mtd: add leading underscore to all mtd functions
[deliverable/linux.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2 * linux/drivers/mtd/onenand/onenand_base.c
3 *
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
6 *
7 * Kyungmin Park <kyungmin.park@samsung.com>
8 *
9 * Credits:
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
12 *
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
15 * Amul Kumar Saha <amul.saha at samsung.com>
16 * OTP support
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
35
36 #include <asm/io.h>
37
38 /*
39 * Multiblock erase if number of blocks to erase is 2 or more.
40 * Maximum number of blocks for simultaneous erase is 64.
41 */
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
44
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
47
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
50 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51 "DIE_BDRY: SLC boundary of the die"
52 "LOCK: Locking information for SLC boundary"
53 " : 0->Set boundary in unlocked status"
54 " : 1->Set boundary in locked status");
55
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
58
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
61 "Syntax : otp=LOCK_TYPE"
62 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63 " : 0 -> Default (No Blocks Locked)"
64 " : 1 -> OTP Block lock"
65 " : 2 -> 1st Block lock"
66 " : 3 -> BOTH OTP Block and 1st Block lock");
67
68 /*
69 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
70 * For now, we expose only 64 out of 80 ecc bytes
71 */
72 static struct nand_ecclayout flexonenand_oob_128 = {
73 .eccbytes = 64,
74 .eccpos = {
75 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81 102, 103, 104, 105
82 },
83 .oobfree = {
84 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85 {66, 4}, {82, 4}, {98, 4}, {114, 4}
86 }
87 };
88
89 /*
90 * onenand_oob_128 - oob info for OneNAND with 4KB page
91 *
92 * Based on specification:
93 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
94 *
95 * For eccpos we expose only 64 bytes out of 72 (see struct nand_ecclayout)
96 *
97 * oobfree uses the spare area fields marked as
98 * "Managed by internal ECC logic for Logical Sector Number area"
99 */
100 static struct nand_ecclayout onenand_oob_128 = {
101 .eccbytes = 64,
102 .eccpos = {
103 7, 8, 9, 10, 11, 12, 13, 14, 15,
104 23, 24, 25, 26, 27, 28, 29, 30, 31,
105 39, 40, 41, 42, 43, 44, 45, 46, 47,
106 55, 56, 57, 58, 59, 60, 61, 62, 63,
107 71, 72, 73, 74, 75, 76, 77, 78, 79,
108 87, 88, 89, 90, 91, 92, 93, 94, 95,
109 103, 104, 105, 106, 107, 108, 109, 110, 111,
110 119
111 },
112 .oobfree = {
113 {2, 3}, {18, 3}, {34, 3}, {50, 3},
114 {66, 3}, {82, 3}, {98, 3}, {114, 3}
115 }
116 };
117
118 /**
119 * onenand_oob_64 - oob info for large (2KB) page
120 */
121 static struct nand_ecclayout onenand_oob_64 = {
122 .eccbytes = 20,
123 .eccpos = {
124 8, 9, 10, 11, 12,
125 24, 25, 26, 27, 28,
126 40, 41, 42, 43, 44,
127 56, 57, 58, 59, 60,
128 },
129 .oobfree = {
130 {2, 3}, {14, 2}, {18, 3}, {30, 2},
131 {34, 3}, {46, 2}, {50, 3}, {62, 2}
132 }
133 };
134
135 /**
136 * onenand_oob_32 - oob info for middle (1KB) page
137 */
138 static struct nand_ecclayout onenand_oob_32 = {
139 .eccbytes = 10,
140 .eccpos = {
141 8, 9, 10, 11, 12,
142 24, 25, 26, 27, 28,
143 },
144 .oobfree = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
145 };
146
147 static const unsigned char ffchars[] = {
148 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
149 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
150 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
151 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
152 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
153 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
154 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
155 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
156 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
157 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
158 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
159 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
160 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
161 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
162 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
163 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
164 };
165
166 /**
167 * onenand_readw - [OneNAND Interface] Read OneNAND register
168 * @param addr address to read
169 *
170 * Read OneNAND register
171 */
172 static unsigned short onenand_readw(void __iomem *addr)
173 {
174 return readw(addr);
175 }
176
177 /**
178 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
179 * @param value value to write
180 * @param addr address to write
181 *
182 * Write OneNAND register with value
183 */
184 static void onenand_writew(unsigned short value, void __iomem *addr)
185 {
186 writew(value, addr);
187 }
188
189 /**
190 * onenand_block_address - [DEFAULT] Get block address
191 * @param this onenand chip data structure
192 * @param block the block
193 * @return translated block address if DDP, otherwise same
194 *
195 * Setup Start Address 1 Register (F100h)
196 */
197 static int onenand_block_address(struct onenand_chip *this, int block)
198 {
199 /* Device Flash Core select, NAND Flash Block Address */
200 if (block & this->density_mask)
201 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
202
203 return block;
204 }
205
206 /**
207 * onenand_bufferram_address - [DEFAULT] Get bufferram address
208 * @param this onenand chip data structure
209 * @param block the block
210 * @return set DBS value if DDP, otherwise 0
211 *
212 * Setup Start Address 2 Register (F101h) for DDP
