Merge branch 'linus' into locking/urgent, to pick up fixes
[deliverable/linux.git] / drivers / mtd / nand / vf610_nfc.c
1 /*
2 * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
3 *
4 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5 * Jason ported to M54418TWR and MVFA5 (VF610).
6 * Authors: Stefan Agner <stefan.agner@toradex.com>
7 * Bill Pringlemeir <bpringlemeir@nbsps.com>
8 * Shaohui Xie <b21989@freescale.com>
9 * Jason Jin <Jason.jin@freescale.com>
10 *
11 * Based on original driver mpc5121_nfc.c.
12 *
13 * This is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * Limitations:
19 * - Untested on MPC5125 and M54418.
20 * - DMA and pipelining not used.
21 * - 2K pages or less.
22 * - HW ECC: Only 2K page with 64+ OOB.
23 * - HW ECC: Only 24 and 32-bit error correction implemented.
24 */
25
26 #include <linux/module.h>
27 #include <linux/bitops.h>
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/of_device.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/platform_device.h>
39 #include <linux/slab.h>
40
41 #define DRV_NAME "vf610_nfc"
42
43 /* Register Offsets */
44 #define NFC_FLASH_CMD1 0x3F00
45 #define NFC_FLASH_CMD2 0x3F04
46 #define NFC_COL_ADDR 0x3F08
47 #define NFC_ROW_ADDR 0x3F0c
48 #define NFC_ROW_ADDR_INC 0x3F14
49 #define NFC_FLASH_STATUS1 0x3F18
50 #define NFC_FLASH_STATUS2 0x3F1c
51 #define NFC_CACHE_SWAP 0x3F28
52 #define NFC_SECTOR_SIZE 0x3F2c
53 #define NFC_FLASH_CONFIG 0x3F30
54 #define NFC_IRQ_STATUS 0x3F38
55
56 /* Addresses for NFC MAIN RAM BUFFER areas */
57 #define NFC_MAIN_AREA(n) ((n) * 0x1000)
58
59 #define PAGE_2K 0x0800
60 #define OOB_64 0x0040
61 #define OOB_MAX 0x0100
62
63 /*
64 * NFC_CMD2[CODE] values. See section:
65 * - 31.4.7 Flash Command Code Description, Vybrid manual
66 * - 23.8.6 Flash Command Sequencer, MPC5125 manual
67 *
68 * Briefly these are bitmasks of controller cycles.
69 */
70 #define READ_PAGE_CMD_CODE 0x7EE0
71 #define READ_ONFI_PARAM_CMD_CODE 0x4860
72 #define PROGRAM_PAGE_CMD_CODE 0x7FC0
73 #define ERASE_CMD_CODE 0x4EC0
74 #define READ_ID_CMD_CODE 0x4804
75 #define RESET_CMD_CODE 0x4040
76 #define STATUS_READ_CMD_CODE 0x4068
77
78 /* NFC ECC mode define */
79 #define ECC_BYPASS 0
80 #define ECC_45_BYTE 6
81 #define ECC_60_BYTE 7
82
83 /*** Register Mask and bit definitions */
84
85 /* NFC_FLASH_CMD1 Field */
86 #define CMD_BYTE2_MASK 0xFF000000
87 #define CMD_BYTE2_SHIFT 24
88
89 /* NFC_FLASH_CM2 Field */
90 #define CMD_BYTE1_MASK 0xFF000000
91 #define CMD_BYTE1_SHIFT 24
92 #define CMD_CODE_MASK 0x00FFFF00
93 #define CMD_CODE_SHIFT 8
94 #define BUFNO_MASK 0x00000006
95 #define BUFNO_SHIFT 1
96 #define START_BIT BIT(0)
97
98 /* NFC_COL_ADDR Field */
99 #define COL_ADDR_MASK 0x0000FFFF
100 #define COL_ADDR_SHIFT 0
101
102 /* NFC_ROW_ADDR Field */
103 #define ROW_ADDR_MASK 0x00FFFFFF
104 #define ROW_ADDR_SHIFT 0
105 #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
106 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
107 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
108 #define ROW_ADDR_CHIP_SEL_SHIFT 24
109
110 /* NFC_FLASH_STATUS2 Field */
111 #define STATUS_BYTE1_MASK 0x000000FF
112
113 /* NFC_FLASH_CONFIG Field */
114 #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
115 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22
116 #define CONFIG_ECC_SRAM_REQ_BIT BIT(21)
117 #define CONFIG_DMA_REQ_BIT BIT(20)
118 #define CONFIG_ECC_MODE_MASK 0x000E0000
