mtd: nand: pxa3xx: Split prepare_command_pool() in two stages
[deliverable/linux.git] / drivers / mtd / nand / pxa3xx_nand.c
1 /*
2 * drivers/mtd/nand/pxa3xx_nand.c
3 *
4 * Copyright © 2005 Intel Corporation
5 * Copyright © 2006 Marvell International Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * See Documentation/mtd/nand/pxa3xx-nand.txt for more details.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/delay.h>
20 #include <linux/clk.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/nand.h>
23 #include <linux/mtd/partitions.h>
24 #include <linux/io.h>
25 #include <linux/irq.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/of_mtd.h>
30
31 #if defined(CONFIG_ARCH_PXA) || defined(CONFIG_ARCH_MMP)
32 #define ARCH_HAS_DMA
33 #endif
34
35 #ifdef ARCH_HAS_DMA
36 #include <mach/dma.h>
37 #endif
38
39 #include <linux/platform_data/mtd-nand-pxa3xx.h>
40
41 #define NAND_DEV_READY_TIMEOUT 50
42 #define CHIP_DELAY_TIMEOUT (2 * HZ/10)
43 #define NAND_STOP_DELAY (2 * HZ/50)
44 #define PAGE_CHUNK_SIZE (2048)
45
46 /*
47 * Define a buffer size for the initial command that detects the flash device:
48 * STATUS, READID and PARAM. The largest of these is the PARAM command,
49 * needing 256 bytes.
50 */
51 #define INIT_BUFFER_SIZE 256
52
53 /* registers and bit definitions */
54 #define NDCR (0x00) /* Control register */
55 #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
56 #define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
57 #define NDSR (0x14) /* Status Register */
58 #define NDPCR (0x18) /* Page Count Register */
59 #define NDBDR0 (0x1C) /* Bad Block Register 0 */
60 #define NDBDR1 (0x20) /* Bad Block Register 1 */
61 #define NDECCCTRL (0x28) /* ECC control */
62 #define NDDB (0x40) /* Data Buffer */
63 #define NDCB0 (0x48) /* Command Buffer0 */
64 #define NDCB1 (0x4C) /* Command Buffer1 */
65 #define NDCB2 (0x50) /* Command Buffer2 */
66
67 #define NDCR_SPARE_EN (0x1 << 31)
68 #define NDCR_ECC_EN (0x1 << 30)
69 #define NDCR_DMA_EN (0x1 << 29)
70 #define NDCR_ND_RUN (0x1 << 28)
71 #define NDCR_DWIDTH_C (0x1 << 27)
72 #define NDCR_DWIDTH_M (0x1 << 26)
73 #define NDCR_PAGE_SZ (0x1 << 24)
74 #define NDCR_NCSX (0x1 << 23)
75 #define NDCR_ND_MODE (0x3 << 21)
76 #define NDCR_NAND_MODE (0x0)
77 #define NDCR_CLR_PG_CNT (0x1 << 20)
78 #define NDCR_STOP_ON_UNCOR (0x1 << 19)
79 #define NDCR_RD_ID_CNT_MASK (0x7 << 16)
80 #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
81
82 #define NDCR_RA_START (0x1 << 15)
83 #define NDCR_PG_PER_BLK (0x1 << 14)
84 #define NDCR_ND_ARB_EN (0x1 << 12)
85 #define NDCR_INT_MASK (0xFFF)
86
87 #define NDSR_MASK (0xfff)
88 #define NDSR_RDY (0x1 << 12)
89 #define NDSR_FLASH_RDY (0x1 << 11)
90 #define NDSR_CS0_PAGED (0x1 << 10)
91 #define NDSR_CS1_PAGED (0x1 << 9)
92 #define NDSR_CS0_CMDD (0x1 << 8)
93 #define NDSR_CS1_CMDD (0x1 << 7)
94 #define NDSR_CS0_BBD (0x1 << 6)
95 #define NDSR_CS1_BBD (0x1 << 5)
96 #define NDSR_DBERR (0x1 << 4)
97 #define NDSR_SBERR (0x1 << 3)
98 #define NDSR_WRDREQ (0x1 << 2)
99 #define NDSR_RDDREQ (0x1 << 1)
100 #define NDSR_WRCMDREQ (0x1)
101
102 #define NDCB0_LEN_OVRD (0x1 << 28)
103 #define NDCB0_ST_ROW_EN (0x1 << 26)
104 #define NDCB0_AUTO_RS (0x1 << 25)
105 #define NDCB0_CSEL (0x1 << 24)
106 #define NDCB0_CMD_TYPE_MASK (0x7 << 21)
107 #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
108 #define NDCB0_NC (0x1 << 20)
109 #define NDCB0_DBC (0x1 << 19)
110 #define NDCB0_ADDR_CYC_MASK (0x7 << 16)
111 #define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
112 #define NDCB0_CMD2_MASK (0xff << 8)
113 #define NDCB0_CMD1_MASK (0xff)
114 #define NDCB0_ADDR_CYC_SHIFT (16)
115
116 /* macros for registers read/write */
117 #define nand_writel(info, off, val) \
118 __raw_writel((val), (info)->mmio_base + (off))
119
120 #define nand_readl(info, off) \
121 __raw_readl((info)->mmio_base + (off))
122
123 /* error code and state */
124 enum {
125 ERR_NONE = 0,
126 ERR_DMABUSERR = -1,
127 ERR_SENDCMD = -2,
128 ERR_DBERR = -3,
129 ERR_BBERR = -4,
130 ERR_SBERR = -5,
131 };
132
133 enum {
134 STATE_IDLE = 0,
135 STATE_PREPARED,
136 STATE_CMD_HANDLE,
137 STATE_DMA_READING,
138 STATE_DMA_WRITING,
139 STATE_DMA_DONE,
140 STATE_PIO_READING,
141 STATE_PIO_WRITING,
142 STATE_CMD_DONE,
143 STATE_READY,
144 };
145
146 enum pxa3xx_nand_variant {
147 PXA3XX_NAND_VARIANT_PXA,
148 PXA3XX_NAND_VARIANT_ARMADA370,
149 };
150
151 struct pxa3xx_nand_host {
152 struct nand_chip chip;
153 struct mtd_info *mtd;
154 void *info_data;
155
156 /* page size of attached chip */
157 int use_ecc;
158 int cs;
159
160 /* calculated from pxa3xx_nand_flash data */
161 unsigned int col_addr_cycles;
162 unsigned int row_addr_cycles;
163 size_t read_id_bytes;
164
165 };
166
167 struct pxa3xx_nand_info {
168 struct nand_hw_control controller;
169 struct platform_device *pdev;
170
171 struct clk *clk;
172 void __iomem *mmio_base;
173 unsigned long mmio_phys;
174 struct completion cmd_complete, dev_ready;
175
176 unsigned int buf_start;
177 unsigned int buf_count;
178 unsigned int buf_size;
179
180 /* DMA information */
181 int drcmr_dat;
182 int drcmr_cmd;
183
184 unsigned char *data_buff;
185 unsigned char *oob_buff;
186 dma_addr_t data_buff_phys;
187 int data_dma_ch;
188 struct pxa_dma_desc *data_desc;
189 dma_addr_t data_desc_addr;
190
191 struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
192 unsigned int state;
193
194 /*
195 * This driver supports NFCv1 (as found in PXA SoC)
196 * and NFCv2 (as found in Armada 370/XP SoC).