213 */
214 static int onenand_bufferram_address(struct onenand_chip *this, int block)
215 {
216 /* Device BufferRAM Select */
217 if (block & this->density_mask)
218 return ONENAND_DDP_CHIP1;
219
220 return ONENAND_DDP_CHIP0;
221 }
222
223 /**
224 * onenand_page_address - [DEFAULT] Get page address
225 * @param page the page address
226 * @param sector the sector address
227 * @return combined page and sector address
228 *
229 * Setup Start Address 8 Register (F107h)
230 */
231 static int onenand_page_address(int page, int sector)
232 {
233 /* Flash Page Address, Flash Sector Address */
234 int fpa, fsa;
235
236 fpa = page & ONENAND_FPA_MASK;
237 fsa = sector & ONENAND_FSA_MASK;
238
239 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
240 }
241
242 /**
243 * onenand_buffer_address - [DEFAULT] Get buffer address
244 * @param dataram1 DataRAM index
245 * @param sectors the sector address
246 * @param count the number of sectors
247 * @return the start buffer value
248 *
249 * Setup Start Buffer Register (F200h)
250 */
251 static int onenand_buffer_address(int dataram1, int sectors, int count)
252 {
253 int bsa, bsc;
254
255 /* BufferRAM Sector Address */
256 bsa = sectors & ONENAND_BSA_MASK;
257
258 if (dataram1)
259 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
260 else
261 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
262
263 /* BufferRAM Sector Count */
264 bsc = count & ONENAND_BSC_MASK;
265
266 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
267 }
268
269 /**
270 * flexonenand_block- For given address return block number
271 * @param this - OneNAND device structure
272 * @param addr - Address for which block number is needed
273 */
274 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
275 {
276 unsigned boundary, blk, die = 0;
277
278 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
279 die = 1;
280 addr -= this->diesize[0];
281 }
282
283 boundary = this->boundary[die];
284
285 blk = addr >> (this->erase_shift - 1);
286 if (blk > boundary)
287 blk = (blk + boundary + 1) >> 1;
288
289 blk += die ? this->density_mask : 0;
290 return blk;
291 }
292
293 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
294 {
295 if (!FLEXONENAND(this))
296 return addr >> this->erase_shift;
297 return flexonenand_block(this, addr);
298 }
299
300 /**
301 * flexonenand_addr - Return address of the block
302 * @this: OneNAND device structure
303 * @block: Block number on Flex-OneNAND
304 *
305 * Return address of the block
306 */
307 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
308 {
309 loff_t ofs = 0;
310 int die = 0, boundary;
311
312 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
313 block -= this->density_mask;
314 die = 1;
315 ofs = this->diesize[0];
316 }
317
318 boundary = this->boundary[die];
319 ofs += (loff_t)block << (this->erase_shift - 1);
320 if (block > (boundary + 1))
321 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
322 return ofs;
323 }
324
325 loff_t onenand_addr(struct onenand_chip *this, int block)
326 {
327 if (!FLEXONENAND(this))
328 return (loff_t)block << this->erase_shift;
329 return flexonenand_addr(this, block);
330 }
331 EXPORT_SYMBOL(onenand_addr);
332
333 /**
334 * onenand_get_density - [DEFAULT] Get OneNAND density
335 * @param dev_id OneNAND device ID
336 *
337 * Get OneNAND density from device ID
338 */
339 static inline int onenand_get_density(int dev_id)
340 {
341 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
342 return (density & ONENAND_DEVICE_DENSITY_MASK);
343 }
344
345 /**
346 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
347 * @param mtd MTD device structure
348 * @param addr address whose erase region needs to be identified
349 */
350 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
351 {
352 int i;
353
354 for (i = 0; i < mtd->numeraseregions; i++)
355 if (addr < mtd->eraseregions[i].offset)
356 break;
357 return i - 1;
358 }
359 EXPORT_SYMBOL(flexonenand_region);
360
361 /**
362 * onenand_command - [DEFAULT] Send command to OneNAND device
363 * @param mtd MTD device structure
364 * @param cmd the command to be sent
365 * @param addr offset to read from or write to
366 * @param len number of bytes to read or write
367 *
368 * Send command to OneNAND device. This function is used for middle/large page
369 * devices (1KB/2KB Bytes per page)
370 */
371 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
372 {
373 struct onenand_chip *this = mtd->priv;
374 int value, block, page;
375
376 /* Address translation */
377 switch (cmd) {
378 case ONENAND_CMD_UNLOCK:
379 case ONENAND_CMD_LOCK:
380 case ONENAND_CMD_LOCK_TIGHT:
381 case ONENAND_CMD_UNLOCK_ALL:
382 block = -1;
383 page = -1;
384 break;
385
386 case FLEXONENAND_CMD_PI_ACCESS:
387 /* addr contains die index */
388 block = addr * this->density_mask;
389 page = -1;
390 break;
391
392 case ONENAND_CMD_ERASE:
393 case ONENAND_CMD_MULTIBLOCK_ERASE:
394 case ONENAND_CMD_ERASE_VERIFY:
395 case ONENAND_CMD_BUFFERRAM:
396 case ONENAND_CMD_OTP_ACCESS:
397 block = onenand_block(this, addr);
398 page = -1;
399 break;
400
401 case FLEXONENAND_CMD_READ_PI:
402 cmd = ONENAND_CMD_READ;
403 block = addr * this->density_mask;
404 page = 0;
405 break;
406
407 default:
408 block = onenand_block(this, addr);
409 if (FLEXONENAND(this))
410 page = (int) (addr - onenand_addr(this, block))>>\
411 this->page_shift;
412 else
413 page = (int) (addr >> this->page_shift);
414 if (ONENAND_IS_2PLANE(this)) {
415 /* Make the even block number */
416 block &= ~1;
417 /* Is it the odd plane? */
418 if (addr & this->writesize)
419 block++;
420 page >>= 1;
421 }
422 page &= this->page_mask;
423 break;
424 }
425