119 #define CONFIG_ECC_MODE_SHIFT 17
120 #define CONFIG_FAST_FLASH_BIT BIT(16)
121 #define CONFIG_16BIT BIT(7)
122 #define CONFIG_BOOT_MODE_BIT BIT(6)
123 #define CONFIG_ADDR_AUTO_INCR_BIT BIT(5)
124 #define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4)
125 #define CONFIG_PAGE_CNT_MASK 0xF
126 #define CONFIG_PAGE_CNT_SHIFT 0
127
128 /* NFC_IRQ_STATUS Field */
129 #define IDLE_IRQ_BIT BIT(29)
130 #define IDLE_EN_BIT BIT(20)
131 #define CMD_DONE_CLEAR_BIT BIT(18)
132 #define IDLE_CLEAR_BIT BIT(17)
133
134 /*
135 * ECC status - seems to consume 8 bytes (double word). The documented
136 * status byte is located in the lowest byte of the second word (which is
137 * the 4th or 7th byte depending on endianness).
138 * Calculate an offset to store the ECC status at the end of the buffer.
139 */
140 #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
141
142 #define ECC_STATUS 0x4
143 #define ECC_STATUS_MASK 0x80
144 #define ECC_STATUS_ERR_COUNT 0x3F
145
146 enum vf610_nfc_alt_buf {
147 ALT_BUF_DATA = 0,
148 ALT_BUF_ID = 1,
149 ALT_BUF_STAT = 2,
150 ALT_BUF_ONFI = 3,
151 };
152
153 enum vf610_nfc_variant {
154 NFC_VFC610 = 1,
155 };
156
157 struct vf610_nfc {
158 struct nand_chip chip;
159 struct device *dev;
160 void __iomem *regs;
161 struct completion cmd_done;
162 uint buf_offset;
163 int write_sz;
164 /* Status and ID are in alternate locations. */
165 enum vf610_nfc_alt_buf alt_buf;
166 enum vf610_nfc_variant variant;
167 struct clk *clk;
168 bool use_hw_ecc;
169 u32 ecc_mode;
170 };
171
172 static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
173 {
174 return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
175 }
176
177 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
178 {
179 return readl(nfc->regs + reg);
180 }
181
182 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
183 {
184 writel(val, nfc->regs + reg);
185 }
186
187 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
188 {
189 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
190 }
191
192 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
193 {
194 vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
195 }
196
197 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
198 u32 mask, u32 shift, u32 val)
199 {
200 vf610_nfc_write(nfc, reg,
201 (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
202 }
203
204 static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src,
205 size_t n)
206 {
207 /*
208 * Use this accessor for the internal SRAM buffers. On the ARM
209 * Freescale Vybrid SoC it's known that the driver can treat
210 * the SRAM buffer as if it's memory. Other platform might need
211 * to treat the buffers differently.
212 *
213 * For the time being, use memcpy
214 */
215 memcpy(dst, src, n);
216 }
217
218 /* Clear flags for upcoming command */
219 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
220 {
221 u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
222
223 tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
224 vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
225 }
226
227 static void vf610_nfc_done(struct vf610_nfc *nfc)
228 {
229 unsigned long timeout = msecs_to_jiffies(100);
230
231 /*
232 * Barrier is needed after this write. This write need
233 * to be done before reading the next register the first
234 * time.
235 * vf610_nfc_set implicates such a barrier by using writel
236 * to write to the register.
