100 /* waiting for data input */
187 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
188
189 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
190 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
191 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
192 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
193 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
194
195 /* Previous operation is done, ready to accept new requests */
196 #define STATE_READY 0x00000000
197
198 /* This state is used to mark that the next state isn't known yet */
199 #define STATE_UNKNOWN 0x10000000
200
201 /* Simulator's actions bit masks */
202 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
203 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
204 #define ACTION_SECERASE 0x00300000 /* erase sector */
205 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
206 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
207 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
208 #define ACTION_MASK 0x00700000 /* action mask */
209
210 #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
211 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
212
213 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
214 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
215 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
216 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
217 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
218 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
219 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
220 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
221 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
222
223 /* Remove action bits ftom state */
224 #define NS_STATE(x) ((x) & ~ACTION_MASK)
225
226 /*
227 * Maximum previous states which need to be saved. Currently saving is
228 * only needed for page programm operation with preceeded read command
229 * (which is only valid for 512-byte pages).
230 */
231 #define NS_MAX_PREVSTATES 1
232
233 /*
234 * The structure which describes all the internal simulator data.
235 */
236 struct nandsim {
237 struct mtd_partition part;
238
239 uint busw; /* flash chip bus width (8 or 16) */
240 u_char ids[4]; /* chip's ID bytes */
241 uint32_t options; /* chip's characteristic bits */
242 uint32_t state; /* current chip state */
243 uint32_t nxstate; /* next expected state */
244
245 uint32_t *op; /* current operation, NULL operations isn't known yet */
246 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
247 uint16_t npstates; /* number of previous states saved */
248 uint16_t stateidx; /* current state index */
249
250 /* The simulated NAND flash image */
251 union flash_media {
252 u_char *byte;
253 uint16_t *word;
254 } mem;
255
256 /* Internal buffer of page + OOB size bytes */
257 union internal_buffer {
258 u_char *byte; /* for byte access */
259 uint16_t *word; /* for 16-bit word access */
260 } buf;
261
262 /* NAND flash "geometry" */
263 struct nandsin_geometry {
264 uint32_t totsz; /* total flash size, bytes */
265 uint32_t secsz; /* flash sector (erase block) size, bytes */
266 uint pgsz; /* NAND flash page size, bytes */
267 uint oobsz; /* page OOB area size, bytes */
268 uint32_t totszoob; /* total flash size including OOB, bytes */
269 uint pgszoob; /* page size including OOB , bytes*/
270 uint secszoob; /* sector size including OOB, bytes */
271 uint pgnum; /* total number of pages */
272 uint pgsec; /* number of pages per sector */
273 uint secshift; /* bits number in sector size */
274 uint pgshift; /* bits number in page size */
275 uint oobshift; /* bits number in OOB size */
276 uint pgaddrbytes; /* bytes per page address */
277 uint secaddrbytes; /* bytes per sector address */
278 uint idbytes; /* the number ID bytes that this chip outputs */
279 } geom;
280
281 /* NAND flash internal registers */
282 struct nandsim_regs {
283 unsigned command; /* the command register */
284 u_char status; /* the status register */
285 uint row; /* the page number */
286 uint column; /* the offset within page */
287 uint count; /* internal counter */
288 uint num; /* number of bytes which must be processed */
289 uint off; /* fixed page offset */
290 } regs;
291
292 /* NAND flash lines state */
293 struct ns_lines_status {
294 int ce; /* chip Enable */
295 int cle; /* command Latch Enable */
296 int ale; /* address Latch Enable */
297 int wp; /* write Protect */
298 } lines;
299 };
300
301 /*
302 * Operations array. To perform any operation the simulator must pass
303 * through the correspondent states chain.
304 */
305 static struct nandsim_operations {
306 uint32_t reqopts; /* options which are required to perform the operation */
307 uint32_t states[NS_OPER_STATES]; /* operation's states */
308 } ops[NS_OPER_NUM] = {
309 /* Read page + OOB from the beginning */
310 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
311 STATE_DATAOUT, STATE_READY}},
312 /* Read page + OOB from the second half */
313 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
314 STATE_DATAOUT, STATE_READY}},
315 /* Read OOB */
316 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
317 STATE_DATAOUT, STATE_READY}},
318 /* Programm page starting from the beginning */
319 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
320 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
321 /* Programm page starting from the beginning */
322 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
323 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
324 /* Programm page starting from the second half */
325 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
326 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
327 /* Programm OOB */
328 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
329 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
330 /* Erase sector */
331 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
332 /* Read status */
333 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
334 /* Read multi-plane status */
335 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
336 /* Read ID */
337 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
338 /* Large page devices read page */
339 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
340 STATE_DATAOUT, STATE_READY}}
341 };
342
343 /* MTD structure for NAND controller */
344 static struct mtd_info *nsmtd;
345
346 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
347
348 /*
349 * Initialize the nandsim structure.