426 /* NOTE: The setting order of the registers is very important! */
427 if (cmd == ONENAND_CMD_BUFFERRAM) {
428 /* Select DataRAM for DDP */
429 value = onenand_bufferram_address(this, block);
430 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
431
432 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
433 /* It is always BufferRAM0 */
434 ONENAND_SET_BUFFERRAM0(this);
435 else
436 /* Switch to the next data buffer */
437 ONENAND_SET_NEXT_BUFFERRAM(this);
438
439 return 0;
440 }
441
442 if (block != -1) {
443 /* Write 'DFS, FBA' of Flash */
444 value = onenand_block_address(this, block);
445 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
446
447 /* Select DataRAM for DDP */
448 value = onenand_bufferram_address(this, block);
449 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
450 }
451
452 if (page != -1) {
453 /* Now we use page size operation */
454 int sectors = 0, count = 0;
455 int dataram;
456
457 switch (cmd) {
458 case FLEXONENAND_CMD_RECOVER_LSB:
459 case ONENAND_CMD_READ:
460 case ONENAND_CMD_READOOB:
461 if (ONENAND_IS_4KB_PAGE(this))
462 /* It is always BufferRAM0 */
463 dataram = ONENAND_SET_BUFFERRAM0(this);
464 else
465 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
466 break;
467
468 default:
469 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
470 cmd = ONENAND_CMD_2X_PROG;
471 dataram = ONENAND_CURRENT_BUFFERRAM(this);
472 break;
473 }
474
475 /* Write 'FPA, FSA' of Flash */
476 value = onenand_page_address(page, sectors);
477 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
478
479 /* Write 'BSA, BSC' of DataRAM */
480 value = onenand_buffer_address(dataram, sectors, count);
481 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
482 }
483
484 /* Interrupt clear */
485 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
486
487 /* Write command */
488 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
489
490 return 0;
491 }
492
493 /**
494 * onenand_read_ecc - return ecc status
495 * @param this onenand chip structure
496 */
497 static inline int onenand_read_ecc(struct onenand_chip *this)
498 {
499 int ecc, i, result = 0;
500
501 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
502 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
503
504 for (i = 0; i < 4; i++) {
505 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
506 if (likely(!ecc))
507 continue;
508 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
509 return ONENAND_ECC_2BIT_ALL;
510 else
511 result = ONENAND_ECC_1BIT_ALL;
512 }
513
514 return result;
515 }
516
517 /**
518 * onenand_wait - [DEFAULT] wait until the command is done
519 * @param mtd MTD device structure
520 * @param state state to select the max. timeout value
521 *
522 * Wait for command done. This applies to all OneNAND command
523 * Read can take up to 30us, erase up to 2ms and program up to 350us
524 * according to general OneNAND specs
525 */
526 static int onenand_wait(struct mtd_info *mtd, int state)
527 {
528 struct onenand_chip * this = mtd->priv;
529 unsigned long timeout;
530 unsigned int flags = ONENAND_INT_MASTER;
531 unsigned int interrupt = 0;
532 unsigned int ctrl;
533
534 /* The 20 msec is enough */
535 timeout = jiffies + msecs_to_jiffies(20);
536 while (time_before(jiffies, timeout)) {
537 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
538
539 if (interrupt & flags)
540 break;
541
542 if (state != FL_READING && state != FL_PREPARING_ERASE)
543 cond_resched();
544 }
545 /* To get correct interrupt status in timeout case */
546 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
547
548 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
549
550 /*
551 * In the Spec. it checks the controller status first
552 * However if you get the correct information in case of
553 * power off recovery (POR) test, it should read ECC status first
554 */
555 if (interrupt & ONENAND_INT_READ) {
556 int ecc = onenand_read_ecc(this);
557 if (ecc) {
558 if (ecc & ONENAND_ECC_2BIT_ALL) {
559 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
560 __func__, ecc);
561 mtd->ecc_stats.failed++;
562 return -EBADMSG;
563 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
564 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
565 __func__, ecc);
566 mtd->ecc_stats.corrected++;
567 }
568 }
569 } else if (state == FL_READING) {
570 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
571 __func__, ctrl, interrupt);
572 return -EIO;
573 }
574
575 if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
576 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
577 __func__, ctrl, interrupt);
578 return -EIO;
579 }
580
581 if (!(interrupt & ONENAND_INT_MASTER)) {
582 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
583 __func__, ctrl, interrupt);
584 return -EIO;
585 }
586
587 /* If there's controller error, it's a real error */
588 if (ctrl & ONENAND_CTRL_ERROR) {
589 printk(KERN_ERR "%s: controller error = 0x%04x\n",
590 __func__, ctrl);
591 if (ctrl & ONENAND_CTRL_LOCK)
592 printk(KERN_ERR "%s: it's locked error.\n", __func__);
593 return -EIO;
594 }
595
596 return 0;
597 }
598
599 /*
600 * onenand_interrupt - [DEFAULT] onenand interrupt handler
601 * @param irq onenand interrupt number
602 * @param dev_id interrupt data
603 *
604 * complete the work
605 */
606 static irqreturn_t onenand_interrupt(int irq, void *data)
607 {
608 struct onenand_chip *this = data;
609
610 /* To handle shared interrupt */
611 if (!this->complete.done)
612 complete(&this->complete);
613
614 return IRQ_HANDLED;
615 }
616
617 /*
618 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
619 * @param mtd MTD device structure
620 * @param state state to select the max. timeout value
621 *
622 * Wait for command done.
