Merge branch 'linux-4.8' of git://github.com/skeggsb/linux into drm-next
[deliverable/linux.git] / drivers / mtd / nand / omap2.c
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/jiffies.h>
19 #include <linux/sched.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/nand.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/omap-dma.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28
29 #include <linux/mtd/nand_bch.h>
30 #include <linux/platform_data/elm.h>
31
32 #include <linux/omap-gpmc.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
34
35 #define DRIVER_NAME "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS 5000
37
38 #define NAND_Ecc_P1e (1 << 0)
39 #define NAND_Ecc_P2e (1 << 1)
40 #define NAND_Ecc_P4e (1 << 2)
41 #define NAND_Ecc_P8e (1 << 3)
42 #define NAND_Ecc_P16e (1 << 4)
43 #define NAND_Ecc_P32e (1 << 5)
44 #define NAND_Ecc_P64e (1 << 6)
45 #define NAND_Ecc_P128e (1 << 7)
46 #define NAND_Ecc_P256e (1 << 8)
47 #define NAND_Ecc_P512e (1 << 9)
48 #define NAND_Ecc_P1024e (1 << 10)
49 #define NAND_Ecc_P2048e (1 << 11)
50
51 #define NAND_Ecc_P1o (1 << 16)
52 #define NAND_Ecc_P2o (1 << 17)
53 #define NAND_Ecc_P4o (1 << 18)
54 #define NAND_Ecc_P8o (1 << 19)
55 #define NAND_Ecc_P16o (1 << 20)
56 #define NAND_Ecc_P32o (1 << 21)
57 #define NAND_Ecc_P64o (1 << 22)
58 #define NAND_Ecc_P128o (1 << 23)
59 #define NAND_Ecc_P256o (1 << 24)
60 #define NAND_Ecc_P512o (1 << 25)
61 #define NAND_Ecc_P1024o (1 << 26)
62 #define NAND_Ecc_P2048o (1 << 27)
63
64 #define TF(value) (value ? 1 : 0)
65
66 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
74
75 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
83
84 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
92
93 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
101
102 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
104
105 #define PREFETCH_CONFIG1_CS_SHIFT 24
106 #define ECC_CONFIG_CS_SHIFT 1
107 #define CS_MASK 0x7
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT 2
110 #define ECCSIZE0_SHIFT 12
111 #define ECCSIZE1_SHIFT 22
112 #define ECC1RESULTSIZE 0x1
113 #define ECCCLEAR 0x100
114 #define ECC1 0x1
115 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY 0x00000001
120
121 #define OMAP24XX_DMA_GPMC 4
122
123 #define SECTOR_BYTES 512
124 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
125 #define BCH4_BIT_PAD 4
126
127 /* GPMC ecc engine settings for read */
128 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
129 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
130 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
131 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
132 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
133
134 /* GPMC ecc engine settings for write */
135 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
136 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
137 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
138
139 #define BADBLOCK_MARKER_LENGTH 2
140
141 static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
142 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
143 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
144 0x07, 0x0e};
145 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
148
149 /* Shared among all NAND instances to synchronize access to the ECC Engine */
150 static struct nand_hw_control omap_gpmc_controller = {
151 .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
152 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
153 };
154
155 struct omap_nand_info {
156 struct nand_chip nand;
157 struct platform_device *pdev;
158
159 int gpmc_cs;
160 bool dev_ready;
161 enum nand_io xfer_type;
162 int devsize;
163 enum omap_ecc ecc_opt;
164 struct device_node *elm_of_node;
165
166 unsigned long phys_base;
167 struct completion comp;
168 struct dma_chan *dma;
169 int gpmc_irq_fifo;
170 int gpmc_irq_count;
171 enum {
172 OMAP_NAND_IO_READ = 0, /* read */
173 OMAP_NAND_IO_WRITE, /* write */
174 } iomode;
175 u_char *buf;
176 int buf_len;
177 /* Interface to GPMC */
178 struct gpmc_nand_regs reg;
179 struct gpmc_nand_ops *ops;
180 bool flash_bbt;
181 /* fields specific for BCHx_HW ECC scheme */
182 struct device *elm_dev;
183 /* NAND ready gpio */
184 struct gpio_desc *ready_gpiod;
185 };
186
187 static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
188 {
189 return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
190 }
191
192 /**
193 * omap_prefetch_enable - configures and starts prefetch transfer
194 * @cs: cs (chip select) number
195 * @fifo_th: fifo threshold to be used for read/ write
196 * @dma_mode: dma mode enable (1) or disable (0)
197 * @u32_count: number of bytes to be transferred
198 * @is_write: prefetch read(0) or write post(1) mode
199 */
200 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
201 unsigned int u32_count, int is_write, struct omap_nand_info *info)
202 {
203 u32 val;
204
205 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
206 return -1;
207
208 if (readl(info->reg.gpmc_prefetch_control))
209 return -EBUSY;
210
211 /* Set the amount of bytes to be prefetched */
212 writel(u32_count, info->reg.gpmc_prefetch_config2);
213
214 /* Set dma/mpu mode, the prefetch read / post write and
215 * enable the engine. Set which cs is has requested for.
216 */
217 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
218 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
219 (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
220 writel(val, info->reg.gpmc_prefetch_config1);
221
222 /* Start the prefetch engine */
223 writel(0x1, info->reg.gpmc_prefetch_control);
224
225 return 0;
226 }
227
228 /**
229 * omap_prefetch_reset - disables and stops the prefetch engine
230 */
231 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
232 {
233 u32 config1;
234
235 /* check if the same module/cs is trying to reset */
236 config1 = readl(info->reg.gpmc_prefetch_config1);
237 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
238 return -EINVAL;
239
240 /* Stop the PFPW engine */
241 writel(0x0, info->reg.gpmc_prefetch_control);
242
243 /* Reset/disable the PFPW engine */
244 writel(0x0, info->reg.gpmc_prefetch_config1);
245
246 return 0;
247 }
248
249 /**
250 * omap_hwcontrol - hardware specific access to control-lines
251 * @mtd: MTD device structure
252 * @cmd: command to device
253 * @ctrl:
254 * NAND_NCE: bit 0 -> don't care
255 * NAND_CLE: bit 1 -> Command Latch
256 * NAND_ALE: bit 2 -> Address Latch
257 *
258 * NOTE: boards may use different bits for these!!