197 */
198 enum pxa3xx_nand_variant variant;
199
200 int cs;
201 int use_ecc; /* use HW ECC ? */
202 int ecc_bch; /* using BCH ECC? */
203 int use_dma; /* use DMA ? */
204 int use_spare; /* use spare ? */
205 int need_wait;
206
207 unsigned int fifo_size; /* max. data size in the FIFO */
208 unsigned int data_size; /* data to be read from FIFO */
209 unsigned int oob_size;
210 unsigned int spare_size;
211 unsigned int ecc_size;
212 int retcode;
213
214 /* cached register value */
215 uint32_t reg_ndcr;
216 uint32_t ndtr0cs0;
217 uint32_t ndtr1cs0;
218
219 /* generated NDCBx register values */
220 uint32_t ndcb0;
221 uint32_t ndcb1;
222 uint32_t ndcb2;
223 uint32_t ndcb3;
224 };
225
226 static bool use_dma = 1;
227 module_param(use_dma, bool, 0444);
228 MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
229
230 static struct pxa3xx_nand_timing timing[] = {
231 { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
232 { 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
233 { 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
234 { 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
235 };
236
237 static struct pxa3xx_nand_flash builtin_flash_types[] = {
238 { "DEFAULT FLASH", 0, 0, 2048, 8, 8, 0, &timing[0] },
239 { "64MiB 16-bit", 0x46ec, 32, 512, 16, 16, 4096, &timing[1] },
240 { "256MiB 8-bit", 0xdaec, 64, 2048, 8, 8, 2048, &timing[1] },
241 { "4GiB 8-bit", 0xd7ec, 128, 4096, 8, 8, 8192, &timing[1] },
242 { "128MiB 8-bit", 0xa12c, 64, 2048, 8, 8, 1024, &timing[2] },
243 { "128MiB 16-bit", 0xb12c, 64, 2048, 16, 16, 1024, &timing[2] },
244 { "512MiB 8-bit", 0xdc2c, 64, 2048, 8, 8, 4096, &timing[2] },
245 { "512MiB 16-bit", 0xcc2c, 64, 2048, 16, 16, 4096, &timing[2] },
246 { "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] },
247 };
248
249 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
250 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
251
252 static struct nand_bbt_descr bbt_main_descr = {
253 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
254 | NAND_BBT_2BIT | NAND_BBT_VERSION,
255 .offs = 8,
256 .len = 6,
257 .veroffs = 14,
258 .maxblocks = 8, /* Last 8 blocks in each chip */
259 .pattern = bbt_pattern
260 };
261
262 static struct nand_bbt_descr bbt_mirror_descr = {
263 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
264 | NAND_BBT_2BIT | NAND_BBT_VERSION,
265 .offs = 8,
266 .len = 6,
267 .veroffs = 14,
268 .maxblocks = 8, /* Last 8 blocks in each chip */
269 .pattern = bbt_mirror_pattern
270 };
271
272 /* Define a default flash type setting serve as flash detecting only */
273 #define DEFAULT_FLASH_TYPE (&builtin_flash_types[0])
274
275 #define NDTR0_tCH(c) (min((c), 7) << 19)
276 #define NDTR0_tCS(c) (min((c), 7) << 16)
277 #define NDTR0_tWH(c) (min((c), 7) << 11)
278 #define NDTR0_tWP(c) (min((c), 7) << 8)
279 #define NDTR0_tRH(c) (min((c), 7) << 3)
280 #define NDTR0_tRP(c) (min((c), 7) << 0)
281
282 #define NDTR1_tR(c) (min((c), 65535) << 16)
283 #define NDTR1_tWHR(c) (min((c), 15) << 4)
284 #define NDTR1_tAR(c) (min((c), 15) << 0)
285
286 /* convert nano-seconds to nand flash controller clock cycles */
287 #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
288
289 static struct of_device_id pxa3xx_nand_dt_ids[] = {
290 {
291 .compatible = "marvell,pxa3xx-nand",
292 .data = (void *)PXA3XX_NAND_VARIANT_PXA,
293 },
294 {}
295 };
296 MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids);
297
298 static enum pxa3xx_nand_variant
299 pxa3xx_nand_get_variant(struct platform_device *pdev)
300 {
301 const struct of_device_id *of_id =
302 of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
303 if (!of_id)
304 return PXA3XX_NAND_VARIANT_PXA;
305 return (enum pxa3xx_nand_variant)of_id->data;
306 }
307
308 static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
309 const struct pxa3xx_nand_timing *t)
310 {
311 struct pxa3xx_nand_info *info = host->info_data;
312 unsigned long nand_clk = clk_get_rate(info->clk);
313 uint32_t ndtr0, ndtr1;
314
315 ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
316 NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
317 NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
318 NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
319 NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
320 NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
321
322 ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
323 NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
324 NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
325
326 info->ndtr0cs0 = ndtr0;
327 info->ndtr1cs0 = ndtr1;
328 nand_writel(info, NDTR0CS0, ndtr0);
329 nand_writel(info, NDTR1CS0, ndtr1);
330 }
331
332 /*
333 * Set the data and OOB size, depending on the selected
334 * spare and ECC configuration.
335 * Only applicable to READ0, READOOB and PAGEPROG commands.
336 */
337 static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info)
338 {
339 int oob_enable = info->reg_ndcr & NDCR_SPARE_EN;
340
341 info->data_size = info->fifo_size;
342 if (!oob_enable)
343 return;
344
345 info->oob_size = info->spare_size;
346 if (!info->use_ecc)
347 info->oob_size += info->ecc_size;
348 }
349
350 /**
351 * NOTE: it is a must to set ND_RUN firstly, then write
352 * command buffer, otherwise, it does not work.
353 * We enable all the interrupt at the same time, and
354 * let pxa3xx_nand_irq to handle all logic.