623 */
624 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
625 {
626 struct onenand_chip *this = mtd->priv;
627
628 wait_for_completion(&this->complete);
629
630 return onenand_wait(mtd, state);
631 }
632
633 /*
634 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
635 * @param mtd MTD device structure
636 * @param state state to select the max. timeout value
637 *
638 * Try interrupt based wait (It is used one-time)
639 */
640 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
641 {
642 struct onenand_chip *this = mtd->priv;
643 unsigned long remain, timeout;
644
645 /* We use interrupt wait first */
646 this->wait = onenand_interrupt_wait;
647
648 timeout = msecs_to_jiffies(100);
649 remain = wait_for_completion_timeout(&this->complete, timeout);
650 if (!remain) {
651 printk(KERN_INFO "OneNAND: There's no interrupt. "
652 "We use the normal wait\n");
653
654 /* Release the irq */
655 free_irq(this->irq, this);
656
657 this->wait = onenand_wait;
658 }
659
660 return onenand_wait(mtd, state);
661 }
662
663 /*
664 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
665 * @param mtd MTD device structure
666 *
667 * There's two method to wait onenand work
668 * 1. polling - read interrupt status register
669 * 2. interrupt - use the kernel interrupt method
670 */
671 static void onenand_setup_wait(struct mtd_info *mtd)
672 {
673 struct onenand_chip *this = mtd->priv;
674 int syscfg;
675
676 init_completion(&this->complete);
677
678 if (this->irq <= 0) {
679 this->wait = onenand_wait;
680 return;
681 }
682
683 if (request_irq(this->irq, &onenand_interrupt,
684 IRQF_SHARED, "onenand", this)) {
685 /* If we can't get irq, use the normal wait */
686 this->wait = onenand_wait;
687 return;
688 }
689
690 /* Enable interrupt */
691 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
692 syscfg |= ONENAND_SYS_CFG1_IOBE;
693 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
694
695 this->wait = onenand_try_interrupt_wait;
696 }
697
698 /**
699 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
700 * @param mtd MTD data structure
701 * @param area BufferRAM area
702 * @return offset given area
703 *
704 * Return BufferRAM offset given area
705 */
706 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
707 {
708 struct onenand_chip *this = mtd->priv;
709
710 if (ONENAND_CURRENT_BUFFERRAM(this)) {
711 /* Note: the 'this->writesize' is a real page size */
712 if (area == ONENAND_DATARAM)
713 return this->writesize;
714 if (area == ONENAND_SPARERAM)
715 return mtd->oobsize;
716 }
717
718 return 0;
719 }
720
721 /**
722 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
723 * @param mtd MTD data structure
724 * @param area BufferRAM area
725 * @param buffer the databuffer to put/get data
726 * @param offset offset to read from or write to
727 * @param count number of bytes to read/write
728 *
729 * Read the BufferRAM area
730 */
731 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
732 unsigned char *buffer, int offset, size_t count)
733 {
734 struct onenand_chip *this = mtd->priv;
735 void __iomem *bufferram;
736
737 bufferram = this->base + area;
738
739 bufferram += onenand_bufferram_offset(mtd, area);
740
741 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
742 unsigned short word;
743
744 /* Align with word(16-bit) size */
745 count--;
746
747 /* Read word and save byte */
748 word = this->read_word(bufferram + offset + count);
749 buffer[count] = (word & 0xff);
750 }
751
752 memcpy(buffer, bufferram + offset, count);
753
754 return 0;
755 }
756
757 /**
758 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
759 * @param mtd MTD data structure
760 * @param area BufferRAM area
761 * @param buffer the databuffer to put/get data
762 * @param offset offset to read from or write to
763 * @param count number of bytes to read/write
764 *
765 * Read the BufferRAM area with Sync. Burst Mode
766 */
767 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
768 unsigned char *buffer, int offset, size_t count)
769 {
770 struct onenand_chip *this = mtd->priv;
771 void __iomem *bufferram;
772
773 bufferram = this->base + area;
774
775 bufferram += onenand_bufferram_offset(mtd, area);
776
777 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
778
779 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
780 unsigned short word;
781
782 /* Align with word(16-bit) size */
783 count--;
784
785 /* Read word and save byte */
786 word = this->read_word(bufferram + offset + count);
787 buffer[count] = (word & 0xff);
788 }
789
790 memcpy(buffer, bufferram + offset, count);
791
792 this->mmcontrol(mtd, 0);
793
794 return 0;
795 }
796
797 /**
798 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
