mtd: nand: pass page number to ecc->write_xxx() methods
[deliverable/linux.git] / drivers / mtd / nand / sunxi_nand.c
1 /*
2 * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
3 *
4 * Derived from:
5 * https://github.com/yuq/sunxi-nfc-mtd
6 * Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
7 *
8 * https://github.com/hno/Allwinner-Info
9 * Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
10 *
11 * Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
12 * Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #include <linux/dma-mapping.h>
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/platform_device.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_gpio.h>
33 #include <linux/of_mtd.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/clk.h>
38 #include <linux/delay.h>
39 #include <linux/dmaengine.h>
40 #include <linux/gpio.h>
41 #include <linux/interrupt.h>
42 #include <linux/io.h>
43
44 #define NFC_REG_CTL 0x0000
45 #define NFC_REG_ST 0x0004
46 #define NFC_REG_INT 0x0008
47 #define NFC_REG_TIMING_CTL 0x000C
48 #define NFC_REG_TIMING_CFG 0x0010
49 #define NFC_REG_ADDR_LOW 0x0014
50 #define NFC_REG_ADDR_HIGH 0x0018
51 #define NFC_REG_SECTOR_NUM 0x001C
52 #define NFC_REG_CNT 0x0020
53 #define NFC_REG_CMD 0x0024
54 #define NFC_REG_RCMD_SET 0x0028
55 #define NFC_REG_WCMD_SET 0x002C
56 #define NFC_REG_IO_DATA 0x0030
57 #define NFC_REG_ECC_CTL 0x0034
58 #define NFC_REG_ECC_ST 0x0038
59 #define NFC_REG_DEBUG 0x003C
60 #define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3)
61 #define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4))
62 #define NFC_REG_SPARE_AREA 0x00A0
63 #define NFC_RAM0_BASE 0x0400
64 #define NFC_RAM1_BASE 0x0800
65
66 /* define bit use in NFC_CTL */
67 #define NFC_EN BIT(0)
68 #define NFC_RESET BIT(1)
69 #define NFC_BUS_WIDTH_MSK BIT(2)
70 #define NFC_BUS_WIDTH_8 (0 << 2)
71 #define NFC_BUS_WIDTH_16 (1 << 2)
72 #define NFC_RB_SEL_MSK BIT(3)
73 #define NFC_RB_SEL(x) ((x) << 3)
74 #define NFC_CE_SEL_MSK GENMASK(26, 24)
75 #define NFC_CE_SEL(x) ((x) << 24)
76 #define NFC_CE_CTL BIT(6)
77 #define NFC_PAGE_SHIFT_MSK GENMASK(11, 8)
78 #define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8)
79 #define NFC_SAM BIT(12)
80 #define NFC_RAM_METHOD BIT(14)
81 #define NFC_DEBUG_CTL BIT(31)
82
83 /* define bit use in NFC_ST */
84 #define NFC_RB_B2R BIT(0)
85 #define NFC_CMD_INT_FLAG BIT(1)
86 #define NFC_DMA_INT_FLAG BIT(2)
87 #define NFC_CMD_FIFO_STATUS BIT(3)
88 #define NFC_STA BIT(4)
89 #define NFC_NATCH_INT_FLAG BIT(5)
90 #define NFC_RB_STATE(x) BIT(x + 8)
91
92 /* define bit use in NFC_INT */
93 #define NFC_B2R_INT_ENABLE BIT(0)
94 #define NFC_CMD_INT_ENABLE BIT(1)
95 #define NFC_DMA_INT_ENABLE BIT(2)
96 #define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \
97 NFC_CMD_INT_ENABLE | \
98 NFC_DMA_INT_ENABLE)
99
100 /* define bit use in NFC_TIMING_CTL */
101 #define NFC_TIMING_CTL_EDO BIT(8)
102
103 /* define NFC_TIMING_CFG register layout */
104 #define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \
105 (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \
106 (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \
107 (((tCAD) & 0x7) << 8))
108
109 /* define bit use in NFC_CMD */
110 #define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0)
111 #define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8)
112 #define NFC_CMD(x) (x)
113 #define NFC_ADR_NUM_MSK GENMASK(18, 16)
114 #define NFC_ADR_NUM(x) (((x) - 1) << 16)
115 #define NFC_SEND_ADR BIT(19)
116 #define NFC_ACCESS_DIR BIT(20)
117 #define NFC_DATA_TRANS BIT(21)
118 #define NFC_SEND_CMD1 BIT(22)
119 #define NFC_WAIT_FLAG BIT(23)
120 #define NFC_SEND_CMD2 BIT(24)
121 #define NFC_SEQ BIT(25)
122 #define NFC_DATA_SWAP_METHOD BIT(26)
123 #define NFC_ROW_AUTO_INC BIT(27)
124 #define NFC_SEND_CMD3 BIT(28)
125 #define NFC_SEND_CMD4 BIT(29)
126 #define NFC_CMD_TYPE_MSK GENMASK(31, 30)
127 #define NFC_NORMAL_OP (0 << 30)
128 #define NFC_ECC_OP (1 << 30)
129 #define NFC_PAGE_OP (2 << 30)
130
131 /* define bit use in NFC_RCMD_SET */
132 #define NFC_READ_CMD_MSK GENMASK(7, 0)
133 #define NFC_RND_READ_CMD0_MSK GENMASK(15, 8)
134 #define NFC_RND_READ_CMD1_MSK GENMASK(23, 16)
135
136 /* define bit use in NFC_WCMD_SET */
137 #define NFC_PROGRAM_CMD_MSK GENMASK(7, 0)
138 #define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8)
139 #define NFC_READ_CMD0_MSK GENMASK(23, 16)
140 #define NFC_READ_CMD1_MSK GENMASK(31, 24)
141
142 /* define bit use in NFC_ECC_CTL */
143 #define NFC_ECC_EN BIT(0)
144 #define NFC_ECC_PIPELINE BIT(3)
145 #define NFC_ECC_EXCEPTION BIT(4)
146 #define NFC_ECC_BLOCK_SIZE_MSK BIT(5)
147 #define NFC_RANDOM_EN BIT(9)
148 #define NFC_RANDOM_DIRECTION BIT(10)
149 #define NFC_ECC_MODE_MSK GENMASK(15, 12)
150 #define NFC_ECC_MODE(x) ((x) << 12)
151 #define NFC_RANDOM_SEED_MSK GENMASK(30, 16)
152 #define NFC_RANDOM_SEED(x) ((x) << 16)
153
154 /* define bit use in NFC_ECC_ST */
155 #define NFC_ECC_ERR(x) BIT(x)
156 #define NFC_ECC_PAT_FOUND(x) BIT(x + 16)
157 #define NFC_ECC_ERR_CNT(b, x) (((x) >> ((b) * 8)) & 0xff)
158
159 #define NFC_DEFAULT_TIMEOUT_MS 1000
160
161 #define NFC_SRAM_SIZE 1024
162
163 #define NFC_MAX_CS 7
164
165 /*
166 * Ready/Busy detection type: describes the Ready/Busy detection modes
167 *
168 * @RB_NONE: no external detection available, rely on STATUS command
169 * and software timeouts
170 * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy
171 * pin of the NAND flash chip must be connected to one of the
172 * native NAND R/B pins (those which can be muxed to the NAND
173 * Controller)
174 * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy
175 * pin of the NAND flash chip must be connected to a GPIO capable
176 * pin.