259 */
260 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
261 {
262 struct omap_nand_info *info = mtd_to_omap(mtd);
263
264 if (cmd != NAND_CMD_NONE) {
265 if (ctrl & NAND_CLE)
266 writeb(cmd, info->reg.gpmc_nand_command);
267
268 else if (ctrl & NAND_ALE)
269 writeb(cmd, info->reg.gpmc_nand_address);
270
271 else /* NAND_NCE */
272 writeb(cmd, info->reg.gpmc_nand_data);
273 }
274 }
275
276 /**
277 * omap_read_buf8 - read data from NAND controller into buffer
278 * @mtd: MTD device structure
279 * @buf: buffer to store date
280 * @len: number of bytes to read
281 */
282 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
283 {
284 struct nand_chip *nand = mtd_to_nand(mtd);
285
286 ioread8_rep(nand->IO_ADDR_R, buf, len);
287 }
288
289 /**
290 * omap_write_buf8 - write buffer to NAND controller
291 * @mtd: MTD device structure
292 * @buf: data buffer
293 * @len: number of bytes to write
294 */
295 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
296 {
297 struct omap_nand_info *info = mtd_to_omap(mtd);
298 u_char *p = (u_char *)buf;
299 bool status;
300
301 while (len--) {
302 iowrite8(*p++, info->nand.IO_ADDR_W);
303 /* wait until buffer is available for write */
304 do {
305 status = info->ops->nand_writebuffer_empty();
306 } while (!status);
307 }
308 }
309
310 /**
311 * omap_read_buf16 - read data from NAND controller into buffer
312 * @mtd: MTD device structure
313 * @buf: buffer to store date
314 * @len: number of bytes to read
315 */
316 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
317 {
318 struct nand_chip *nand = mtd_to_nand(mtd);
319
320 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
321 }
322
323 /**
324 * omap_write_buf16 - write buffer to NAND controller
325 * @mtd: MTD device structure
326 * @buf: data buffer
327 * @len: number of bytes to write
328 */
329 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
330 {
331 struct omap_nand_info *info = mtd_to_omap(mtd);
332 u16 *p = (u16 *) buf;
333 bool status;
334 /* FIXME try bursts of writesw() or DMA ... */
335 len >>= 1;
336
337 while (len--) {
338 iowrite16(*p++, info->nand.IO_ADDR_W);
339 /* wait until buffer is available for write */
340 do {
341 status = info->ops->nand_writebuffer_empty();
342 } while (!status);
343 }
344 }
345
346 /**
347 * omap_read_buf_pref - read data from NAND controller into buffer
348 * @mtd: MTD device structure
349 * @buf: buffer to store date
350 * @len: number of bytes to read
351 */
352 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
353 {
354 struct omap_nand_info *info = mtd_to_omap(mtd);
355 uint32_t r_count = 0;
356 int ret = 0;
357 u32 *p = (u32 *)buf;
358
359 /* take care of subpage reads */
360 if (len % 4) {
361 if (info->nand.options & NAND_BUSWIDTH_16)
362 omap_read_buf16(mtd, buf, len % 4);
363 else
364 omap_read_buf8(mtd, buf, len % 4);
365 p = (u32 *) (buf + len % 4);
366 len -= len % 4;
367 }
368
369 /* configure and start prefetch transfer */
370 ret = omap_prefetch_enable(info->gpmc_cs,
371 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
372 if (ret) {
373 /* PFPW engine is busy, use cpu copy method */
374 if (info->nand.options & NAND_BUSWIDTH_16)
375 omap_read_buf16(mtd, (u_char *)p, len);
376 else
377 omap_read_buf8(mtd, (u_char *)p, len);
378 } else {
379 do {
380 r_count = readl(info->reg.gpmc_prefetch_status);
381 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
382 r_count = r_count >> 2;
383 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
384 p += r_count;
385 len -= r_count << 2;
386 } while (len);
387 /* disable and stop the PFPW engine */
388 omap_prefetch_reset(info->gpmc_cs, info);
389 }
390 }
391
392 /**
393 * omap_write_buf_pref - write buffer to NAND controller
394 * @mtd: MTD device structure
395 * @buf: data buffer
396 * @len: number of bytes to write
397 */
398 static void omap_write_buf_pref(struct mtd_info *mtd,
399 const u_char *buf, int len)
400 {
401 struct omap_nand_info *info = mtd_to_omap(mtd);
402 uint32_t w_count = 0;
403 int i = 0, ret = 0;
404 u16 *p = (u16 *)buf;
405 unsigned long tim, limit;
406 u32 val;
407
408 /* take care of subpage writes */
409 if (len % 2 != 0) {
410 writeb(*buf, info->nand.IO_ADDR_W);
411 p = (u16 *)(buf + 1);
412 len--;
413 }
414
415 /* configure and start prefetch transfer */
416 ret = omap_prefetch_enable(info->gpmc_cs,
417 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
418 if (ret) {
419 /* PFPW engine is busy, use cpu copy method */
420 if (info->nand.options & NAND_BUSWIDTH_16)
421 omap_write_buf16(mtd, (u_char *)p, len);
422 else
423 omap_write_buf8(mtd, (u_char *)p, len);
424 } else {
425 while (len) {
426 w_count = readl(info->reg.gpmc_prefetch_status);
427 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
428 w_count = w_count >> 1;
429 for (i = 0; (i < w_count) && len; i++, len -= 2)
430 iowrite16(*p++, info->nand.IO_ADDR_W);
431 }
432 /* wait for data to flushed-out before reset the prefetch */
433 tim = 0;
434 limit = (loops_per_jiffy *
435 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
436 do {
437 cpu_relax();
438 val = readl(info->reg.gpmc_prefetch_status);
439 val = PREFETCH_STATUS_COUNT(val);
440 } while (val && (tim++ < limit));
441
442 /* disable and stop the PFPW engine */
443 omap_prefetch_reset(info->gpmc_cs, info);
444 }
445 }
446
447 /*
448 * omap_nand_dma_callback: callback on the completion of dma transfer
449 * @data: pointer to completion data structure
450 */
451 static void omap_nand_dma_callback(void *data)
452 {
453 complete((struct completion *) data);
454 }
455
456 /*
457 * omap_nand_dma_transfer: configure and start dma transfer
458 * @mtd: MTD device structure
459 * @addr: virtual address in RAM of source/destination
460 * @len: number of data bytes to be transferred
461 * @is_write: flag for read/write operation
462 */
463 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
464 unsigned int len, int is_write)
465 {
466 struct omap_nand_info *info = mtd_to_omap(mtd);
467 struct dma_async_tx_descriptor *tx;
468 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
469 DMA_FROM_DEVICE;
470 struct scatterlist sg;
471 unsigned long tim, limit;
472 unsigned n;
473 int ret;
474 u32 val;
475
476 if (!virt_addr_valid(addr))
477 goto out_copy;
478
479 sg_init_one(&sg, addr, len);
480 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
481 if (n == 0) {
482 dev_err(&info->pdev->dev,
483 "Couldn't DMA map a %d byte buffer\n", len);
484 goto out_copy;
485 }
486
487 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
488 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
489 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
490 if (!tx)
491 goto out_copy_unmap;
492
493 tx->callback = omap_nand_dma_callback;
494 tx->callback_param = &info->comp;
495 dmaengine_submit(tx);
496
497 init_completion(&info->comp);
498
499 /* setup and start DMA using dma_addr */
500 dma_async_issue_pending(info->dma);
501
502 /* configure and start prefetch transfer */
503 ret = omap_prefetch_enable(info->gpmc_cs,
504 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
505 if (ret)
506 /* PFPW engine is busy, use cpu copy method */
507 goto out_copy_unmap;
508
509 wait_for_completion(&info->comp);
510 tim = 0;
511 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
512
513 do {
514 cpu_relax();
515 val = readl(info->reg.gpmc_prefetch_status);
516 val = PREFETCH_STATUS_COUNT(val);
517 } while (val && (tim++ < limit));
518
519 /* disable and stop the PFPW engine */
520 omap_prefetch_reset(info->gpmc_cs, info);
521
522 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
523 return 0;
524
525 out_copy_unmap:
526 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
527 out_copy:
528 if (info->nand.options & NAND_BUSWIDTH_16)
529 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
530 : omap_write_buf16(mtd, (u_char *) addr, len);
531 else
532 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
533 : omap_write_buf8(mtd, (u_char *) addr, len);
534 return 0;
535 }
536
537 /**
538 * omap_read_buf_dma_pref - read data from NAND controller into buffer
539 * @mtd: MTD device structure
540 * @buf: buffer to store date
541 * @len: number of bytes to read
542 */
543 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
544 {
545 if (len <= mtd->oobsize)
546 omap_read_buf_pref(mtd, buf, len);
547 else
548 /* start transfer in DMA mode */
549 omap_nand_dma_transfer(mtd, buf, len, 0x0);
550 }
551
552 /**
553 * omap_write_buf_dma_pref - write buffer to NAND controller
554 * @mtd: MTD device structure
555 * @buf: data buffer
556 * @len: number of bytes to write
557 */
558 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
559 const u_char *buf, int len)
560 {
561 if (len <= mtd->oobsize)
562 omap_write_buf_pref(mtd, buf, len);
563 else
564 /* start transfer in DMA mode */
565 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
566 }
567
568 /*
569 * omap_nand_irq - GPMC irq handler
570 * @this_irq: gpmc irq number
571 * @dev: omap_nand_info structure pointer is passed here
572 */
573 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
574 {
575 struct omap_nand_info *info = (struct omap_nand_info *) dev;
576 u32 bytes;
577
578 bytes = readl(info->reg.gpmc_prefetch_status);
579 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
580 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
581 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
582 if (this_irq == info->gpmc_irq_count)
583 goto done;
584
585 if (info->buf_len && (info->buf_len < bytes))
586 bytes = info->buf_len;