799 * @param mtd MTD data structure
800 * @param area BufferRAM area
801 * @param buffer the databuffer to put/get data
802 * @param offset offset to read from or write to
803 * @param count number of bytes to read/write
804 *
805 * Write the BufferRAM area
806 */
807 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
808 const unsigned char *buffer, int offset, size_t count)
809 {
810 struct onenand_chip *this = mtd->priv;
811 void __iomem *bufferram;
812
813 bufferram = this->base + area;
814
815 bufferram += onenand_bufferram_offset(mtd, area);
816
817 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
818 unsigned short word;
819 int byte_offset;
820
821 /* Align with word(16-bit) size */
822 count--;
823
824 /* Calculate byte access offset */
825 byte_offset = offset + count;
826
827 /* Read word and save byte */
828 word = this->read_word(bufferram + byte_offset);
829 word = (word & ~0xff) | buffer[count];
830 this->write_word(word, bufferram + byte_offset);
831 }
832
833 memcpy(bufferram + offset, buffer, count);
834
835 return 0;
836 }
837
838 /**
839 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
840 * @param mtd MTD data structure
841 * @param addr address to check
842 * @return blockpage address
843 *
844 * Get blockpage address at 2x program mode
845 */
846 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
847 {
848 struct onenand_chip *this = mtd->priv;
849 int blockpage, block, page;
850
851 /* Calculate the even block number */
852 block = (int) (addr >> this->erase_shift) & ~1;
853 /* Is it the odd plane? */
854 if (addr & this->writesize)
855 block++;
856 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
857 blockpage = (block << 7) | page;
858
859 return blockpage;
860 }
861
862 /**
863 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
864 * @param mtd MTD data structure
865 * @param addr address to check
866 * @return 1 if there are valid data, otherwise 0
867 *
868 * Check bufferram if there is data we required
869 */
870 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
871 {
872 struct onenand_chip *this = mtd->priv;
873 int blockpage, found = 0;
874 unsigned int i;
875
876 if (ONENAND_IS_2PLANE(this))
877 blockpage = onenand_get_2x_blockpage(mtd, addr);
878 else
879 blockpage = (int) (addr >> this->page_shift);
880
881 /* Is there valid data? */
882 i = ONENAND_CURRENT_BUFFERRAM(this);
883 if (this->bufferram[i].blockpage == blockpage)
884 found = 1;
885 else {
886 /* Check another BufferRAM */
887 i = ONENAND_NEXT_BUFFERRAM(this);
888 if (this->bufferram[i].blockpage == blockpage) {
889 ONENAND_SET_NEXT_BUFFERRAM(this);
890 found = 1;
891 }
892 }
893
894 if (found && ONENAND_IS_DDP(this)) {
895 /* Select DataRAM for DDP */
896 int block = onenand_block(this, addr);
897 int value = onenand_bufferram_address(this, block);
898 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
899 }
900
901 return found;
902 }
903
904 /**
905 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
906 * @param mtd MTD data structure
907 * @param addr address to update
908 * @param valid valid flag
909 *
910 * Update BufferRAM information
911 */
912 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
913 int valid)
914 {
915 struct onenand_chip *this = mtd->priv;
916 int blockpage;
917 unsigned int i;
918
919 if (ONENAND_IS_2PLANE(this))
920 blockpage = onenand_get_2x_blockpage(mtd, addr);
921 else
922 blockpage = (int) (addr >> this->page_shift);
923
924 /* Invalidate another BufferRAM */
925 i = ONENAND_NEXT_BUFFERRAM(this);
926 if (this->bufferram[i].blockpage == blockpage)
927 this->bufferram[i].blockpage = -1;
928
929 /* Update BufferRAM */
930 i = ONENAND_CURRENT_BUFFERRAM(this);
931 if (valid)
932 this->bufferram[i].blockpage = blockpage;
933 else
934 this->bufferram[i].blockpage = -1;
935 }
936
937 /**
938 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
939 * @param mtd MTD data structure
940 * @param addr start address to invalidate
941 * @param len length to invalidate
942 *
943 * Invalidate BufferRAM information
944 */
945 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
946 unsigned int len)
947 {
948 struct onenand_chip *this = mtd->priv;
949 int i;
950 loff_t end_addr = addr + len;
951
952 /* Invalidate BufferRAM */
953 for (i = 0; i < MAX_BUFFERRAM; i++) {
954 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
955 if (buf_addr >= addr && buf_addr < end_addr)
956 this->bufferram[i].blockpage = -1;
957 }
958 }
959
960 /**
961 * onenand_get_device - [GENERIC] Get chip for selected access
962 * @param mtd MTD device structure
963 * @param new_state the state which is requested
964 *
