[MTD] NAND Modularize read function
[deliverable/linux.git] / drivers / mtd / nand / rtc_from4.c
1 /*
2 * drivers/mtd/nand/rtc_from4.c
3 *
4 * Copyright (C) 2004 Red Hat, Inc.
5 *
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
8 *
9 * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * Overview:
16 * This is a device driver for the AG-AND flash device found on the
17 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
18 * which utilizes the Renesas HN29V1G91T-30 part.
19 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
20 */
21
22 #include <linux/delay.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/rslib.h>
27 #include <linux/module.h>
28 #include <linux/mtd/compatmac.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <asm/io.h>
33
34 /*
35 * MTD structure for Renesas board
36 */
37 static struct mtd_info *rtc_from4_mtd = NULL;
38
39 #define RTC_FROM4_MAX_CHIPS 2
40
41 /* HS77x9 processor register defines */
42 #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
43 #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
44 #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
45 #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
46 #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
47 #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
48 #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
49
50 /*
51 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
52 */
53 /* Address where flash is mapped */
54 #define RTC_FROM4_FIO_BASE 0x14000000
55
56 /* CLE and ALE are tied to address lines 5 & 4, respectively */
57 #define RTC_FROM4_CLE (1 << 5)
58 #define RTC_FROM4_ALE (1 << 4)
59
60 /* address lines A24-A22 used for chip selection */
61 #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
62 #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
63 #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
64 /* mask address lines A24-A22 used for chip selection */
65 #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
66
67 /* FPGA status register for checking device ready (bit zero) */
68 #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
69 #define RTC_FROM4_DEVICE_READY 0x0001
70
71 /* FPGA Reed-Solomon ECC Control register */
72
73 #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
74 #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
75 #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
76 #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
77
78 /* FPGA Reed-Solomon ECC code base */
79 #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
80 #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
81
82 /* FPGA Reed-Solomon ECC check register */
83 #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
84 #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
85
86 #define ERR_STAT_ECC_AVAILABLE 0x20
87
88 /* Undefine for software ECC */
89 #define RTC_FROM4_HWECC 1
90
91 /* Define as 1 for no virtual erase blocks (in JFFS2) */
92 #define RTC_FROM4_NO_VIRTBLOCKS 0
93
94 /*
95 * Module stuff
96 */
97 static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
98
99 static const struct mtd_partition partition_info[] = {
100 {
101 .name = "Renesas flash partition 1",
102 .offset = 0,
103 .size = MTDPART_SIZ_FULL},
104 };
105
106 #define NUM_PARTITIONS 1
107
108 /*
109 * hardware specific flash bbt decriptors
110 * Note: this is to allow debugging by disabling
111 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
112 *
113 */
114 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
115 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
116
117 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
118 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
119 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
120 .offs = 40,
121 .len = 4,
122 .veroffs = 44,
123 .maxblocks = 4,
124 .pattern = bbt_pattern
125 };
126
127 static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
128 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
129 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
130 .offs = 40,
131 .len = 4,
132 .veroffs = 44,
133 .maxblocks = 4,
134 .pattern = mirror_pattern
135 };
136
137 #ifdef RTC_FROM4_HWECC
138
139 /* the Reed Solomon control structure */
140 static struct rs_control *rs_decoder;
141
142 /*
143 * hardware specific Out Of Band information
144 */
145 static struct nand_oobinfo rtc_from4_nand_oobinfo = {
146 .useecc = MTD_NANDECC_AUTOPLACE,
147 .eccbytes = 32,
148 .eccpos = {
149 0, 1, 2, 3, 4, 5, 6, 7,
150 8, 9, 10, 11, 12, 13, 14, 15,
151 16, 17, 18, 19, 20, 21, 22, 23,
152 24, 25, 26, 27, 28, 29, 30, 31},
153 .oobfree = {{32, 32}}
154 };
155
156 /* Aargh. I missed the reversed bit order, when I
157 * was talking to Renesas about the FPGA.