587 else if (!info->buf_len)
588 bytes = 0;
589 iowrite32_rep(info->nand.IO_ADDR_W,
590 (u32 *)info->buf, bytes >> 2);
591 info->buf = info->buf + bytes;
592 info->buf_len -= bytes;
593
594 } else {
595 ioread32_rep(info->nand.IO_ADDR_R,
596 (u32 *)info->buf, bytes >> 2);
597 info->buf = info->buf + bytes;
598
599 if (this_irq == info->gpmc_irq_count)
600 goto done;
601 }
602
603 return IRQ_HANDLED;
604
605 done:
606 complete(&info->comp);
607
608 disable_irq_nosync(info->gpmc_irq_fifo);
609 disable_irq_nosync(info->gpmc_irq_count);
610
611 return IRQ_HANDLED;
612 }
613
614 /*
615 * omap_read_buf_irq_pref - read data from NAND controller into buffer
616 * @mtd: MTD device structure
617 * @buf: buffer to store date
618 * @len: number of bytes to read
619 */
620 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
621 {
622 struct omap_nand_info *info = mtd_to_omap(mtd);
623 int ret = 0;
624
625 if (len <= mtd->oobsize) {
626 omap_read_buf_pref(mtd, buf, len);
627 return;
628 }
629
630 info->iomode = OMAP_NAND_IO_READ;
631 info->buf = buf;
632 init_completion(&info->comp);
633
634 /* configure and start prefetch transfer */
635 ret = omap_prefetch_enable(info->gpmc_cs,
636 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
637 if (ret)
638 /* PFPW engine is busy, use cpu copy method */
639 goto out_copy;
640
641 info->buf_len = len;
642
643 enable_irq(info->gpmc_irq_count);
644 enable_irq(info->gpmc_irq_fifo);
645
646 /* waiting for read to complete */
647 wait_for_completion(&info->comp);
648
649 /* disable and stop the PFPW engine */
650 omap_prefetch_reset(info->gpmc_cs, info);
651 return;
652
653 out_copy:
654 if (info->nand.options & NAND_BUSWIDTH_16)
655 omap_read_buf16(mtd, buf, len);
656 else
657 omap_read_buf8(mtd, buf, len);
658 }
659
660 /*
661 * omap_write_buf_irq_pref - write buffer to NAND controller
662 * @mtd: MTD device structure
663 * @buf: data buffer
664 * @len: number of bytes to write
665 */
666 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
667 const u_char *buf, int len)
668 {
669 struct omap_nand_info *info = mtd_to_omap(mtd);
670 int ret = 0;
671 unsigned long tim, limit;
672 u32 val;
673
674 if (len <= mtd->oobsize) {
675 omap_write_buf_pref(mtd, buf, len);
676 return;
677 }
678
679 info->iomode = OMAP_NAND_IO_WRITE;
680 info->buf = (u_char *) buf;
681 init_completion(&info->comp);
682
683 /* configure and start prefetch transfer : size=24 */
684 ret = omap_prefetch_enable(info->gpmc_cs,
685 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
686 if (ret)
687 /* PFPW engine is busy, use cpu copy method */
688 goto out_copy;
689
690 info->buf_len = len;
691
692 enable_irq(info->gpmc_irq_count);
693 enable_irq(info->gpmc_irq_fifo);
694
695 /* waiting for write to complete */
696 wait_for_completion(&info->comp);
697
698 /* wait for data to flushed-out before reset the prefetch */
699 tim = 0;
700 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
701 do {
702 val = readl(info->reg.gpmc_prefetch_status);
703 val = PREFETCH_STATUS_COUNT(val);
704 cpu_relax();
705 } while (val && (tim++ < limit));
706
707 /* disable and stop the PFPW engine */
708 omap_prefetch_reset(info->gpmc_cs, info);
709 return;
710
711 out_copy:
712 if (info->nand.options & NAND_BUSWIDTH_16)
713 omap_write_buf16(mtd, buf, len);
714 else
715 omap_write_buf8(mtd, buf, len);
716 }
717
718 /**
719 * gen_true_ecc - This function will generate true ECC value
720 * @ecc_buf: buffer to store ecc code
721 *
722 * This generated true ECC value can be used when correcting
723 * data read from NAND flash memory core
724 */
725 static void gen_true_ecc(u8 *ecc_buf)
726 {
727 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
728 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
729
730 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
731 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
732 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
733 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
734 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
735 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
736 }
737
738 /**
739 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
740 * @ecc_data1: ecc code from nand spare area
741 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
742 * @page_data: page data
743 *
744 * This function compares two ECC's and indicates if there is an error.
745 * If the error can be corrected it will be corrected to the buffer.
746 * If there is no error, %0 is returned. If there is an error but it
747 * was corrected, %1 is returned. Otherwise, %-1 is returned.
748 */
749 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
750 u8 *ecc_data2, /* read from register */
751 u8 *page_data)
752 {
753 uint i;
754 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
755 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
756 u8 ecc_bit[24];
757 u8 ecc_sum = 0;
758 u8 find_bit = 0;
759 uint find_byte = 0;
760 int isEccFF;
761
762 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
763
764 gen_true_ecc(ecc_data1);
765 gen_true_ecc(ecc_data2);
766
767 for (i = 0; i <= 2; i++) {
768 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
769 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
770 }
771
772 for (i = 0; i < 8; i++) {
773 tmp0_bit[i] = *ecc_data1 % 2;
774 *ecc_data1 = *ecc_data1 / 2;
775 }
776
777 for (i = 0; i < 8; i++) {
778 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
779 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
780 }
781
782 for (i = 0; i < 8; i++) {
783 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
784 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
785 }
786
787 for (i = 0; i < 8; i++) {
788 comp0_bit[i] = *ecc_data2 % 2;
789 *ecc_data2 = *ecc_data2 / 2;
790 }
791
792 for (i = 0; i < 8; i++) {
793 comp1_bit[i] = *(ecc_data2 + 1) % 2;
794 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
795 }
796
797 for (i = 0; i < 8; i++) {
798 comp2_bit[i] = *(ecc_data2 + 2) % 2;
799 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
800 }
801
802 for (i = 0; i < 6; i++)
803 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
804
805 for (i = 0; i < 8; i++)
806 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
807
808 for (i = 0; i < 8; i++)
809 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
810
811 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
812 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
813
814 for (i = 0; i < 24; i++)
815 ecc_sum += ecc_bit[i];
816
817 switch (ecc_sum) {
818 case 0:
819 /* Not reached because this function is not called if
820 * ECC values are equal
821 */
822 return 0;
823
824 case 1:
825 /* Uncorrectable error */
826 pr_debug("ECC UNCORRECTED_ERROR 1\n");
827 return -EBADMSG;
828
829 case 11:
830 /* UN-Correctable error */
831 pr_debug("ECC UNCORRECTED_ERROR B\n");
832 return -EBADMSG;
833
834 case 12:
835 /* Correctable error */
836 find_byte = (ecc_bit[23] << 8) +
837 (ecc_bit[21] << 7) +
838 (ecc_bit[19] << 6) +
839 (ecc_bit[17] << 5) +
840 (ecc_bit[15] << 4) +
841 (ecc_bit[13] << 3) +
842 (ecc_bit[11] << 2) +
843 (ecc_bit[9] << 1) +
844 ecc_bit[7];
845
846 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
847
848 pr_debug("Correcting single bit ECC error at offset: "
849 "%d, bit: %d\n", find_byte, find_bit);
850
851 page_data[find_byte] ^= (1 << find_bit);
852
853 return 1;
854 default:
855 if (isEccFF) {
856 if (ecc_data2[0] == 0 &&
857 ecc_data2[1] == 0 &&
858 ecc_data2[2] == 0)
859 return 0;
860 }
861 pr_debug("UNCORRECTED_ERROR default\n");
862 return -EBADMSG;
863 }
864 }
865
866 /**
867 * omap_correct_data - Compares the ECC read with HW generated ECC
868 * @mtd: MTD device structure
869 * @dat: page data
870 * @read_ecc: ecc read from nand flash
871 * @calc_ecc: ecc read from HW ECC registers
872 *
873 * Compares the ecc read from nand spare area with ECC registers values
874 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
875 * detection and correction. If there are no errors, %0 is returned. If
876 * there were errors and all of the errors were corrected, the number of
877 * corrected errors is returned. If uncorrectable errors exist, %-1 is
878 * returned.
879 */
880 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
881 u_char *read_ecc, u_char *calc_ecc)
882 {
883 struct omap_nand_info *info = mtd_to_omap(mtd);
884 int blockCnt = 0, i = 0, ret = 0;
885 int stat = 0;
886
887 /* Ex NAND_ECC_HW12_2048 */
888 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
889 (info->nand.ecc.size == 2048))
890 blockCnt = 4;
891 else
892 blockCnt = 1;
893
894 for (i = 0; i < blockCnt; i++) {
895 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
896 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
897 if (ret < 0)
898 return ret;
899 /* keep track of the number of corrected errors */
900 stat += ret;
901 }
902 read_ecc += 3;
903 calc_ecc += 3;
904 dat += 512;
905 }
906 return stat;
907 }
908
909 /**
910 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
911 * @mtd: MTD device structure
912 * @dat: The pointer to data on which ecc is computed
913 * @ecc_code: The ecc_code buffer
914 *
915 * Using noninverted ECC can be considered ugly since writing a blank
916 * page ie. padding will clear the ECC bytes. This is no problem as long
917 * nobody is trying to write data on the seemingly unused page. Reading
918 * an erased page will produce an ECC mismatch between generated and read
919 * ECC bytes that has to be dealt with separately.
