mtd: nand: s3c2410: fix bug in s3c2410_nand_correct_data()
[deliverable/linux.git] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2 *
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
25
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
34 #include <linux/io.h>
35 #include <linux/ioport.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/clk.h>
41 #include <linux/cpufreq.h>
42
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46 #include <linux/mtd/partitions.h>
47
48 #include <linux/platform_data/mtd-nand-s3c2410.h>
49
50 #define S3C2410_NFREG(x) (x)
51
52 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
53 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
54 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
55 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
56 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
57 #define S3C2410_NFECC S3C2410_NFREG(0x14)
58 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
59 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
60 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
61 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
62 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
63 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
64 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
65 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
66 #define S3C2410_NFCONF_EN (1<<15)
67 #define S3C2410_NFCONF_INITECC (1<<12)
68 #define S3C2410_NFCONF_nFCE (1<<11)
69 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
70 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
71 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
72 #define S3C2410_NFSTAT_BUSY (1<<0)
73 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
74 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
75 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
76 #define S3C2440_NFCONT_INITECC (1<<4)
77 #define S3C2440_NFCONT_nFCE (1<<1)
78 #define S3C2440_NFCONT_ENABLE (1<<0)
79 #define S3C2440_NFSTAT_READY (1<<0)
80 #define S3C2412_NFCONF_NANDBOOT (1<<31)
81 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
82 #define S3C2412_NFCONT_nFCE0 (1<<1)
83 #define S3C2412_NFSTAT_READY (1<<0)
84
85 /* new oob placement block for use with hardware ecc generation
86 */
87
88 static struct nand_ecclayout nand_hw_eccoob = {
89 .eccbytes = 3,
90 .eccpos = {0, 1, 2},
91 .oobfree = {{8, 8}}
92 };
93
94 /* controller and mtd information */
95
96 struct s3c2410_nand_info;
97
98 /**
99 * struct s3c2410_nand_mtd - driver MTD structure
100 * @mtd: The MTD instance to pass to the MTD layer.
101 * @chip: The NAND chip information.
102 * @set: The platform information supplied for this set of NAND chips.
103 * @info: Link back to the hardware information.
104 * @scan_res: The result from calling nand_scan_ident().
105 */
106 struct s3c2410_nand_mtd {
107 struct nand_chip chip;
108 struct s3c2410_nand_set *set;
109 struct s3c2410_nand_info *info;
110 int scan_res;
111 };
112
113 enum s3c_cpu_type {
114 TYPE_S3C2410,
115 TYPE_S3C2412,
116 TYPE_S3C2440,
117 };
118
119 enum s3c_nand_clk_state {
120 CLOCK_DISABLE = 0,
121 CLOCK_ENABLE,
122 CLOCK_SUSPEND,
123 };
124
125 /* overview of the s3c2410 nand state */
126
127 /**
128 * struct s3c2410_nand_info - NAND controller state.
129 * @mtds: An array of MTD instances on this controoler.
130 * @platform: The platform data for this board.
131 * @device: The platform device we bound to.
132 * @clk: The clock resource for this controller.
133 * @regs: The area mapped for the hardware registers.
134 * @sel_reg: Pointer to the register controlling the NAND selection.
135 * @sel_bit: The bit in @sel_reg to select the NAND chip.
136 * @mtd_count: The number of MTDs created from this controller.
137 * @save_sel: The contents of @sel_reg to be saved over suspend.
138 * @clk_rate: The clock rate from @clk.
139 * @clk_state: The current clock state.
140 * @cpu_type: The exact type of this controller.
141 */
142 struct s3c2410_nand_info {
143 /* mtd info */
144 struct nand_hw_control controller;
145 struct s3c2410_nand_mtd *mtds;
146 struct s3c2410_platform_nand *platform;
147
148 /* device info */
149 struct device *device;
150 struct clk *clk;
151 void __iomem *regs;
152 void __iomem *sel_reg;
153 int sel_bit;
154 int mtd_count;
155 unsigned long save_sel;
156 unsigned long clk_rate;
157 enum s3c_nand_clk_state clk_state;
158
159 enum s3c_cpu_type cpu_type;
160
161 #ifdef CONFIG_CPU_FREQ
162 struct notifier_block freq_transition;
163 #endif
164 };
165
166 /* conversion functions */
167
168 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
169 {
170 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
171 chip);
172 }
173
174 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
175 {
176 return s3c2410_nand_mtd_toours(mtd)->info;
177 }
178
179 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
180 {
181 return platform_get_drvdata(dev);
182 }
183
184 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
185 {
186 return dev_get_platdata(&dev->dev);
187 }
188
189 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
190 {
191 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
192 return 1;
193 #else
194 return 0;
195 #endif
196 }
197
198 /**
199 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
200 * @info: The controller instance.