350 *
351 * RETURNS: 0 if success, -ERRNO if failure.
352 */
353 static int
354 init_nandsim(struct mtd_info *mtd)
355 {
356 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
357 struct nandsim *ns = (struct nandsim *)(chip->priv);
358 int i;
359
360 if (NS_IS_INITIALIZED(ns)) {
361 NS_ERR("init_nandsim: nandsim is already initialized\n");
362 return -EIO;
363 }
364
365 /* Force mtd to not do delays */
366 chip->chip_delay = 0;
367
368 /* Initialize the NAND flash parameters */
369 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
370 ns->geom.totsz = mtd->size;
371 ns->geom.pgsz = mtd->writesize;
372 ns->geom.oobsz = mtd->oobsize;
373 ns->geom.secsz = mtd->erasesize;
374 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
375 ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz;
376 ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
377 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
378 ns->geom.pgshift = chip->page_shift;
379 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
380 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
381 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
382 ns->options = 0;
383
384 if (ns->geom.pgsz == 256) {
385 ns->options |= OPT_PAGE256;
386 }
387 else if (ns->geom.pgsz == 512) {
388 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
389 if (ns->busw == 8)
390 ns->options |= OPT_PAGE512_8BIT;
391 } else if (ns->geom.pgsz == 2048) {
392 ns->options |= OPT_PAGE2048;
393 } else {
394 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
395 return -EIO;
396 }
397
398 if (ns->options & OPT_SMALLPAGE) {
399 if (ns->geom.totsz < (64 << 20)) {
400 ns->geom.pgaddrbytes = 3;
401 ns->geom.secaddrbytes = 2;
402 } else {
403 ns->geom.pgaddrbytes = 4;
404 ns->geom.secaddrbytes = 3;
405 }
406 } else {
407 if (ns->geom.totsz <= (128 << 20)) {
408 ns->geom.pgaddrbytes = 5;
409 ns->geom.secaddrbytes = 2;
410 } else {
411 ns->geom.pgaddrbytes = 5;
412 ns->geom.secaddrbytes = 3;
413 }
414 }
415
416 /* Detect how many ID bytes the NAND chip outputs */
417 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
418 if (second_id_byte != nand_flash_ids[i].id)
419 continue;
420 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
421 ns->options |= OPT_AUTOINCR;
422 }
423
424 if (ns->busw == 16)
425 NS_WARN("16-bit flashes support wasn't tested\n");
426
427 printk("flash size: %u MiB\n", ns->geom.totsz >> 20);
428 printk("page size: %u bytes\n", ns->geom.pgsz);
429 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
430 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
431 printk("pages number: %u\n", ns->geom.pgnum);
432 printk("pages per sector: %u\n", ns->geom.pgsec);
433 printk("bus width: %u\n", ns->busw);
434 printk("bits in sector size: %u\n", ns->geom.secshift);
435 printk("bits in page size: %u\n", ns->geom.pgshift);
436 printk("bits in OOB size: %u\n", ns->geom.oobshift);
437 printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
438 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
439 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
440 printk("options: %#x\n", ns->options);
441
442 /* Map / allocate and initialize the flash image */
443 #ifdef CONFIG_NS_ABS_POS
444 ns->mem.byte = ioremap(CONFIG_NS_ABS_POS, ns->geom.totszoob);
445 if (!ns->mem.byte) {
446 NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n",
447 (void *)CONFIG_NS_ABS_POS);
448 return -ENOMEM;
449 }
450 #else
451 ns->mem.byte = vmalloc(ns->geom.totszoob);
452 if (!ns->mem.byte) {
453 NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
454 ns->geom.totszoob);
455 return -ENOMEM;
456 }
457 memset(ns->mem.byte, 0xFF, ns->geom.totszoob);
458 #endif
459
460 /* Allocate / initialize the internal buffer */
461 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
462 if (!ns->buf.byte) {
463 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
464 ns->geom.pgszoob);
465 goto error;
466 }
467 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
468
469 /* Fill the partition_info structure */
470 ns->part.name = "NAND simulator partition";
471 ns->part.offset = 0;
472 ns->part.size = ns->geom.totsz;
473
474 return 0;
475
476 error:
477 #ifdef CONFIG_NS_ABS_POS
478 iounmap(ns->mem.byte);
479 #else
480 vfree(ns->mem.byte);
481 #endif
482
483 return -ENOMEM;
484 }
485
486 /*
487 * Free the nandsim structure.
488 */
489 static void
490 free_nandsim(struct nandsim *ns)
491 {
492 kfree(ns->buf.byte);
493
494 #ifdef CONFIG_NS_ABS_POS
495 iounmap(ns->mem.byte);
496 #else
497 vfree(ns->mem.byte);
498 #endif
499
500 return;
501 }
502
503 /*
504 * Returns the string representation of 'state' state.