920 */
921 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
922 u_char *ecc_code)
923 {
924 struct omap_nand_info *info = mtd_to_omap(mtd);
925 u32 val;
926
927 val = readl(info->reg.gpmc_ecc_config);
928 if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
929 return -EINVAL;
930
931 /* read ecc result */
932 val = readl(info->reg.gpmc_ecc1_result);
933 *ecc_code++ = val; /* P128e, ..., P1e */
934 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
935 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
936 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
937
938 return 0;
939 }
940
941 /**
942 * omap_enable_hwecc - This function enables the hardware ecc functionality
943 * @mtd: MTD device structure
944 * @mode: Read/Write mode
945 */
946 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
947 {
948 struct omap_nand_info *info = mtd_to_omap(mtd);
949 struct nand_chip *chip = mtd_to_nand(mtd);
950 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
951 u32 val;
952
953 /* clear ecc and enable bits */
954 val = ECCCLEAR | ECC1;
955 writel(val, info->reg.gpmc_ecc_control);
956
957 /* program ecc and result sizes */
958 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
959 ECC1RESULTSIZE);
960 writel(val, info->reg.gpmc_ecc_size_config);
961
962 switch (mode) {
963 case NAND_ECC_READ:
964 case NAND_ECC_WRITE:
965 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
966 break;
967 case NAND_ECC_READSYN:
968 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
969 break;
970 default:
971 dev_info(&info->pdev->dev,
972 "error: unrecognized Mode[%d]!\n", mode);
973 break;
974 }
975
976 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
977 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
978 writel(val, info->reg.gpmc_ecc_config);
979 }
980
981 /**
982 * omap_wait - wait until the command is done
983 * @mtd: MTD device structure
984 * @chip: NAND Chip structure
985 *
986 * Wait function is called during Program and erase operations and
987 * the way it is called from MTD layer, we should wait till the NAND
988 * chip is ready after the programming/erase operation has completed.
989 *
990 * Erase can take up to 400ms and program up to 20ms according to
991 * general NAND and SmartMedia specs
992 */
993 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
994 {
995 struct nand_chip *this = mtd_to_nand(mtd);
996 struct omap_nand_info *info = mtd_to_omap(mtd);
997 unsigned long timeo = jiffies;
998 int status, state = this->state;
999
1000 if (state == FL_ERASING)
1001 timeo += msecs_to_jiffies(400);
1002 else
1003 timeo += msecs_to_jiffies(20);
1004
1005 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1006 while (time_before(jiffies, timeo)) {
1007 status = readb(info->reg.gpmc_nand_data);
1008 if (status & NAND_STATUS_READY)
1009 break;
1010 cond_resched();
1011 }
1012
1013 status = readb(info->reg.gpmc_nand_data);
1014 return status;
1015 }
1016
1017 /**
1018 * omap_dev_ready - checks the NAND Ready GPIO line
1019 * @mtd: MTD device structure
1020 *
1021 * Returns true if ready and false if busy.
1022 */
1023 static int omap_dev_ready(struct mtd_info *mtd)
1024 {
1025 struct omap_nand_info *info = mtd_to_omap(mtd);
1026
1027 return gpiod_get_value(info->ready_gpiod);
1028 }
1029
1030 /**
1031 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1032 * @mtd: MTD device structure
1033 * @mode: Read/Write mode
1034 *
1035 * When using BCH with SW correction (i.e. no ELM), sector size is set
1036 * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
1037 * for both reading and writing with:
1038 * eccsize0 = 0 (no additional protected byte in spare area)
1039 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1040 */
1041 static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1042 {
1043 unsigned int bch_type;
1044 unsigned int dev_width, nsectors;
1045 struct omap_nand_info *info = mtd_to_omap(mtd);
1046 enum omap_ecc ecc_opt = info->ecc_opt;
1047 struct nand_chip *chip = mtd_to_nand(mtd);
1048 u32 val, wr_mode;
1049 unsigned int ecc_size1, ecc_size0;
1050
1051 /* GPMC configurations for calculating ECC */
1052 switch (ecc_opt) {
1053 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1054 bch_type = 0;
1055 nsectors = 1;
1056 wr_mode = BCH_WRAPMODE_6;
1057 ecc_size0 = BCH_ECC_SIZE0;
1058 ecc_size1 = BCH_ECC_SIZE1;
1059 break;
1060 case OMAP_ECC_BCH4_CODE_HW:
1061 bch_type = 0;
1062 nsectors = chip->ecc.steps;
1063 if (mode == NAND_ECC_READ) {
1064 wr_mode = BCH_WRAPMODE_1;
1065 ecc_size0 = BCH4R_ECC_SIZE0;
1066 ecc_size1 = BCH4R_ECC_SIZE1;
1067 } else {
1068 wr_mode = BCH_WRAPMODE_6;
1069 ecc_size0 = BCH_ECC_SIZE0;
1070 ecc_size1 = BCH_ECC_SIZE1;
1071 }
1072 break;
1073 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1074 bch_type = 1;
1075 nsectors = 1;
1076 wr_mode = BCH_WRAPMODE_6;
1077 ecc_size0 = BCH_ECC_SIZE0;
1078 ecc_size1 = BCH_ECC_SIZE1;
1079 break;
1080 case OMAP_ECC_BCH8_CODE_HW:
1081 bch_type = 1;
1082 nsectors = chip->ecc.steps;
1083 if (mode == NAND_ECC_READ) {
1084 wr_mode = BCH_WRAPMODE_1;
1085 ecc_size0 = BCH8R_ECC_SIZE0;
1086 ecc_size1 = BCH8R_ECC_SIZE1;
1087 } else {
1088 wr_mode = BCH_WRAPMODE_6;
1089 ecc_size0 = BCH_ECC_SIZE0;
1090 ecc_size1 = BCH_ECC_SIZE1;
1091 }
1092 break;
1093 case OMAP_ECC_BCH16_CODE_HW:
1094 bch_type = 0x2;
1095 nsectors = chip->ecc.steps;
1096 if (mode == NAND_ECC_READ) {
1097 wr_mode = 0x01;
1098 ecc_size0 = 52; /* ECC bits in nibbles per sector */
1099 ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
1100 } else {
1101 wr_mode = 0x01;
1102 ecc_size0 = 0; /* extra bits in nibbles per sector */
1103 ecc_size1 = 52; /* OOB bits in nibbles per sector */
1104 }
1105 break;
1106 default:
1107 return;
1108 }
1109
1110 writel(ECC1, info->reg.gpmc_ecc_control);
1111
1112 /* Configure ecc size for BCH */
1113 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1114 writel(val, info->reg.gpmc_ecc_size_config);
1115
1116 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1117
1118 /* BCH configuration */
1119 val = ((1 << 16) | /* enable BCH */
1120 (bch_type << 12) | /* BCH4/BCH8/BCH16 */
1121 (wr_mode << 8) | /* wrap mode */
1122 (dev_width << 7) | /* bus width */
1123 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1124 (info->gpmc_cs << 1) | /* ECC CS */
1125 (0x1)); /* enable ECC */
1126
1127 writel(val, info->reg.gpmc_ecc_config);
1128
1129 /* Clear ecc and enable bits */
1130 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1131 }
1132
1133 static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1134 static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1135 0x97, 0x79, 0xe5, 0x24, 0xb5};
1136
1137 /**
1138 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1139 * @mtd: MTD device structure
1140 * @dat: The pointer to data on which ecc is computed
1141 * @ecc_code: The ecc_code buffer
1142 *
1143 * Support calculating of BCH4/8 ecc vectors for the page
1144 */
1145 static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
1146 const u_char *dat, u_char *ecc_calc)
1147 {
1148 struct omap_nand_info *info = mtd_to_omap(mtd);
1149 int eccbytes = info->nand.ecc.bytes;
1150 struct gpmc_nand_regs *gpmc_regs = &info->reg;
1151 u8 *ecc_code;
1152 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1153 u32 val;
1154 int i, j;
1155
1156 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1157 for (i = 0; i < nsectors; i++) {
1158 ecc_code = ecc_calc;
1159 switch (info->ecc_opt) {
1160 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1161 case OMAP_ECC_BCH8_CODE_HW:
1162 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1163 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1164 bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
1165 bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
1166 *ecc_code++ = (bch_val4 & 0xFF);
1167 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1168 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1169 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1170 *ecc_code++ = (bch_val3 & 0xFF);
1171 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1172 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1173 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1174 *ecc_code++ = (bch_val2 & 0xFF);
1175 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1176 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1177 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1178 *ecc_code++ = (bch_val1 & 0xFF);
1179 break;
1180 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1181 case OMAP_ECC_BCH4_CODE_HW:
1182 bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
1183 bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
1184 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1185 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1186 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1187 ((bch_val1 >> 28) & 0xF);
1188 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1189 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1190 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1191 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1192 break;
1193 case OMAP_ECC_BCH16_CODE_HW:
1194 val = readl(gpmc_regs->gpmc_bch_result6[i]);
1195 ecc_code[0] = ((val >> 8) & 0xFF);
1196 ecc_code[1] = ((val >> 0) & 0xFF);
1197 val = readl(gpmc_regs->gpmc_bch_result5[i]);
1198 ecc_code[2] = ((val >> 24) & 0xFF);
1199 ecc_code[3] = ((val >> 16) & 0xFF);
1200 ecc_code[4] = ((val >> 8) & 0xFF);
1201 ecc_code[5] = ((val >> 0) & 0xFF);
1202 val = readl(gpmc_regs->gpmc_bch_result4[i]);
1203 ecc_code[6] = ((val >> 24) & 0xFF);
1204 ecc_code[7] = ((val >> 16) & 0xFF);
1205 ecc_code[8] = ((val >> 8) & 0xFF);
1206 ecc_code[9] = ((val >> 0) & 0xFF);
1207 val = readl(gpmc_regs->gpmc_bch_result3[i]);
1208 ecc_code[10] = ((val >> 24) & 0xFF);
1209 ecc_code[11] = ((val >> 16) & 0xFF);
1210 ecc_code[12] = ((val >> 8) & 0xFF);
1211 ecc_code[13] = ((val >> 0) & 0xFF);
1212 val = readl(gpmc_regs->gpmc_bch_result2[i]);
1213 ecc_code[14] = ((val >> 24) & 0xFF);
1214 ecc_code[15] = ((val >> 16) & 0xFF);
1215 ecc_code[16] = ((val >> 8) & 0xFF);
1216 ecc_code[17] = ((val >> 0) & 0xFF);
1217 val = readl(gpmc_regs->gpmc_bch_result1[i]);
1218 ecc_code[18] = ((val >> 24) & 0xFF);
1219 ecc_code[19] = ((val >> 16) & 0xFF);
1220 ecc_code[20] = ((val >> 8) & 0xFF);
1221 ecc_code[21] = ((val >> 0) & 0xFF);
1222 val = readl(gpmc_regs->gpmc_bch_result0[i]);
1223 ecc_code[22] = ((val >> 24) & 0xFF);
1224 ecc_code[23] = ((val >> 16) & 0xFF);
1225 ecc_code[24] = ((val >> 8) & 0xFF);
1226 ecc_code[25] = ((val >> 0) & 0xFF);
1227 break;
1228 default:
1229 return -EINVAL;
1230 }
1231
1232 /* ECC scheme specific syndrome customizations */
1233 switch (info->ecc_opt) {
1234 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1235 /* Add constant polynomial to remainder, so that
1236 * ECC of blank pages results in 0x0 on reading back */
1237 for (j = 0; j < eccbytes; j++)
1238 ecc_calc[j] ^= bch4_polynomial[j];
1239 break;
1240 case OMAP_ECC_BCH4_CODE_HW:
1241 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1242 ecc_calc[eccbytes - 1] = 0x0;
1243 break;
1244 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1245 /* Add constant polynomial to remainder, so that
1246 * ECC of blank pages results in 0x0 on reading back */
1247 for (j = 0; j < eccbytes; j++)
1248 ecc_calc[j] ^= bch8_polynomial[j];
1249 break;
1250 case OMAP_ECC_BCH8_CODE_HW:
1251 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1252 ecc_calc[eccbytes - 1] = 0x0;
1253 break;
1254 case OMAP_ECC_BCH16_CODE_HW:
1255 break;
1256 default:
1257 return -EINVAL;
1258 }
1259
1260 ecc_calc += eccbytes;
1261 }
1262
1263 return 0;
1264 }
1265
1266 /**
1267 * erased_sector_bitflips - count bit flips
1268 * @data: data sector buffer
1269 * @oob: oob buffer
1270 * @info: omap_nand_info
1271 *
1272 * Check the bit flips in erased page falls below correctable level.
1273 * If falls below, report the page as erased with correctable bit
1274 * flip, else report as uncorrectable page.
1275 */
1276 static int erased_sector_bitflips(u_char *data, u_char *oob,
1277 struct omap_nand_info *info)
1278 {
1279 int flip_bits = 0, i;
1280
1281 for (i = 0; i < info->nand.ecc.size; i++) {
1282 flip_bits += hweight8(~data[i]);
1283 if (flip_bits > info->nand.ecc.strength)
1284 return 0;
1285 }
1286
1287 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1288 flip_bits += hweight8(~oob[i]);
1289 if (flip_bits > info->nand.ecc.strength)
1290 return 0;
1291 }
1292
1293 /*
1294 * Bit flips falls in correctable level.
1295 * Fill data area with 0xFF
1296 */
1297 if (flip_bits) {
1298 memset(data, 0xFF, info->nand.ecc.size);
1299 memset(oob, 0xFF, info->nand.ecc.bytes);
1300 }
1301
1302 return flip_bits;
1303 }
1304
1305 /**
1306 * omap_elm_correct_data - corrects page data area in case error reported
1307 * @mtd: MTD device structure
1308 * @data: page data
1309 * @read_ecc: ecc read from nand flash
1310 * @calc_ecc: ecc read from HW ECC registers
1311 *
1312 * Calculated ecc vector reported as zero in case of non-error pages.
1313 * In case of non-zero ecc vector, first filter out erased-pages, and
1314 * then process data via ELM to detect bit-flips.
1315 */
1316 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1317 u_char *read_ecc, u_char *calc_ecc)
1318 {
1319 struct omap_nand_info *info = mtd_to_omap(mtd);
1320 struct nand_ecc_ctrl *ecc = &info->nand.ecc;
1321 int eccsteps = info->nand.ecc.steps;
1322 int i , j, stat = 0;
1323 int eccflag, actual_eccbytes;
1324 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1325 u_char *ecc_vec = calc_ecc;
1326 u_char *spare_ecc = read_ecc;
1327 u_char *erased_ecc_vec;
1328 u_char *buf;
1329 int bitflip_count;
1330 bool is_error_reported = false;
1331 u32 bit_pos, byte_pos, error_max, pos;
1332 int err;
1333
1334 switch (info->ecc_opt) {
1335 case OMAP_ECC_BCH4_CODE_HW:
1336 /* omit 7th ECC byte reserved for ROM code compatibility */
1337 actual_eccbytes = ecc->bytes - 1;
1338 erased_ecc_vec = bch4_vector;
1339 break;
1340 case OMAP_ECC_BCH8_CODE_HW:
1341 /* omit 14th ECC byte reserved for ROM code compatibility */
1342 actual_eccbytes = ecc->bytes - 1;
1343 erased_ecc_vec = bch8_vector;
1344 break;
1345 case OMAP_ECC_BCH16_CODE_HW:
1346 actual_eccbytes = ecc->bytes;
1347 erased_ecc_vec = bch16_vector;
1348 break;
1349 default:
1350 dev_err(&info->pdev->dev, "invalid driver configuration\n");
1351 return -EINVAL;
1352 }
1353
1354 /* Initialize elm error vector to zero */
1355 memset(err_vec, 0, sizeof(err_vec));
1356
1357 for (i = 0; i < eccsteps ; i++) {
1358 eccflag = 0; /* initialize eccflag */
1359
1360 /*
1361 * Check any error reported,
1362 * In case of error, non zero ecc reported.
1363 */
1364 for (j = 0; j < actual_eccbytes; j++) {
1365 if (calc_ecc[j] != 0) {
1366 eccflag = 1; /* non zero ecc, error present */
1367 break;
1368 }
1369 }
1370
1371 if (eccflag == 1) {
1372 if (memcmp(calc_ecc, erased_ecc_vec,
1373 actual_eccbytes) == 0) {
1374 /*
1375 * calc_ecc[] matches pattern for ECC(all 0xff)
1376 * so this is definitely an erased-page
1377 */
1378 } else {
1379 buf = &data[info->nand.ecc.size * i];
1380 /*
1381 * count number of 0-bits in read_buf.