237 */
238 vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
239 vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
240
241 if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
242 dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
243
244 vf610_nfc_clear_status(nfc);
245 }
246
247 static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col)
248 {
249 u32 flash_id;
250
251 if (col < 4) {
252 flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1);
253 flash_id >>= (3 - col) * 8;
254 } else {
255 flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2);
256 flash_id >>= 24;
257 }
258
259 return flash_id & 0xff;
260 }
261
262 static u8 vf610_nfc_get_status(struct vf610_nfc *nfc)
263 {
264 return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
265 }
266
267 static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1,
268 u32 cmd_code)
269 {
270 u32 tmp;
271
272 vf610_nfc_clear_status(nfc);
273
274 tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2);
275 tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
276 tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
277 tmp |= cmd_code << CMD_CODE_SHIFT;
278 vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp);
279 }
280
281 static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1,
282 u32 cmd_byte2, u32 cmd_code)
283 {
284 u32 tmp;
285
286 vf610_nfc_send_command(nfc, cmd_byte1, cmd_code);
287
288 tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1);
289 tmp &= ~CMD_BYTE2_MASK;
290 tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
291 vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp);
292 }
293
294 static irqreturn_t vf610_nfc_irq(int irq, void *data)
295 {
296 struct mtd_info *mtd = data;
297 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
298
299 vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
300 complete(&nfc->cmd_done);
301
302 return IRQ_HANDLED;
303 }
304
305 static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page)
306 {
307 if (column != -1) {
308 if (nfc->chip.options & NAND_BUSWIDTH_16)
309 column = column / 2;
310 vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
311 COL_ADDR_SHIFT, column);
312 }
313 if (page != -1)
314 vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
315 ROW_ADDR_SHIFT, page);
316 }
317
318 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
319 {
320 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
321 CONFIG_ECC_MODE_MASK,
322 CONFIG_ECC_MODE_SHIFT, ecc_mode);
323 }
324
325 static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
326 {
327 vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
328 }
329
330 static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
331 int column, int page)
332 {
333 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
334 int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
335
336 nfc->buf_offset = max(column, 0);
337 nfc->alt_buf = ALT_BUF_DATA;
338
339 switch (command) {
340 case NAND_CMD_SEQIN:
341 /* Use valid column/page from preread... */
342 vf610_nfc_addr_cycle(nfc, column, page);
343 nfc->buf_offset = 0;
344
345 /*
346 * SEQIN => data => PAGEPROG sequence is done by the controller
347 * hence we do not need to issue the command here...
348 */
349 return;
350 case NAND_CMD_PAGEPROG:
351 trfr_sz += nfc->write_sz;
352 vf610_nfc_transfer_size(nfc, trfr_sz);
353 vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN,
354 command, PROGRAM_PAGE_CMD_CODE);
355 if (nfc->use_hw_ecc)
356 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
357 else
358 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
359 break;
360
361 case NAND_CMD_RESET:
362 vf610_nfc_transfer_size(nfc, 0);
363 vf610_nfc_send_command(nfc, command, RESET_CMD_CODE);
364 break;
365
366 case NAND_CMD_READOOB:
367 trfr_sz += mtd->oobsize;
368 column = mtd->writesize;
369 vf610_nfc_transfer_size(nfc, trfr_sz);
370 vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
371 NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
372 vf610_nfc_addr_cycle(nfc, column, page);
373 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
374 break;
375
376 case NAND_CMD_READ0:
377 trfr_sz += mtd->writesize + mtd->oobsize;
378 vf610_nfc_transfer_size(nfc, trfr_sz);
379 vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
380 NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
381 vf610_nfc_addr_cycle(nfc, column, page);
382 vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
383 break;
384
385 case NAND_CMD_PARAM:
386 nfc->alt_buf = ALT_BUF_ONFI;
387 trfr_sz = 3 * sizeof(struct nand_onfi_params);
