mtd: nand: make use of mtd_to_nand() in NAND drivers
[deliverable/linux.git] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2 *
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
25
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
34 #include <linux/io.h>
35 #include <linux/ioport.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/clk.h>
41 #include <linux/cpufreq.h>
42
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46 #include <linux/mtd/partitions.h>
47
48 #include <linux/platform_data/mtd-nand-s3c2410.h>
49
50 #define S3C2410_NFREG(x) (x)
51
52 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
53 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
54 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
55 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
56 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
57 #define S3C2410_NFECC S3C2410_NFREG(0x14)
58 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
59 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
60 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
61 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
62 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
63 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
64 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
65 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
66 #define S3C2410_NFCONF_EN (1<<15)
67 #define S3C2410_NFCONF_INITECC (1<<12)
68 #define S3C2410_NFCONF_nFCE (1<<11)
69 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
70 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
71 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
72 #define S3C2410_NFSTAT_BUSY (1<<0)
73 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
74 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
75 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
76 #define S3C2440_NFCONT_INITECC (1<<4)
77 #define S3C2440_NFCONT_nFCE (1<<1)
78 #define S3C2440_NFCONT_ENABLE (1<<0)
79 #define S3C2440_NFSTAT_READY (1<<0)
80 #define S3C2412_NFCONF_NANDBOOT (1<<31)
81 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
82 #define S3C2412_NFCONT_nFCE0 (1<<1)
83 #define S3C2412_NFSTAT_READY (1<<0)
84
85 /* new oob placement block for use with hardware ecc generation
86 */
87
88 static struct nand_ecclayout nand_hw_eccoob = {
89 .eccbytes = 3,
90 .eccpos = {0, 1, 2},
91 .oobfree = {{8, 8}}
92 };
93
94 /* controller and mtd information */
95
96 struct s3c2410_nand_info;
97
98 /**
99 * struct s3c2410_nand_mtd - driver MTD structure
100 * @mtd: The MTD instance to pass to the MTD layer.
101 * @chip: The NAND chip information.
102 * @set: The platform information supplied for this set of NAND chips.
103 * @info: Link back to the hardware information.
104 * @scan_res: The result from calling nand_scan_ident().
105 */
106 struct s3c2410_nand_mtd {
107 struct mtd_info mtd;
108 struct nand_chip chip;
109 struct s3c2410_nand_set *set;
110 struct s3c2410_nand_info *info;
111 int scan_res;
112 };
113
114 enum s3c_cpu_type {
115 TYPE_S3C2410,
116 TYPE_S3C2412,
117 TYPE_S3C2440,
118 };
119
120 enum s3c_nand_clk_state {
121 CLOCK_DISABLE = 0,
122 CLOCK_ENABLE,
123 CLOCK_SUSPEND,
124 };
125
126 /* overview of the s3c2410 nand state */
127
128 /**
129 * struct s3c2410_nand_info - NAND controller state.
130 * @mtds: An array of MTD instances on this controoler.
131 * @platform: The platform data for this board.
132 * @device: The platform device we bound to.
133 * @clk: The clock resource for this controller.
134 * @regs: The area mapped for the hardware registers.
135 * @sel_reg: Pointer to the register controlling the NAND selection.
136 * @sel_bit: The bit in @sel_reg to select the NAND chip.
137 * @mtd_count: The number of MTDs created from this controller.
138 * @save_sel: The contents of @sel_reg to be saved over suspend.
139 * @clk_rate: The clock rate from @clk.
140 * @clk_state: The current clock state.
141 * @cpu_type: The exact type of this controller.
142 */
143 struct s3c2410_nand_info {
144 /* mtd info */
145 struct nand_hw_control controller;
146 struct s3c2410_nand_mtd *mtds;
147 struct s3c2410_platform_nand *platform;
148
149 /* device info */
150 struct device *device;
151 struct clk *clk;
152 void __iomem *regs;
153 void __iomem *sel_reg;
154 int sel_bit;
155 int mtd_count;
156 unsigned long save_sel;
157 unsigned long clk_rate;
158 enum s3c_nand_clk_state clk_state;
159
160 enum s3c_cpu_type cpu_type;
161
162 #ifdef CONFIG_CPU_FREQ
163 struct notifier_block freq_transition;
164 #endif
165 };
166
167 /* conversion functions */
168
169 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
170 {
171 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
172 }
173
174 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
175 {
176 return s3c2410_nand_mtd_toours(mtd)->info;
177 }
178
179 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
180 {
181 return platform_get_drvdata(dev);
182 }
183
184 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
185 {
186 return dev_get_platdata(&dev->dev);
187 }
188
189 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
190 {
191 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
192 return 1;
193 #else
194 return 0;
195 #endif
196 }
197
198 /**
199 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
200 * @info: The controller instance.