505 */
506 static char *
507 get_state_name(uint32_t state)
508 {
509 switch (NS_STATE(state)) {
510 case STATE_CMD_READ0:
511 return "STATE_CMD_READ0";
512 case STATE_CMD_READ1:
513 return "STATE_CMD_READ1";
514 case STATE_CMD_PAGEPROG:
515 return "STATE_CMD_PAGEPROG";
516 case STATE_CMD_READOOB:
517 return "STATE_CMD_READOOB";
518 case STATE_CMD_READSTART:
519 return "STATE_CMD_READSTART";
520 case STATE_CMD_ERASE1:
521 return "STATE_CMD_ERASE1";
522 case STATE_CMD_STATUS:
523 return "STATE_CMD_STATUS";
524 case STATE_CMD_STATUS_M:
525 return "STATE_CMD_STATUS_M";
526 case STATE_CMD_SEQIN:
527 return "STATE_CMD_SEQIN";
528 case STATE_CMD_READID:
529 return "STATE_CMD_READID";
530 case STATE_CMD_ERASE2:
531 return "STATE_CMD_ERASE2";
532 case STATE_CMD_RESET:
533 return "STATE_CMD_RESET";
534 case STATE_ADDR_PAGE:
535 return "STATE_ADDR_PAGE";
536 case STATE_ADDR_SEC:
537 return "STATE_ADDR_SEC";
538 case STATE_ADDR_ZERO:
539 return "STATE_ADDR_ZERO";
540 case STATE_DATAIN:
541 return "STATE_DATAIN";
542 case STATE_DATAOUT:
543 return "STATE_DATAOUT";
544 case STATE_DATAOUT_ID:
545 return "STATE_DATAOUT_ID";
546 case STATE_DATAOUT_STATUS:
547 return "STATE_DATAOUT_STATUS";
548 case STATE_DATAOUT_STATUS_M:
549 return "STATE_DATAOUT_STATUS_M";
550 case STATE_READY:
551 return "STATE_READY";
552 case STATE_UNKNOWN:
553 return "STATE_UNKNOWN";
554 }
555
556 NS_ERR("get_state_name: unknown state, BUG\n");
557 return NULL;
558 }
559
560 /*
561 * Check if command is valid.
562 *
563 * RETURNS: 1 if wrong command, 0 if right.
564 */
565 static int
566 check_command(int cmd)
567 {
568 switch (cmd) {
569
570 case NAND_CMD_READ0:
571 case NAND_CMD_READSTART:
572 case NAND_CMD_PAGEPROG:
573 case NAND_CMD_READOOB:
574 case NAND_CMD_ERASE1:
575 case NAND_CMD_STATUS:
576 case NAND_CMD_SEQIN:
577 case NAND_CMD_READID:
578 case NAND_CMD_ERASE2:
579 case NAND_CMD_RESET:
580 case NAND_CMD_READ1:
581 return 0;
582
583 case NAND_CMD_STATUS_MULTI:
584 default:
585 return 1;
586 }
587 }
588
589 /*
590 * Returns state after command is accepted by command number.
591 */
592 static uint32_t
593 get_state_by_command(unsigned command)
594 {
595 switch (command) {
596 case NAND_CMD_READ0:
597 return STATE_CMD_READ0;
598 case NAND_CMD_READ1:
599 return STATE_CMD_READ1;
600 case NAND_CMD_PAGEPROG:
601 return STATE_CMD_PAGEPROG;
602 case NAND_CMD_READSTART:
603 return STATE_CMD_READSTART;
604 case NAND_CMD_READOOB:
605 return STATE_CMD_READOOB;
606 case NAND_CMD_ERASE1:
607 return STATE_CMD_ERASE1;
608 case NAND_CMD_STATUS:
609 return STATE_CMD_STATUS;
610 case NAND_CMD_STATUS_MULTI:
611 return STATE_CMD_STATUS_M;
612 case NAND_CMD_SEQIN:
613 return STATE_CMD_SEQIN;
614 case NAND_CMD_READID:
615 return STATE_CMD_READID;
616 case NAND_CMD_ERASE2:
617 return STATE_CMD_ERASE2;
618 case NAND_CMD_RESET:
619 return STATE_CMD_RESET;
620 }
621
622 NS_ERR("get_state_by_command: unknown command, BUG\n");
623 return 0;
624 }
625
626 /*
627 * Move an address byte to the correspondent internal register.
628 */
629 static inline void
630 accept_addr_byte(struct nandsim *ns, u_char bt)
631 {
632 uint byte = (uint)bt;
633
634 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
635 ns->regs.column |= (byte << 8 * ns->regs.count);
636 else {
637 ns->regs.row |= (byte << 8 * (ns->regs.count -
638 ns->geom.pgaddrbytes +
639 ns->geom.secaddrbytes));
640 }
641
642 return;
643 }
644
645 /*
646 * Switch to STATE_READY state.