177 */
178 enum sunxi_nand_rb_type {
179 RB_NONE,
180 RB_NATIVE,
181 RB_GPIO,
182 };
183
184 /*
185 * Ready/Busy structure: stores information related to Ready/Busy detection
186 *
187 * @type: the Ready/Busy detection mode
188 * @info: information related to the R/B detection mode. Either a gpio
189 * id or a native R/B id (those supported by the NAND controller).
190 */
191 struct sunxi_nand_rb {
192 enum sunxi_nand_rb_type type;
193 union {
194 int gpio;
195 int nativeid;
196 } info;
197 };
198
199 /*
200 * Chip Select structure: stores information related to NAND Chip Select
201 *
202 * @cs: the NAND CS id used to communicate with a NAND Chip
203 * @rb: the Ready/Busy description
204 */
205 struct sunxi_nand_chip_sel {
206 u8 cs;
207 struct sunxi_nand_rb rb;
208 };
209
210 /*
211 * sunxi HW ECC infos: stores information related to HW ECC support
212 *
213 * @mode: the sunxi ECC mode field deduced from ECC requirements
214 * @layout: the OOB layout depending on the ECC requirements and the
215 * selected ECC mode
216 */
217 struct sunxi_nand_hw_ecc {
218 int mode;
219 struct nand_ecclayout layout;
220 };
221
222 /*
223 * NAND chip structure: stores NAND chip device related information
224 *
225 * @node: used to store NAND chips into a list
226 * @nand: base NAND chip structure
227 * @mtd: base MTD structure
228 * @clk_rate: clk_rate required for this NAND chip
229 * @timing_cfg TIMING_CFG register value for this NAND chip
230 * @selected: current active CS
231 * @nsels: number of CS lines required by the NAND chip
232 * @sels: array of CS lines descriptions
233 */
234 struct sunxi_nand_chip {
235 struct list_head node;
236 struct nand_chip nand;
237 struct mtd_info mtd;
238 unsigned long clk_rate;
239 u32 timing_cfg;
240 u32 timing_ctl;
241 int selected;
242 int nsels;
243 struct sunxi_nand_chip_sel sels[0];
244 };
245
246 static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
247 {
248 return container_of(nand, struct sunxi_nand_chip, nand);
249 }
250
251 /*
252 * NAND Controller structure: stores sunxi NAND controller information
253 *
254 * @controller: base controller structure
255 * @dev: parent device (used to print error messages)
256 * @regs: NAND controller registers
257 * @ahb_clk: NAND Controller AHB clock
258 * @mod_clk: NAND Controller mod clock
259 * @assigned_cs: bitmask describing already assigned CS lines
260 * @clk_rate: NAND controller current clock rate
261 * @chips: a list containing all the NAND chips attached to
262 * this NAND controller
263 * @complete: a completion object used to wait for NAND
264 * controller events
265 */
266 struct sunxi_nfc {
267 struct nand_hw_control controller;
268 struct device *dev;
269 void __iomem *regs;
270 struct clk *ahb_clk;
271 struct clk *mod_clk;
272 unsigned long assigned_cs;
273 unsigned long clk_rate;
274 struct list_head chips;
275 struct completion complete;
276 };
277
278 static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
279 {
280 return container_of(ctrl, struct sunxi_nfc, controller);
281 }
282
283 static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
284 {
285 struct sunxi_nfc *nfc = dev_id;
286 u32 st = readl(nfc->regs + NFC_REG_ST);
287 u32 ien = readl(nfc->regs + NFC_REG_INT);
288
289 if (!(ien & st))
290 return IRQ_NONE;
291
292 if ((ien & st) == ien)
293 complete(&nfc->complete);
294
295 writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
296 writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
297
298 return IRQ_HANDLED;
299 }
300
301 static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
302 unsigned int timeout_ms)
303 {
304 init_completion(&nfc->complete);
305
306 writel(flags, nfc->regs + NFC_REG_INT);
307
308 if (!timeout_ms)
309 timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
310
311 if (!wait_for_completion_timeout(&nfc->complete,
312 msecs_to_jiffies(timeout_ms))) {
313 dev_err(nfc->dev, "wait interrupt timedout\n");
314 return -ETIMEDOUT;
315 }
316
317 return 0;
318 }
319
320 static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
321 {
322 unsigned long timeout = jiffies +
323 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
324
325 do {
326 if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
327 return 0;
328 } while (time_before(jiffies, timeout));
329
330 dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
331 return -ETIMEDOUT;
332 }
333
334 static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
335 {
336 unsigned long timeout = jiffies +
337 msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
338
339 writel(0, nfc->regs + NFC_REG_ECC_CTL);
340 writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
341
342 do {
343 if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
344 return 0;
345 } while (time_before(jiffies, timeout));
346
347 dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
348 return -ETIMEDOUT;
349 }
350
351 static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
352 {
353 struct nand_chip *nand = mtd->priv;
354 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
355 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
356 struct sunxi_nand_rb *rb;
357 unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
358 int ret;
359
360 if (sunxi_nand->selected < 0)
361 return 0;
362
363 rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
364
365 switch (rb->type) {
366 case RB_NATIVE:
367 ret = !!(readl(nfc->regs + NFC_REG_ST) &
368 NFC_RB_STATE(rb->info.nativeid));
369 if (ret)
370 break;
371
372 sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
373 ret = !!(readl(nfc->regs + NFC_REG_ST) &
374 NFC_RB_STATE(rb->info.nativeid));
375 break;
376 case RB_GPIO:
377 ret = gpio_get_value(rb->info.gpio);
378 break;
379 case RB_NONE:
380 default:
381 ret = 0;
382 dev_err(nfc->dev, "cannot check R/B NAND status!\n");
383 break;
384 }
385
386 return ret;
387 }
388
389 static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
390 {
391 struct nand_chip *nand = mtd->priv;
392 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
393 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
394 struct sunxi_nand_chip_sel *sel;
395 u32 ctl;
396