965 * Get the device and lock it for exclusive access
966 */
967 static int onenand_get_device(struct mtd_info *mtd, int new_state)
968 {
969 struct onenand_chip *this = mtd->priv;
970 DECLARE_WAITQUEUE(wait, current);
971
972 /*
973 * Grab the lock and see if the device is available
974 */
975 while (1) {
976 spin_lock(&this->chip_lock);
977 if (this->state == FL_READY) {
978 this->state = new_state;
979 spin_unlock(&this->chip_lock);
980 if (new_state != FL_PM_SUSPENDED && this->enable)
981 this->enable(mtd);
982 break;
983 }
984 if (new_state == FL_PM_SUSPENDED) {
985 spin_unlock(&this->chip_lock);
986 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
987 }
988 set_current_state(TASK_UNINTERRUPTIBLE);
989 add_wait_queue(&this->wq, &wait);
990 spin_unlock(&this->chip_lock);
991 schedule();
992 remove_wait_queue(&this->wq, &wait);
993 }
994
995 return 0;
996 }
997
998 /**
999 * onenand_release_device - [GENERIC] release chip
1000 * @param mtd MTD device structure
1001 *
1002 * Deselect, release chip lock and wake up anyone waiting on the device
1003 */
1004 static void onenand_release_device(struct mtd_info *mtd)
1005 {
1006 struct onenand_chip *this = mtd->priv;
1007
1008 if (this->state != FL_PM_SUSPENDED && this->disable)
1009 this->disable(mtd);
1010 /* Release the chip */
1011 spin_lock(&this->chip_lock);
1012 this->state = FL_READY;
1013 wake_up(&this->wq);
1014 spin_unlock(&this->chip_lock);
1015 }
1016
1017 /**
1018 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1019 * @param mtd MTD device structure
1020 * @param buf destination address
1021 * @param column oob offset to read from
1022 * @param thislen oob length to read
1023 */
1024 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1025 int thislen)
1026 {
1027 struct onenand_chip *this = mtd->priv;
1028 struct nand_oobfree *free;
1029 int readcol = column;
1030 int readend = column + thislen;
1031 int lastgap = 0;
1032 unsigned int i;
1033 uint8_t *oob_buf = this->oob_buf;
1034
1035 free = this->ecclayout->oobfree;
1036 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1037 if (readcol >= lastgap)
1038 readcol += free->offset - lastgap;
1039 if (readend >= lastgap)
1040 readend += free->offset - lastgap;
1041 lastgap = free->offset + free->length;
1042 }
1043 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1044 free = this->ecclayout->oobfree;
1045 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1046 int free_end = free->offset + free->length;
1047 if (free->offset < readend && free_end > readcol) {
1048 int st = max_t(int,free->offset,readcol);
1049 int ed = min_t(int,free_end,readend);
1050 int n = ed - st;
1051 memcpy(buf, oob_buf + st, n);
1052 buf += n;
1053 } else if (column == 0)
1054 break;
1055 }
1056 return 0;
1057 }
1058
1059 /**
1060 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1061 * @param mtd MTD device structure
1062 * @param addr address to recover
1063 * @param status return value from onenand_wait / onenand_bbt_wait
1064 *
1065 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1066 * lower page address and MSB page has higher page address in paired pages.
1067 * If power off occurs during MSB page program, the paired LSB page data can
1068 * become corrupt. LSB page recovery read is a way to read LSB page though page
1069 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1070 * read after power up, issue LSB page recovery read.
1071 */
1072 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1073 {
1074 struct onenand_chip *this = mtd->priv;
1075 int i;
1076
1077 /* Recovery is only for Flex-OneNAND */
1078 if (!FLEXONENAND(this))
1079 return status;
1080
1081 /* check if we failed due to uncorrectable error */
1082 if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1083 return status;
1084
1085 /* check if address lies in MLC region */
1086 i = flexonenand_region(mtd, addr);
1087 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1088 return status;
1089
1090 /* We are attempting to reread, so decrement stats.failed
1091 * which was incremented by onenand_wait due to read failure
1092 */
1093 printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1094 __func__);
1095 mtd->ecc_stats.failed--;
1096
1097 /* Issue the LSB page recovery command */
1098 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1099 return this->wait(mtd, FL_READING);
1100 }
1101
1102 /**
1103 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1104 * @param mtd MTD device structure
1105 * @param from offset to read from
1106 * @param ops: oob operation description structure
1107 *
1108 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1109 * So, read-while-load is not present.