158 *
159 * The table is used for bit reordering and inversion
160 * of the ecc byte which we get from the FPGA
161 */
162 static uint8_t revbits[256] = {
163 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
164 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
165 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
166 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
167 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
168 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
169 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
170 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
171 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
172 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
173 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
174 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
175 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
176 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
177 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
178 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
179 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
180 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
181 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
182 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
183 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
184 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
185 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
186 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
187 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
188 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
189 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
190 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
191 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
192 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
193 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
194 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
195 };
196
197 #endif
198
199 /*
200 * rtc_from4_hwcontrol - hardware specific access to control-lines
201 * @mtd: MTD device structure
202 * @cmd: hardware control command
203 *
204 * Address lines (A5 and A4) are used to control Command and Address Latch
205 * Enable on this board, so set the read/write address appropriately.
206 *
207 * Chip Enable is also controlled by the Chip Select (CS5) and
208 * Address lines (A24-A22), so no action is required here.
209 *
210 */
211 static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
212 unsigned int ctrl)
213 {
214 struct nand_chip *chip = (mtd->priv);
215
216 if (cmd == NAND_CMD_NONE)
217 return;
218
219 if (ctrl & NAND_CLE)
220 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
221 else
222 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
223 }
224
225 /*
226 * rtc_from4_nand_select_chip - hardware specific chip select
227 * @mtd: MTD device structure
228 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
229 *
230 * The chip select is based on address lines A24-A22.
231 * This driver uses flash slots 3 and 4 (A23-A22).
232 *
233 */
234 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
235 {
236 struct nand_chip *this = mtd->priv;
237
238 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
239 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
240
241 switch (chip) {
242
243 case 0: /* select slot 3 chip */
244 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
245 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
246 break;
247 case 1: /* select slot 4 chip */
248 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
249 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
250 break;
251
252 }
253 }
254
255 /*
256 * rtc_from4_nand_device_ready - hardware specific ready/busy check
257 * @mtd: MTD device structure
258 *
259 * This board provides the Ready/Busy state in the status register
260 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
261 *
262 */
263 static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
264 {
265 unsigned short status;
266
267 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
268
269 return (status & RTC_FROM4_DEVICE_READY);
270
271 }
272
273 /*
274 * deplete - code to perform device recovery in case there was a power loss
275 * @mtd: MTD device structure
276 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
277 *
278 * If there was a sudden loss of power during an erase operation, a
279 * "device recovery" operation must be performed when power is restored
280 * to ensure correct operation. This routine performs the required steps
281 * for the requested chip.
282 *
283 * See page 86 of the data sheet for details.
284 *
285 */
286 static void deplete(struct mtd_info *mtd, int chip)
287 {
288 struct nand_chip *this = mtd->priv;
289
290 /* wait until device is ready */
291 while (!this->dev_ready(mtd)) ;
292
293 this->select_chip(mtd, chip);
294
295 /* Send the commands for device recovery, phase 1 */
296 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
297 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
298
299 /* Send the commands for device recovery, phase 2 */
300 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
301 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
302
303 }
304
305 #ifdef RTC_FROM4_HWECC
306 /*
307 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
308 * @mtd: MTD device structure
309 * @mode: I/O mode; read or write
310 *
311 * enable hardware ECC for data read or write
312 *
313 */
314 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
315 {
316 volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
317 unsigned short status;
318
319 switch (mode) {
320 case NAND_ECC_READ:
321 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
322
323 *rs_ecc_ctl = status;
324 break;
325
326 case NAND_ECC_READSYN:
327 status = 0x00;
328
329 *rs_ecc_ctl = status;
330 break;
331
332 case NAND_ECC_WRITE:
333 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
334
335 *rs_ecc_ctl = status;
336 break;
337
338 default:
339 BUG();
340 break;
341 }
342
343 }
344
345 /*
346 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
347 * @mtd: MTD device structure
348 * @dat: buffer containing the data to generate ECC codes
349 * @ecc_code ECC codes calculated
350 *
351 * The ECC code is calculated by the FPGA. All we have to do is read the values
352 * from the FPGA registers.
353 *
354 * Note: We read from the inverted registers, since data is inverted before
355 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
356 *
357 */
358 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
359 {
360 volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
361 unsigned short value;
362 int i;
363
364 for (i = 0; i < 8; i++) {
365 value = *rs_eccn;
366 ecc_code[i] = (unsigned char)value;
367 rs_eccn++;
368 }
369 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
370 }
371
372 /*
373 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
374 * @mtd: MTD device structure
375 * @buf: buffer containing the data to generate ECC codes
376 * @ecc1 ECC codes read
377 * @ecc2 ECC codes calculated
378 *
379 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
380 * else we read the ecc results from the fpga and call the rs library to decode
381 * and hopefully correct the error.