355 */
356 static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
357 {
358 uint32_t ndcr;
359
360 ndcr = info->reg_ndcr;
361
362 if (info->use_ecc) {
363 ndcr |= NDCR_ECC_EN;
364 if (info->ecc_bch)
365 nand_writel(info, NDECCCTRL, 0x1);
366 } else {
367 ndcr &= ~NDCR_ECC_EN;
368 if (info->ecc_bch)
369 nand_writel(info, NDECCCTRL, 0x0);
370 }
371
372 if (info->use_dma)
373 ndcr |= NDCR_DMA_EN;
374 else
375 ndcr &= ~NDCR_DMA_EN;
376
377 if (info->use_spare)
378 ndcr |= NDCR_SPARE_EN;
379 else
380 ndcr &= ~NDCR_SPARE_EN;
381
382 ndcr |= NDCR_ND_RUN;
383
384 /* clear status bits and run */
385 nand_writel(info, NDCR, 0);
386 nand_writel(info, NDSR, NDSR_MASK);
387 nand_writel(info, NDCR, ndcr);
388 }
389
390 static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
391 {
392 uint32_t ndcr;
393 int timeout = NAND_STOP_DELAY;
394
395 /* wait RUN bit in NDCR become 0 */
396 ndcr = nand_readl(info, NDCR);
397 while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
398 ndcr = nand_readl(info, NDCR);
399 udelay(1);
400 }
401
402 if (timeout <= 0) {
403 ndcr &= ~NDCR_ND_RUN;
404 nand_writel(info, NDCR, ndcr);
405 }
406 /* clear status bits */
407 nand_writel(info, NDSR, NDSR_MASK);
408 }
409
410 static void __maybe_unused
411 enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
412 {
413 uint32_t ndcr;
414
415 ndcr = nand_readl(info, NDCR);
416 nand_writel(info, NDCR, ndcr & ~int_mask);
417 }
418
419 static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
420 {
421 uint32_t ndcr;
422
423 ndcr = nand_readl(info, NDCR);
424 nand_writel(info, NDCR, ndcr | int_mask);
425 }
426
427 static void handle_data_pio(struct pxa3xx_nand_info *info)
428 {
429 switch (info->state) {
430 case STATE_PIO_WRITING:
431 __raw_writesl(info->mmio_base + NDDB, info->data_buff,
432 DIV_ROUND_UP(info->data_size, 4));
433 if (info->oob_size > 0)
434 __raw_writesl(info->mmio_base + NDDB, info->oob_buff,
435 DIV_ROUND_UP(info->oob_size, 4));
436 break;
437 case STATE_PIO_READING:
438 __raw_readsl(info->mmio_base + NDDB, info->data_buff,
439 DIV_ROUND_UP(info->data_size, 4));
440 if (info->oob_size > 0)
441 __raw_readsl(info->mmio_base + NDDB, info->oob_buff,
442 DIV_ROUND_UP(info->oob_size, 4));
443 break;
444 default:
445 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
446 info->state);
447 BUG();
448 }
449 }
450
451 #ifdef ARCH_HAS_DMA
452 static void start_data_dma(struct pxa3xx_nand_info *info)
453 {
454 struct pxa_dma_desc *desc = info->data_desc;
455 int dma_len = ALIGN(info->data_size + info->oob_size, 32);
456
457 desc->ddadr = DDADR_STOP;
458 desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len;
459
460 switch (info->state) {
461 case STATE_DMA_WRITING:
462 desc->dsadr = info->data_buff_phys;
463 desc->dtadr = info->mmio_phys + NDDB;
464 desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG;
465 break;
466 case STATE_DMA_READING:
467 desc->dtadr = info->data_buff_phys;
468 desc->dsadr = info->mmio_phys + NDDB;
469 desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC;
470 break;
471 default:
472 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
473 info->state);
474 BUG();
475 }
476
477 DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch;
478 DDADR(info->data_dma_ch) = info->data_desc_addr;
479 DCSR(info->data_dma_ch) |= DCSR_RUN;
480 }
481
482 static void pxa3xx_nand_data_dma_irq(int channel, void *data)
483 {
484 struct pxa3xx_nand_info *info = data;
485 uint32_t dcsr;
486
487 dcsr = DCSR(channel);
488 DCSR(channel) = dcsr;
489
490 if (dcsr & DCSR_BUSERR) {
491 info->retcode = ERR_DMABUSERR;
492 }
493
494 info->state = STATE_DMA_DONE;
495 enable_int(info, NDCR_INT_MASK);
496 nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
497 }
498 #else
499 static void start_data_dma(struct pxa3xx_nand_info *info)
500 {}
501 #endif
502
503 static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
504 {
505 struct pxa3xx_nand_info *info = devid;
506 unsigned int status, is_completed = 0, is_ready = 0;
507 unsigned int ready, cmd_done;
508
509 if (info->cs == 0) {
510 ready = NDSR_FLASH_RDY;
511 cmd_done = NDSR_CS0_CMDD;
512 } else {
513 ready = NDSR_RDY;
514 cmd_done = NDSR_CS1_CMDD;
515 }
516
517 status = nand_readl(info, NDSR);
518
519 if (status & NDSR_DBERR)
520 info->retcode = ERR_DBERR;
521 if (status & NDSR_SBERR)
522 info->retcode = ERR_SBERR;
523 if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
524 /* whether use dma to transfer data */
525 if (info->use_dma) {
526 disable_int(info, NDCR_INT_MASK);
527 info->state = (status & NDSR_RDDREQ) ?
528 STATE_DMA_READING : STATE_DMA_WRITING;
529 start_data_dma(info);
530 goto NORMAL_IRQ_EXIT;
531 } else {
532 info->state = (status & NDSR_RDDREQ) ?
533 STATE_PIO_READING : STATE_PIO_WRITING;
534 handle_data_pio(info);
535 }
536 }
537 if (status & cmd_done) {
538 info->state = STATE_CMD_DONE;
539 is_completed = 1;
540 }
541 if (status & ready) {
542 info->state = STATE_READY;
543 is_ready = 1;
544 }
545
546 if (status & NDSR_WRCMDREQ) {
547 nand_writel(info, NDSR, NDSR_WRCMDREQ);
548 status &= ~NDSR_WRCMDREQ;
549 info->state = STATE_CMD_HANDLE;
550
551 /*
552 * Command buffer registers NDCB{0-2} (and optionally NDCB3)
553 * must be loaded by writing directly either 12 or 16
554 * bytes directly to NDCB0, four bytes at a time.
555 *
556 * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
557 * but each NDCBx register can be read.