388 vf610_nfc_transfer_size(nfc, trfr_sz);
389 vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE);
390 vf610_nfc_addr_cycle(nfc, -1, column);
391 vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
392 break;
393
394 case NAND_CMD_ERASE1:
395 vf610_nfc_transfer_size(nfc, 0);
396 vf610_nfc_send_commands(nfc, command,
397 NAND_CMD_ERASE2, ERASE_CMD_CODE);
398 vf610_nfc_addr_cycle(nfc, column, page);
399 break;
400
401 case NAND_CMD_READID:
402 nfc->alt_buf = ALT_BUF_ID;
403 nfc->buf_offset = 0;
404 vf610_nfc_transfer_size(nfc, 0);
405 vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE);
406 vf610_nfc_addr_cycle(nfc, -1, column);
407 break;
408
409 case NAND_CMD_STATUS:
410 nfc->alt_buf = ALT_BUF_STAT;
411 vf610_nfc_transfer_size(nfc, 0);
412 vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE);
413 break;
414 default:
415 return;
416 }
417
418 vf610_nfc_done(nfc);
419
420 nfc->use_hw_ecc = false;
421 nfc->write_sz = 0;
422 }
423
424 static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
425 {
426 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
427 uint c = nfc->buf_offset;
428
429 /* Alternate buffers are only supported through read_byte */
430 WARN_ON(nfc->alt_buf);
431
432 vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
433
434 nfc->buf_offset += len;
435 }
436
437 static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
438 int len)
439 {
440 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
441 uint c = nfc->buf_offset;
442 uint l;
443
444 l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
445 vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
446
447 nfc->write_sz += l;
448 nfc->buf_offset += l;
449 }
450
451 static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
452 {
453 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
454 u8 tmp;
455 uint c = nfc->buf_offset;
456
457 switch (nfc->alt_buf) {
458 case ALT_BUF_ID:
459 tmp = vf610_nfc_get_id(nfc, c);
460 break;
461 case ALT_BUF_STAT:
462 tmp = vf610_nfc_get_status(nfc);
463 break;
464 #ifdef __LITTLE_ENDIAN
465 case ALT_BUF_ONFI:
466 /* Reverse byte since the controller uses big endianness */
467 c = nfc->buf_offset ^ 0x3;
468 /* fall-through */
469 #endif
470 default:
471 tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
472 break;
473 }
474 nfc->buf_offset++;
475 return tmp;
476 }
477
478 static u16 vf610_nfc_read_word(struct mtd_info *mtd)
479 {
480 u16 tmp;
481
482 vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
483 return tmp;
484 }
485
486 /* If not provided, upper layers apply a fixed delay. */
487 static int vf610_nfc_dev_ready(struct mtd_info *mtd)
488 {
489 /* NFC handles R/B internally; always ready. */
490 return 1;
491 }
492
493 /*
494 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
495 */
496 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
497 {
498 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
499 u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
500
501 /* Vybrid only (MPC5125 would have full RB and four CS) */
502 if (nfc->variant != NFC_VFC610)
503 return;
504
505 tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
506
507 if (chip >= 0) {
508 tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
509 tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
510 }
511
512 vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
513 }
514
515 /* Count the number of 0's in buff up to max_bits */
516 static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
517 {
518 uint32_t *buff32 = (uint32_t *)buff;
519 int k, written_bits = 0;
520
521 for (k = 0; k < (size / 4); k++) {
522 written_bits += hweight32(~buff32[k]);
523 if (unlikely(written_bits > max_bits))
524 break;
525 }
526
527 return written_bits;
528 }
529
530 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
531 uint8_t *oob, int page)
532 {
533 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
534 u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
535 u8 ecc_status;
536 u8 ecc_count;
537 int flips_threshold = nfc->chip.ecc.strength / 2;
538
539 ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
540 ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
541
542 if (!(ecc_status & ECC_STATUS_MASK))
543 return ecc_count;
544
545 /* Read OOB without ECC unit enabled */
546 vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
547 vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
548
549 /*
550 * On an erased page, bit count (including OOB) should be zero or
551 * at least less then half of the ECC strength.
