Merge branch 'atmel'
[deliverable/linux.git] / drivers / mtd / nand / rtc_from4.c
1 /*
2 * drivers/mtd/nand/rtc_from4.c
3 *
4 * Copyright (C) 2004 Red Hat, Inc.
5 *
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8 *
9 * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * Overview:
16 * This is a device driver for the AG-AND flash device found on the
17 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
18 * which utilizes the Renesas HN29V1G91T-30 part.
19 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
20 */
21
22 #include <linux/delay.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/rslib.h>
27 #include <linux/module.h>
28 #include <linux/mtd/compatmac.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <asm/io.h>
33
34 /*
35 * MTD structure for Renesas board
36 */
37 static struct mtd_info *rtc_from4_mtd = NULL;
38
39 #define RTC_FROM4_MAX_CHIPS 2
40
41 /* HS77x9 processor register defines */
42 #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
43 #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
44 #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
45 #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
46 #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
47 #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
48 #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
49
50 /*
51 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
52 */
53 /* Address where flash is mapped */
54 #define RTC_FROM4_FIO_BASE 0x14000000
55
56 /* CLE and ALE are tied to address lines 5 & 4, respectively */
57 #define RTC_FROM4_CLE (1 << 5)
58 #define RTC_FROM4_ALE (1 << 4)
59
60 /* address lines A24-A22 used for chip selection */
61 #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
62 #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
63 #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
64 /* mask address lines A24-A22 used for chip selection */
65 #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
66
67 /* FPGA status register for checking device ready (bit zero) */
68 #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
69 #define RTC_FROM4_DEVICE_READY 0x0001
70
71 /* FPGA Reed-Solomon ECC Control register */
72
73 #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
74 #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
75 #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
76 #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
77
78 /* FPGA Reed-Solomon ECC code base */
79 #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
80 #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
81
82 /* FPGA Reed-Solomon ECC check register */
83 #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
84 #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
85
86 #define ERR_STAT_ECC_AVAILABLE 0x20
87
88 /* Undefine for software ECC */
89 #define RTC_FROM4_HWECC 1
90
91 /* Define as 1 for no virtual erase blocks (in JFFS2) */
92 #define RTC_FROM4_NO_VIRTBLOCKS 0
93
94 /*
95 * Module stuff
96 */
97 static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
98
99 const static struct mtd_partition partition_info[] = {
100 {
101 .name = "Renesas flash partition 1",
102 .offset = 0,
103 .size = MTDPART_SIZ_FULL
104 },
105 };
106 #define NUM_PARTITIONS 1
107
108 /*
109 * hardware specific flash bbt decriptors
110 * Note: this is to allow debugging by disabling
111 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
112 *
113 */
114 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
115 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
116
117 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
118 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
119 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
120 .offs = 40,
121 .len = 4,
122 .veroffs = 44,
123 .maxblocks = 4,
124 .pattern = bbt_pattern
125 };
126
127 static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
128 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
129 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
130 .offs = 40,
131 .len = 4,
132 .veroffs = 44,
133 .maxblocks = 4,
134 .pattern = mirror_pattern
135 };
136
137
138
139 #ifdef RTC_FROM4_HWECC
140
141 /* the Reed Solomon control structure */
142 static struct rs_control *rs_decoder;
143
144 /*
145 * hardware specific Out Of Band information
146 */
147 static struct nand_oobinfo rtc_from4_nand_oobinfo = {
148 .useecc = MTD_NANDECC_AUTOPLACE,
149 .eccbytes = 32,
150 .eccpos = {
151 0, 1, 2, 3, 4, 5, 6, 7,
152 8, 9, 10, 11, 12, 13, 14, 15,
153 16, 17, 18, 19, 20, 21, 22, 23,
154 24, 25, 26, 27, 28, 29, 30, 31},
155 .oobfree = { {32, 32} }
156 };
157
158 /* Aargh. I missed the reversed bit order, when I
159 * was talking to Renesas about the FPGA.
160 *
161 * The table is used for bit reordering and inversion
162 * of the ecc byte which we get from the FPGA
163 */
164 static uint8_t revbits[256] = {
165 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
166 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
167 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
168 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
169 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
170 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
171 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
172 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
173 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
174 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
175 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
176 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
177 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
178 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
179 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
180 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
181 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
182 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
183 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
184 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
185 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
186 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
187 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
188 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
189 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
190 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
191 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
192 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
193 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
194 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
195 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
196 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
197 };
198
199 #endif
200
201
202
203 /*
204 * rtc_from4_hwcontrol - hardware specific access to control-lines
205 * @mtd: MTD device structure
206 * @cmd: hardware control command
207 *
208 * Address lines (A5 and A4) are used to control Command and Address Latch
209 * Enable on this board, so set the read/write address appropriately.