558 */
559 nand_writel(info, NDCB0, info->ndcb0);
560 nand_writel(info, NDCB0, info->ndcb1);
561 nand_writel(info, NDCB0, info->ndcb2);
562
563 /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
564 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
565 nand_writel(info, NDCB0, info->ndcb3);
566 }
567
568 /* clear NDSR to let the controller exit the IRQ */
569 nand_writel(info, NDSR, status);
570 if (is_completed)
571 complete(&info->cmd_complete);
572 if (is_ready)
573 complete(&info->dev_ready);
574 NORMAL_IRQ_EXIT:
575 return IRQ_HANDLED;
576 }
577
578 static inline int is_buf_blank(uint8_t *buf, size_t len)
579 {
580 for (; len > 0; len--)
581 if (*buf++ != 0xff)
582 return 0;
583 return 1;
584 }
585
586 static void set_command_address(struct pxa3xx_nand_info *info,
587 unsigned int page_size, uint16_t column, int page_addr)
588 {
589 /* small page addr setting */
590 if (page_size < PAGE_CHUNK_SIZE) {
591 info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
592 | (column & 0xFF);
593
594 info->ndcb2 = 0;
595 } else {
596 info->ndcb1 = ((page_addr & 0xFFFF) << 16)
597 | (column & 0xFFFF);
598
599 if (page_addr & 0xFF0000)
600 info->ndcb2 = (page_addr & 0xFF0000) >> 16;
601 else
602 info->ndcb2 = 0;
603 }
604 }
605
606 static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
607 {
608 /* reset data and oob column point to handle data */
609 info->buf_start = 0;
610 info->buf_count = 0;
611 info->oob_size = 0;
612 info->use_ecc = 0;
613 info->use_spare = 1;
614 info->retcode = ERR_NONE;
615 info->ndcb3 = 0;
616
617 switch (command) {
618 case NAND_CMD_READ0:
619 case NAND_CMD_PAGEPROG:
620 info->use_ecc = 1;
621 case NAND_CMD_READOOB:
622 pxa3xx_set_datasize(info);
623 break;
624 case NAND_CMD_PARAM:
625 info->use_spare = 0;
626 break;
627 default:
628 info->ndcb1 = 0;
629 info->ndcb2 = 0;
630 break;
631 }
632 }
633
634 static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
635 uint16_t column, int page_addr)
636 {
637 int addr_cycle, exec_cmd;
638 struct pxa3xx_nand_host *host;
639 struct mtd_info *mtd;
640
641 host = info->host[info->cs];
642 mtd = host->mtd;
643 addr_cycle = 0;
644 exec_cmd = 1;
645
646 if (info->cs != 0)
647 info->ndcb0 = NDCB0_CSEL;
648 else
649 info->ndcb0 = 0;
650
651 if (command == NAND_CMD_SEQIN)
652 exec_cmd = 0;
653
654 addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
655 + host->col_addr_cycles);
656
657 switch (command) {
658 case NAND_CMD_READOOB:
659 case NAND_CMD_READ0:
660 info->buf_start = column;
661 info->ndcb0 |= NDCB0_CMD_TYPE(0)
662 | addr_cycle
663 | NAND_CMD_READ0;
664
665 if (command == NAND_CMD_READOOB)
666 info->buf_start += mtd->writesize;
667
668 /* Second command setting for large pages */
669 if (mtd->writesize >= PAGE_CHUNK_SIZE)
670 info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
671
672 set_command_address(info, mtd->writesize, column, page_addr);
673 info->buf_count = mtd->writesize + mtd->oobsize;
674 memset(info->data_buff, 0xFF, info->buf_count);
675 break;
676
677 case NAND_CMD_SEQIN:
678
679 set_command_address(info, mtd->writesize, column, page_addr);
680 info->buf_count = mtd->writesize + mtd->oobsize;
681 memset(info->data_buff, 0xFF, info->buf_count);
682
683 break;
684
685 case NAND_CMD_PAGEPROG:
686 if (is_buf_blank(info->data_buff,
687 (mtd->writesize + mtd->oobsize))) {
688 exec_cmd = 0;
689 break;
690 }
691
692 info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
693 | NDCB0_AUTO_RS
694 | NDCB0_ST_ROW_EN
695 | NDCB0_DBC
696 | (NAND_CMD_PAGEPROG << 8)
697 | NAND_CMD_SEQIN
698 | addr_cycle;
699 break;
700
701 case NAND_CMD_PARAM:
702 info->buf_count = 256;
703 info->ndcb0 |= NDCB0_CMD_TYPE(0)
704 | NDCB0_ADDR_CYC(1)
705 | NDCB0_LEN_OVRD
706 | command;
707 info->ndcb1 = (column & 0xFF);
708 info->ndcb3 = 256;
709 info->data_size = 256;
710 break;
711
712 case NAND_CMD_READID:
713 info->buf_count = host->read_id_bytes;
714 info->ndcb0 |= NDCB0_CMD_TYPE(3)
715 | NDCB0_ADDR_CYC(1)
716 | command;
717 info->ndcb1 = (column & 0xFF);
718
719 info->data_size = 8;
720 break;
721 case NAND_CMD_STATUS:
722 info->buf_count = 1;
723 info->ndcb0 |= NDCB0_CMD_TYPE(4)
724 | NDCB0_ADDR_CYC(1)
725 | command;
726
727 info->data_size = 8;
728 break;
729
730 case NAND_CMD_ERASE1:
731 info->ndcb0 |= NDCB0_CMD_TYPE(2)
732 | NDCB0_AUTO_RS
733 | NDCB0_ADDR_CYC(3)
734 | NDCB0_DBC
735 | (NAND_CMD_ERASE2 << 8)
736 | NAND_CMD_ERASE1;
737 info->ndcb1 = page_addr;
738 info->ndcb2 = 0;
739
740 break;
741 case NAND_CMD_RESET:
742 info->ndcb0 |= NDCB0_CMD_TYPE(5)
743 | command;
744
745 break;
746
747 case NAND_CMD_ERASE2:
748 exec_cmd = 0;
749 break;
750
751 default:
752 exec_cmd = 0;
753 dev_err(&info->pdev->dev, "non-supported command %x\n",
754 command);
755 break;
756 }
757
758 return exec_cmd;
759 }
760
761 static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
762 int column, int page_addr)
763 {
764 struct pxa3xx_nand_host *host = mtd->priv;
765 struct pxa3xx_nand_info *info = host->info_data;
766 int ret, exec_cmd;
767
768 /*
769 * if this is a x16 device ,then convert the input
770 * "byte" address into a "word" address appropriate
771 * for indexing a word-oriented device
772 */
773 if (info->reg_ndcr & NDCR_DWIDTH_M)
774 column /= 2;
775
776 /*
777 * There may be different NAND chip hooked to
778 * different chip select, so check whether
779 * chip select has been changed, if yes, reset the timing
780 */
781 if (info->cs != host->cs) {
782 info->cs = host->cs;
783 nand_writel(info, NDTR0CS0, info->ndtr0cs0);
784 nand_writel(info, NDTR1CS0, info->ndtr1cs0);
785 }
786
787 prepare_start_command(info, command);
788
789 info->state = STATE_PREPARED;
790 exec_cmd = prepare_set_command(info, command, column, page_addr);
791 if (exec_cmd) {
792 init_completion(&info->cmd_complete);
793 init_completion(&info->dev_ready);
794 info->need_wait = 1;
795 pxa3xx_nand_start(info);
796
797 ret = wait_for_completion_timeout(&info->cmd_complete,
798 CHIP_DELAY_TIMEOUT);
799 if (!ret) {
800 dev_err(&info->pdev->dev, "Wait time out!!!\n");
801 /* Stop State Machine for next command cycle */
802 pxa3xx_nand_stop(info);
803 }
804 }
805 info->state = STATE_IDLE;
806 }
807
808 static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
809 struct nand_chip *chip, const uint8_t *buf, int oob_required)
810 {
811 chip->write_buf(mtd, buf, mtd->writesize);
812 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
813
814 return 0;
815 }
816
817 static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
818 struct nand_chip *chip, uint8_t *buf, int oob_required,