1110 */
1111 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1112 struct mtd_oob_ops *ops)
1113 {
1114 struct onenand_chip *this = mtd->priv;
1115 struct mtd_ecc_stats stats;
1116 size_t len = ops->len;
1117 size_t ooblen = ops->ooblen;
1118 u_char *buf = ops->datbuf;
1119 u_char *oobbuf = ops->oobbuf;
1120 int read = 0, column, thislen;
1121 int oobread = 0, oobcolumn, thisooblen, oobsize;
1122 int ret = 0;
1123 int writesize = this->writesize;
1124
1125 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1126 (int)len);
1127
1128 if (ops->mode == MTD_OPS_AUTO_OOB)
1129 oobsize = this->ecclayout->oobavail;
1130 else
1131 oobsize = mtd->oobsize;
1132
1133 oobcolumn = from & (mtd->oobsize - 1);
1134
1135 /* Do not allow reads past end of device */
1136 if (from + len > mtd->size) {
1137 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1138 __func__);
1139 ops->retlen = 0;
1140 ops->oobretlen = 0;
1141 return -EINVAL;
1142 }
1143
1144 stats = mtd->ecc_stats;
1145
1146 while (read < len) {
1147 cond_resched();
1148
1149 thislen = min_t(int, writesize, len - read);
1150
1151 column = from & (writesize - 1);
1152 if (column + thislen > writesize)
1153 thislen = writesize - column;
1154
1155 if (!onenand_check_bufferram(mtd, from)) {
1156 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1157
1158 ret = this->wait(mtd, FL_READING);
1159 if (unlikely(ret))
1160 ret = onenand_recover_lsb(mtd, from, ret);
1161 onenand_update_bufferram(mtd, from, !ret);
1162 if (mtd_is_eccerr(ret))
1163 ret = 0;
1164 if (ret)
1165 break;
1166 }
1167
1168 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1169 if (oobbuf) {
1170 thisooblen = oobsize - oobcolumn;
1171 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1172
1173 if (ops->mode == MTD_OPS_AUTO_OOB)
1174 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1175 else
1176 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1177 oobread += thisooblen;
1178 oobbuf += thisooblen;
1179 oobcolumn = 0;
1180 }
1181
1182 read += thislen;
1183 if (read == len)
1184 break;
1185
1186 from += thislen;
1187 buf += thislen;
1188 }
1189
1190 /*
1191 * Return success, if no ECC failures, else -EBADMSG
1192 * fs driver will take care of that, because
1193 * retlen == desired len and result == -EBADMSG
1194 */
1195 ops->retlen = read;
1196 ops->oobretlen = oobread;
1197
1198 if (ret)
1199 return ret;
1200
1201 if (mtd->ecc_stats.failed - stats.failed)
1202 return -EBADMSG;
1203
1204 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1205 }
1206
1207 /**
1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209 * @param mtd MTD device structure
1210 * @param from offset to read from
1211 * @param ops: oob operation description structure
1212 *
1213 * OneNAND read main and/or out-of-band data
1214 */
1215 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216 struct mtd_oob_ops *ops)
1217 {
1218 struct onenand_chip *this = mtd->priv;
1219 struct mtd_ecc_stats stats;
1220 size_t len = ops->len;
1221 size_t ooblen = ops->ooblen;
1222 u_char *buf = ops->datbuf;
1223 u_char *oobbuf = ops->oobbuf;
1224 int read = 0, column, thislen;
1225 int oobread = 0, oobcolumn, thisooblen, oobsize;
1226 int ret = 0, boundary = 0;
1227 int writesize = this->writesize;
1228
1229 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230 (int)len);
1231
1232 if (ops->mode == MTD_OPS_AUTO_OOB)
1233 oobsize = this->ecclayout->oobavail;
1234 else
1235 oobsize = mtd->oobsize;
1236
1237 oobcolumn = from & (mtd->oobsize - 1);
1238
1239 /* Do not allow reads past end of device */
1240 if ((from + len) > mtd->size) {
1241 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1242 __func__);
1243 ops->retlen = 0;
1244 ops->oobretlen = 0;
1245 return -EINVAL;
1246 }
1247
1248 stats = mtd->ecc_stats;
1249
1250 /* Read-while-load method */
1251
1252 /* Do first load to bufferRAM */
1253 if (read < len) {
1254 if (!onenand_check_bufferram(mtd, from)) {
1255 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1256 ret = this->wait(mtd, FL_READING);
1257 onenand_update_bufferram(mtd, from, !ret);
1258 if (mtd_is_eccerr(ret))
1259 ret = 0;
1260 }
1261 }
1262
1263 thislen = min_t(int, writesize, len - read);
1264 column = from & (writesize - 1);
1265 if (column + thislen > writesize)
1266 thislen = writesize - column;
1267
1268 while (!ret) {
1269 /* If there is more to load then start next load */
1270 from += thislen;
1271 if (read + thislen < len) {
1272 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1273 /*
1274 * Chip boundary handling in DDP
1275 * Now we issued chip 1 read and pointed chip 1
1276 * bufferram so we have to point chip 0 bufferram.