382 *
383 */
384 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
385 {
386 int i, j, res;
387 unsigned short status;
388 uint16_t par[6], syn[6];
389 uint8_t ecc[8];
390 volatile unsigned short *rs_ecc;
391
392 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
393
394 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
395 return 0;
396 }
397
398 /* Read the syndrom pattern from the FPGA and correct the bitorder */
399 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
400 for (i = 0; i < 8; i++) {
401 ecc[i] = revbits[(*rs_ecc) & 0xFF];
402 rs_ecc++;
403 }
404
405 /* convert into 6 10bit syndrome fields */
406 par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
407 par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
408 par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
409 par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
410 par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
411 par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
412
413 /* Convert to computable syndrome */
414 for (i = 0; i < 6; i++) {
415 syn[i] = par[0];
416 for (j = 1; j < 6; j++)
417 if (par[j] != rs_decoder->nn)
418 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
419
420 /* Convert to index form */
421 syn[i] = rs_decoder->index_of[syn[i]];
422 }
423
424 /* Let the library code do its magic. */
425 res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
426 if (res > 0) {
427 DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
428 }
429 return res;
430 }
431
432 /**
433 * rtc_from4_errstat - perform additional error status checks
434 * @mtd: MTD device structure
435 * @this: NAND chip structure
436 * @state: state or the operation
437 * @status: status code returned from read status
438 * @page: startpage inside the chip, must be called with (page & this->pagemask)
439 *
440 * Perform additional error status checks on erase and write failures
441 * to determine if errors are correctable. For this device, correctable
442 * 1-bit errors on erase and write are considered acceptable.
443 *
444 * note: see pages 34..37 of data sheet for details.
445 *
446 */
447 static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
448 int state, int status, int page)
449 {
450 int er_stat = 0;
451 int rtn, retlen;
452 size_t len;
453 uint8_t *buf;
454 int i;
455
456 this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
457
458 if (state == FL_ERASING) {
459
460 for (i = 0; i < 4; i++) {
461 if (!(status & 1 << (i + 1)))
462 continue;
463 this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
464 -1, -1);
465 rtn = this->read_byte(mtd);
466 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
467
468 /* err_ecc_not_avail */
469 if (!(rtn & ERR_STAT_ECC_AVAILABLE))
470 er_stat |= 1 << (i + 1);
471 }
472
473 } else if (state == FL_WRITING) {
474
475 unsigned long corrected = mtd->ecc_stats.corrected;
476
477 /* single bank write logic */
478 this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
479 rtn = this->read_byte(mtd);
480 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
481
482 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
483 /* err_ecc_not_avail */
484 er_stat |= 1 << 1;
485 goto out;
486 }
487
488 len = mtd->writesize;
489 buf = kmalloc(len, GFP_KERNEL);
490 if (!buf) {
491 printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
492 er_stat = 1;
493 goto out;
494 }
495
496 /* recovery read */
497 rtn = nand_do_read(mtd, page, len, &retlen, buf);
498
499 /* if read failed or > 1-bit error corrected */
500 if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) {
501 er_stat |= 1 << 1;
502 kfree(buf);
503 }
504
505 rtn = status;
506 if (er_stat == 0) { /* if ECC is available */
507 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
508 }
509
510 return rtn;
511 }
512 #endif
513
514 /*
515 * Main initialization routine
516 */
517 static int __init rtc_from4_init(void)
518 {
519 struct nand_chip *this;
520 unsigned short bcr1, bcr2, wcr2;
521 int i;
522
523 /* Allocate memory for MTD device structure and private data */
524 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
525 if (!rtc_from4_mtd) {
526 printk("Unable to allocate Renesas NAND MTD device structure.\n");