201 * @new_state: State to which clock should be set.
202 */
203 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
204 enum s3c_nand_clk_state new_state)
205 {
206 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
207 return;
208
209 if (info->clk_state == CLOCK_ENABLE) {
210 if (new_state != CLOCK_ENABLE)
211 clk_disable_unprepare(info->clk);
212 } else {
213 if (new_state == CLOCK_ENABLE)
214 clk_prepare_enable(info->clk);
215 }
216
217 info->clk_state = new_state;
218 }
219
220 /* timing calculations */
221
222 #define NS_IN_KHZ 1000000
223
224 /**
225 * s3c_nand_calc_rate - calculate timing data.
226 * @wanted: The cycle time in nanoseconds.
227 * @clk: The clock rate in kHz.
228 * @max: The maximum divider value.
229 *
230 * Calculate the timing value from the given parameters.
231 */
232 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
233 {
234 int result;
235
236 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
237
238 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
239
240 if (result > max) {
241 pr_err("%d ns is too big for current clock rate %ld\n",
242 wanted, clk);
243 return -1;
244 }
245
246 if (result < 1)
247 result = 1;
248
249 return result;
250 }
251
252 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
253
254 /* controller setup */
255
256 /**
257 * s3c2410_nand_setrate - setup controller timing information.
258 * @info: The controller instance.
259 *
260 * Given the information supplied by the platform, calculate and set
261 * the necessary timing registers in the hardware to generate the
262 * necessary timing cycles to the hardware.
263 */
264 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
265 {
266 struct s3c2410_platform_nand *plat = info->platform;
267 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
268 int tacls, twrph0, twrph1;
269 unsigned long clkrate = clk_get_rate(info->clk);
270 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
271 unsigned long flags;
272
273 /* calculate the timing information for the controller */
274
275 info->clk_rate = clkrate;
276 clkrate /= 1000; /* turn clock into kHz for ease of use */
277
278 if (plat != NULL) {
279 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
280 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
281 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
282 } else {
283 /* default timings */
284 tacls = tacls_max;
285 twrph0 = 8;
286 twrph1 = 8;
287 }
288
289 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
290 dev_err(info->device, "cannot get suitable timings\n");
291 return -EINVAL;
292 }
293
294 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
295 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
296 twrph1, to_ns(twrph1, clkrate));
297
298 switch (info->cpu_type) {
299 case TYPE_S3C2410:
300 mask = (S3C2410_NFCONF_TACLS(3) |
301 S3C2410_NFCONF_TWRPH0(7) |
302 S3C2410_NFCONF_TWRPH1(7));
303 set = S3C2410_NFCONF_EN;
304 set |= S3C2410_NFCONF_TACLS(tacls - 1);
305 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
306 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
307 break;
308
309 case TYPE_S3C2440:
310 case TYPE_S3C2412:
311 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
312 S3C2440_NFCONF_TWRPH0(7) |
313 S3C2440_NFCONF_TWRPH1(7));
314
315 set = S3C2440_NFCONF_TACLS(tacls - 1);
316 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
317 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
318 break;
319
320 default:
321 BUG();
322 }
323
324 local_irq_save(flags);
325
326 cfg = readl(info->regs + S3C2410_NFCONF);
327 cfg &= ~mask;
328 cfg |= set;
329 writel(cfg, info->regs + S3C2410_NFCONF);
330
331 local_irq_restore(flags);
332
333 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
334
335 return 0;
336 }
337
338 /**
339 * s3c2410_nand_inithw - basic hardware initialisation
340 * @info: The hardware state.
341 *
342 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
343 * to setup the hardware access speeds and set the controller to be enabled.