397 if (chip > 0 && chip >= sunxi_nand->nsels)
398 return;
399
400 if (chip == sunxi_nand->selected)
401 return;
402
403 ctl = readl(nfc->regs + NFC_REG_CTL) &
404 ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
405
406 if (chip >= 0) {
407 sel = &sunxi_nand->sels[chip];
408
409 ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
410 NFC_PAGE_SHIFT(nand->page_shift - 10);
411 if (sel->rb.type == RB_NONE) {
412 nand->dev_ready = NULL;
413 } else {
414 nand->dev_ready = sunxi_nfc_dev_ready;
415 if (sel->rb.type == RB_NATIVE)
416 ctl |= NFC_RB_SEL(sel->rb.info.nativeid);
417 }
418
419 writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
420
421 if (nfc->clk_rate != sunxi_nand->clk_rate) {
422 clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
423 nfc->clk_rate = sunxi_nand->clk_rate;
424 }
425 }
426
427 writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
428 writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
429 writel(ctl, nfc->regs + NFC_REG_CTL);
430
431 sunxi_nand->selected = chip;
432 }
433
434 static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
435 {
436 struct nand_chip *nand = mtd->priv;
437 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
438 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
439 int ret;
440 int cnt;
441 int offs = 0;
442 u32 tmp;
443
444 while (len > offs) {
445 cnt = min(len - offs, NFC_SRAM_SIZE);
446
447 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
448 if (ret)
449 break;
450
451 writel(cnt, nfc->regs + NFC_REG_CNT);
452 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
453 writel(tmp, nfc->regs + NFC_REG_CMD);
454
455 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
456 if (ret)
457 break;
458
459 if (buf)
460 memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
461 cnt);
462 offs += cnt;
463 }
464 }
465
466 static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
467 int len)
468 {
469 struct nand_chip *nand = mtd->priv;
470 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
471 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
472 int ret;
473 int cnt;
474 int offs = 0;
475 u32 tmp;
476
477 while (len > offs) {
478 cnt = min(len - offs, NFC_SRAM_SIZE);
479
480 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
481 if (ret)
482 break;
483
484 writel(cnt, nfc->regs + NFC_REG_CNT);
485 memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
486 tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
487 NFC_ACCESS_DIR;
488 writel(tmp, nfc->regs + NFC_REG_CMD);
489
490 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
491 if (ret)
492 break;
493
494 offs += cnt;
495 }
496 }
497
498 static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
499 {
500 uint8_t ret;
501
502 sunxi_nfc_read_buf(mtd, &ret, 1);
503
504 return ret;
505 }
506
507 static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
508 unsigned int ctrl)
509 {
510 struct nand_chip *nand = mtd->priv;
511 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
512 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
513 int ret;
514 u32 tmp;
515
516 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
517 if (ret)
518 return;
519
520 if (ctrl & NAND_CTRL_CHANGE) {
521 tmp = readl(nfc->regs + NFC_REG_CTL);
522 if (ctrl & NAND_NCE)
523 tmp |= NFC_CE_CTL;
524 else
525 tmp &= ~NFC_CE_CTL;
526 writel(tmp, nfc->regs + NFC_REG_CTL);
527 }
528
529 if (dat == NAND_CMD_NONE)
530 return;
531
532 if (ctrl & NAND_CLE) {
533 writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
534 } else {
535 writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
536 writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
537 }
538
539 sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
540 }
541
542 static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
543 {
544 struct nand_chip *nand = mtd->priv;
545 struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
546 struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
547 u32 ecc_ctl;
548
549 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
550 ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
551 NFC_ECC_BLOCK_SIZE_MSK);
552 ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION;
553
554 writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
555 }
556
557 static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
558 {
559 struct nand_chip *nand = mtd->priv;
560 struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
561
562 writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
563 nfc->regs + NFC_REG_ECC_CTL);
564 }
565
566 static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
567 {
568 buf[0] = user_data;
569 buf[1] = user_data >> 8;
570 buf[2] = user_data >> 16;
571 buf[3] = user_data >> 24;
572 }
573
574 static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
575 u8 *data, int data_off,
576 u8 *oob, int oob_off,
577 int *cur_off,
578 unsigned int *max_bitflips)
579 {
580 struct nand_chip *nand = mtd->priv;
581 struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
582 struct nand_ecc_ctrl *ecc = &nand->ecc;
583 u32 status;
584 int ret;
585
586 if (*cur_off != data_off)
587 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, data_off, -1);
588
589 sunxi_nfc_read_buf(mtd, data, ecc->size);
590
591 if (data_off + ecc->bytes != oob_off)
592 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
593
594 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
595 if (ret)
596 return ret;
597
598 writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
599 nfc->regs + NFC_REG_CMD);
600
601 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
602 if (ret)
603 return ret;
604
605 status = readl(nfc->regs + NFC_REG_ECC_ST);
606 ret = NFC_ECC_ERR_CNT(0, readl(nfc->regs + NFC_REG_ECC_ERR_CNT(0)));
607
608 memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
609
610 nand->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_off, -1);
611 sunxi_nfc_read_buf(mtd, oob, ecc->bytes + 4);
612
613 if (status & NFC_ECC_ERR(0)) {
614 ret = nand_check_erased_ecc_chunk(data, ecc->size,
615 oob, ecc->bytes + 4,
616 NULL, 0, ecc->strength);
617 } else {
618 /*
619 * The engine protects 4 bytes of OOB data per chunk.