819 int page)
820 {
821 struct pxa3xx_nand_host *host = mtd->priv;
822 struct pxa3xx_nand_info *info = host->info_data;
823 int max_bitflips = 0;
824
825 chip->read_buf(mtd, buf, mtd->writesize);
826 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
827
828 if (info->retcode == ERR_SBERR) {
829 switch (info->use_ecc) {
830 case 1:
831 max_bitflips = 1;
832 mtd->ecc_stats.corrected++;
833 break;
834 case 0:
835 default:
836 break;
837 }
838 } else if (info->retcode == ERR_DBERR) {
839 /*
840 * for blank page (all 0xff), HW will calculate its ECC as
841 * 0, which is different from the ECC information within
842 * OOB, ignore such double bit errors
843 */
844 if (is_buf_blank(buf, mtd->writesize))
845 info->retcode = ERR_NONE;
846 else
847 mtd->ecc_stats.failed++;
848 }
849
850 return max_bitflips;
851 }
852
853 static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
854 {
855 struct pxa3xx_nand_host *host = mtd->priv;
856 struct pxa3xx_nand_info *info = host->info_data;
857 char retval = 0xFF;
858
859 if (info->buf_start < info->buf_count)
860 /* Has just send a new command? */
861 retval = info->data_buff[info->buf_start++];
862
863 return retval;
864 }
865
866 static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
867 {
868 struct pxa3xx_nand_host *host = mtd->priv;
869 struct pxa3xx_nand_info *info = host->info_data;
870 u16 retval = 0xFFFF;
871
872 if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
873 retval = *((u16 *)(info->data_buff+info->buf_start));
874 info->buf_start += 2;
875 }
876 return retval;
877 }
878
879 static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
880 {
881 struct pxa3xx_nand_host *host = mtd->priv;
882 struct pxa3xx_nand_info *info = host->info_data;
883 int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
884
885 memcpy(buf, info->data_buff + info->buf_start, real_len);
886 info->buf_start += real_len;
887 }
888
889 static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
890 const uint8_t *buf, int len)
891 {
892 struct pxa3xx_nand_host *host = mtd->priv;
893 struct pxa3xx_nand_info *info = host->info_data;
894 int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
895
896 memcpy(info->data_buff + info->buf_start, buf, real_len);
897 info->buf_start += real_len;
898 }
899
900 static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
901 {
902 return;
903 }
904
905 static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
906 {
907 struct pxa3xx_nand_host *host = mtd->priv;
908 struct pxa3xx_nand_info *info = host->info_data;
909 int ret;
910
911 if (info->need_wait) {
912 ret = wait_for_completion_timeout(&info->dev_ready,
913 CHIP_DELAY_TIMEOUT);
914 info->need_wait = 0;
915 if (!ret) {
916 dev_err(&info->pdev->dev, "Ready time out!!!\n");
917 return NAND_STATUS_FAIL;
918 }
919 }
920
921 /* pxa3xx_nand_send_command has waited for command complete */
922 if (this->state == FL_WRITING || this->state == FL_ERASING) {
923 if (info->retcode == ERR_NONE)
924 return 0;
925 else
926 return NAND_STATUS_FAIL;
927 }
928
929 return NAND_STATUS_READY;
930 }
931
932 static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
933 const struct pxa3xx_nand_flash *f)
934 {
935 struct platform_device *pdev = info->pdev;
936 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
937 struct pxa3xx_nand_host *host = info->host[info->cs];
938 uint32_t ndcr = 0x0; /* enable all interrupts */
939
940 if (f->page_size != 2048 && f->page_size != 512) {
941 dev_err(&pdev->dev, "Current only support 2048 and 512 size\n");
942 return -EINVAL;
943 }
944
945 if (f->flash_width != 16 && f->flash_width != 8) {
946 dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n");
947 return -EINVAL;
948 }
949
950 /* calculate flash information */
951 host->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
952
953 /* calculate addressing information */
954 host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
955
956 if (f->num_blocks * f->page_per_block > 65536)
957 host->row_addr_cycles = 3;
958 else
959 host->row_addr_cycles = 2;
960
961 ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
962 ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
963 ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0;
964 ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0;
965 ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0;
966 ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
967
968 ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes);
969 ndcr |= NDCR_SPARE_EN; /* enable spare by default */
970
971 info->reg_ndcr = ndcr;
972
973 pxa3xx_nand_set_timing(host, f->timing);
974 return 0;
975 }
976
977 static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
978 {
979 /*
980 * We set 0 by hard coding here, for we don't support keep_config
981 * when there is more than one chip attached to the controller
982 */
983 struct pxa3xx_nand_host *host = info->host[0];
984 uint32_t ndcr = nand_readl(info, NDCR);
985
986 if (ndcr & NDCR_PAGE_SZ) {
987 /* Controller's FIFO size */
988 info->fifo_size = 2048;
989 host->read_id_bytes = 4;
990 } else {
991 info->fifo_size = 512;
992 host->read_id_bytes = 2;
993 }
994
995 info->reg_ndcr = ndcr & ~NDCR_INT_MASK;
996 info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
997 info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
998 return 0;
999 }
1000
1001 #ifdef ARCH_HAS_DMA
1002 static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
1003 {
1004 struct platform_device *pdev = info->pdev;
1005 int data_desc_offset = info->buf_size - sizeof(struct pxa_dma_desc);
1006
1007 if (use_dma == 0) {
1008 info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1009 if (info->data_buff == NULL)
1010 return -ENOMEM;
1011 return 0;
1012 }
1013
1014 info->data_buff = dma_alloc_coherent(&pdev->dev, info->buf_size,
1015 &info->data_buff_phys, GFP_KERNEL);
1016 if (info->data_buff == NULL) {
1017 dev_err(&pdev->dev, "failed to allocate dma buffer\n");
1018 return -ENOMEM;
1019 }
1020
1021 info->data_desc = (void *)info->data_buff + data_desc_offset;
1022 info->data_desc_addr = info->data_buff_phys + data_desc_offset;
1023
1024 info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW,
1025 pxa3xx_nand_data_dma_irq, info);
1026 if (info->data_dma_ch < 0) {
1027 dev_err(&pdev->dev, "failed to request data dma\n");
1028 dma_free_coherent(&pdev->dev, info->buf_size,
1029 info->data_buff, info->data_buff_phys);
1030 return info->data_dma_ch;
1031 }
1032
1033 /*
1034 * Now that DMA buffers are allocated we turn on
1035 * DMA proper for I/O operations.