344 */
345 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
346 {
347 int ret;
348
349 ret = s3c2410_nand_setrate(info);
350 if (ret < 0)
351 return ret;
352
353 switch (info->cpu_type) {
354 case TYPE_S3C2410:
355 default:
356 break;
357
358 case TYPE_S3C2440:
359 case TYPE_S3C2412:
360 /* enable the controller and de-assert nFCE */
361
362 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
363 }
364
365 return 0;
366 }
367
368 /**
369 * s3c2410_nand_select_chip - select the given nand chip
370 * @mtd: The MTD instance for this chip.
371 * @chip: The chip number.
372 *
373 * This is called by the MTD layer to either select a given chip for the
374 * @mtd instance, or to indicate that the access has finished and the
375 * chip can be de-selected.
376 *
377 * The routine ensures that the nFCE line is correctly setup, and any
378 * platform specific selection code is called to route nFCE to the specific
379 * chip.
380 */
381 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
382 {
383 struct s3c2410_nand_info *info;
384 struct s3c2410_nand_mtd *nmtd;
385 struct nand_chip *this = mtd_to_nand(mtd);
386 unsigned long cur;
387
388 nmtd = nand_get_controller_data(this);
389 info = nmtd->info;
390
391 if (chip != -1)
392 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
393
394 cur = readl(info->sel_reg);
395
396 if (chip == -1) {
397 cur |= info->sel_bit;
398 } else {
399 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
400 dev_err(info->device, "invalid chip %d\n", chip);
401 return;
402 }
403
404 if (info->platform != NULL) {
405 if (info->platform->select_chip != NULL)
406 (info->platform->select_chip) (nmtd->set, chip);
407 }
408
409 cur &= ~info->sel_bit;
410 }
411
412 writel(cur, info->sel_reg);
413
414 if (chip == -1)
415 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
416 }
417
418 /* s3c2410_nand_hwcontrol
419 *
420 * Issue command and address cycles to the chip
421 */
422
423 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
424 unsigned int ctrl)
425 {
426 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
427
428 if (cmd == NAND_CMD_NONE)
429 return;
430
431 if (ctrl & NAND_CLE)
432 writeb(cmd, info->regs + S3C2410_NFCMD);
433 else
434 writeb(cmd, info->regs + S3C2410_NFADDR);
435 }
436
437 /* command and control functions */
438
439 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
440 unsigned int ctrl)
441 {
442 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
443
444 if (cmd == NAND_CMD_NONE)
445 return;
446
447 if (ctrl & NAND_CLE)
448 writeb(cmd, info->regs + S3C2440_NFCMD);
449 else
450 writeb(cmd, info->regs + S3C2440_NFADDR);
451 }
452
453 /* s3c2410_nand_devready()
454 *
455 * returns 0 if the nand is busy, 1 if it is ready
456 */
457
458 static int s3c2410_nand_devready(struct mtd_info *mtd)
459 {
460 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
461 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
462 }
463
464 static int s3c2440_nand_devready(struct mtd_info *mtd)
465 {
466 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
467 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
468 }
469
470 static int s3c2412_nand_devready(struct mtd_info *mtd)
471 {
472 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
473 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
474 }
475
476 /* ECC handling functions */
477
478 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
479 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
480 u_char *read_ecc, u_char *calc_ecc)
481 {
482 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
483 unsigned int diff0, diff1, diff2;
484 unsigned int bit, byte;
485
486 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
487
488 diff0 = read_ecc[0] ^ calc_ecc[0];
489 diff1 = read_ecc[1] ^ calc_ecc[1];
490 diff2 = read_ecc[2] ^ calc_ecc[2];
491
492 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
493 __func__, 3, read_ecc, 3, calc_ecc,
494 diff0, diff1, diff2);
495
496 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
497 return 0; /* ECC is ok */
498
499 /* sometimes people do not think about using the ECC, so check
500 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
501 * the error, on the assumption that this is an un-eccd page.
502 */
503 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
504 && info->platform->ignore_unset_ecc)
505 return 0;
506
507 /* Can we correct this ECC (ie, one row and column change).