647 */
648 static inline void
649 switch_to_ready_state(struct nandsim *ns, u_char status)
650 {
651 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
652
653 ns->state = STATE_READY;
654 ns->nxstate = STATE_UNKNOWN;
655 ns->op = NULL;
656 ns->npstates = 0;
657 ns->stateidx = 0;
658 ns->regs.num = 0;
659 ns->regs.count = 0;
660 ns->regs.off = 0;
661 ns->regs.row = 0;
662 ns->regs.column = 0;
663 ns->regs.status = status;
664 }
665
666 /*
667 * If the operation isn't known yet, try to find it in the global array
668 * of supported operations.
669 *
670 * Operation can be unknown because of the following.
671 * 1. New command was accepted and this is the firs call to find the
672 * correspondent states chain. In this case ns->npstates = 0;
673 * 2. There is several operations which begin with the same command(s)
674 * (for example program from the second half and read from the
675 * second half operations both begin with the READ1 command). In this
676 * case the ns->pstates[] array contains previous states.
677 *
678 * Thus, the function tries to find operation containing the following
679 * states (if the 'flag' parameter is 0):
680 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
681 *
682 * If (one and only one) matching operation is found, it is accepted (
683 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
684 * zeroed).
685 *
686 * If there are several maches, the current state is pushed to the
687 * ns->pstates.
688 *
689 * The operation can be unknown only while commands are input to the chip.
690 * As soon as address command is accepted, the operation must be known.
691 * In such situation the function is called with 'flag' != 0, and the
692 * operation is searched using the following pattern:
693 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
694 *
695 * It is supposed that this pattern must either match one operation on
696 * none. There can't be ambiguity in that case.
697 *
698 * If no matches found, the functions does the following:
699 * 1. if there are saved states present, try to ignore them and search
700 * again only using the last command. If nothing was found, switch
701 * to the STATE_READY state.
702 * 2. if there are no saved states, switch to the STATE_READY state.
703 *
704 * RETURNS: -2 - no matched operations found.
705 * -1 - several matches.
706 * 0 - operation is found.
707 */
708 static int
709 find_operation(struct nandsim *ns, uint32_t flag)
710 {
711 int opsfound = 0;
712 int i, j, idx = 0;
713
714 for (i = 0; i < NS_OPER_NUM; i++) {
715
716 int found = 1;
717
718 if (!(ns->options & ops[i].reqopts))
719 /* Ignore operations we can't perform */
720 continue;
721
722 if (flag) {
723 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
724 continue;
725 } else {
726 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
727 continue;
728 }
729
730 for (j = 0; j < ns->npstates; j++)
731 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
732 && (ns->options & ops[idx].reqopts)) {
733 found = 0;
734 break;
735 }
736
737 if (found) {
738 idx = i;
739 opsfound += 1;
740 }
741 }
742
743 if (opsfound == 1) {
744 /* Exact match */
745 ns->op = &ops[idx].states[0];
746 if (flag) {
747 /*
748 * In this case the find_operation function was
749 * called when address has just began input. But it isn't
750 * yet fully input and the current state must
751 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
752 * state must be the next state (ns->nxstate).
753 */
754 ns->stateidx = ns->npstates - 1;
755 } else {
756 ns->stateidx = ns->npstates;
757 }
758 ns->npstates = 0;
759 ns->state = ns->op[ns->stateidx];
760 ns->nxstate = ns->op[ns->stateidx + 1];
761 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
762 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
763 return 0;
764 }
765
766 if (opsfound == 0) {
767 /* Nothing was found. Try to ignore previous commands (if any) and search again */
768 if (ns->npstates != 0) {
769 NS_DBG("find_operation: no operation found, try again with state %s\n",
770 get_state_name(ns->state));
771 ns->npstates = 0;
772 return find_operation(ns, 0);
773
774 }
775 NS_DBG("find_operation: no operations found\n");
776 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
777 return -2;
778 }
779
780 if (flag) {
781 /* This shouldn't happen */
782 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
783 return -2;
784 }
785
786 NS_DBG("find_operation: there is still ambiguity\n");
787
788 ns->pstates[ns->npstates++] = ns->state;
789
790 return -1;
791 }
792
793 /*
794 * If state has any action bit, perform this action.
795 *
796 * RETURNS: 0 if success, -1 if error.
797 */
798 static int
799 do_state_action(struct nandsim *ns, uint32_t action)
800 {
801 int i, num;
802 int busdiv = ns->busw == 8 ? 1 : 2;
803
804 action &= ACTION_MASK;
805
806 /* Check that page address input is correct */
807 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
808 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
809 return -1;
810 }
811
812 switch (action) {
813
814 case ACTION_CPY:
815 /*
816 * Copy page data to the internal buffer.