620 * Retrieve the corrected OOB bytes.
621 */
622 sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(0)),
623 oob);
624 }
625
626 if (ret < 0) {
627 mtd->ecc_stats.failed++;
628 } else {
629 mtd->ecc_stats.corrected += ret;
630 *max_bitflips = max_t(unsigned int, *max_bitflips, ret);
631 }
632
633 *cur_off = oob_off + ecc->bytes + 4;
634
635 return 0;
636 }
637
638 static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
639 u8 *oob, int *cur_off)
640 {
641 struct nand_chip *nand = mtd->priv;
642 struct nand_ecc_ctrl *ecc = &nand->ecc;
643 int offset = ((ecc->bytes + 4) * ecc->steps);
644 int len = mtd->oobsize - offset;
645
646 if (len <= 0)
647 return;
648
649 if (*cur_off != offset)
650 nand->cmdfunc(mtd, NAND_CMD_RNDOUT,
651 offset + mtd->writesize, -1);
652
653 sunxi_nfc_read_buf(mtd, oob + offset, len);
654
655 *cur_off = mtd->oobsize + mtd->writesize;
656 }
657
658 static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
659 {
660 return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
661 }
662
663 static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
664 const u8 *data, int data_off,
665 const u8 *oob, int oob_off,
666 int *cur_off)
667 {
668 struct nand_chip *nand = mtd->priv;
669 struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
670 struct nand_ecc_ctrl *ecc = &nand->ecc;
671 int ret;
672
673 if (data_off != *cur_off)
674 nand->cmdfunc(mtd, NAND_CMD_RNDIN, data_off, -1);
675
676 sunxi_nfc_write_buf(mtd, data, ecc->size);
677
678 /* Fill OOB data in */
679 writel(sunxi_nfc_buf_to_user_data(oob),
680 nfc->regs + NFC_REG_USER_DATA(0));
681
682 if (data_off + ecc->bytes != oob_off)
683 nand->cmdfunc(mtd, NAND_CMD_RNDIN, oob_off, -1);
684
685 ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
686 if (ret)
687 return ret;
688
689 writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
690 NFC_ACCESS_DIR | NFC_ECC_OP,
691 nfc->regs + NFC_REG_CMD);
692
693 ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
694 if (ret)
695 return ret;
696
697 *cur_off = oob_off + ecc->bytes + 4;
698
699 return 0;
700 }
701
702 static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
703 u8 *oob, int *cur_off)
704 {
705 struct nand_chip *nand = mtd->priv;
706 struct nand_ecc_ctrl *ecc = &nand->ecc;
707 int offset = ((ecc->bytes + 4) * ecc->steps);
708 int len = mtd->oobsize - offset;
709
710 if (len <= 0)
711 return;
712
713 if (*cur_off != offset)
714 nand->cmdfunc(mtd, NAND_CMD_RNDIN,
715 offset + mtd->writesize, -1);
716
717 sunxi_nfc_write_buf(mtd, oob + offset, len);
718
719 *cur_off = mtd->oobsize + mtd->writesize;
720 }
721
722 static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
723 struct nand_chip *chip, uint8_t *buf,
724 int oob_required, int page)
725 {
726 struct nand_ecc_ctrl *ecc = &chip->ecc;
727 unsigned int max_bitflips = 0;
728 int ret, i, cur_off = 0;
729
730 sunxi_nfc_hw_ecc_enable(mtd);
731
732 for (i = 0; i < ecc->steps; i++) {
733 int data_off = i * ecc->size;
734 int oob_off = i * (ecc->bytes + 4);
735 u8 *data = buf + data_off;
736 u8 *oob = chip->oob_poi + oob_off;
737
738 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
739 oob_off + mtd->writesize,
740 &cur_off, &max_bitflips);
741 if (ret)
742 return ret;
743 }
744
745 if (oob_required)
746 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
747
748 sunxi_nfc_hw_ecc_disable(mtd);
749
750 return max_bitflips;
751 }
752
753 static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
754 struct nand_chip *chip,
755 const uint8_t *buf, int oob_required,
756 int page)
757 {
758 struct nand_ecc_ctrl *ecc = &chip->ecc;
759 int ret, i, cur_off = 0;
760
761 sunxi_nfc_hw_ecc_enable(mtd);
762
763 for (i = 0; i < ecc->steps; i++) {
764 int data_off = i * ecc->size;
765 int oob_off = i * (ecc->bytes + 4);
766 const u8 *data = buf + data_off;
767 const u8 *oob = chip->oob_poi + oob_off;
768
769 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
770 oob_off + mtd->writesize,
771 &cur_off);
772 if (ret)
773 return ret;
774 }
775
776 if (oob_required)
777 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
778
779 sunxi_nfc_hw_ecc_disable(mtd);
780
781 return 0;
782 }
783
784 static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
785 struct nand_chip *chip,
786 uint8_t *buf, int oob_required,
787 int page)
788 {
789 struct nand_ecc_ctrl *ecc = &chip->ecc;
790 unsigned int max_bitflips = 0;
791 int ret, i, cur_off = 0;
792
793 sunxi_nfc_hw_ecc_enable(mtd);
794
795 for (i = 0; i < ecc->steps; i++) {
796 int data_off = i * (ecc->size + ecc->bytes + 4);