508 * Note, this is similar to the 256 error code on smartmedia */
509
510 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
511 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
512 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
513 /* calculate the bit position of the error */
514
515 bit = ((diff2 >> 3) & 1) |
516 ((diff2 >> 4) & 2) |
517 ((diff2 >> 5) & 4);
518
519 /* calculate the byte position of the error */
520
521 byte = ((diff2 << 7) & 0x100) |
522 ((diff1 << 0) & 0x80) |
523 ((diff1 << 1) & 0x40) |
524 ((diff1 << 2) & 0x20) |
525 ((diff1 << 3) & 0x10) |
526 ((diff0 >> 4) & 0x08) |
527 ((diff0 >> 3) & 0x04) |
528 ((diff0 >> 2) & 0x02) |
529 ((diff0 >> 1) & 0x01);
530
531 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
532 bit, byte);
533
534 dat[byte] ^= (1 << bit);
535 return 1;
536 }
537
538 /* if there is only one bit difference in the ECC, then
539 * one of only a row or column parity has changed, which
540 * means the error is most probably in the ECC itself */
541
542 diff0 |= (diff1 << 8);
543 diff0 |= (diff2 << 16);
544
545 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
546 if ((diff0 & (diff0 - 1)) == 0)
547 return 1;
548
549 return -1;
550 }
551
552 /* ECC functions
553 *
554 * These allow the s3c2410 and s3c2440 to use the controller's ECC
555 * generator block to ECC the data as it passes through]
556 */
557
558 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
559 {
560 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
561 unsigned long ctrl;
562
563 ctrl = readl(info->regs + S3C2410_NFCONF);
564 ctrl |= S3C2410_NFCONF_INITECC;
565 writel(ctrl, info->regs + S3C2410_NFCONF);
566 }
567
568 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
569 {
570 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
571 unsigned long ctrl;
572
573 ctrl = readl(info->regs + S3C2440_NFCONT);
574 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
575 info->regs + S3C2440_NFCONT);
576 }
577
578 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
579 {
580 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
581 unsigned long ctrl;
582
583 ctrl = readl(info->regs + S3C2440_NFCONT);
584 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
585 }
586
587 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
588 u_char *ecc_code)
589 {
590 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
591
592 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
593 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
594 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
595
596 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
597
598 return 0;
599 }
600
601 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
602 u_char *ecc_code)
603 {
604 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
605 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
606
607 ecc_code[0] = ecc;
608 ecc_code[1] = ecc >> 8;
609 ecc_code[2] = ecc >> 16;
610
611 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
612
613 return 0;
614 }
615
616 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
617 u_char *ecc_code)
618 {
619 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
620 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
621
622 ecc_code[0] = ecc;
623 ecc_code[1] = ecc >> 8;
624 ecc_code[2] = ecc >> 16;
625
626 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
627
628 return 0;
629 }
630 #endif
631
632 /* over-ride the standard functions for a little more speed. We can
633 * use read/write block to move the data buffers to/from the controller
634 */
635
636 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
637 {
638 struct nand_chip *this = mtd_to_nand(mtd);
639 readsb(this->IO_ADDR_R, buf, len);
640 }
641
642 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
643 {
644 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
645
646 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
647
648 /* cleanup if we've got less than a word to do */
649 if (len & 3) {
650 buf += len & ~3;
651
652 for (; len & 3; len--)
653 *buf++ = readb(info->regs + S3C2440_NFDATA);
654 }
655 }
656
657 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
658 int len)
659 {
660 struct nand_chip *this = mtd_to_nand(mtd);
661 writesb(this->IO_ADDR_W, buf, len);
662 }
663
664 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
665 int len)
666 {