817 */
818
819 /* Column shouldn't be very large */
820 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
821 NS_ERR("do_state_action: column number is too large\n");
822 break;
823 }
824 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
825 memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num);
826
827 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
828 num, NS_RAW_OFFSET(ns) + ns->regs.off);
829
830 if (ns->regs.off == 0)
831 NS_LOG("read page %d\n", ns->regs.row);
832 else if (ns->regs.off < ns->geom.pgsz)
833 NS_LOG("read page %d (second half)\n", ns->regs.row);
834 else
835 NS_LOG("read OOB of page %d\n", ns->regs.row);
836
837 NS_UDELAY(access_delay);
838 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
839
840 break;
841
842 case ACTION_SECERASE:
843 /*
844 * Erase sector.
845 */
846
847 if (ns->lines.wp) {
848 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
849 return -1;
850 }
851
852 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
853 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
854 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
855 return -1;
856 }
857
858 ns->regs.row = (ns->regs.row <<
859 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
860 ns->regs.column = 0;
861
862 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
863 ns->regs.row, NS_RAW_OFFSET(ns));
864 NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift));
865
866 memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob);
867
868 NS_MDELAY(erase_delay);
869
870 break;
871
872 case ACTION_PRGPAGE:
873 /*
874 * Programm page - move internal buffer data to the page.
875 */
876
877 if (ns->lines.wp) {
878 NS_WARN("do_state_action: device is write-protected, programm\n");
879 return -1;
880 }
881
882 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
883 if (num != ns->regs.count) {
884 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
885 ns->regs.count, num);
886 return -1;
887 }
888
889 for (i = 0; i < num; i++)
890 ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i];
891
892 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
893 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
894 NS_LOG("programm page %d\n", ns->regs.row);
895
896 NS_UDELAY(programm_delay);
897 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
898
899 break;
900
901 case ACTION_ZEROOFF:
902 NS_DBG("do_state_action: set internal offset to 0\n");
903 ns->regs.off = 0;
904 break;
905
906 case ACTION_HALFOFF:
907 if (!(ns->options & OPT_PAGE512_8BIT)) {
908 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
909 "byte page size 8x chips\n");
910 return -1;
911 }
912 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
913 ns->regs.off = ns->geom.pgsz/2;
914 break;
915
916 case ACTION_OOBOFF:
917 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
918 ns->regs.off = ns->geom.pgsz;
919 break;
920
921 default:
922 NS_DBG("do_state_action: BUG! unknown action\n");
923 }
924
925 return 0;
926 }
927
928 /*
929 * Switch simulator's state.
930 */
931 static void
932 switch_state(struct nandsim *ns)
933 {
934 if (ns->op) {
935 /*
936 * The current operation have already been identified.
937 * Just follow the states chain.
938 */
939
940 ns->stateidx += 1;
941 ns->state = ns->nxstate;
942 ns->nxstate = ns->op[ns->stateidx + 1];
943
944 NS_DBG("switch_state: operation is known, switch to the next state, "
945 "state: %s, nxstate: %s\n",
946 get_state_name(ns->state), get_state_name(ns->nxstate));
947
948 /* See, whether we need to do some action */
949 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
950 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
951 return;
952 }
953
954 } else {
955 /*
956 * We don't yet know which operation we perform.
957 * Try to identify it.
958 */
959
960 /*
961 * The only event causing the switch_state function to
962 * be called with yet unknown operation is new command.