552 */
553 return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
554 mtd->oobsize, NULL, 0,
555 flips_threshold);
556 }
557
558 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
559 uint8_t *buf, int oob_required, int page)
560 {
561 int eccsize = chip->ecc.size;
562 int stat;
563
564 vf610_nfc_read_buf(mtd, buf, eccsize);
565 if (oob_required)
566 vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
567
568 stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
569
570 if (stat < 0) {
571 mtd->ecc_stats.failed++;
572 return 0;
573 } else {
574 mtd->ecc_stats.corrected += stat;
575 return stat;
576 }
577 }
578
579 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
580 const uint8_t *buf, int oob_required, int page)
581 {
582 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
583
584 vf610_nfc_write_buf(mtd, buf, mtd->writesize);
585 if (oob_required)
586 vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
587
588 /* Always write whole page including OOB due to HW ECC */
589 nfc->use_hw_ecc = true;
590 nfc->write_sz = mtd->writesize + mtd->oobsize;
591
592 return 0;
593 }
594
595 static const struct of_device_id vf610_nfc_dt_ids[] = {
596 { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
597 { /* sentinel */ }
598 };
599 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
600
601 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
602 {
603 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
604 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
605 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
606 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
607 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
608 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
609
610 /* Disable virtual pages, only one elementary transfer unit */
611 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
612 CONFIG_PAGE_CNT_SHIFT, 1);
613 }
614
615 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
616 {
617 if (nfc->chip.options & NAND_BUSWIDTH_16)
618 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
619 else
620 vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
621
622 if (nfc->chip.ecc.mode == NAND_ECC_HW) {
623 /* Set ECC status offset in SRAM */
624 vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
625 CONFIG_ECC_SRAM_ADDR_MASK,
626 CONFIG_ECC_SRAM_ADDR_SHIFT,
627 ECC_SRAM_ADDR >> 3);
628
629 /* Enable ECC status in SRAM */
630 vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
631 }
632 }
633
634 static int vf610_nfc_probe(struct platform_device *pdev)
635 {
636 struct vf610_nfc *nfc;
637 struct resource *res;
638 struct mtd_info *mtd;
639 struct nand_chip *chip;
640 struct device_node *child;
641 const struct of_device_id *of_id;
642 int err;
643 int irq;
644
645 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
646 if (!nfc)
647 return -ENOMEM;
648
649 nfc->dev = &pdev->dev;
650 chip = &nfc->chip;
651 mtd = nand_to_mtd(chip);
652
653 mtd->owner = THIS_MODULE;
654 mtd->dev.parent = nfc->dev;
655 mtd->name = DRV_NAME;
656
657 irq = platform_get_irq(pdev, 0);
658 if (irq <= 0)
659 return -EINVAL;
660
661 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
662 nfc->regs = devm_ioremap_resource(nfc->dev, res);
663 if (IS_ERR(nfc->regs))
664 return PTR_ERR(nfc->regs);
665
666 nfc->clk = devm_clk_get(&pdev->dev, NULL);
667 if (IS_ERR(nfc->clk))
668 return PTR_ERR(nfc->clk);
669
670 err = clk_prepare_enable(nfc->clk);
671 if (err) {
672 dev_err(nfc->dev, "Unable to enable clock!\n");
673 return err;
674 }
675
676 of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
677 nfc->variant = (enum vf610_nfc_variant)of_id->data;
678
679 for_each_available_child_of_node(nfc->dev->of_node, child) {
680 if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
681
682 if (nand_get_flash_node(chip)) {
683 dev_err(nfc->dev,
684 "Only one NAND chip supported!\n");
685 err = -EINVAL;
686 goto error;
687 }
688
689 nand_set_flash_node(chip, child);
690 }
691 }
692
693 if (!nand_get_flash_node(chip)) {