667 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
668
669 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
670
671 /* cleanup any fractional write */
672 if (len & 3) {
673 buf += len & ~3;
674
675 for (; len & 3; len--, buf++)
676 writeb(*buf, info->regs + S3C2440_NFDATA);
677 }
678 }
679
680 /* cpufreq driver support */
681
682 #ifdef CONFIG_CPU_FREQ
683
684 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
685 unsigned long val, void *data)
686 {
687 struct s3c2410_nand_info *info;
688 unsigned long newclk;
689
690 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
691 newclk = clk_get_rate(info->clk);
692
693 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
694 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
695 s3c2410_nand_setrate(info);
696 }
697
698 return 0;
699 }
700
701 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
702 {
703 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
704
705 return cpufreq_register_notifier(&info->freq_transition,
706 CPUFREQ_TRANSITION_NOTIFIER);
707 }
708
709 static inline void
710 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
711 {
712 cpufreq_unregister_notifier(&info->freq_transition,
713 CPUFREQ_TRANSITION_NOTIFIER);
714 }
715
716 #else
717 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
718 {
719 return 0;
720 }
721
722 static inline void
723 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
724 {
725 }
726 #endif
727
728 /* device management functions */
729
730 static int s3c24xx_nand_remove(struct platform_device *pdev)
731 {
732 struct s3c2410_nand_info *info = to_nand_info(pdev);
733
734 if (info == NULL)
735 return 0;
736
737 s3c2410_nand_cpufreq_deregister(info);
738
739 /* Release all our mtds and their partitions, then go through
740 * freeing the resources used
741 */
742
743 if (info->mtds != NULL) {
744 struct s3c2410_nand_mtd *ptr = info->mtds;
745 int mtdno;
746
747 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
748 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
749 nand_release(nand_to_mtd(&ptr->chip));
750 }
751 }
752
753 /* free the common resources */
754
755 if (!IS_ERR(info->clk))
756 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
757
758 return 0;
759 }
760
761 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
762 struct s3c2410_nand_mtd *mtd,
763 struct s3c2410_nand_set *set)
764 {
765 if (set) {
766 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
767
768 mtdinfo->name = set->name;
769
770 return mtd_device_parse_register(mtdinfo, NULL, NULL,
771 set->partitions, set->nr_partitions);
772 }
773
774 return -ENODEV;
775 }
776
777 /**
778 * s3c2410_nand_init_chip - initialise a single instance of an chip
779 * @info: The base NAND controller the chip is on.
780 * @nmtd: The new controller MTD instance to fill in.
781 * @set: The information passed from the board specific platform data.
782 *
783 * Initialise the given @nmtd from the information in @info and @set. This
784 * readies the structure for use with the MTD layer functions by ensuring
785 * all pointers are setup and the necessary control routines selected.
786 */
787 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
788 struct s3c2410_nand_mtd *nmtd,
789 struct s3c2410_nand_set *set)
790 {
791 struct nand_chip *chip = &nmtd->chip;
792 void __iomem *regs = info->regs;
793
794 chip->write_buf = s3c2410_nand_write_buf;
795 chip->read_buf = s3c2410_nand_read_buf;
796 chip->select_chip = s3c2410_nand_select_chip;
797 chip->chip_delay = 50;
798 nand_set_controller_data(chip, nmtd);
799 chip->options = set->options;
800 chip->controller = &info->controller;
801
802 switch (info->cpu_type) {
803 case TYPE_S3C2410:
804 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
805 info->sel_reg = regs + S3C2410_NFCONF;
806 info->sel_bit = S3C2410_NFCONF_nFCE;
807 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
808 chip->dev_ready = s3c2410_nand_devready;
809 break;
810
811 case TYPE_S3C2440:
812 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
813 info->sel_reg = regs + S3C2440_NFCONT;
814 info->sel_bit = S3C2440_NFCONT_nFCE;
815 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
816 chip->dev_ready = s3c2440_nand_devready;
817 chip->read_buf = s3c2440_nand_read_buf;
818 chip->write_buf = s3c2440_nand_write_buf;
819 break;
820
821 case TYPE_S3C2412:
822 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