201 * @new_state: State to which clock should be set.
202 */
203 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
204 enum s3c_nand_clk_state new_state)
205 {
206 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
207 return;
208
209 if (info->clk_state == CLOCK_ENABLE) {
210 if (new_state != CLOCK_ENABLE)
211 clk_disable_unprepare(info->clk);
212 } else {
213 if (new_state == CLOCK_ENABLE)
214 clk_prepare_enable(info->clk);
215 }
216
217 info->clk_state = new_state;
218 }
219
220 /* timing calculations */
221
222 #define NS_IN_KHZ 1000000
223
224 /**
225 * s3c_nand_calc_rate - calculate timing data.
226 * @wanted: The cycle time in nanoseconds.
227 * @clk: The clock rate in kHz.
228 * @max: The maximum divider value.
229 *
230 * Calculate the timing value from the given parameters.
231 */
232 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
233 {
234 int result;
235
236 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
237
238 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
239
240 if (result > max) {
241 pr_err("%d ns is too big for current clock rate %ld\n",
242 wanted, clk);
243 return -1;
244 }
245
246 if (result < 1)
247 result = 1;
248
249 return result;
250 }
251
252 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
253
254 /* controller setup */
255
256 /**
257 * s3c2410_nand_setrate - setup controller timing information.
258 * @info: The controller instance.
259 *
260 * Given the information supplied by the platform, calculate and set
261 * the necessary timing registers in the hardware to generate the
262 * necessary timing cycles to the hardware.
263 */
264 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
265 {
266 struct s3c2410_platform_nand *plat = info->platform;
267 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
268 int tacls, twrph0, twrph1;
269 unsigned long clkrate = clk_get_rate(info->clk);
270 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
271 unsigned long flags;
272
273 /* calculate the timing information for the controller */
274
275 info->clk_rate = clkrate;
276 clkrate /= 1000; /* turn clock into kHz for ease of use */
277
278 if (plat != NULL) {
279 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
280 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
281 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
282 } else {
283 /* default timings */
284 tacls = tacls_max;
285 twrph0 = 8;
286 twrph1 = 8;
287 }
288
289 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
290 dev_err(info->device, "cannot get suitable timings\n");
291 return -EINVAL;
292 }
293
294 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
295 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
296 twrph1, to_ns(twrph1, clkrate));
297
298 switch (info->cpu_type) {
299 case TYPE_S3C2410:
300 mask = (S3C2410_NFCONF_TACLS(3) |
301 S3C2410_NFCONF_TWRPH0(7) |
302 S3C2410_NFCONF_TWRPH1(7));
303 set = S3C2410_NFCONF_EN;
304 set |= S3C2410_NFCONF_TACLS(tacls - 1);
305 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
306 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
307 break;
308
309 case TYPE_S3C2440:
310 case TYPE_S3C2412:
311 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
312 S3C2440_NFCONF_TWRPH0(7) |
313 S3C2440_NFCONF_TWRPH1(7));
314
315 set = S3C2440_NFCONF_TACLS(tacls - 1);
316 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
317 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
318 break;
319
320 default:
321 BUG();
322 }
323
324 local_irq_save(flags);
325
326 cfg = readl(info->regs + S3C2410_NFCONF);
327 cfg &= ~mask;
328 cfg |= set;
329 writel(cfg, info->regs + S3C2410_NFCONF);
330
331 local_irq_restore(flags);
332
333 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
334
335 return 0;
336 }
337
338 /**
339 * s3c2410_nand_inithw - basic hardware initialisation
340 * @info: The hardware state.
341 *
342 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
343 * to setup the hardware access speeds and set the controller to be enabled.