527 return -ENOMEM;
528 }
529
530 /* Get pointer to private data */
531 this = (struct nand_chip *)(&rtc_from4_mtd[1]);
532
533 /* Initialize structures */
534 memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
535 memset(this, 0, sizeof(struct nand_chip));
536
537 /* Link the private data with the MTD structure */
538 rtc_from4_mtd->priv = this;
539 rtc_from4_mtd->owner = THIS_MODULE;
540
541 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
542 bcr1 = *SH77X9_BCR1 & ~0x0002;
543 bcr1 |= 0x0002;
544 *SH77X9_BCR1 = bcr1;
545
546 /* set */
547 bcr2 = *SH77X9_BCR2 & ~0x0c00;
548 bcr2 |= 0x0800;
549 *SH77X9_BCR2 = bcr2;
550
551 /* set area 5 wait states */
552 wcr2 = *SH77X9_WCR2 & ~0x1c00;
553 wcr2 |= 0x1c00;
554 *SH77X9_WCR2 = wcr2;
555
556 /* Set address of NAND IO lines */
557 this->IO_ADDR_R = rtc_from4_fio_base;
558 this->IO_ADDR_W = rtc_from4_fio_base;
559 /* Set address of hardware control function */
560 this->cmd_ctrl = rtc_from4_hwcontrol;
561 /* Set address of chip select function */
562 this->select_chip = rtc_from4_nand_select_chip;
563 /* command delay time (in us) */
564 this->chip_delay = 100;
565 /* return the status of the Ready/Busy line */
566 this->dev_ready = rtc_from4_nand_device_ready;
567
568 #ifdef RTC_FROM4_HWECC
569 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
570
571 this->ecc.mode = NAND_ECC_HW_SYNDROME;
572 this->ecc.size = 512;
573 this->ecc.bytes = 8;
574 this->options |= NAND_HWECC_SYNDROME;
575 /* return the status of extra status and ECC checks */
576 this->errstat = rtc_from4_errstat;
577 /* set the nand_oobinfo to support FPGA H/W error detection */
578 this->autooob = &rtc_from4_nand_oobinfo;
579 this->ecc.hwctl = rtc_from4_enable_hwecc;
580 this->ecc.calculate = rtc_from4_calculate_ecc;
581 this->ecc.correct = rtc_from4_correct_data;
582 #else
583 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
584
585 this->ecc.mode = NAND_ECC_SOFT;
586 #endif
587
588 /* set the bad block tables to support debugging */
589 this->bbt_td = &rtc_from4_bbt_main_descr;
590 this->bbt_md = &rtc_from4_bbt_mirror_descr;
591
592 /* Scan to find existence of the device */
593 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
594 kfree(rtc_from4_mtd);
595 return -ENXIO;
596 }
597
598 /* Perform 'device recovery' for each chip in case there was a power loss. */
599 for (i = 0; i < this->numchips; i++) {
600 deplete(rtc_from4_mtd, i);
601 }
602
603 #if RTC_FROM4_NO_VIRTBLOCKS
604 /* use a smaller erase block to minimize wasted space when a block is bad */
605 /* note: this uses eight times as much RAM as using the default and makes */
606 /* mounts take four times as long. */
607 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
608 #endif
609
610 /* Register the partitions */
611 add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
612
613 #ifdef RTC_FROM4_HWECC
614 /* We could create the decoder on demand, if memory is a concern.
615 * This way we have it handy, if an error happens
616 *
617 * Symbolsize is 10 (bits)
618 * Primitve polynomial is x^10+x^3+1
619 * first consecutive root is 0
620 * primitve element to generate roots = 1
621 * generator polinomial degree = 6
622 */
623 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
624 if (!rs_decoder) {
625 printk(KERN_ERR "Could not create a RS decoder\n");
626 nand_release(rtc_from4_mtd);
627 kfree(rtc_from4_mtd);
628 return -ENOMEM;
629 }
630 #endif
631 /* Return happy */
632 return 0;
633 }
634
635 module_init(rtc_from4_init);
636
637 /*
638 * Clean up routine
639 */
640 static void __exit rtc_from4_cleanup(void)
641 {
642 /* Release resource, unregister partitions */
643 nand_release(rtc_from4_mtd);
644
645 /* Free the MTD device structure */
646 kfree(rtc_from4_mtd);
647
648 #ifdef RTC_FROM4_HWECC
649 /* Free the reed solomon resources */
650 if (rs_decoder) {
651 free_rs(rs_decoder);
652 }
653 #endif
654 }
655
656 module_exit(rtc_from4_cleanup);
657
658 MODULE_LICENSE("GPL");
659 MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
660 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
This page took 0.046943 seconds and 6 git commands to generate.