1036 */
1037 info->use_dma = 1;
1038 return 0;
1039 }
1040
1041 static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info)
1042 {
1043 struct platform_device *pdev = info->pdev;
1044 if (info->use_dma) {
1045 pxa_free_dma(info->data_dma_ch);
1046 dma_free_coherent(&pdev->dev, info->buf_size,
1047 info->data_buff, info->data_buff_phys);
1048 } else {
1049 kfree(info->data_buff);
1050 }
1051 }
1052 #else
1053 static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
1054 {
1055 info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1056 if (info->data_buff == NULL)
1057 return -ENOMEM;
1058 return 0;
1059 }
1060
1061 static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info)
1062 {
1063 kfree(info->data_buff);
1064 }
1065 #endif
1066
1067 static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info)
1068 {
1069 struct mtd_info *mtd;
1070 struct nand_chip *chip;
1071 int ret;
1072
1073 mtd = info->host[info->cs]->mtd;
1074 chip = mtd->priv;
1075
1076 /* use the common timing to make a try */
1077 ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]);
1078 if (ret)
1079 return ret;
1080
1081 chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
1082 ret = chip->waitfunc(mtd, chip);
1083 if (ret & NAND_STATUS_FAIL)
1084 return -ENODEV;
1085
1086 return 0;
1087 }
1088
1089 static int pxa_ecc_init(struct pxa3xx_nand_info *info,
1090 struct nand_ecc_ctrl *ecc,
1091 int strength, int page_size)
1092 {
1093 /*
1094 * We don't use strength here as the PXA variant
1095 * is used with non-ONFI compliant devices.
1096 */
1097 if (page_size == 2048) {
1098 info->spare_size = 40;
1099 info->ecc_size = 24;
1100 ecc->mode = NAND_ECC_HW;
1101 ecc->size = 512;
1102 ecc->strength = 1;
1103 return 1;
1104
1105 } else if (page_size == 512) {
1106 info->spare_size = 8;
1107 info->ecc_size = 8;
1108 ecc->mode = NAND_ECC_HW;
1109 ecc->size = 512;
1110 ecc->strength = 1;
1111 return 1;
1112 }
1113 return 0;
1114 }
1115
1116 static int armada370_ecc_init(struct pxa3xx_nand_info *info,
1117 struct nand_ecc_ctrl *ecc,
1118 int strength, int page_size)
1119 {
1120 /* Unimplemented yet */
1121 return 0;
1122 }
1123
1124 static int pxa3xx_nand_scan(struct mtd_info *mtd)
1125 {
1126 struct pxa3xx_nand_host *host = mtd->priv;
1127 struct pxa3xx_nand_info *info = host->info_data;
1128 struct platform_device *pdev = info->pdev;
1129 struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1130 struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL;
1131 const struct pxa3xx_nand_flash *f = NULL;
1132 struct nand_chip *chip = mtd->priv;
1133 uint32_t id = -1;
1134 uint64_t chipsize;
1135 int i, ret, num;
1136
1137 if (pdata->keep_config && !pxa3xx_nand_detect_config(info))
1138 goto KEEP_CONFIG;
1139
1140 ret = pxa3xx_nand_sensing(info);
1141 if (ret) {
1142 dev_info(&info->pdev->dev, "There is no chip on cs %d!\n",
1143 info->cs);
1144
1145 return ret;
1146 }
1147
1148 chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0);
1149 id = *((uint16_t *)(info->data_buff));
1150 if (id != 0)
1151 dev_info(&info->pdev->dev, "Detect a flash id %x\n", id);
1152 else {
1153 dev_warn(&info->pdev->dev,
1154 "Read out ID 0, potential timing set wrong!!\n");
1155
1156 return -EINVAL;
1157 }
1158
1159 num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1;
1160 for (i = 0; i < num; i++) {
1161 if (i < pdata->num_flash)
1162 f = pdata->flash + i;
1163 else
1164 f = &builtin_flash_types[i - pdata->num_flash + 1];
1165
1166 /* find the chip in default list */
1167 if (f->chip_id == id)
1168 break;
1169 }
1170
1171 if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) {
1172 dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n");
1173
1174 return -EINVAL;
1175 }
1176
1177 ret = pxa3xx_nand_config_flash(info, f);
1178 if (ret) {
1179 dev_err(&info->pdev->dev, "ERROR! Configure failed\n");
1180 return ret;
1181 }
1182
1183 pxa3xx_flash_ids[0].name = f->name;
1184 pxa3xx_flash_ids[0].dev_id = (f->chip_id >> 8) & 0xffff;
1185 pxa3xx_flash_ids[0].pagesize = f->page_size;
1186 chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size;
1187 pxa3xx_flash_ids[0].chipsize = chipsize >> 20;
1188 pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block;
1189 if (f->flash_width == 16)
1190 pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16;
1191 pxa3xx_flash_ids[1].name = NULL;
1192 def = pxa3xx_flash_ids;
1193 KEEP_CONFIG:
1194 if (info->reg_ndcr & NDCR_DWIDTH_M)
1195 chip->options |= NAND_BUSWIDTH_16;
1196
1197 /* Device detection must be done with ECC disabled */
1198 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
1199 nand_writel(info, NDECCCTRL, 0x0);
1200
1201 if (nand_scan_ident(mtd, 1, def))
1202 return -ENODEV;
1203
1204 if (pdata->flash_bbt) {
1205 /*
1206 * We'll use a bad block table stored in-flash and don't
1207 * allow writing the bad block marker to the flash.