963 */
964 ns->state = get_state_by_command(ns->regs.command);
965
966 NS_DBG("switch_state: operation is unknown, try to find it\n");
967
968 if (find_operation(ns, 0) != 0)
969 return;
970
971 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
972 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
973 return;
974 }
975 }
976
977 /* For 16x devices column means the page offset in words */
978 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
979 NS_DBG("switch_state: double the column number for 16x device\n");
980 ns->regs.column <<= 1;
981 }
982
983 if (NS_STATE(ns->nxstate) == STATE_READY) {
984 /*
985 * The current state is the last. Return to STATE_READY
986 */
987
988 u_char status = NS_STATUS_OK(ns);
989
990 /* In case of data states, see if all bytes were input/output */
991 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
992 && ns->regs.count != ns->regs.num) {
993 NS_WARN("switch_state: not all bytes were processed, %d left\n",
994 ns->regs.num - ns->regs.count);
995 status = NS_STATUS_FAILED(ns);
996 }
997
998 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
999
1000 switch_to_ready_state(ns, status);
1001
1002 return;
1003 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1004 /*
1005 * If the next state is data input/output, switch to it now
1006 */
1007
1008 ns->state = ns->nxstate;
1009 ns->nxstate = ns->op[++ns->stateidx + 1];
1010 ns->regs.num = ns->regs.count = 0;
1011
1012 NS_DBG("switch_state: the next state is data I/O, switch, "
1013 "state: %s, nxstate: %s\n",
1014 get_state_name(ns->state), get_state_name(ns->nxstate));
1015
1016 /*
1017 * Set the internal register to the count of bytes which
1018 * are expected to be input or output
1019 */
1020 switch (NS_STATE(ns->state)) {
1021 case STATE_DATAIN:
1022 case STATE_DATAOUT:
1023 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1024 break;
1025
1026 case STATE_DATAOUT_ID:
1027 ns->regs.num = ns->geom.idbytes;
1028 break;
1029
1030 case STATE_DATAOUT_STATUS:
1031 case STATE_DATAOUT_STATUS_M:
1032 ns->regs.count = ns->regs.num = 0;
1033 break;
1034
1035 default:
1036 NS_ERR("switch_state: BUG! unknown data state\n");
1037 }
1038
1039 } else if (ns->nxstate & STATE_ADDR_MASK) {
1040 /*
1041 * If the next state is address input, set the internal
1042 * register to the number of expected address bytes
1043 */
1044
1045 ns->regs.count = 0;
1046
1047 switch (NS_STATE(ns->nxstate)) {
1048 case STATE_ADDR_PAGE:
1049 ns->regs.num = ns->geom.pgaddrbytes;
1050
1051 break;
1052 case STATE_ADDR_SEC:
1053 ns->regs.num = ns->geom.secaddrbytes;
1054 break;
1055
1056 case STATE_ADDR_ZERO:
1057 ns->regs.num = 1;
1058 break;
1059
1060 default:
1061 NS_ERR("switch_state: BUG! unknown address state\n");
1062 }
1063 } else {
1064 /*
1065 * Just reset internal counters.
1066 */
1067
1068 ns->regs.num = 0;
1069 ns->regs.count = 0;
1070 }
1071 }
1072
1073 static u_char
1074 ns_nand_read_byte(struct mtd_info *mtd)
1075 {
1076 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1077 u_char outb = 0x00;
1078
1079 /* Sanity and correctness checks */
1080 if (!ns->lines.ce) {
1081 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1082 return outb;
1083 }
1084 if (ns->lines.ale || ns->lines.cle) {
1085 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1086 return outb;
1087 }
1088 if (!(ns->state & STATE_DATAOUT_MASK)) {
1089 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1090 "return %#x\n", get_state_name(ns->state), (uint)outb);
1091 return outb;
1092 }
1093
1094 /* Status register may be read as many times as it is wanted */
1095 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1096 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1097 return ns->regs.status;
1098 }
1099
1100 /* Check if there is any data in the internal buffer which may be read */
1101 if (ns->regs.count == ns->regs.num) {
1102 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1103 return outb;
1104 }
1105
1106 switch (NS_STATE(ns->state)) {
1107 case STATE_DATAOUT:
1108 if (ns->busw == 8) {
1109 outb = ns->buf.byte[ns->regs.count];
1110 ns->regs.count += 1;
1111 } else {
1112 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1113 ns->regs.count += 2;
1114 }
1115 break;
1116 case STATE_DATAOUT_ID:
1117 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1118 outb = ns->ids[ns->regs.count];
1119 ns->regs.count += 1;
1120 break;
1121 default:
1122 BUG();
1123 }
1124
1125 if (ns->regs.count == ns->regs.num) {
1126 NS_DBG("read_byte: all bytes were read\n");
1127
1128 /*
1129 * The OPT_AUTOINCR allows to read next conseqitive pages without
1130 * new read operation cycle.
1131 */
1132 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1133 ns->regs.count = 0;
1134 if (ns->regs.row + 1 < ns->geom.pgnum)
1135 ns->regs.row += 1;
1136 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1137 do_state_action(ns, ACTION_CPY);
1138 }
1139 else if (NS_STATE(ns->nxstate) == STATE_READY)
1140 switch_state(ns);
1141
1142 }
1143
1144 return outb;
1145 }
1146
1147 static void
1148 ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1149 {
1150 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1151
1152 /* Sanity and correctness checks */
1153 if (!ns->lines.ce) {
1154 NS_ERR("write_byte: chip is disabled, ignore write\n");
1155 return;
1156 }
1157 if (ns->lines.ale && ns->lines.cle) {
1158 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1159 return;
1160 }
1161
1162 if (ns->lines.cle == 1) {
1163 /*
1164 * The byte written is a command.
1165 */
1166
1167 if (byte == NAND_CMD_RESET) {
1168 NS_LOG("reset chip\n");
1169 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1170 return;
1171 }
1172
1173 /*
1174 * Chip might still be in STATE_DATAOUT
1175 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1176 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1177 */
1178 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1179 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1180 || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1181 switch_state(ns);
1182
1183 /* Check if chip is expecting command */
1184 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1185 /*
1186 * We are in situation when something else (not command)
1187 * was expected but command was input. In this case ignore
1188 * previous command(s)/state(s) and accept the last one.