344 */
345 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
346 {
347 int ret;
348
349 ret = s3c2410_nand_setrate(info);
350 if (ret < 0)
351 return ret;
352
353 switch (info->cpu_type) {
354 case TYPE_S3C2410:
355 default:
356 break;
357
358 case TYPE_S3C2440:
359 case TYPE_S3C2412:
360 /* enable the controller and de-assert nFCE */
361
362 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
363 }
364
365 return 0;
366 }
367
368 /**
369 * s3c2410_nand_select_chip - select the given nand chip
370 * @mtd: The MTD instance for this chip.
371 * @chip: The chip number.
372 *
373 * This is called by the MTD layer to either select a given chip for the
374 * @mtd instance, or to indicate that the access has finished and the
375 * chip can be de-selected.
376 *
377 * The routine ensures that the nFCE line is correctly setup, and any
378 * platform specific selection code is called to route nFCE to the specific
379 * chip.
380 */
381 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
382 {
383 struct s3c2410_nand_info *info;
384 struct s3c2410_nand_mtd *nmtd;
385 struct nand_chip *this = mtd_to_nand(mtd);
386 unsigned long cur;
387
388 nmtd = this->priv;
389 info = nmtd->info;
390
391 if (chip != -1)
392 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
393
394 cur = readl(info->sel_reg);
395
396 if (chip == -1) {
397 cur |= info->sel_bit;
398 } else {
399 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
400 dev_err(info->device, "invalid chip %d\n", chip);
401 return;
402 }
403
404 if (info->platform != NULL) {
405 if (info->platform->select_chip != NULL)
406 (info->platform->select_chip) (nmtd->set, chip);
407 }
408
409 cur &= ~info->sel_bit;
410 }
411
412 writel(cur, info->sel_reg);
413
414 if (chip == -1)
415 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
416 }
417
418 /* s3c2410_nand_hwcontrol
419 *
420 * Issue command and address cycles to the chip
421 */
422
423 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
424 unsigned int ctrl)
425 {
426 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
427
428 if (cmd == NAND_CMD_NONE)
429 return;
430
431 if (ctrl & NAND_CLE)
432 writeb(cmd, info->regs + S3C2410_NFCMD);
433 else
434 writeb(cmd, info->regs + S3C2410_NFADDR);
435 }
436
437 /* command and control functions */
438
439 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
440 unsigned int ctrl)
441 {
442 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
443
444 if (cmd == NAND_CMD_NONE)
445 return;
446
447 if (ctrl & NAND_CLE)
448 writeb(cmd, info->regs + S3C2440_NFCMD);
449 else
450 writeb(cmd, info->regs + S3C2440_NFADDR);
451 }
452
453 /* s3c2410_nand_devready()
454 *
455 * returns 0 if the nand is busy, 1 if it is ready
456 */
457
458 static int s3c2410_nand_devready(struct mtd_info *mtd)
459 {
460 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
461 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
462 }
463
464 static int s3c2440_nand_devready(struct mtd_info *mtd)
465 {
466 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
467 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
468 }
469
470 static int s3c2412_nand_devready(struct mtd_info *mtd)
471 {
472 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
473 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
474 }
475
476 /* ECC handling functions */
477
478 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
479 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
480 u_char *read_ecc, u_char *calc_ecc)
481 {
482 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
483 unsigned int diff0, diff1, diff2;
484 unsigned int bit, byte;
485
486 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
487
488 diff0 = read_ecc[0] ^ calc_ecc[0];
489 diff1 = read_ecc[1] ^ calc_ecc[1];
490 diff2 = read_ecc[2] ^ calc_ecc[2];
491
492 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
493 __func__, 3, read_ecc, 3, calc_ecc,
494 diff0, diff1, diff2);
495
496 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
497 return 0; /* ECC is ok */
498
499 /* sometimes people do not think about using the ECC, so check
500 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
501 * the error, on the assumption that this is an un-eccd page.
502 */
503 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
504 && info->platform->ignore_unset_ecc)
505 return 0;
506
507 /* Can we correct this ECC (ie, one row and column change).