797 int oob_off = data_off + ecc->size;
798 u8 *data = buf + (i * ecc->size);
799 u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
800
801 ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
802 oob_off, &cur_off,
803 &max_bitflips);
804 if (ret)
805 return ret;
806 }
807
808 if (oob_required)
809 sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off);
810
811 sunxi_nfc_hw_ecc_disable(mtd);
812
813 return max_bitflips;
814 }
815
816 static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
817 struct nand_chip *chip,
818 const uint8_t *buf,
819 int oob_required, int page)
820 {
821 struct nand_ecc_ctrl *ecc = &chip->ecc;
822 int ret, i, cur_off = 0;
823
824 sunxi_nfc_hw_ecc_enable(mtd);
825
826 for (i = 0; i < ecc->steps; i++) {
827 int data_off = i * (ecc->size + ecc->bytes + 4);
828 int oob_off = data_off + ecc->size;
829 const u8 *data = buf + (i * ecc->size);
830 const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4));
831
832 ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off,
833 oob, oob_off, &cur_off);
834 if (ret)
835 return ret;
836 }
837
838 if (oob_required)
839 sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, &cur_off);
840
841 sunxi_nfc_hw_ecc_disable(mtd);
842
843 return 0;
844 }
845
846 static const s32 tWB_lut[] = {6, 12, 16, 20};
847 static const s32 tRHW_lut[] = {4, 8, 12, 20};
848
849 static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
850 u32 clk_period)
851 {
852 u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
853 int i;
854
855 for (i = 0; i < lut_size; i++) {
856 if (clk_cycles <= lut[i])
857 return i;
858 }
859
860 /* Doesn't fit */
861 return -EINVAL;
862 }
863
864 #define sunxi_nand_lookup_timing(l, p, c) \
865 _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
866
867 static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
868 const struct nand_sdr_timings *timings)
869 {
870 struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
871 u32 min_clk_period = 0;
872 s32 tWB, tADL, tWHR, tRHW, tCAD;
873
874 /* T1 <=> tCLS */
875 if (timings->tCLS_min > min_clk_period)
876 min_clk_period = timings->tCLS_min;
877
878 /* T2 <=> tCLH */
879 if (timings->tCLH_min > min_clk_period)
880 min_clk_period = timings->tCLH_min;
881
882 /* T3 <=> tCS */
883 if (timings->tCS_min > min_clk_period)
884 min_clk_period = timings->tCS_min;
885
886 /* T4 <=> tCH */
887 if (timings->tCH_min > min_clk_period)
888 min_clk_period = timings->tCH_min;
889
890 /* T5 <=> tWP */
891 if (timings->tWP_min > min_clk_period)
892 min_clk_period = timings->tWP_min;
893
894 /* T6 <=> tWH */
895 if (timings->tWH_min > min_clk_period)
896 min_clk_period = timings->tWH_min;
897
898 /* T7 <=> tALS */
899 if (timings->tALS_min > min_clk_period)
900 min_clk_period = timings->tALS_min;
901
902 /* T8 <=> tDS */
903 if (timings->tDS_min > min_clk_period)
904 min_clk_period = timings->tDS_min;
905
906 /* T9 <=> tDH */
907 if (timings->tDH_min > min_clk_period)
908 min_clk_period = timings->tDH_min;
909
910 /* T10 <=> tRR */
911 if (timings->tRR_min > (min_clk_period * 3))
912 min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
913
914 /* T11 <=> tALH */
915 if (timings->tALH_min > min_clk_period)
916 min_clk_period = timings->tALH_min;
917
918 /* T12 <=> tRP */
919 if (timings->tRP_min > min_clk_period)
920 min_clk_period = timings->tRP_min;
921
922 /* T13 <=> tREH */
923 if (timings->tREH_min > min_clk_period)
924 min_clk_period = timings->tREH_min;
925
926 /* T14 <=> tRC */
927 if (timings->tRC_min > (min_clk_period * 2))
928 min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
929
930 /* T15 <=> tWC */
931 if (timings->tWC_min > (min_clk_period * 2))
932 min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
933
934 /* T16 - T19 + tCAD */
935 tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
936 min_clk_period);
937 if (tWB < 0) {
938 dev_err(nfc->dev, "unsupported tWB\n");
939 return tWB;
940 }
941
942 tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
943 if (tADL > 3) {
944 dev_err(nfc->dev, "unsupported tADL\n");
945 return -EINVAL;
946 }
947
948 tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
949 if (tWHR > 3) {
950 dev_err(nfc->dev, "unsupported tWHR\n");
951 return -EINVAL;
952 }
953
954 tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
955 min_clk_period);
956 if (tRHW < 0) {
957 dev_err(nfc->dev, "unsupported tRHW\n");
958 return tRHW;
959 }
960
961 /*
962 * TODO: according to ONFI specs this value only applies for DDR NAND,
963 * but Allwinner seems to set this to 0x7. Mimic them for now.