210 *
211 * Chip Enable is also controlled by the Chip Select (CS5) and
212 * Address lines (A24-A22), so no action is required here.
213 *
214 */
215 static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
216 {
217 struct nand_chip* this = (struct nand_chip *) (mtd->priv);
218
219 switch(cmd) {
220
221 case NAND_CTL_SETCLE:
222 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE);
223 break;
224 case NAND_CTL_CLRCLE:
225 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE);
226 break;
227
228 case NAND_CTL_SETALE:
229 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE);
230 break;
231 case NAND_CTL_CLRALE:
232 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE);
233 break;
234
235 case NAND_CTL_SETNCE:
236 break;
237 case NAND_CTL_CLRNCE:
238 break;
239
240 }
241 }
242
243
244 /*
245 * rtc_from4_nand_select_chip - hardware specific chip select
246 * @mtd: MTD device structure
247 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
248 *
249 * The chip select is based on address lines A24-A22.
250 * This driver uses flash slots 3 and 4 (A23-A22).
251 *
252 */
253 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
254 {
255 struct nand_chip *this = mtd->priv;
256
257 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
258 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
259
260 switch(chip) {
261
262 case 0: /* select slot 3 chip */
263 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
264 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
265 break;
266 case 1: /* select slot 4 chip */
267 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
268 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
269 break;
270
271 }
272 }
273
274
275 /*
276 * rtc_from4_nand_device_ready - hardware specific ready/busy check
277 * @mtd: MTD device structure
278 *
279 * This board provides the Ready/Busy state in the status register
280 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
281 *
282 */
283 static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
284 {
285 unsigned short status;
286
287 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
288
289 return (status & RTC_FROM4_DEVICE_READY);
290
291 }
292
293
294 /*
295 * deplete - code to perform device recovery in case there was a power loss
296 * @mtd: MTD device structure
297 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
298 *
299 * If there was a sudden loss of power during an erase operation, a
300 * "device recovery" operation must be performed when power is restored
301 * to ensure correct operation. This routine performs the required steps
302 * for the requested chip.
303 *
304 * See page 86 of the data sheet for details.
305 *
306 */
307 static void deplete(struct mtd_info *mtd, int chip)
308 {
309 struct nand_chip *this = mtd->priv;
310
311 /* wait until device is ready */
312 while (!this->dev_ready(mtd));
313
314 this->select_chip(mtd, chip);
315
316 /* Send the commands for device recovery, phase 1 */
317 this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
318 this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1);
319
320 /* Send the commands for device recovery, phase 2 */
321 this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
322 this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1);
323
324 }
325
326
327 #ifdef RTC_FROM4_HWECC
328 /*
329 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
330 * @mtd: MTD device structure
331 * @mode: I/O mode; read or write
332 *
333 * enable hardware ECC for data read or write
334 *
335 */
336 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
337 {
338 volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
339 unsigned short status;
340
341 switch (mode) {
342 case NAND_ECC_READ :
343 status = RTC_FROM4_RS_ECC_CTL_CLR
344 | RTC_FROM4_RS_ECC_CTL_FD_E;
345
346 *rs_ecc_ctl = status;
347 break;
348
349 case NAND_ECC_READSYN :
350 status = 0x00;
351
352 *rs_ecc_ctl = status;
353 break;
354
355 case NAND_ECC_WRITE :
356 status = RTC_FROM4_RS_ECC_CTL_CLR
357 | RTC_FROM4_RS_ECC_CTL_GEN
358 | RTC_FROM4_RS_ECC_CTL_FD_E;
359
360 *rs_ecc_ctl = status;
361 break;
362
363 default:
364 BUG();
365 break;
366 }
367
368 }
369
370
371 /*
372 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
373 * @mtd: MTD device structure
374 * @dat: buffer containing the data to generate ECC codes
375 * @ecc_code ECC codes calculated
376 *
377 * The ECC code is calculated by the FPGA. All we have to do is read the values
378 * from the FPGA registers.
379 *
380 * Note: We read from the inverted registers, since data is inverted before
381 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
382 *
383 */
384 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
385 {
386 volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
387 unsigned short value;
388 int i;
389
390 for (i = 0; i < 8; i++) {
391 value = *rs_eccn;
392 ecc_code[i] = (unsigned char)value;
393 rs_eccn++;
394 }
395 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
396 }
397
398
399 /*
400 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
401 * @mtd: MTD device structure
402 * @buf: buffer containing the data to generate ECC codes
403 * @ecc1 ECC codes read
404 * @ecc2 ECC codes calculated
405 *
406 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
407 * else we read the ecc results from the fpga and call the rs library to decode
408 * and hopefully correct the error.