508 * Note, this is similar to the 256 error code on smartmedia */
509
510 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
511 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
512 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
513 /* calculate the bit position of the error */
514
515 bit = ((diff2 >> 3) & 1) |
516 ((diff2 >> 4) & 2) |
517 ((diff2 >> 5) & 4);
518
519 /* calculate the byte position of the error */
520
521 byte = ((diff2 << 7) & 0x100) |
522 ((diff1 << 0) & 0x80) |
523 ((diff1 << 1) & 0x40) |
524 ((diff1 << 2) & 0x20) |
525 ((diff1 << 3) & 0x10) |
526 ((diff0 >> 4) & 0x08) |
527 ((diff0 >> 3) & 0x04) |
528 ((diff0 >> 2) & 0x02) |
529 ((diff0 >> 1) & 0x01);
530
531 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
532 bit, byte);
533
534 dat[byte] ^= (1 << bit);
535 return 1;
536 }
537
538 /* if there is only one bit difference in the ECC, then
539 * one of only a row or column parity has changed, which
540 * means the error is most probably in the ECC itself */
541
542 diff0 |= (diff1 << 8);
543 diff0 |= (diff2 << 16);
544
545 if ((diff0 & ~(1<<fls(diff0))) == 0)
546 return 1;
547
548 return -1;
549 }
550
551 /* ECC functions
552 *
553 * These allow the s3c2410 and s3c2440 to use the controller's ECC
554 * generator block to ECC the data as it passes through]
555 */
556
557 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
558 {
559 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
560 unsigned long ctrl;
561
562 ctrl = readl(info->regs + S3C2410_NFCONF);
563 ctrl |= S3C2410_NFCONF_INITECC;
564 writel(ctrl, info->regs + S3C2410_NFCONF);
565 }
566
567 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
568 {
569 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
570 unsigned long ctrl;
571
572 ctrl = readl(info->regs + S3C2440_NFCONT);
573 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
574 info->regs + S3C2440_NFCONT);
575 }
576
577 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
578 {
579 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
580 unsigned long ctrl;
581
582 ctrl = readl(info->regs + S3C2440_NFCONT);
583 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
584 }
585
586 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
587 u_char *ecc_code)
588 {
589 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
590
591 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
592 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
593 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
594
595 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
596
597 return 0;
598 }
599
600 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
601 u_char *ecc_code)
602 {
603 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
604 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
605
606 ecc_code[0] = ecc;
607 ecc_code[1] = ecc >> 8;
608 ecc_code[2] = ecc >> 16;
609
610 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
611
612 return 0;
613 }
614
615 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
616 u_char *ecc_code)
617 {
618 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
619 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
620
621 ecc_code[0] = ecc;
622 ecc_code[1] = ecc >> 8;
623 ecc_code[2] = ecc >> 16;
624
625 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
626
627 return 0;
628 }
629 #endif
630
631 /* over-ride the standard functions for a little more speed. We can
632 * use read/write block to move the data buffers to/from the controller
633 */
634
635 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
636 {
637 struct nand_chip *this = mtd_to_nand(mtd);
638 readsb(this->IO_ADDR_R, buf, len);
639 }
640
641 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
642 {
643 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
644
645 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
646
647 /* cleanup if we've got less than a word to do */
648 if (len & 3) {
649 buf += len & ~3;
650
651 for (; len & 3; len--)
652 *buf++ = readb(info->regs + S3C2440_NFDATA);
653 }
654 }
655
656 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
657 int len)
658 {
659 struct nand_chip *this = mtd_to_nand(mtd);
660 writesb(this->IO_ADDR_W, buf, len);
661 }
662
663 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
664 int len)
665 {
666 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