1382 * This check can be removed once a similar
1383 * check is introduced in generic NAND driver
1384 */
1385 bitflip_count = erased_sector_bitflips(
1386 buf, read_ecc, info);
1387 if (bitflip_count) {
1388 /*
1389 * number of 0-bits within ECC limits
1390 * So this may be an erased-page
1391 */
1392 stat += bitflip_count;
1393 } else {
1394 /*
1395 * Too many 0-bits. It may be a
1396 * - programmed-page, OR
1397 * - erased-page with many bit-flips
1398 * So this page requires check by ELM
1399 */
1400 err_vec[i].error_reported = true;
1401 is_error_reported = true;
1402 }
1403 }
1404 }
1405
1406 /* Update the ecc vector */
1407 calc_ecc += ecc->bytes;
1408 read_ecc += ecc->bytes;
1409 }
1410
1411 /* Check if any error reported */
1412 if (!is_error_reported)
1413 return stat;
1414
1415 /* Decode BCH error using ELM module */
1416 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1417
1418 err = 0;
1419 for (i = 0; i < eccsteps; i++) {
1420 if (err_vec[i].error_uncorrectable) {
1421 dev_err(&info->pdev->dev,
1422 "uncorrectable bit-flips found\n");
1423 err = -EBADMSG;
1424 } else if (err_vec[i].error_reported) {
1425 for (j = 0; j < err_vec[i].error_count; j++) {
1426 switch (info->ecc_opt) {
1427 case OMAP_ECC_BCH4_CODE_HW:
1428 /* Add 4 bits to take care of padding */
1429 pos = err_vec[i].error_loc[j] +
1430 BCH4_BIT_PAD;
1431 break;
1432 case OMAP_ECC_BCH8_CODE_HW:
1433 case OMAP_ECC_BCH16_CODE_HW:
1434 pos = err_vec[i].error_loc[j];
1435 break;
1436 default:
1437 return -EINVAL;
1438 }
1439 error_max = (ecc->size + actual_eccbytes) * 8;
1440 /* Calculate bit position of error */
1441 bit_pos = pos % 8;
1442
1443 /* Calculate byte position of error */
1444 byte_pos = (error_max - pos - 1) / 8;
1445
1446 if (pos < error_max) {
1447 if (byte_pos < 512) {
1448 pr_debug("bitflip@dat[%d]=%x\n",
1449 byte_pos, data[byte_pos]);
1450 data[byte_pos] ^= 1 << bit_pos;
1451 } else {
1452 pr_debug("bitflip@oob[%d]=%x\n",
1453 (byte_pos - 512),
1454 spare_ecc[byte_pos - 512]);
1455 spare_ecc[byte_pos - 512] ^=
1456 1 << bit_pos;
1457 }
1458 } else {
1459 dev_err(&info->pdev->dev,
1460 "invalid bit-flip @ %d:%d\n",
1461 byte_pos, bit_pos);
1462 err = -EBADMSG;
1463 }
1464 }
1465 }
1466
1467 /* Update number of correctable errors */
1468 stat += err_vec[i].error_count;
1469
1470 /* Update page data with sector size */
1471 data += ecc->size;
1472 spare_ecc += ecc->bytes;
1473 }
1474
1475 return (err) ? err : stat;
1476 }
1477
1478 /**
1479 * omap_write_page_bch - BCH ecc based write page function for entire page
1480 * @mtd: mtd info structure
1481 * @chip: nand chip info structure
1482 * @buf: data buffer
1483 * @oob_required: must write chip->oob_poi to OOB
1484 * @page: page
1485 *
1486 * Custom write page method evolved to support multi sector writing in one shot
1487 */
1488 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1489 const uint8_t *buf, int oob_required, int page)
1490 {
1491 int ret;
1492 uint8_t *ecc_calc = chip->buffers->ecccalc;
1493
1494 /* Enable GPMC ecc engine */
1495 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1496
1497 /* Write data */
1498 chip->write_buf(mtd, buf, mtd->writesize);
1499
1500 /* Update ecc vector from GPMC result registers */
1501 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1502
1503 ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
1504 chip->ecc.total);
1505 if (ret)
1506 return ret;
1507
1508 /* Write ecc vector to OOB area */
1509 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1510 return 0;
1511 }
1512
1513 /**
1514 * omap_read_page_bch - BCH ecc based page read function for entire page
1515 * @mtd: mtd info structure
1516 * @chip: nand chip info structure
1517 * @buf: buffer to store read data
1518 * @oob_required: caller requires OOB data read to chip->oob_poi
1519 * @page: page number to read
1520 *
1521 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1522 * used for error correction.
1523 * Custom method evolved to support ELM error correction & multi sector
1524 * reading. On reading page data area is read along with OOB data with
1525 * ecc engine enabled. ecc vector updated after read of OOB data.
1526 * For non error pages ecc vector reported as zero.
1527 */
1528 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1529 uint8_t *buf, int oob_required, int page)
1530 {
1531 uint8_t *ecc_calc = chip->buffers->ecccalc;
1532 uint8_t *ecc_code = chip->buffers->ecccode;
1533 int stat, ret;
1534 unsigned int max_bitflips = 0;
1535
1536 /* Enable GPMC ecc engine */
1537 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1538
1539 /* Read data */
1540 chip->read_buf(mtd, buf, mtd->writesize);
1541
1542 /* Read oob bytes */
1543 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1544 mtd->writesize + BADBLOCK_MARKER_LENGTH, -1);
1545 chip->read_buf(mtd, chip->oob_poi + BADBLOCK_MARKER_LENGTH,
1546 chip->ecc.total);
1547
1548 /* Calculate ecc bytes */
1549 chip->ecc.calculate(mtd, buf, ecc_calc);
1550
1551 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1552 chip->ecc.total);
1553 if (ret)
1554 return ret;
1555
1556 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1557
1558 if (stat < 0) {
1559 mtd->ecc_stats.failed++;
1560 } else {
1561 mtd->ecc_stats.corrected += stat;
1562 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1563 }
1564
1565 return max_bitflips;
1566 }
1567
1568 /**
1569 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1570 * @omap_nand_info: NAND device structure containing platform data
1571 */
1572 static bool is_elm_present(struct omap_nand_info *info,
1573 struct device_node *elm_node)
1574 {
1575 struct platform_device *pdev;
1576
1577 /* check whether elm-id is passed via DT */
1578 if (!elm_node) {
1579 dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
1580 return false;
1581 }
1582 pdev = of_find_device_by_node(elm_node);
1583 /* check whether ELM device is registered */
1584 if (!pdev) {
1585 dev_err(&info->pdev->dev, "ELM device not found\n");
1586 return false;
1587 }
1588 /* ELM module available, now configure it */
1589 info->elm_dev = &pdev->dev;
1590 return true;
1591 }
1592
1593 static bool omap2_nand_ecc_check(struct omap_nand_info *info,
1594 struct omap_nand_platform_data *pdata)
1595 {
1596 bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
1597
1598 switch (info->ecc_opt) {
1599 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1600 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1601 ecc_needs_omap_bch = false;
1602 ecc_needs_bch = true;
1603 ecc_needs_elm = false;
1604 break;
1605 case OMAP_ECC_BCH4_CODE_HW:
1606 case OMAP_ECC_BCH8_CODE_HW:
1607 case OMAP_ECC_BCH16_CODE_HW:
1608 ecc_needs_omap_bch = true;
1609 ecc_needs_bch = false;
1610 ecc_needs_elm = true;
1611 break;
1612 default:
1613 ecc_needs_omap_bch = false;
1614 ecc_needs_bch = false;
1615 ecc_needs_elm = false;
1616 break;
1617 }
1618
1619 if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
1620 dev_err(&info->pdev->dev,
1621 "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1622 return false;
1623 }
1624 if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
1625 dev_err(&info->pdev->dev,
1626 "CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1627 return false;
1628 }
1629 if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
1630 dev_err(&info->pdev->dev, "ELM not available\n");
1631 return false;
1632 }
1633
1634 return true;
1635 }
1636
1637 static const char * const nand_xfer_types[] = {
1638 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
1639 [NAND_OMAP_POLLED] = "polled",
1640 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
1641 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
1642 };
1643
1644 static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
1645 {
1646 struct device_node *child = dev->of_node;
1647 int i;
1648 const char *s;
1649 u32 cs;
1650
1651 if (of_property_read_u32(child, "reg", &cs) < 0) {
1652 dev_err(dev, "reg not found in DT\n");
1653 return -EINVAL;
1654 }
1655
1656 info->gpmc_cs = cs;
1657
1658 /* detect availability of ELM module. Won't be present pre-OMAP4 */
1659 info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
1660 if (!info->elm_of_node) {
1661 info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
1662 if (!info->elm_of_node)
1663 dev_dbg(dev, "ti,elm-id not in DT\n");
1664 }
1665
1666 /* select ecc-scheme for NAND */
1667 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
1668 dev_err(dev, "ti,nand-ecc-opt not found\n");
1669 return -EINVAL;
1670 }
1671
1672 if (!strcmp(s, "sw")) {
1673 info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
1674 } else if (!strcmp(s, "ham1") ||
1675 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
1676 info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
1677 } else if (!strcmp(s, "bch4")) {
1678 if (info->elm_of_node)
1679 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
1680 else
1681 info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
1682 } else if (!strcmp(s, "bch8")) {
1683 if (info->elm_of_node)
1684 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
1685 else
1686 info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
1687 } else if (!strcmp(s, "bch16")) {
1688 info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
1689 } else {
1690 dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
1691 return -EINVAL;
1692 }
1693
1694 /* select data transfer mode */
1695 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
1696 for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
1697 if (!strcasecmp(s, nand_xfer_types[i])) {
1698 info->xfer_type = i;
1699 return 0;
1700 }
1701 }
1702
1703 dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
1704 return -EINVAL;
1705 }
1706
1707 return 0;
1708 }
1709
1710 static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
1711 struct mtd_oob_region *oobregion)
1712 {
1713 struct omap_nand_info *info = mtd_to_omap(mtd);
1714 struct nand_chip *chip = &info->nand;
1715 int off = BADBLOCK_MARKER_LENGTH;
1716
1717 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1718 !(chip->options & NAND_BUSWIDTH_16))
1719 off = 1;
1720
1721 if (section)
1722 return -ERANGE;
1723
1724 oobregion->offset = off;
1725 oobregion->length = chip->ecc.total;
1726
1727 return 0;
1728 }
1729
1730 static int omap_ooblayout_free(struct mtd_info *mtd, int section,
1731 struct mtd_oob_region *oobregion)
1732 {
1733 struct omap_nand_info *info = mtd_to_omap(mtd);
1734 struct nand_chip *chip = &info->nand;
1735 int off = BADBLOCK_MARKER_LENGTH;
1736
1737 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
1738 !(chip->options & NAND_BUSWIDTH_16))
1739 off = 1;
1740
1741 if (section)
1742 return -ERANGE;
1743
1744 off += chip->ecc.total;
1745 if (off >= mtd->oobsize)
1746 return -ERANGE;
1747
1748 oobregion->offset = off;
1749 oobregion->length = mtd->oobsize - off;
1750
1751 return 0;
1752 }
1753
1754 static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
1755 .ecc = omap_ooblayout_ecc,
1756 .free = omap_ooblayout_free,
1757 };
1758
1759 static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
1760 struct mtd_oob_region *oobregion)
1761 {
1762 struct nand_chip *chip = mtd_to_nand(mtd);
1763 int off = BADBLOCK_MARKER_LENGTH;
1764
1765 if (section >= chip->ecc.steps)
1766 return -ERANGE;
1767
1768 /*
1769 * When SW correction is employed, one OMAP specific marker byte is
1770 * reserved after each ECC step.