1189 */
1190 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1191 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1192 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1193 }
1194
1195 /* Check that the command byte is correct */
1196 if (check_command(byte)) {
1197 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1198 return;
1199 }
1200
1201 NS_DBG("command byte corresponding to %s state accepted\n",
1202 get_state_name(get_state_by_command(byte)));
1203 ns->regs.command = byte;
1204 switch_state(ns);
1205
1206 } else if (ns->lines.ale == 1) {
1207 /*
1208 * The byte written is an address.
1209 */
1210
1211 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1212
1213 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1214
1215 if (find_operation(ns, 1) < 0)
1216 return;
1217
1218 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1219 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1220 return;
1221 }
1222
1223 ns->regs.count = 0;
1224 switch (NS_STATE(ns->nxstate)) {
1225 case STATE_ADDR_PAGE:
1226 ns->regs.num = ns->geom.pgaddrbytes;
1227 break;
1228 case STATE_ADDR_SEC:
1229 ns->regs.num = ns->geom.secaddrbytes;
1230 break;
1231 case STATE_ADDR_ZERO:
1232 ns->regs.num = 1;
1233 break;
1234 default:
1235 BUG();
1236 }
1237 }
1238
1239 /* Check that chip is expecting address */
1240 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1241 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1242 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1243 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1244 return;
1245 }
1246
1247 /* Check if this is expected byte */
1248 if (ns->regs.count == ns->regs.num) {
1249 NS_ERR("write_byte: no more address bytes expected\n");
1250 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1251 return;
1252 }
1253
1254 accept_addr_byte(ns, byte);
1255
1256 ns->regs.count += 1;
1257
1258 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1259 (uint)byte, ns->regs.count, ns->regs.num);
1260
1261 if (ns->regs.count == ns->regs.num) {
1262 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1263 switch_state(ns);
1264 }
1265
1266 } else {
1267 /*
1268 * The byte written is an input data.
1269 */
1270
1271 /* Check that chip is expecting data input */
1272 if (!(ns->state & STATE_DATAIN_MASK)) {
1273 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1274 "switch to %s\n", (uint)byte,
1275 get_state_name(ns->state), get_state_name(STATE_READY));
1276 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1277 return;
1278 }
1279
1280 /* Check if this is expected byte */
1281 if (ns->regs.count == ns->regs.num) {
1282 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1283 ns->regs.num);
1284 return;
1285 }
1286
1287 if (ns->busw == 8) {
1288 ns->buf.byte[ns->regs.count] = byte;
1289 ns->regs.count += 1;
1290 } else {
1291 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1292 ns->regs.count += 2;
1293 }
1294 }
1295
1296 return;
1297 }
1298
1299 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1300 {
1301 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1302
1303 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1304 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1305 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1306
1307 if (cmd != NAND_CMD_NONE)
1308 ns_nand_write_byte(mtd, cmd);
1309 }
1310
1311 static int
1312 ns_device_ready(struct mtd_info *mtd)
1313 {
1314 NS_DBG("device_ready\n");
1315 return 1;
1316 }
1317
1318 static uint16_t
1319 ns_nand_read_word(struct mtd_info *mtd)
1320 {
1321 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1322
1323 NS_DBG("read_word\n");
1324
1325 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1326 }
1327
1328 static void
1329 ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1330 {
1331 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1332
1333 /* Check that chip is expecting data input */
1334 if (!(ns->state & STATE_DATAIN_MASK)) {
1335 NS_ERR("write_buf: data input isn't expected, state is %s, "
1336 "switch to STATE_READY\n", get_state_name(ns->state));
1337 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1338 return;
1339 }
1340
1341 /* Check if these are expected bytes */
1342 if (ns->regs.count + len > ns->regs.num) {
1343 NS_ERR("write_buf: too many input bytes\n");
1344 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1345 return;
1346 }
1347
1348 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1349 ns->regs.count += len;
1350
1351 if (ns->regs.count == ns->regs.num) {
1352 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1353 }
1354 }
1355
1356 static void
1357 ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1358 {
1359 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1360
1361 /* Sanity and correctness checks */