667
668 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
669
670 /* cleanup any fractional write */
671 if (len & 3) {
672 buf += len & ~3;
673
674 for (; len & 3; len--, buf++)
675 writeb(*buf, info->regs + S3C2440_NFDATA);
676 }
677 }
678
679 /* cpufreq driver support */
680
681 #ifdef CONFIG_CPU_FREQ
682
683 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
684 unsigned long val, void *data)
685 {
686 struct s3c2410_nand_info *info;
687 unsigned long newclk;
688
689 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
690 newclk = clk_get_rate(info->clk);
691
692 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
693 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
694 s3c2410_nand_setrate(info);
695 }
696
697 return 0;
698 }
699
700 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
701 {
702 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
703
704 return cpufreq_register_notifier(&info->freq_transition,
705 CPUFREQ_TRANSITION_NOTIFIER);
706 }
707
708 static inline void
709 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
710 {
711 cpufreq_unregister_notifier(&info->freq_transition,
712 CPUFREQ_TRANSITION_NOTIFIER);
713 }
714
715 #else
716 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
717 {
718 return 0;
719 }
720
721 static inline void
722 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
723 {
724 }
725 #endif
726
727 /* device management functions */
728
729 static int s3c24xx_nand_remove(struct platform_device *pdev)
730 {
731 struct s3c2410_nand_info *info = to_nand_info(pdev);
732
733 if (info == NULL)
734 return 0;
735
736 s3c2410_nand_cpufreq_deregister(info);
737
738 /* Release all our mtds and their partitions, then go through
739 * freeing the resources used
740 */
741
742 if (info->mtds != NULL) {
743 struct s3c2410_nand_mtd *ptr = info->mtds;
744 int mtdno;
745
746 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
747 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
748 nand_release(&ptr->mtd);
749 }
750 }
751
752 /* free the common resources */
753
754 if (!IS_ERR(info->clk))
755 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
756
757 return 0;
758 }
759
760 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
761 struct s3c2410_nand_mtd *mtd,
762 struct s3c2410_nand_set *set)
763 {
764 if (set) {
765 mtd->mtd.name = set->name;
766
767 return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
768 set->partitions, set->nr_partitions);
769 }
770
771 return -ENODEV;
772 }
773
774 /**
775 * s3c2410_nand_init_chip - initialise a single instance of an chip
776 * @info: The base NAND controller the chip is on.
777 * @nmtd: The new controller MTD instance to fill in.
778 * @set: The information passed from the board specific platform data.
779 *
780 * Initialise the given @nmtd from the information in @info and @set. This
781 * readies the structure for use with the MTD layer functions by ensuring
782 * all pointers are setup and the necessary control routines selected.
783 */
784 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
785 struct s3c2410_nand_mtd *nmtd,
786 struct s3c2410_nand_set *set)
787 {
788 struct nand_chip *chip = &nmtd->chip;
789 void __iomem *regs = info->regs;
790
791 chip->write_buf = s3c2410_nand_write_buf;
792 chip->read_buf = s3c2410_nand_read_buf;
793 chip->select_chip = s3c2410_nand_select_chip;
794 chip->chip_delay = 50;
795 chip->priv = nmtd;
796 chip->options = set->options;
797 chip->controller = &info->controller;
798
799 switch (info->cpu_type) {
800 case TYPE_S3C2410:
801 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
802 info->sel_reg = regs + S3C2410_NFCONF;
803 info->sel_bit = S3C2410_NFCONF_nFCE;
804 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
805 chip->dev_ready = s3c2410_nand_devready;
806 break;
807
808 case TYPE_S3C2440:
809 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
810 info->sel_reg = regs + S3C2440_NFCONT;
811 info->sel_bit = S3C2440_NFCONT_nFCE;
812 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
813 chip->dev_ready = s3c2440_nand_devready;
814 chip->read_buf = s3c2440_nand_read_buf;
815 chip->write_buf = s3c2440_nand_write_buf;
816 break;
817
818 case TYPE_S3C2412:
819 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
820 info->sel_reg = regs + S3C2440_NFCONT;
821 info->sel_bit = S3C2412_NFCONT_nFCE0;