964 */
965 tCAD = 0x7;
966
967 /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
968 chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
969
970 /*
971 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
972 * output cycle timings shall be used if the host drives tRC less than
973 * 30 ns.
974 */
975 chip->timing_ctl = (timings->tRC_min < 30000) ? NFC_TIMING_CTL_EDO : 0;
976
977 /* Convert min_clk_period from picoseconds to nanoseconds */
978 min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
979
980 /*
981 * Convert min_clk_period into a clk frequency, then get the
982 * appropriate rate for the NAND controller IP given this formula
983 * (specified in the datasheet):
984 * nand clk_rate = 2 * min_clk_rate
985 */
986 chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
987
988 return 0;
989 }
990
991 static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
992 struct device_node *np)
993 {
994 const struct nand_sdr_timings *timings;
995 int ret;
996 int mode;
997
998 mode = onfi_get_async_timing_mode(&chip->nand);
999 if (mode == ONFI_TIMING_MODE_UNKNOWN) {
1000 mode = chip->nand.onfi_timing_mode_default;
1001 } else {
1002 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
1003 int i;
1004
1005 mode = fls(mode) - 1;
1006 if (mode < 0)
1007 mode = 0;
1008
1009 feature[0] = mode;
1010 for (i = 0; i < chip->nsels; i++) {
1011 chip->nand.select_chip(&chip->mtd, i);
1012 ret = chip->nand.onfi_set_features(&chip->mtd,
1013 &chip->nand,
1014 ONFI_FEATURE_ADDR_TIMING_MODE,
1015 feature);
1016 chip->nand.select_chip(&chip->mtd, -1);
1017 if (ret)
1018 return ret;
1019 }
1020 }
1021
1022 timings = onfi_async_timing_mode_to_sdr_timings(mode);
1023 if (IS_ERR(timings))
1024 return PTR_ERR(timings);
1025
1026 return sunxi_nand_chip_set_timings(chip, timings);
1027 }
1028
1029 static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
1030 struct nand_ecc_ctrl *ecc,
1031 struct device_node *np)
1032 {
1033 static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
1034 struct nand_chip *nand = mtd->priv;
1035 struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
1036 struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
1037 struct sunxi_nand_hw_ecc *data;
1038 struct nand_ecclayout *layout;
1039 int nsectors;
1040 int ret;
1041 int i;
1042
1043 data = kzalloc(sizeof(*data), GFP_KERNEL);
1044 if (!data)
1045 return -ENOMEM;
1046
1047 /* Add ECC info retrieval from DT */
1048 for (i = 0; i < ARRAY_SIZE(strengths); i++) {
1049 if (ecc->strength <= strengths[i])
1050 break;
1051 }
1052
1053 if (i >= ARRAY_SIZE(strengths)) {
1054 dev_err(nfc->dev, "unsupported strength\n");
1055 ret = -ENOTSUPP;
1056 goto err;
1057 }
1058
1059 data->mode = i;
1060
1061 /* HW ECC always request ECC bytes for 1024 bytes blocks */
1062 ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
1063
1064 /* HW ECC always work with even numbers of ECC bytes */
1065 ecc->bytes = ALIGN(ecc->bytes, 2);
1066
1067 layout = &data->layout;
1068 nsectors = mtd->writesize / ecc->size;
1069
1070 if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
1071 ret = -EINVAL;
1072 goto err;
1073 }
1074
1075 layout->eccbytes = (ecc->bytes * nsectors);
1076
1077 ecc->layout = layout;
1078 ecc->priv = data;
1079
1080 return 0;
1081
1082 err:
1083 kfree(data);
1084
1085 return ret;
1086 }
1087
1088 static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
1089 {
1090 kfree(ecc->priv);
1091 }
1092
1093 static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
1094 struct nand_ecc_ctrl *ecc,
1095 struct device_node *np)
1096 {
1097 struct nand_ecclayout *layout;
1098 int nsectors;
1099 int i, j;
1100 int ret;
1101
1102 ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1103 if (ret)
1104 return ret;
1105
1106 ecc->read_page = sunxi_nfc_hw_ecc_read_page;
1107 ecc->write_page = sunxi_nfc_hw_ecc_write_page;
1108 layout = ecc->layout;
1109 nsectors = mtd->writesize / ecc->size;
1110
1111 for (i = 0; i < nsectors; i++) {
1112 if (i) {
1113 layout->oobfree[i].offset =
1114 layout->oobfree[i - 1].offset +
1115 layout->oobfree[i - 1].length +
1116 ecc->bytes;
1117 layout->oobfree[i].length = 4;
1118 } else {
1119 /*
1120 * The first 2 bytes are used for BB markers, hence we
1121 * only have 2 bytes available in the first user data
1122 * section.