694 dev_err(nfc->dev, "NAND chip sub-node missing!\n");
695 err = -ENODEV;
696 goto err_clk;
697 }
698
699 chip->dev_ready = vf610_nfc_dev_ready;
700 chip->cmdfunc = vf610_nfc_command;
701 chip->read_byte = vf610_nfc_read_byte;
702 chip->read_word = vf610_nfc_read_word;
703 chip->read_buf = vf610_nfc_read_buf;
704 chip->write_buf = vf610_nfc_write_buf;
705 chip->select_chip = vf610_nfc_select_chip;
706
707 chip->options |= NAND_NO_SUBPAGE_WRITE;
708
709 init_completion(&nfc->cmd_done);
710
711 err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
712 if (err) {
713 dev_err(nfc->dev, "Error requesting IRQ!\n");
714 goto error;
715 }
716
717 vf610_nfc_preinit_controller(nfc);
718
719 /* first scan to find the device and get the page size */
720 if (nand_scan_ident(mtd, 1, NULL)) {
721 err = -ENXIO;
722 goto error;
723 }
724
725 vf610_nfc_init_controller(nfc);
726
727 /* Bad block options. */
728 if (chip->bbt_options & NAND_BBT_USE_FLASH)
729 chip->bbt_options |= NAND_BBT_NO_OOB;
730
731 /* Single buffer only, max 256 OOB minus ECC status */
732 if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
733 dev_err(nfc->dev, "Unsupported flash page size\n");
734 err = -ENXIO;
735 goto error;
736 }
737
738 if (chip->ecc.mode == NAND_ECC_HW) {
739 if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
740 dev_err(nfc->dev, "Unsupported flash with hwecc\n");
741 err = -ENXIO;
742 goto error;
743 }
744
745 if (chip->ecc.size != mtd->writesize) {
746 dev_err(nfc->dev, "Step size needs to be page size\n");
747 err = -ENXIO;
748 goto error;
749 }
750
751 /* Only 64 byte ECC layouts known */
752 if (mtd->oobsize > 64)
753 mtd->oobsize = 64;
754
755 /*
756 * mtd->ecclayout is not specified here because we're using the
757 * default large page ECC layout defined in NAND core.
758 */
759 if (chip->ecc.strength == 32) {
760 nfc->ecc_mode = ECC_60_BYTE;
761 chip->ecc.bytes = 60;
762 } else if (chip->ecc.strength == 24) {
763 nfc->ecc_mode = ECC_45_BYTE;
764 chip->ecc.bytes = 45;
765 } else {
766 dev_err(nfc->dev, "Unsupported ECC strength\n");
767 err = -ENXIO;
768 goto error;
769 }
770
771 chip->ecc.read_page = vf610_nfc_read_page;
772 chip->ecc.write_page = vf610_nfc_write_page;
773
774 chip->ecc.size = PAGE_2K;
775 }
776
777 /* second phase scan */
778 if (nand_scan_tail(mtd)) {
779 err = -ENXIO;
780 goto error;
781 }
782
783 platform_set_drvdata(pdev, mtd);
784
785 /* Register device in MTD */
786 return mtd_device_register(mtd, NULL, 0);
787
788 error:
789 of_node_put(nand_get_flash_node(chip));
790 err_clk:
791 clk_disable_unprepare(nfc->clk);
792 return err;
793 }
794
795 static int vf610_nfc_remove(struct platform_device *pdev)
796 {
797 struct mtd_info *mtd = platform_get_drvdata(pdev);
798 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
799
800 nand_release(mtd);
801 clk_disable_unprepare(nfc->clk);
802 return 0;
803 }
804
805 #ifdef CONFIG_PM_SLEEP
806 static int vf610_nfc_suspend(struct device *dev)
807 {
808 struct mtd_info *mtd = dev_get_drvdata(dev);
809 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
810
811 clk_disable_unprepare(nfc->clk);
812 return 0;
813 }
814
815 static int vf610_nfc_resume(struct device *dev)
816 {
817 struct mtd_info *mtd = dev_get_drvdata(dev);
818 struct vf610_nfc *nfc = mtd_to_nfc(mtd);
819
820 pinctrl_pm_select_default_state(dev);
821
822 clk_prepare_enable(nfc->clk);
823
824 vf610_nfc_preinit_controller(nfc);
825 vf610_nfc_init_controller(nfc);
826 return 0;
827 }
828 #endif
829
830 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
831
832 static struct platform_driver vf610_nfc_driver = {
833 .driver = {
834 .name = DRV_NAME,
835 .of_match_table = vf610_nfc_dt_ids,
836 .pm = &vf610_nfc_pm_ops,
837 },
838 .probe = vf610_nfc_probe,
839 .remove = vf610_nfc_remove,
840 };
841
842 module_platform_driver(vf610_nfc_driver);
843
844 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
845 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
846 MODULE_LICENSE("GPL");
This page took 0.099479 seconds and 5 git commands to generate.