1362 if (!ns->lines.ce) {
1363 NS_ERR("read_buf: chip is disabled\n");
1364 return;
1365 }
1366 if (ns->lines.ale || ns->lines.cle) {
1367 NS_ERR("read_buf: ALE or CLE pin is high\n");
1368 return;
1369 }
1370 if (!(ns->state & STATE_DATAOUT_MASK)) {
1371 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1372 get_state_name(ns->state));
1373 return;
1374 }
1375
1376 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1377 int i;
1378
1379 for (i = 0; i < len; i++)
1380 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1381
1382 return;
1383 }
1384
1385 /* Check if these are expected bytes */
1386 if (ns->regs.count + len > ns->regs.num) {
1387 NS_ERR("read_buf: too many bytes to read\n");
1388 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1389 return;
1390 }
1391
1392 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1393 ns->regs.count += len;
1394
1395 if (ns->regs.count == ns->regs.num) {
1396 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1397 ns->regs.count = 0;
1398 if (ns->regs.row + 1 < ns->geom.pgnum)
1399 ns->regs.row += 1;
1400 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1401 do_state_action(ns, ACTION_CPY);
1402 }
1403 else if (NS_STATE(ns->nxstate) == STATE_READY)
1404 switch_state(ns);
1405 }
1406
1407 return;
1408 }
1409
1410 static int
1411 ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1412 {
1413 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1414
1415 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1416 NS_DBG("verify_buf: the buffer is OK\n");
1417 return 0;
1418 } else {
1419 NS_DBG("verify_buf: the buffer is wrong\n");
1420 return -EFAULT;
1421 }
1422 }
1423
1424 /*
1425 * Module initialization function
1426 */
1427 static int __init ns_init_module(void)
1428 {
1429 struct nand_chip *chip;
1430 struct nandsim *nand;
1431 int retval = -ENOMEM;
1432
1433 if (bus_width != 8 && bus_width != 16) {
1434 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1435 return -EINVAL;
1436 }
1437
1438 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1439 nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1440 + sizeof(struct nandsim), GFP_KERNEL);
1441 if (!nsmtd) {
1442 NS_ERR("unable to allocate core structures.\n");
1443 return -ENOMEM;
1444 }
1445 memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1446 sizeof(struct nandsim));
1447 chip = (struct nand_chip *)(nsmtd + 1);
1448 nsmtd->priv = (void *)chip;
1449 nand = (struct nandsim *)(chip + 1);
1450 chip->priv = (void *)nand;
1451
1452 /*
1453 * Register simulator's callbacks.
1454 */
1455 chip->cmd_ctrl = ns_hwcontrol;
1456 chip->read_byte = ns_nand_read_byte;
1457 chip->dev_ready = ns_device_ready;
1458 chip->write_buf = ns_nand_write_buf;
1459 chip->read_buf = ns_nand_read_buf;
1460 chip->verify_buf = ns_nand_verify_buf;
1461 chip->read_word = ns_nand_read_word;
1462 chip->ecc.mode = NAND_ECC_SOFT;
1463 chip->options |= NAND_SKIP_BBTSCAN;
1464
1465 /*
1466 * Perform minimum nandsim structure initialization to handle
1467 * the initial ID read command correctly
1468 */
1469 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1470 nand->geom.idbytes = 4;
1471 else
1472 nand->geom.idbytes = 2;
1473 nand->regs.status = NS_STATUS_OK(nand);
1474 nand->nxstate = STATE_UNKNOWN;
1475 nand->options |= OPT_PAGE256; /* temporary value */
1476 nand->ids[0] = first_id_byte;
1477 nand->ids[1] = second_id_byte;
1478 nand->ids[2] = third_id_byte;
1479 nand->ids[3] = fourth_id_byte;
1480 if (bus_width == 16) {
1481 nand->busw = 16;
1482 chip->options |= NAND_BUSWIDTH_16;
1483 }
1484
1485 nsmtd->owner = THIS_MODULE;
1486
1487 if ((retval = nand_scan(nsmtd, 1)) != 0) {
1488 NS_ERR("can't register NAND Simulator\n");
1489 if (retval > 0)
1490 retval = -ENXIO;
1491 goto error;
1492 }
1493
1494 if ((retval = init_nandsim(nsmtd)) != 0) {
1495 NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
1496 goto error;
1497 }
1498
1499 if ((retval = nand_default_bbt(nsmtd)) != 0) {
1500 free_nandsim(nand);
1501 goto error;
1502 }
1503
1504 /* Register NAND as one big partition */
1505 add_mtd_partitions(nsmtd, &nand->part, 1);
1506
1507 return 0;
1508
1509 error:
1510 kfree(nsmtd);
1511
1512 return retval;
1513 }
1514
1515 module_init(ns_init_module);
1516
1517 /*
1518 * Module clean-up function
1519 */
1520 static void __exit ns_cleanup_module(void)
1521 {
1522 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
1523
1524 free_nandsim(ns); /* Free nandsim private resources */
1525 nand_release(nsmtd); /* Unregisterd drived */
1526 kfree(nsmtd); /* Free other structures */
1527 }
1528
1529 module_exit(ns_cleanup_module);
1530
1531 MODULE_LICENSE ("GPL");
1532 MODULE_AUTHOR ("Artem B. Bityuckiy");
1533 MODULE_DESCRIPTION ("The NAND flash simulator");
1534
This page took 0.21265 seconds and 6 git commands to generate.