1123 */
1124 layout->oobfree[i].length = 2;
1125 layout->oobfree[i].offset = 2;
1126 }
1127
1128 for (j = 0; j < ecc->bytes; j++)
1129 layout->eccpos[(ecc->bytes * i) + j] =
1130 layout->oobfree[i].offset +
1131 layout->oobfree[i].length + j;
1132 }
1133
1134 if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
1135 layout->oobfree[nsectors].offset =
1136 layout->oobfree[nsectors - 1].offset +
1137 layout->oobfree[nsectors - 1].length +
1138 ecc->bytes;
1139 layout->oobfree[nsectors].length = mtd->oobsize -
1140 ((ecc->bytes + 4) * nsectors);
1141 }
1142
1143 return 0;
1144 }
1145
1146 static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
1147 struct nand_ecc_ctrl *ecc,
1148 struct device_node *np)
1149 {
1150 struct nand_ecclayout *layout;
1151 int nsectors;
1152 int i;
1153 int ret;
1154
1155 ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
1156 if (ret)
1157 return ret;
1158
1159 ecc->prepad = 4;
1160 ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
1161 ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
1162
1163 layout = ecc->layout;
1164 nsectors = mtd->writesize / ecc->size;
1165
1166 for (i = 0; i < (ecc->bytes * nsectors); i++)
1167 layout->eccpos[i] = i;
1168
1169 layout->oobfree[0].length = mtd->oobsize - i;
1170 layout->oobfree[0].offset = i;
1171
1172 return 0;
1173 }
1174
1175 static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
1176 {
1177 switch (ecc->mode) {
1178 case NAND_ECC_HW:
1179 case NAND_ECC_HW_SYNDROME:
1180 sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
1181 break;
1182 case NAND_ECC_NONE:
1183 kfree(ecc->layout);
1184 default:
1185 break;
1186 }
1187 }
1188
1189 static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
1190 struct device_node *np)
1191 {
1192 struct nand_chip *nand = mtd->priv;
1193 int ret;
1194
1195 if (!ecc->size) {
1196 ecc->size = nand->ecc_step_ds;
1197 ecc->strength = nand->ecc_strength_ds;
1198 }
1199
1200 if (!ecc->size || !ecc->strength)
1201 return -EINVAL;
1202
1203 switch (ecc->mode) {
1204 case NAND_ECC_SOFT_BCH:
1205 break;
1206 case NAND_ECC_HW:
1207 ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
1208 if (ret)
1209 return ret;
1210 break;
1211 case NAND_ECC_HW_SYNDROME:
1212 ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
1213 if (ret)
1214 return ret;
1215 break;
1216 case NAND_ECC_NONE:
1217 ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
1218 if (!ecc->layout)
1219 return -ENOMEM;
1220 ecc->layout->oobfree[0].length = mtd->oobsize;
1221 case NAND_ECC_SOFT:
1222 break;
1223 default:
1224 return -EINVAL;
1225 }
1226
1227 return 0;
1228 }
1229
1230 static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
1231 struct device_node *np)
1232 {
1233 const struct nand_sdr_timings *timings;
1234 struct sunxi_nand_chip *chip;
1235 struct mtd_part_parser_data ppdata;
1236 struct mtd_info *mtd;
1237 struct nand_chip *nand;
1238 int nsels;
1239 int ret;
1240 int i;
1241 u32 tmp;
1242
1243 if (!of_get_property(np, "reg", &nsels))
1244 return -EINVAL;
1245
1246 nsels /= sizeof(u32);
1247 if (!nsels) {
1248 dev_err(dev, "invalid reg property size\n");
1249 return -EINVAL;
1250 }
1251
1252 chip = devm_kzalloc(dev,
1253 sizeof(*chip) +
1254 (nsels * sizeof(struct sunxi_nand_chip_sel)),
1255 GFP_KERNEL);
1256 if (!chip) {
1257 dev_err(dev, "could not allocate chip\n");
1258 return -ENOMEM;
1259 }
1260
1261 chip->nsels = nsels;
1262 chip->selected = -1;
1263
1264 for (i = 0; i < nsels; i++) {
1265 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1266 if (ret) {
1267 dev_err(dev, "could not retrieve reg property: %d\n",
1268 ret);
1269 return ret;
1270 }
1271
1272 if (tmp > NFC_MAX_CS) {
1273 dev_err(dev,
1274 "invalid reg value: %u (max CS = 7)\n",
1275 tmp);
1276 return -EINVAL;
1277 }
1278
1279 if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1280 dev_err(dev, "CS %d already assigned\n", tmp);
1281 return -EINVAL;
1282 }
1283
1284 chip->sels[i].cs = tmp;
1285
1286 if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
1287 tmp < 2) {
1288 chip->sels[i].rb.type = RB_NATIVE;
1289 chip->sels[i].rb.info.nativeid = tmp;
1290 } else {
1291 ret = of_get_named_gpio(np, "rb-gpios", i);
1292 if (ret >= 0) {
1293 tmp = ret;
1294 chip->sels[i].rb.type = RB_GPIO;
1295 chip->sels[i].rb.info.gpio = tmp;
1296 ret = devm_gpio_request(dev, tmp, "nand-rb");
1297 if (ret)
1298 return ret;
1299
1300 ret = gpio_direction_input(tmp);
1301 if (ret)
1302 return ret;
1303 } else {
1304 chip->sels[i].rb.type = RB_NONE;
1305 }
1306 }
1307 }
1308
1309 timings = onfi_async_timing_mode_to_sdr_timings(0);
1310 if (IS_ERR(timings)) {
1311 ret = PTR_ERR(timings);
1312 dev_err(dev,
1313 "could not retrieve timings for ONFI mode 0: %d\n",
1314 ret);
1315 return ret;
1316 }
1317
1318 ret = sunxi_nand_chip_set_timings(chip, timings);
1319 if (ret) {
1320 dev_err(dev, "could not configure chip timings: %d\n", ret);
1321 return ret;
1322 }
1323
1324 nand = &chip->nand;
1325 /* Default tR value specified in the ONFI spec (chapter 4.15.1) */
1326 nand->chip_delay = 200;
1327 nand->controller = &nfc->controller;
1328 /*
1329 * Set the ECC mode to the default value in case nothing is specified
1330 * in the DT.