409 *
410 */
411 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
412 {
413 int i, j, res;
414 unsigned short status;
415 uint16_t par[6], syn[6];
416 uint8_t ecc[8];
417 volatile unsigned short *rs_ecc;
418
419 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
420
421 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
422 return 0;
423 }
424
425 /* Read the syndrom pattern from the FPGA and correct the bitorder */
426 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
427 for (i = 0; i < 8; i++) {
428 ecc[i] = revbits[(*rs_ecc) & 0xFF];
429 rs_ecc++;
430 }
431
432 /* convert into 6 10bit syndrome fields */
433 par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) |
434 (((uint16_t)ecc[1] << 8) & 0x300)];
435 par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) |
436 (((uint16_t)ecc[2] << 6) & 0x3c0)];
437 par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) |
438 (((uint16_t)ecc[3] << 4) & 0x3f0)];
439 par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) |
440 (((uint16_t)ecc[4] << 2) & 0x3fc)];
441 par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) |
442 (((uint16_t)ecc[6] << 8) & 0x300)];
443 par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0);
444
445 /* Convert to computable syndrome */
446 for (i = 0; i < 6; i++) {
447 syn[i] = par[0];
448 for (j = 1; j < 6; j++)
449 if (par[j] != rs_decoder->nn)
450 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
451
452 /* Convert to index form */
453 syn[i] = rs_decoder->index_of[syn[i]];
454 }
455
456 /* Let the library code do its magic.*/
457 res = decode_rs8(rs_decoder, (uint8_t *)buf, par, 512, syn, 0, NULL, 0xff, NULL);
458 if (res > 0) {
459 DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: "
460 "ECC corrected %d errors on read\n", res);
461 }
462 return res;
463 }
464
465
466 /**
467 * rtc_from4_errstat - perform additional error status checks
468 * @mtd: MTD device structure
469 * @this: NAND chip structure
470 * @state: state or the operation
471 * @status: status code returned from read status
472 * @page: startpage inside the chip, must be called with (page & this->pagemask)
473 *
474 * Perform additional error status checks on erase and write failures
475 * to determine if errors are correctable. For this device, correctable
476 * 1-bit errors on erase and write are considered acceptable.
477 *
478 * note: see pages 34..37 of data sheet for details.
479 *
480 */
481 static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page)
482 {
483 int er_stat=0;
484 int rtn, retlen;
485 size_t len;
486 uint8_t *buf;
487 int i;
488
489 this->cmdfunc (mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
490
491 if (state == FL_ERASING) {
492 for (i=0; i<4; i++) {
493 if (status & 1<<(i+1)) {
494 this->cmdfunc (mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1);
495 rtn = this->read_byte(mtd);
496 this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1);
497 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
498 er_stat |= 1<<(i+1); /* err_ecc_not_avail */
499 }
500 }
501 }
502 } else if (state == FL_WRITING) {
503 /* single bank write logic */
504 this->cmdfunc (mtd, NAND_CMD_STATUS_ERROR, -1, -1);
505 rtn = this->read_byte(mtd);
506 this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1);
507 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
508 er_stat |= 1<<1; /* err_ecc_not_avail */
509 } else {
510 len = mtd->oobblock;
511 buf = kmalloc (len, GFP_KERNEL);
512 if (!buf) {
513 printk (KERN_ERR "rtc_from4_errstat: Out of memory!\n");
514 er_stat = 1; /* if we can't check, assume failed */
515 } else {
516 /* recovery read */
517 /* page read */
518 rtn = nand_do_read_ecc (mtd, page, len, &retlen, buf, NULL, this->autooob, 1);
519 if (rtn) { /* if read failed or > 1-bit error corrected */
520 er_stat |= 1<<1; /* ECC read failed */
521 }
522 kfree(buf);
523 }
524 }
525 }
526
527 rtn = status;
528 if (er_stat == 0) { /* if ECC is available */
529 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
530 }
531
532 return rtn;
533 }
534 #endif
535
536
537 /*
538 * Main initialization routine
539 */
540 int __init rtc_from4_init (void)
541 {
542 struct nand_chip *this;
543 unsigned short bcr1, bcr2, wcr2;
544 int i;
545
546 /* Allocate memory for MTD device structure and private data */