823 info->sel_reg = regs + S3C2440_NFCONT;
824 info->sel_bit = S3C2412_NFCONT_nFCE0;
825 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
826 chip->dev_ready = s3c2412_nand_devready;
827
828 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
829 dev_info(info->device, "System booted from NAND\n");
830
831 break;
832 }
833
834 chip->IO_ADDR_R = chip->IO_ADDR_W;
835
836 nmtd->info = info;
837 nmtd->set = set;
838
839 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
840 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
841 chip->ecc.correct = s3c2410_nand_correct_data;
842 chip->ecc.mode = NAND_ECC_HW;
843 chip->ecc.strength = 1;
844
845 switch (info->cpu_type) {
846 case TYPE_S3C2410:
847 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
848 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
849 break;
850
851 case TYPE_S3C2412:
852 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
853 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
854 break;
855
856 case TYPE_S3C2440:
857 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
858 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
859 break;
860 }
861 #else
862 chip->ecc.mode = NAND_ECC_SOFT;
863 #endif
864
865 if (set->disable_ecc)
866 chip->ecc.mode = NAND_ECC_NONE;
867
868 switch (chip->ecc.mode) {
869 case NAND_ECC_NONE:
870 dev_info(info->device, "NAND ECC disabled\n");
871 break;
872 case NAND_ECC_SOFT:
873 dev_info(info->device, "NAND soft ECC\n");
874 break;
875 case NAND_ECC_HW:
876 dev_info(info->device, "NAND hardware ECC\n");
877 break;
878 default:
879 dev_info(info->device, "NAND ECC UNKNOWN\n");
880 break;
881 }
882
883 /* If you use u-boot BBT creation code, specifying this flag will
884 * let the kernel fish out the BBT from the NAND, and also skip the
885 * full NAND scan that can take 1/2s or so. Little things... */
886 if (set->flash_bbt) {
887 chip->bbt_options |= NAND_BBT_USE_FLASH;
888 chip->options |= NAND_SKIP_BBTSCAN;
889 }
890 }
891
892 /**
893 * s3c2410_nand_update_chip - post probe update
894 * @info: The controller instance.
895 * @nmtd: The driver version of the MTD instance.
896 *
897 * This routine is called after the chip probe has successfully completed
898 * and the relevant per-chip information updated. This call ensure that
899 * we update the internal state accordingly.
900 *
901 * The internal state is currently limited to the ECC state information.
902 */
903 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
904 struct s3c2410_nand_mtd *nmtd)
905 {
906 struct nand_chip *chip = &nmtd->chip;
907
908 dev_dbg(info->device, "chip %p => page shift %d\n",
909 chip, chip->page_shift);
910
911 if (chip->ecc.mode != NAND_ECC_HW)
912 return;
913
914 /* change the behaviour depending on whether we are using
915 * the large or small page nand device */
916
917 if (chip->page_shift > 10) {
918 chip->ecc.size = 256;
919 chip->ecc.bytes = 3;
920 } else {
921 chip->ecc.size = 512;
922 chip->ecc.bytes = 3;
923 chip->ecc.layout = &nand_hw_eccoob;
924 }
925 }
926
927 /* s3c24xx_nand_probe
928 *
929 * called by device layer when it finds a device matching
930 * one our driver can handled. This code checks to see if
931 * it can allocate all necessary resources then calls the
932 * nand layer to look for devices
933 */
934 static int s3c24xx_nand_probe(struct platform_device *pdev)
935 {
936 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
937 enum s3c_cpu_type cpu_type;
938 struct s3c2410_nand_info *info;
939 struct s3c2410_nand_mtd *nmtd;
940 struct s3c2410_nand_set *sets;
941 struct resource *res;
942 int err = 0;
943 int size;
944 int nr_sets;
945 int setno;
946
947 cpu_type = platform_get_device_id(pdev)->driver_data;
948
949 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
950 if (info == NULL) {
951 err = -ENOMEM;
952 goto exit_error;
953 }
954
955 platform_set_drvdata(pdev, info);
956
957 spin_lock_init(&info->controller.lock);
958 init_waitqueue_head(&info->controller.wq);
959
960 /* get the clock source and enable it */
961
962 info->clk = devm_clk_get(&pdev->dev, "nand");
963 if (IS_ERR(info->clk)) {
964 dev_err(&pdev->dev, "failed to get clock\n");
965 err = -ENOENT;
966 goto exit_error;
967 }
968
969 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
970
971 /* allocate and map the resource */
972
973 /* currently we assume we have the one resource */