1331 */
1332 nand->ecc.mode = NAND_ECC_HW;
1333 nand->flash_node = np;
1334 nand->select_chip = sunxi_nfc_select_chip;
1335 nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
1336 nand->read_buf = sunxi_nfc_read_buf;
1337 nand->write_buf = sunxi_nfc_write_buf;
1338 nand->read_byte = sunxi_nfc_read_byte;
1339
1340 mtd = &chip->mtd;
1341 mtd->dev.parent = dev;
1342 mtd->priv = nand;
1343
1344 ret = nand_scan_ident(mtd, nsels, NULL);
1345 if (ret)
1346 return ret;
1347
1348 if (nand->bbt_options & NAND_BBT_USE_FLASH)
1349 nand->bbt_options |= NAND_BBT_NO_OOB;
1350
1351 ret = sunxi_nand_chip_init_timings(chip, np);
1352 if (ret) {
1353 dev_err(dev, "could not configure chip timings: %d\n", ret);
1354 return ret;
1355 }
1356
1357 ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
1358 if (ret) {
1359 dev_err(dev, "ECC init failed: %d\n", ret);
1360 return ret;
1361 }
1362
1363 ret = nand_scan_tail(mtd);
1364 if (ret) {
1365 dev_err(dev, "nand_scan_tail failed: %d\n", ret);
1366 return ret;
1367 }
1368
1369 ppdata.of_node = np;
1370 ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1371 if (ret) {
1372 dev_err(dev, "failed to register mtd device: %d\n", ret);
1373 nand_release(mtd);
1374 return ret;
1375 }
1376
1377 list_add_tail(&chip->node, &nfc->chips);
1378
1379 return 0;
1380 }
1381
1382 static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
1383 {
1384 struct device_node *np = dev->of_node;
1385 struct device_node *nand_np;
1386 int nchips = of_get_child_count(np);
1387 int ret;
1388
1389 if (nchips > 8) {
1390 dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
1391 return -EINVAL;
1392 }
1393
1394 for_each_child_of_node(np, nand_np) {
1395 ret = sunxi_nand_chip_init(dev, nfc, nand_np);
1396 if (ret)
1397 return ret;
1398 }
1399
1400 return 0;
1401 }
1402
1403 static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
1404 {
1405 struct sunxi_nand_chip *chip;
1406
1407 while (!list_empty(&nfc->chips)) {
1408 chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
1409 node);
1410 nand_release(&chip->mtd);
1411 sunxi_nand_ecc_cleanup(&chip->nand.ecc);
1412 list_del(&chip->node);
1413 }
1414 }
1415
1416 static int sunxi_nfc_probe(struct platform_device *pdev)
1417 {
1418 struct device *dev = &pdev->dev;
1419 struct resource *r;
1420 struct sunxi_nfc *nfc;
1421 int irq;
1422 int ret;
1423
1424 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1425 if (!nfc)
1426 return -ENOMEM;
1427
1428 nfc->dev = dev;
1429 spin_lock_init(&nfc->controller.lock);
1430 init_waitqueue_head(&nfc->controller.wq);
1431 INIT_LIST_HEAD(&nfc->chips);
1432
1433 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1434 nfc->regs = devm_ioremap_resource(dev, r);
1435 if (IS_ERR(nfc->regs))
1436 return PTR_ERR(nfc->regs);
1437
1438 irq = platform_get_irq(pdev, 0);
1439 if (irq < 0) {
1440 dev_err(dev, "failed to retrieve irq\n");
1441 return irq;
1442 }
1443
1444 nfc->ahb_clk = devm_clk_get(dev, "ahb");
1445 if (IS_ERR(nfc->ahb_clk)) {
1446 dev_err(dev, "failed to retrieve ahb clk\n");
1447 return PTR_ERR(nfc->ahb_clk);
1448 }
1449
1450 ret = clk_prepare_enable(nfc->ahb_clk);
1451 if (ret)
1452 return ret;
1453
1454 nfc->mod_clk = devm_clk_get(dev, "mod");
1455 if (IS_ERR(nfc->mod_clk)) {
1456 dev_err(dev, "failed to retrieve mod clk\n");
1457 ret = PTR_ERR(nfc->mod_clk);
1458 goto out_ahb_clk_unprepare;
1459 }
1460
1461 ret = clk_prepare_enable(nfc->mod_clk);
1462 if (ret)
1463 goto out_ahb_clk_unprepare;
1464
1465 ret = sunxi_nfc_rst(nfc);
1466 if (ret)
1467 goto out_mod_clk_unprepare;
1468
1469 writel(0, nfc->regs + NFC_REG_INT);
1470 ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
1471 0, "sunxi-nand", nfc);
1472 if (ret)
1473 goto out_mod_clk_unprepare;
1474
1475 platform_set_drvdata(pdev, nfc);
1476
1477 ret = sunxi_nand_chips_init(dev, nfc);
1478 if (ret) {
1479 dev_err(dev, "failed to init nand chips\n");
1480 goto out_mod_clk_unprepare;
1481 }
1482
1483 return 0;
1484
1485 out_mod_clk_unprepare:
1486 clk_disable_unprepare(nfc->mod_clk);
1487 out_ahb_clk_unprepare:
1488 clk_disable_unprepare(nfc->ahb_clk);
1489
1490 return ret;
1491 }
1492
1493 static int sunxi_nfc_remove(struct platform_device *pdev)
1494 {
1495 struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
1496
1497 sunxi_nand_chips_cleanup(nfc);
1498
1499 return 0;
1500 }
1501
1502 static const struct of_device_id sunxi_nfc_ids[] = {
1503 { .compatible = "allwinner,sun4i-a10-nand" },
1504 { /* sentinel */ }
1505 };
1506 MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
1507
1508 static struct platform_driver sunxi_nfc_driver = {
1509 .driver = {
1510 .name = "sunxi_nand",
1511 .of_match_table = sunxi_nfc_ids,
1512 },
1513 .probe = sunxi_nfc_probe,
1514 .remove = sunxi_nfc_remove,
1515 };
1516 module_platform_driver(sunxi_nfc_driver);
1517
1518 MODULE_LICENSE("GPL v2");
1519 MODULE_AUTHOR("Boris BREZILLON");
1520 MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
1521 MODULE_ALIAS("platform:sunxi_nand");
This page took 0.088391 seconds and 5 git commands to generate.