822 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
823 chip->dev_ready = s3c2412_nand_devready;
824
825 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
826 dev_info(info->device, "System booted from NAND\n");
827
828 break;
829 }
830
831 chip->IO_ADDR_R = chip->IO_ADDR_W;
832
833 nmtd->info = info;
834 nmtd->mtd.priv = chip;
835 nmtd->set = set;
836
837 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
838 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
839 chip->ecc.correct = s3c2410_nand_correct_data;
840 chip->ecc.mode = NAND_ECC_HW;
841 chip->ecc.strength = 1;
842
843 switch (info->cpu_type) {
844 case TYPE_S3C2410:
845 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
846 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
847 break;
848
849 case TYPE_S3C2412:
850 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
851 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
852 break;
853
854 case TYPE_S3C2440:
855 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
856 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
857 break;
858 }
859 #else
860 chip->ecc.mode = NAND_ECC_SOFT;
861 #endif
862
863 if (set->ecc_layout != NULL)
864 chip->ecc.layout = set->ecc_layout;
865
866 if (set->disable_ecc)
867 chip->ecc.mode = NAND_ECC_NONE;
868
869 switch (chip->ecc.mode) {
870 case NAND_ECC_NONE:
871 dev_info(info->device, "NAND ECC disabled\n");
872 break;
873 case NAND_ECC_SOFT:
874 dev_info(info->device, "NAND soft ECC\n");
875 break;
876 case NAND_ECC_HW:
877 dev_info(info->device, "NAND hardware ECC\n");
878 break;
879 default:
880 dev_info(info->device, "NAND ECC UNKNOWN\n");
881 break;
882 }
883
884 /* If you use u-boot BBT creation code, specifying this flag will
885 * let the kernel fish out the BBT from the NAND, and also skip the
886 * full NAND scan that can take 1/2s or so. Little things... */
887 if (set->flash_bbt) {
888 chip->bbt_options |= NAND_BBT_USE_FLASH;
889 chip->options |= NAND_SKIP_BBTSCAN;
890 }
891 }
892
893 /**
894 * s3c2410_nand_update_chip - post probe update
895 * @info: The controller instance.
896 * @nmtd: The driver version of the MTD instance.
897 *
898 * This routine is called after the chip probe has successfully completed
899 * and the relevant per-chip information updated. This call ensure that
900 * we update the internal state accordingly.
901 *
902 * The internal state is currently limited to the ECC state information.
903 */
904 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
905 struct s3c2410_nand_mtd *nmtd)
906 {
907 struct nand_chip *chip = &nmtd->chip;
908
909 dev_dbg(info->device, "chip %p => page shift %d\n",
910 chip, chip->page_shift);
911
912 if (chip->ecc.mode != NAND_ECC_HW)
913 return;
914
915 /* change the behaviour depending on whether we are using
916 * the large or small page nand device */
917
918 if (chip->page_shift > 10) {
919 chip->ecc.size = 256;
920 chip->ecc.bytes = 3;
921 } else {
922 chip->ecc.size = 512;
923 chip->ecc.bytes = 3;
924 chip->ecc.layout = &nand_hw_eccoob;
925 }
926 }
927
928 /* s3c24xx_nand_probe
929 *
930 * called by device layer when it finds a device matching
931 * one our driver can handled. This code checks to see if
932 * it can allocate all necessary resources then calls the
933 * nand layer to look for devices
934 */
935 static int s3c24xx_nand_probe(struct platform_device *pdev)
936 {
937 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
938 enum s3c_cpu_type cpu_type;
939 struct s3c2410_nand_info *info;
940 struct s3c2410_nand_mtd *nmtd;
941 struct s3c2410_nand_set *sets;
942 struct resource *res;
943 int err = 0;
944 int size;
945 int nr_sets;
946 int setno;
947
948 cpu_type = platform_get_device_id(pdev)->driver_data;
949
950 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
951 if (info == NULL) {
952 err = -ENOMEM;
953 goto exit_error;
954 }
955
956 platform_set_drvdata(pdev, info);
957
958 spin_lock_init(&info->controller.lock);
959 init_waitqueue_head(&info->controller.wq);
960
961 /* get the clock source and enable it */
962
963 info->clk = devm_clk_get(&pdev->dev, "nand");
964 if (IS_ERR(info->clk)) {
965 dev_err(&pdev->dev, "failed to get clock\n");
966 err = -ENOENT;
967 goto exit_error;
968 }
969
970 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
971
972 /* allocate and map the resource */
973
974 /* currently we assume we have the one resource */