1208 */
1209 chip->bbt_options |= NAND_BBT_USE_FLASH |
1210 NAND_BBT_NO_OOB_BBM;
1211 chip->bbt_td = &bbt_main_descr;
1212 chip->bbt_md = &bbt_mirror_descr;
1213 }
1214
1215 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
1216 ret = armada370_ecc_init(info, &chip->ecc,
1217 chip->ecc_strength_ds,
1218 mtd->writesize);
1219 else
1220 ret = pxa_ecc_init(info, &chip->ecc,
1221 chip->ecc_strength_ds,
1222 mtd->writesize);
1223 if (!ret) {
1224 dev_err(&info->pdev->dev,
1225 "ECC strength %d at page size %d is not supported\n",
1226 chip->ecc_strength_ds, mtd->writesize);
1227 return -ENODEV;
1228 }
1229
1230 /* calculate addressing information */
1231 if (mtd->writesize >= 2048)
1232 host->col_addr_cycles = 2;
1233 else
1234 host->col_addr_cycles = 1;
1235
1236 /* release the initial buffer */
1237 kfree(info->data_buff);
1238
1239 /* allocate the real data + oob buffer */
1240 info->buf_size = mtd->writesize + mtd->oobsize;
1241 ret = pxa3xx_nand_init_buff(info);
1242 if (ret)
1243 return ret;
1244 info->oob_buff = info->data_buff + mtd->writesize;
1245
1246 if ((mtd->size >> chip->page_shift) > 65536)
1247 host->row_addr_cycles = 3;
1248 else
1249 host->row_addr_cycles = 2;
1250 return nand_scan_tail(mtd);
1251 }
1252
1253 static int alloc_nand_resource(struct platform_device *pdev)
1254 {
1255 struct pxa3xx_nand_platform_data *pdata;
1256 struct pxa3xx_nand_info *info;
1257 struct pxa3xx_nand_host *host;
1258 struct nand_chip *chip = NULL;
1259 struct mtd_info *mtd;
1260 struct resource *r;
1261 int ret, irq, cs;
1262
1263 pdata = dev_get_platdata(&pdev->dev);
1264 info = devm_kzalloc(&pdev->dev, sizeof(*info) + (sizeof(*mtd) +
1265 sizeof(*host)) * pdata->num_cs, GFP_KERNEL);
1266 if (!info)
1267 return -ENOMEM;
1268
1269 info->pdev = pdev;
1270 info->variant = pxa3xx_nand_get_variant(pdev);
1271 for (cs = 0; cs < pdata->num_cs; cs++) {
1272 mtd = (struct mtd_info *)((unsigned int)&info[1] +
1273 (sizeof(*mtd) + sizeof(*host)) * cs);
1274 chip = (struct nand_chip *)(&mtd[1]);
1275 host = (struct pxa3xx_nand_host *)chip;
1276 info->host[cs] = host;
1277 host->mtd = mtd;
1278 host->cs = cs;
1279 host->info_data = info;
1280 mtd->priv = host;
1281 mtd->owner = THIS_MODULE;
1282
1283 chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
1284 chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
1285 chip->controller = &info->controller;
1286 chip->waitfunc = pxa3xx_nand_waitfunc;
1287 chip->select_chip = pxa3xx_nand_select_chip;
1288 chip->cmdfunc = pxa3xx_nand_cmdfunc;
1289 chip->read_word = pxa3xx_nand_read_word;
1290 chip->read_byte = pxa3xx_nand_read_byte;
1291 chip->read_buf = pxa3xx_nand_read_buf;
1292 chip->write_buf = pxa3xx_nand_write_buf;
1293 chip->options |= NAND_NO_SUBPAGE_WRITE;
1294 }
1295
1296 spin_lock_init(&chip->controller->lock);
1297 init_waitqueue_head(&chip->controller->wq);
1298 info->clk = devm_clk_get(&pdev->dev, NULL);
1299 if (IS_ERR(info->clk)) {
1300 dev_err(&pdev->dev, "failed to get nand clock\n");
1301 return PTR_ERR(info->clk);
1302 }
1303 ret = clk_prepare_enable(info->clk);
1304 if (ret < 0)
1305 return ret;
1306
1307 if (use_dma) {
1308 /*
1309 * This is a dirty hack to make this driver work from
1310 * devicetree bindings. It can be removed once we have
1311 * a prober DMA controller framework for DT.
1312 */
1313 if (pdev->dev.of_node &&
1314 of_machine_is_compatible("marvell,pxa3xx")) {
1315 info->drcmr_dat = 97;
1316 info->drcmr_cmd = 99;
1317 } else {
1318 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1319 if (r == NULL) {
1320 dev_err(&pdev->dev,
1321 "no resource defined for data DMA\n");
1322 ret = -ENXIO;
1323 goto fail_disable_clk;
1324 }
1325 info->drcmr_dat = r->start;
1326
1327 r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1328 if (r == NULL) {
1329 dev_err(&pdev->dev,
1330 "no resource defined for cmd DMA\n");
1331 ret = -ENXIO;
1332 goto fail_disable_clk;
1333 }
1334 info->drcmr_cmd = r->start;
1335 }
1336 }
1337
1338 irq = platform_get_irq(pdev, 0);
1339 if (irq < 0) {
1340 dev_err(&pdev->dev, "no IRQ resource defined\n");
1341 ret = -ENXIO;
1342 goto fail_disable_clk;
1343 }
1344
1345 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1346 info->mmio_base = devm_ioremap_resource(&pdev->dev, r);
1347 if (IS_ERR(info->mmio_base)) {
1348 ret = PTR_ERR(info->mmio_base);
1349 goto fail_disable_clk;
1350 }
1351 info->mmio_phys = r->start;
1352
1353 /* Allocate a buffer to allow flash detection */
1354 info->buf_size = INIT_BUFFER_SIZE;
1355 info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1356 if (info->data_buff == NULL) {
1357 ret = -ENOMEM;
1358 goto fail_disable_clk;
1359 }
1360
1361 /* initialize all interrupts to be disabled */
1362 disable_int(info, NDSR_MASK);
1363
1364 ret = request_irq(irq, pxa3xx_nand_irq, 0, pdev->name, info);
1365 if (ret < 0) {
1366 dev_err(&pdev->dev, "failed to request IRQ\n");
1367 goto fail_free_buf;
1368 }
1369
1370 platform_set_drvdata(pdev, info);
1371
1372 return 0;
1373
1374 fail_free_buf:
1375 free_irq(irq, info);
1376 kfree(info->data_buff);
1377 fail_disable_clk:
1378 clk_disable_unprepare(info->clk);
1379 return ret;
1380 }
1381