1771 */
1772 oobregion->offset = off + (section * (chip->ecc.bytes + 1));
1773 oobregion->length = chip->ecc.bytes;
1774
1775 return 0;
1776 }
1777
1778 static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
1779 struct mtd_oob_region *oobregion)
1780 {
1781 struct nand_chip *chip = mtd_to_nand(mtd);
1782 int off = BADBLOCK_MARKER_LENGTH;
1783
1784 if (section)
1785 return -ERANGE;
1786
1787 /*
1788 * When SW correction is employed, one OMAP specific marker byte is
1789 * reserved after each ECC step.
1790 */
1791 off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
1792 if (off >= mtd->oobsize)
1793 return -ERANGE;
1794
1795 oobregion->offset = off;
1796 oobregion->length = mtd->oobsize - off;
1797
1798 return 0;
1799 }
1800
1801 static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
1802 .ecc = omap_sw_ooblayout_ecc,
1803 .free = omap_sw_ooblayout_free,
1804 };
1805
1806 static int omap_nand_probe(struct platform_device *pdev)
1807 {
1808 struct omap_nand_info *info;
1809 struct omap_nand_platform_data *pdata = NULL;
1810 struct mtd_info *mtd;
1811 struct nand_chip *nand_chip;
1812 int err;
1813 dma_cap_mask_t mask;
1814 unsigned sig;
1815 struct resource *res;
1816 struct device *dev = &pdev->dev;
1817 int min_oobbytes = BADBLOCK_MARKER_LENGTH;
1818 int oobbytes_per_step;
1819
1820 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1821 GFP_KERNEL);
1822 if (!info)
1823 return -ENOMEM;
1824
1825 info->pdev = pdev;
1826
1827 if (dev->of_node) {
1828 if (omap_get_dt_info(dev, info))
1829 return -EINVAL;
1830 } else {
1831 pdata = dev_get_platdata(&pdev->dev);
1832 if (!pdata) {
1833 dev_err(&pdev->dev, "platform data missing\n");
1834 return -EINVAL;
1835 }
1836
1837 info->gpmc_cs = pdata->cs;
1838 info->reg = pdata->reg;
1839 info->ecc_opt = pdata->ecc_opt;
1840 if (pdata->dev_ready)
1841 dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");
1842
1843 info->xfer_type = pdata->xfer_type;
1844 info->devsize = pdata->devsize;
1845 info->elm_of_node = pdata->elm_of_node;
1846 info->flash_bbt = pdata->flash_bbt;
1847 }
1848
1849 platform_set_drvdata(pdev, info);
1850 info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
1851 if (!info->ops) {
1852 dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
1853 return -ENODEV;
1854 }
1855
1856 nand_chip = &info->nand;
1857 mtd = nand_to_mtd(nand_chip);
1858 mtd->dev.parent = &pdev->dev;
1859 nand_chip->ecc.priv = NULL;
1860 nand_set_flash_node(nand_chip, dev->of_node);
1861
1862 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1863 nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
1864 if (IS_ERR(nand_chip->IO_ADDR_R))
1865 return PTR_ERR(nand_chip->IO_ADDR_R);
1866
1867 info->phys_base = res->start;
1868
1869 nand_chip->controller = &omap_gpmc_controller;
1870
1871 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1872 nand_chip->cmd_ctrl = omap_hwcontrol;
1873
1874 info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
1875 GPIOD_IN);
1876 if (IS_ERR(info->ready_gpiod)) {
1877 dev_err(dev, "failed to get ready gpio\n");
1878 return PTR_ERR(info->ready_gpiod);
1879 }
1880
1881 /*
1882 * If RDY/BSY line is connected to OMAP then use the omap ready
1883 * function and the generic nand_wait function which reads the status
1884 * register after monitoring the RDY/BSY line. Otherwise use a standard
1885 * chip delay which is slightly more than tR (AC Timing) of the NAND
1886 * device and read status register until you get a failure or success
1887 */
1888 if (info->ready_gpiod) {
1889 nand_chip->dev_ready = omap_dev_ready;
1890 nand_chip->chip_delay = 0;
1891 } else {
1892 nand_chip->waitfunc = omap_wait;
1893 nand_chip->chip_delay = 50;
1894 }
1895
1896 if (info->flash_bbt)
1897 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1898
1899 /* scan NAND device connected to chip controller */
1900 nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
1901 if (nand_scan_ident(mtd, 1, NULL)) {
1902 dev_err(&info->pdev->dev,
1903 "scan failed, may be bus-width mismatch\n");
1904 err = -ENXIO;
1905 goto return_error;
1906 }
1907
1908 if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
1909 nand_chip->bbt_options |= NAND_BBT_NO_OOB;
1910 else
1911 nand_chip->options |= NAND_SKIP_BBTSCAN;
1912
1913 /* re-populate low-level callbacks based on xfer modes */
1914 switch (info->xfer_type) {
1915 case NAND_OMAP_PREFETCH_POLLED:
1916 nand_chip->read_buf = omap_read_buf_pref;
1917 nand_chip->write_buf = omap_write_buf_pref;
1918 break;
1919
1920 case NAND_OMAP_POLLED:
1921 /* Use nand_base defaults for {read,write}_buf */
1922 break;
1923
1924 case NAND_OMAP_PREFETCH_DMA:
1925 dma_cap_zero(mask);
1926 dma_cap_set(DMA_SLAVE, mask);
1927 sig = OMAP24XX_DMA_GPMC;
1928 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1929 if (!info->dma) {
1930 dev_err(&pdev->dev, "DMA engine request failed\n");
1931 err = -ENXIO;
1932 goto return_error;
1933 } else {
1934 struct dma_slave_config cfg;
1935
1936 memset(&cfg, 0, sizeof(cfg));
1937 cfg.src_addr = info->phys_base;
1938 cfg.dst_addr = info->phys_base;
1939 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1940 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1941 cfg.src_maxburst = 16;
1942 cfg.dst_maxburst = 16;
1943 err = dmaengine_slave_config(info->dma, &cfg);
1944 if (err) {
1945 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1946 err);
1947 goto return_error;
1948 }
1949 nand_chip->read_buf = omap_read_buf_dma_pref;
1950 nand_chip->write_buf = omap_write_buf_dma_pref;
1951 }
1952 break;
1953
1954 case NAND_OMAP_PREFETCH_IRQ:
1955 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1956 if (info->gpmc_irq_fifo <= 0) {
1957 dev_err(&pdev->dev, "error getting fifo irq\n");
1958 err = -ENODEV;
1959 goto return_error;
1960 }
1961 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1962 omap_nand_irq, IRQF_SHARED,
1963 "gpmc-nand-fifo", info);
1964 if (err) {
1965 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1966 info->gpmc_irq_fifo, err);
1967 info->gpmc_irq_fifo = 0;
1968 goto return_error;
1969 }
1970
1971 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1972 if (info->gpmc_irq_count <= 0) {
1973 dev_err(&pdev->dev, "error getting count irq\n");
1974 err = -ENODEV;
1975 goto return_error;
1976 }
1977 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1978 omap_nand_irq, IRQF_SHARED,
1979 "gpmc-nand-count", info);
1980 if (err) {
1981 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1982 info->gpmc_irq_count, err);
1983 info->gpmc_irq_count = 0;
1984 goto return_error;
1985 }
1986
1987 nand_chip->read_buf = omap_read_buf_irq_pref;
1988 nand_chip->write_buf = omap_write_buf_irq_pref;
1989
1990 break;
1991
1992 default:
1993 dev_err(&pdev->dev,
1994 "xfer_type(%d) not supported!\n", info->xfer_type);
1995 err = -EINVAL;
1996 goto return_error;
1997 }
1998
1999 if (!omap2_nand_ecc_check(info, pdata)) {
2000 err = -EINVAL;
2001 goto return_error;
2002 }
2003
2004 /*
2005 * Bail out earlier to let NAND_ECC_SOFT code create its own
2006 * ooblayout instead of using ours.