547 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip),
548 GFP_KERNEL);
549 if (!rtc_from4_mtd) {
550 printk ("Unable to allocate Renesas NAND MTD device structure.\n");
551 return -ENOMEM;
552 }
553
554 /* Get pointer to private data */
555 this = (struct nand_chip *) (&rtc_from4_mtd[1]);
556
557 /* Initialize structures */
558 memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info));
559 memset((char *) this, 0, sizeof(struct nand_chip));
560
561 /* Link the private data with the MTD structure */
562 rtc_from4_mtd->priv = this;
563
564 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
565 bcr1 = *SH77X9_BCR1 & ~0x0002;
566 bcr1 |= 0x0002;
567 *SH77X9_BCR1 = bcr1;
568
569 /* set */
570 bcr2 = *SH77X9_BCR2 & ~0x0c00;
571 bcr2 |= 0x0800;
572 *SH77X9_BCR2 = bcr2;
573
574 /* set area 5 wait states */
575 wcr2 = *SH77X9_WCR2 & ~0x1c00;
576 wcr2 |= 0x1c00;
577 *SH77X9_WCR2 = wcr2;
578
579 /* Set address of NAND IO lines */
580 this->IO_ADDR_R = rtc_from4_fio_base;
581 this->IO_ADDR_W = rtc_from4_fio_base;
582 /* Set address of hardware control function */
583 this->hwcontrol = rtc_from4_hwcontrol;
584 /* Set address of chip select function */
585 this->select_chip = rtc_from4_nand_select_chip;
586 /* command delay time (in us) */
587 this->chip_delay = 100;
588 /* return the status of the Ready/Busy line */
589 this->dev_ready = rtc_from4_nand_device_ready;
590
591 #ifdef RTC_FROM4_HWECC
592 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
593
594 this->eccmode = NAND_ECC_HW8_512;
595 this->options |= NAND_HWECC_SYNDROME;
596 /* return the status of extra status and ECC checks */
597 this->errstat = rtc_from4_errstat;
598 /* set the nand_oobinfo to support FPGA H/W error detection */
599 this->autooob = &rtc_from4_nand_oobinfo;
600 this->enable_hwecc = rtc_from4_enable_hwecc;
601 this->calculate_ecc = rtc_from4_calculate_ecc;
602 this->correct_data = rtc_from4_correct_data;
603 #else
604 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
605
606 this->eccmode = NAND_ECC_SOFT;
607 #endif
608
609 /* set the bad block tables to support debugging */
610 this->bbt_td = &rtc_from4_bbt_main_descr;
611 this->bbt_md = &rtc_from4_bbt_mirror_descr;
612
613 /* Scan to find existence of the device */
614 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
615 kfree(rtc_from4_mtd);
616 return -ENXIO;
617 }
618
619 /* Perform 'device recovery' for each chip in case there was a power loss. */
620 for (i=0; i < this->numchips; i++) {
621 deplete(rtc_from4_mtd, i);
622 }
623
624 #if RTC_FROM4_NO_VIRTBLOCKS
625 /* use a smaller erase block to minimize wasted space when a block is bad */
626 /* note: this uses eight times as much RAM as using the default and makes */
627 /* mounts take four times as long. */
628 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
629 #endif
630
631 /* Register the partitions */
632 add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
633
634 #ifdef RTC_FROM4_HWECC
635 /* We could create the decoder on demand, if memory is a concern.
636 * This way we have it handy, if an error happens
637 *
638 * Symbolsize is 10 (bits)
639 * Primitve polynomial is x^10+x^3+1
640 * first consecutive root is 0
641 * primitve element to generate roots = 1
642 * generator polinomial degree = 6
643 */
644 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
645 if (!rs_decoder) {
646 printk (KERN_ERR "Could not create a RS decoder\n");
647 nand_release(rtc_from4_mtd);
648 kfree(rtc_from4_mtd);
649 return -ENOMEM;
650 }
651 #endif
652 /* Return happy */
653 return 0;
654 }
655 module_init(rtc_from4_init);
656
657
658 /*
659 * Clean up routine
660 */
661 #ifdef MODULE
662 static void __exit rtc_from4_cleanup (void)
663 {
664 /* Release resource, unregister partitions */
665 nand_release(rtc_from4_mtd);
666
667 /* Free the MTD device structure */
668 kfree (rtc_from4_mtd);
669
670 #ifdef RTC_FROM4_HWECC
671 /* Free the reed solomon resources */
672 if (rs_decoder) {
673 free_rs(rs_decoder);
674 }
675 #endif
676 }
677 module_exit(rtc_from4_cleanup);
678 #endif
679
680 MODULE_LICENSE("GPL");
681 MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
682 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
683
This page took 0.083392 seconds and 6 git commands to generate.