975 res = pdev->resource;
976 size = resource_size(res);
977
978 info->device = &pdev->dev;
979 info->platform = plat;
980 info->cpu_type = cpu_type;
981
982 info->regs = devm_ioremap_resource(&pdev->dev, res);
983 if (IS_ERR(info->regs)) {
984 err = PTR_ERR(info->regs);
985 goto exit_error;
986 }
987
988 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
989
990 /* initialise the hardware */
991
992 err = s3c2410_nand_inithw(info);
993 if (err != 0)
994 goto exit_error;
995
996 sets = (plat != NULL) ? plat->sets : NULL;
997 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
998
999 info->mtd_count = nr_sets;
1000
1001 /* allocate our information */
1002
1003 size = nr_sets * sizeof(*info->mtds);
1004 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1005 if (info->mtds == NULL) {
1006 err = -ENOMEM;
1007 goto exit_error;
1008 }
1009
1010 /* initialise all possible chips */
1011
1012 nmtd = info->mtds;
1013
1014 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1015 pr_debug("initialising set %d (%p, info %p)\n",
1016 setno, nmtd, info);
1017
1018 nmtd->mtd.dev.parent = &pdev->dev;
1019 s3c2410_nand_init_chip(info, nmtd, sets);
1020
1021 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1022 (sets) ? sets->nr_chips : 1,
1023 NULL);
1024
1025 if (nmtd->scan_res == 0) {
1026 s3c2410_nand_update_chip(info, nmtd);
1027 nand_scan_tail(&nmtd->mtd);
1028 s3c2410_nand_add_partition(info, nmtd, sets);
1029 }
1030
1031 if (sets != NULL)
1032 sets++;
1033 }
1034
1035 err = s3c2410_nand_cpufreq_register(info);
1036 if (err < 0) {
1037 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1038 goto exit_error;
1039 }
1040
1041 if (allow_clk_suspend(info)) {
1042 dev_info(&pdev->dev, "clock idle support enabled\n");
1043 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1044 }
1045
1046 return 0;
1047
1048 exit_error:
1049 s3c24xx_nand_remove(pdev);
1050
1051 if (err == 0)
1052 err = -EINVAL;
1053 return err;
1054 }
1055
1056 /* PM Support */
1057 #ifdef CONFIG_PM
1058
1059 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1060 {
1061 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1062
1063 if (info) {
1064 info->save_sel = readl(info->sel_reg);
1065
1066 /* For the moment, we must ensure nFCE is high during
1067 * the time we are suspended. This really should be
1068 * handled by suspending the MTDs we are using, but
1069 * that is currently not the case. */
1070
1071 writel(info->save_sel | info->sel_bit, info->sel_reg);
1072
1073 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1074 }
1075
1076 return 0;
1077 }
1078
1079 static int s3c24xx_nand_resume(struct platform_device *dev)
1080 {
1081 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1082 unsigned long sel;
1083
1084 if (info) {
1085 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1086 s3c2410_nand_inithw(info);
1087
1088 /* Restore the state of the nFCE line. */
1089
1090 sel = readl(info->sel_reg);
1091 sel &= ~info->sel_bit;
1092 sel |= info->save_sel & info->sel_bit;
1093 writel(sel, info->sel_reg);
1094
1095 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1096 }
1097
1098 return 0;
1099 }
1100
1101 #else
1102 #define s3c24xx_nand_suspend NULL
1103 #define s3c24xx_nand_resume NULL
1104 #endif
1105
1106 /* driver device registration */
1107
1108 static const struct platform_device_id s3c24xx_driver_ids[] = {
1109 {
1110 .name = "s3c2410-nand",
1111 .driver_data = TYPE_S3C2410,
1112 }, {
1113 .name = "s3c2440-nand",
1114 .driver_data = TYPE_S3C2440,
1115 }, {
1116 .name = "s3c2412-nand",
1117 .driver_data = TYPE_S3C2412,
1118 }, {
1119 .name = "s3c6400-nand",
1120 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1121 },
1122 { }
1123 };
1124
1125 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1126
1127 static struct platform_driver s3c24xx_nand_driver = {
1128 .probe = s3c24xx_nand_probe,
1129 .remove = s3c24xx_nand_remove,
1130 .suspend = s3c24xx_nand_suspend,
1131 .resume = s3c24xx_nand_resume,
1132 .id_table = s3c24xx_driver_ids,
1133 .driver = {
1134 .name = "s3c24xx-nand",
1135 },
1136 };
1137
1138 module_platform_driver(s3c24xx_nand_driver);
1139
1140 MODULE_LICENSE("GPL");
1141 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1142 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
This page took 0.067015 seconds and 5 git commands to generate.