2007 */
2008 if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
2009 nand_chip->ecc.mode = NAND_ECC_SOFT;
2010 nand_chip->ecc.algo = NAND_ECC_HAMMING;
2011 goto scan_tail;
2012 }
2013
2014 /* populate MTD interface based on ECC scheme */
2015 switch (info->ecc_opt) {
2016 case OMAP_ECC_HAM1_CODE_HW:
2017 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
2018 nand_chip->ecc.mode = NAND_ECC_HW;
2019 nand_chip->ecc.bytes = 3;
2020 nand_chip->ecc.size = 512;
2021 nand_chip->ecc.strength = 1;
2022 nand_chip->ecc.calculate = omap_calculate_ecc;
2023 nand_chip->ecc.hwctl = omap_enable_hwecc;
2024 nand_chip->ecc.correct = omap_correct_data;
2025 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2026 oobbytes_per_step = nand_chip->ecc.bytes;
2027
2028 if (!(nand_chip->options & NAND_BUSWIDTH_16))
2029 min_oobbytes = 1;
2030
2031 break;
2032
2033 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
2034 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
2035 nand_chip->ecc.mode = NAND_ECC_HW;
2036 nand_chip->ecc.size = 512;
2037 nand_chip->ecc.bytes = 7;
2038 nand_chip->ecc.strength = 4;
2039 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2040 nand_chip->ecc.correct = nand_bch_correct_data;
2041 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2042 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2043 /* Reserve one byte for the OMAP marker */
2044 oobbytes_per_step = nand_chip->ecc.bytes + 1;
2045 /* software bch library is used for locating errors */
2046 nand_chip->ecc.priv = nand_bch_init(mtd);
2047 if (!nand_chip->ecc.priv) {
2048 dev_err(&info->pdev->dev, "unable to use BCH library\n");
2049 err = -EINVAL;
2050 goto return_error;
2051 }
2052 break;
2053
2054 case OMAP_ECC_BCH4_CODE_HW:
2055 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
2056 nand_chip->ecc.mode = NAND_ECC_HW;
2057 nand_chip->ecc.size = 512;
2058 /* 14th bit is kept reserved for ROM-code compatibility */
2059 nand_chip->ecc.bytes = 7 + 1;
2060 nand_chip->ecc.strength = 4;
2061 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2062 nand_chip->ecc.correct = omap_elm_correct_data;
2063 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2064 nand_chip->ecc.read_page = omap_read_page_bch;
2065 nand_chip->ecc.write_page = omap_write_page_bch;
2066 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2067 oobbytes_per_step = nand_chip->ecc.bytes;
2068
2069 err = elm_config(info->elm_dev, BCH4_ECC,
2070 mtd->writesize / nand_chip->ecc.size,
2071 nand_chip->ecc.size, nand_chip->ecc.bytes);
2072 if (err < 0)
2073 goto return_error;
2074 break;
2075
2076 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
2077 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
2078 nand_chip->ecc.mode = NAND_ECC_HW;
2079 nand_chip->ecc.size = 512;
2080 nand_chip->ecc.bytes = 13;
2081 nand_chip->ecc.strength = 8;
2082 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2083 nand_chip->ecc.correct = nand_bch_correct_data;
2084 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2085 mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
2086 /* Reserve one byte for the OMAP marker */
2087 oobbytes_per_step = nand_chip->ecc.bytes + 1;
2088 /* software bch library is used for locating errors */
2089 nand_chip->ecc.priv = nand_bch_init(mtd);
2090 if (!nand_chip->ecc.priv) {
2091 dev_err(&info->pdev->dev, "unable to use BCH library\n");
2092 err = -EINVAL;
2093 goto return_error;
2094 }
2095 break;
2096
2097 case OMAP_ECC_BCH8_CODE_HW:
2098 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
2099 nand_chip->ecc.mode = NAND_ECC_HW;
2100 nand_chip->ecc.size = 512;
2101 /* 14th bit is kept reserved for ROM-code compatibility */
2102 nand_chip->ecc.bytes = 13 + 1;
2103 nand_chip->ecc.strength = 8;
2104 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2105 nand_chip->ecc.correct = omap_elm_correct_data;
2106 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2107 nand_chip->ecc.read_page = omap_read_page_bch;
2108 nand_chip->ecc.write_page = omap_write_page_bch;
2109 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2110 oobbytes_per_step = nand_chip->ecc.bytes;
2111
2112 err = elm_config(info->elm_dev, BCH8_ECC,
2113 mtd->writesize / nand_chip->ecc.size,
2114 nand_chip->ecc.size, nand_chip->ecc.bytes);
2115 if (err < 0)
2116 goto return_error;
2117
2118 break;
2119
2120 case OMAP_ECC_BCH16_CODE_HW:
2121 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
2122 nand_chip->ecc.mode = NAND_ECC_HW;
2123 nand_chip->ecc.size = 512;
2124 nand_chip->ecc.bytes = 26;
2125 nand_chip->ecc.strength = 16;
2126 nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
2127 nand_chip->ecc.correct = omap_elm_correct_data;
2128 nand_chip->ecc.calculate = omap_calculate_ecc_bch;
2129 nand_chip->ecc.read_page = omap_read_page_bch;
2130 nand_chip->ecc.write_page = omap_write_page_bch;
2131 mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
2132 oobbytes_per_step = nand_chip->ecc.bytes;
2133
2134 err = elm_config(info->elm_dev, BCH16_ECC,
2135 mtd->writesize / nand_chip->ecc.size,
2136 nand_chip->ecc.size, nand_chip->ecc.bytes);
2137 if (err < 0)
2138 goto return_error;
2139
2140 break;
2141 default:
2142 dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
2143 err = -EINVAL;
2144 goto return_error;
2145 }
2146
2147 /* check if NAND device's OOB is enough to store ECC signatures */
2148 min_oobbytes += (oobbytes_per_step *
2149 (mtd->writesize / nand_chip->ecc.size));
2150 if (mtd->oobsize < min_oobbytes) {
2151 dev_err(&info->pdev->dev,
2152 "not enough OOB bytes required = %d, available=%d\n",
2153 min_oobbytes, mtd->oobsize);
2154 err = -EINVAL;
2155 goto return_error;
2156 }
2157
2158 scan_tail:
2159 /* second phase scan */
2160 if (nand_scan_tail(mtd)) {
2161 err = -ENXIO;
2162 goto return_error;
2163 }
2164
2165 if (dev->of_node)
2166 mtd_device_register(mtd, NULL, 0);
2167 else
2168 mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2169
2170 platform_set_drvdata(pdev, mtd);
2171
2172 return 0;
2173
2174 return_error:
2175 if (info->dma)
2176 dma_release_channel(info->dma);
2177 if (nand_chip->ecc.priv) {
2178 nand_bch_free(nand_chip->ecc.priv);
2179 nand_chip->ecc.priv = NULL;
2180 }
2181 return err;
2182 }
2183
2184 static int omap_nand_remove(struct platform_device *pdev)
2185 {
2186 struct mtd_info *mtd = platform_get_drvdata(pdev);
2187 struct nand_chip *nand_chip = mtd_to_nand(mtd);
2188 struct omap_nand_info *info = mtd_to_omap(mtd);
2189 if (nand_chip->ecc.priv) {
2190 nand_bch_free(nand_chip->ecc.priv);
2191 nand_chip->ecc.priv = NULL;
2192 }
2193 if (info->dma)
2194 dma_release_channel(info->dma);
2195 nand_release(mtd);
2196 return 0;
2197 }
2198
2199 static const struct of_device_id omap_nand_ids[] = {
2200 { .compatible = "ti,omap2-nand", },
2201 {},
2202 };
2203
2204 static struct platform_driver omap_nand_driver = {
2205 .probe = omap_nand_probe,
2206 .remove = omap_nand_remove,
2207 .driver = {
2208 .name = DRIVER_NAME,
2209 .of_match_table = of_match_ptr(omap_nand_ids),
2210 },
2211 };
2212
2213 module_platform_driver(omap_nand_driver);
2214
2215 MODULE_ALIAS("platform:" DRIVER_NAME);
2216 MODULE_LICENSE("GPL");
2217 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
This page took 0.133026 seconds and 6 git commands to generate.