1382 static int pxa3xx_nand_remove(struct platform_device *pdev)
1383 {
1384 struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1385 struct pxa3xx_nand_platform_data *pdata;
1386 int irq, cs;
1387
1388 if (!info)
1389 return 0;
1390
1391 pdata = dev_get_platdata(&pdev->dev);
1392
1393 irq = platform_get_irq(pdev, 0);
1394 if (irq >= 0)
1395 free_irq(irq, info);
1396 pxa3xx_nand_free_buff(info);
1397
1398 clk_disable_unprepare(info->clk);
1399
1400 for (cs = 0; cs < pdata->num_cs; cs++)
1401 nand_release(info->host[cs]->mtd);
1402 return 0;
1403 }
1404
1405 static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
1406 {
1407 struct pxa3xx_nand_platform_data *pdata;
1408 struct device_node *np = pdev->dev.of_node;
1409 const struct of_device_id *of_id =
1410 of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
1411
1412 if (!of_id)
1413 return 0;
1414
1415 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1416 if (!pdata)
1417 return -ENOMEM;
1418
1419 if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
1420 pdata->enable_arbiter = 1;
1421 if (of_get_property(np, "marvell,nand-keep-config", NULL))
1422 pdata->keep_config = 1;
1423 of_property_read_u32(np, "num-cs", &pdata->num_cs);
1424 pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1425
1426 pdev->dev.platform_data = pdata;
1427
1428 return 0;
1429 }
1430
1431 static int pxa3xx_nand_probe(struct platform_device *pdev)
1432 {
1433 struct pxa3xx_nand_platform_data *pdata;
1434 struct mtd_part_parser_data ppdata = {};
1435 struct pxa3xx_nand_info *info;
1436 int ret, cs, probe_success;
1437
1438 #ifndef ARCH_HAS_DMA
1439 if (use_dma) {
1440 use_dma = 0;
1441 dev_warn(&pdev->dev,
1442 "This platform can't do DMA on this device\n");
1443 }
1444 #endif
1445 ret = pxa3xx_nand_probe_dt(pdev);
1446 if (ret)
1447 return ret;
1448
1449 pdata = dev_get_platdata(&pdev->dev);
1450 if (!pdata) {
1451 dev_err(&pdev->dev, "no platform data defined\n");
1452 return -ENODEV;
1453 }
1454
1455 ret = alloc_nand_resource(pdev);
1456 if (ret) {
1457 dev_err(&pdev->dev, "alloc nand resource failed\n");
1458 return ret;
1459 }
1460
1461 info = platform_get_drvdata(pdev);
1462 probe_success = 0;
1463 for (cs = 0; cs < pdata->num_cs; cs++) {
1464 struct mtd_info *mtd = info->host[cs]->mtd;
1465
1466 /*
1467 * The mtd name matches the one used in 'mtdparts' kernel
1468 * parameter. This name cannot be changed or otherwise
1469 * user's mtd partitions configuration would get broken.
1470 */
1471 mtd->name = "pxa3xx_nand-0";
1472 info->cs = cs;
1473 ret = pxa3xx_nand_scan(mtd);
1474 if (ret) {
1475 dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
1476 cs);
1477 continue;
1478 }
1479
1480 ppdata.of_node = pdev->dev.of_node;
1481 ret = mtd_device_parse_register(mtd, NULL,
1482 &ppdata, pdata->parts[cs],
1483 pdata->nr_parts[cs]);
1484 if (!ret)
1485 probe_success = 1;
1486 }
1487
1488 if (!probe_success) {
1489 pxa3xx_nand_remove(pdev);
1490 return -ENODEV;
1491 }
1492
1493 return 0;
1494 }
1495
1496 #ifdef CONFIG_PM
1497 static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state)
1498 {
1499 struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1500 struct pxa3xx_nand_platform_data *pdata;
1501 struct mtd_info *mtd;
1502 int cs;
1503
1504 pdata = dev_get_platdata(&pdev->dev);
1505 if (info->state) {
1506 dev_err(&pdev->dev, "driver busy, state = %d\n", info->state);
1507 return -EAGAIN;
1508 }
1509
1510 for (cs = 0; cs < pdata->num_cs; cs++) {
1511 mtd = info->host[cs]->mtd;
1512 mtd_suspend(mtd);
1513 }
1514
1515 return 0;
1516 }
1517
1518 static int pxa3xx_nand_resume(struct platform_device *pdev)
1519 {
1520 struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1521 struct pxa3xx_nand_platform_data *pdata;
1522 struct mtd_info *mtd;
1523 int cs;
1524
1525 pdata = dev_get_platdata(&pdev->dev);
1526 /* We don't want to handle interrupt without calling mtd routine */
1527 disable_int(info, NDCR_INT_MASK);
1528
1529 /*
1530 * Directly set the chip select to a invalid value,
1531 * then the driver would reset the timing according
1532 * to current chip select at the beginning of cmdfunc
1533 */
1534 info->cs = 0xff;
1535
1536 /*
1537 * As the spec says, the NDSR would be updated to 0x1800 when
1538 * doing the nand_clk disable/enable.
1539 * To prevent it damaging state machine of the driver, clear
1540 * all status before resume
1541 */
1542 nand_writel(info, NDSR, NDSR_MASK);
1543 for (cs = 0; cs < pdata->num_cs; cs++) {
1544 mtd = info->host[cs]->mtd;
1545 mtd_resume(mtd);
1546 }
1547
1548 return 0;
1549 }
1550 #else
1551 #define pxa3xx_nand_suspend NULL
1552 #define pxa3xx_nand_resume NULL
1553 #endif
1554
1555 static struct platform_driver pxa3xx_nand_driver = {
1556 .driver = {
1557 .name = "pxa3xx-nand",
1558 .of_match_table = pxa3xx_nand_dt_ids,
1559 },
1560 .probe = pxa3xx_nand_probe,
1561 .remove = pxa3xx_nand_remove,
1562 .suspend = pxa3xx_nand_suspend,
1563 .resume = pxa3xx_nand_resume,
1564 };
1565
1566 module_platform_driver(pxa3xx_nand_driver);
1567
1568 MODULE_LICENSE("GPL");
1569 MODULE_DESCRIPTION("PXA3xx NAND controller driver");
This page took 0.163027 seconds and 5 git commands to generate.