974 res = pdev->resource;
975 size = resource_size(res);
976
977 info->device = &pdev->dev;
978 info->platform = plat;
979 info->cpu_type = cpu_type;
980
981 info->regs = devm_ioremap_resource(&pdev->dev, res);
982 if (IS_ERR(info->regs)) {
983 err = PTR_ERR(info->regs);
984 goto exit_error;
985 }
986
987 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
988
989 /* initialise the hardware */
990
991 err = s3c2410_nand_inithw(info);
992 if (err != 0)
993 goto exit_error;
994
995 sets = (plat != NULL) ? plat->sets : NULL;
996 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
997
998 info->mtd_count = nr_sets;
999
1000 /* allocate our information */
1001
1002 size = nr_sets * sizeof(*info->mtds);
1003 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1004 if (info->mtds == NULL) {
1005 err = -ENOMEM;
1006 goto exit_error;
1007 }
1008
1009 /* initialise all possible chips */
1010
1011 nmtd = info->mtds;
1012
1013 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1014 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1015
1016 pr_debug("initialising set %d (%p, info %p)\n",
1017 setno, nmtd, info);
1018
1019 mtd->dev.parent = &pdev->dev;
1020 s3c2410_nand_init_chip(info, nmtd, sets);
1021
1022 nmtd->scan_res = nand_scan_ident(mtd,
1023 (sets) ? sets->nr_chips : 1,
1024 NULL);
1025
1026 if (nmtd->scan_res == 0) {
1027 s3c2410_nand_update_chip(info, nmtd);
1028 nand_scan_tail(mtd);
1029 s3c2410_nand_add_partition(info, nmtd, sets);
1030 }
1031
1032 if (sets != NULL)
1033 sets++;
1034 }
1035
1036 err = s3c2410_nand_cpufreq_register(info);
1037 if (err < 0) {
1038 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1039 goto exit_error;
1040 }
1041
1042 if (allow_clk_suspend(info)) {
1043 dev_info(&pdev->dev, "clock idle support enabled\n");
1044 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1045 }
1046
1047 return 0;
1048
1049 exit_error:
1050 s3c24xx_nand_remove(pdev);
1051
1052 if (err == 0)
1053 err = -EINVAL;
1054 return err;
1055 }
1056
1057 /* PM Support */
1058 #ifdef CONFIG_PM
1059
1060 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1061 {
1062 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1063
1064 if (info) {
1065 info->save_sel = readl(info->sel_reg);
1066
1067 /* For the moment, we must ensure nFCE is high during
1068 * the time we are suspended. This really should be
1069 * handled by suspending the MTDs we are using, but
1070 * that is currently not the case. */
1071
1072 writel(info->save_sel | info->sel_bit, info->sel_reg);
1073
1074 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1075 }
1076
1077 return 0;
1078 }
1079
1080 static int s3c24xx_nand_resume(struct platform_device *dev)
1081 {
1082 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1083 unsigned long sel;
1084
1085 if (info) {
1086 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1087 s3c2410_nand_inithw(info);
1088
1089 /* Restore the state of the nFCE line. */
1090
1091 sel = readl(info->sel_reg);
1092 sel &= ~info->sel_bit;
1093 sel |= info->save_sel & info->sel_bit;
1094 writel(sel, info->sel_reg);
1095
1096 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1097 }
1098
1099 return 0;
1100 }
1101
1102 #else
1103 #define s3c24xx_nand_suspend NULL
1104 #define s3c24xx_nand_resume NULL
1105 #endif
1106
1107 /* driver device registration */
1108
1109 static const struct platform_device_id s3c24xx_driver_ids[] = {
1110 {
1111 .name = "s3c2410-nand",
1112 .driver_data = TYPE_S3C2410,
1113 }, {
1114 .name = "s3c2440-nand",
1115 .driver_data = TYPE_S3C2440,
1116 }, {
1117 .name = "s3c2412-nand",
1118 .driver_data = TYPE_S3C2412,
1119 }, {
1120 .name = "s3c6400-nand",
1121 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1122 },
1123 { }
1124 };
1125
1126 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1127
1128 static struct platform_driver s3c24xx_nand_driver = {
1129 .probe = s3c24xx_nand_probe,
1130 .remove = s3c24xx_nand_remove,
1131 .suspend = s3c24xx_nand_suspend,
1132 .resume = s3c24xx_nand_resume,
1133 .id_table = s3c24xx_driver_ids,
1134 .driver = {
1135 .name = "s3c24xx-nand",
1136 },
1137 };
1138
1139 module_platform_driver(s3c24xx_nand_driver);
1140
1141 MODULE_LICENSE("GPL");
1142 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1143 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
This page took 0.05478 seconds and 6 git commands to generate.