1277 */
1278 if (ONENAND_IS_DDP(this) &&
1279 unlikely(from == (this->chipsize >> 1))) {
1280 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1281 boundary = 1;
1282 } else
1283 boundary = 0;
1284 ONENAND_SET_PREV_BUFFERRAM(this);
1285 }
1286 /* While load is going, read from last bufferRAM */
1287 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1288
1289 /* Read oob area if needed */
1290 if (oobbuf) {
1291 thisooblen = oobsize - oobcolumn;
1292 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1293
1294 if (ops->mode == MTD_OPS_AUTO_OOB)
1295 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1296 else
1297 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1298 oobread += thisooblen;
1299 oobbuf += thisooblen;
1300 oobcolumn = 0;
1301 }
1302
1303 /* See if we are done */
1304 read += thislen;
1305 if (read == len)
1306 break;
1307 /* Set up for next read from bufferRAM */
1308 if (unlikely(boundary))
1309 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1310 ONENAND_SET_NEXT_BUFFERRAM(this);
1311 buf += thislen;
1312 thislen = min_t(int, writesize, len - read);
1313 column = 0;
1314 cond_resched();
1315 /* Now wait for load */
1316 ret = this->wait(mtd, FL_READING);
1317 onenand_update_bufferram(mtd, from, !ret);
1318 if (mtd_is_eccerr(ret))
1319 ret = 0;
1320 }
1321
1322 /*
1323 * Return success, if no ECC failures, else -EBADMSG
1324 * fs driver will take care of that, because
1325 * retlen == desired len and result == -EBADMSG
1326 */
1327 ops->retlen = read;
1328 ops->oobretlen = oobread;
1329
1330 if (ret)
1331 return ret;
1332
1333 if (mtd->ecc_stats.failed - stats.failed)
1334 return -EBADMSG;
1335
1336 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1337 }
1338
1339 /**
1340 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1341 * @param mtd MTD device structure
1342 * @param from offset to read from
1343 * @param ops: oob operation description structure
1344 *
1345 * OneNAND read out-of-band data from the spare area
1346 */
1347 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1348 struct mtd_oob_ops *ops)
1349 {
1350 struct onenand_chip *this = mtd->priv;
1351 struct mtd_ecc_stats stats;
1352 int read = 0, thislen, column, oobsize;
1353 size_t len = ops->ooblen;
1354 unsigned int mode = ops->mode;
1355 u_char *buf = ops->oobbuf;
1356 int ret = 0, readcmd;
1357
1358 from += ops->ooboffs;
1359
1360 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1361 (int)len);
1362
1363 /* Initialize return length value */
1364 ops->oobretlen = 0;
1365
1366 if (mode == MTD_OPS_AUTO_OOB)
1367 oobsize = this->ecclayout->oobavail;
1368 else
1369 oobsize = mtd->oobsize;
1370
1371 column = from & (mtd->oobsize - 1);
1372
1373 if (unlikely(column >= oobsize)) {
1374 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1375 __func__);
1376 return -EINVAL;
1377 }
1378
1379 /* Do not allow reads past end of device */
1380 if (unlikely(from >= mtd->size ||
1381 column + len > ((mtd->size >> this->page_shift) -
1382 (from >> this->page_shift)) * oobsize)) {
1383 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1384 __func__);
1385 return -EINVAL;
1386 }
1387
1388 stats = mtd->ecc_stats;
1389
1390 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1391
1392 while (read < len) {
1393 cond_resched();
1394
1395 thislen = oobsize - column;
1396 thislen = min_t(int, thislen, len);
1397
1398 this->command(mtd, readcmd, from, mtd->oobsize);
1399
1400 onenand_update_bufferram(mtd, from, 0);
1401
1402 ret = this->wait(mtd, FL_READING);
1403 if (unlikely(ret))
1404 ret = onenand_recover_lsb(mtd, from, ret);
1405
1406 if (ret && !mtd_is_eccerr(ret)) {
1407 printk(KERN_ERR "%s: read failed = 0x%x\n",
1408 __func__, ret);
1409 break;
1410 }
1411
1412 if (mode == MTD_OPS_AUTO_OOB)
1413 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1414 else
1415 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1416
1417 read += thislen;
1418
1419 if (read == len)
1420 break;
1421
1422 buf += thislen;
1423
1424 /* Read more? */
1425 if (read < len) {
1426 /* Page size */
1427 from += mtd->writesize;
1428 column = 0;
1429 }
1430 }
1431
1432 ops->oobretlen = read;
1433
1434 if (ret)
1435 return ret;
1436
1437 if (mtd->ecc_stats.failed - stats.failed)
1438 return -EBADMSG;
1439
1440 return 0;
1441 }
1442
1443 /**
1444 * onenand_read - [MTD Interface] Read data from flash
1445 * @param mtd MTD device structure
1446 * @param from offset to read from
1447 * @param len number of bytes to read
1448 * @param retlen pointer to variable to store the number of read bytes
1449 * @param buf the databuffer to put data
1450 *
1451 * Read with ecc
1452 */
1453 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1454 size_t *retlen, u_char *buf)
1455 {
1456 struct onenand_chip *this = mtd->priv;
1457 struct mtd_oob_ops ops = {
1458 .len = len,
1459 .ooblen = 0,
1460 .datbuf = buf,
1461 .oobbuf = NULL,
1462 };
1463 int ret;
1464
1465 onenand_get_device(mtd, FL_READING);
1466 ret = ONENAND_IS_4KB_PAGE(this) ?
1467 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1468 onenand_read_ops_nolock(mtd, from, &ops);
1469 onenand_release_device(mtd);
1470
1471 *retlen = ops.retlen;
1472 return ret;
1473 }
1474
1475 /**
1476 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1477 * @param mtd: MTD device structure
1478 * @param from: offset to read from
1479 * @param ops: oob operation description structure
1480
1481 * Read main and/or out-of-band
1482 */
1483 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1484 struct mtd_oob_ops *ops)
1485 {
1486 struct onenand_chip *this = mtd->priv;
1487 int ret;
1488
1489 switch (ops->mode) {
1490 case MTD_OPS_PLACE_OOB:
1491 case MTD_OPS_AUTO_OOB:
1492 break;
1493 case MTD_OPS_RAW:
1494 /* Not implemented yet */
1495 default:
1496 return -EINVAL;
1497 }
1498
1499 onenand_get_device(mtd, FL_READING);
1500 if (ops->datbuf)
1501 ret = ONENAND_IS_4KB_PAGE(this) ?
1502 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1503 onenand_read_ops_nolock(mtd, from, ops);
1504 else
1505 ret = onenand_read_oob_nolock(mtd, from, ops);
1506 onenand_release_device(mtd);
1507
1508 return ret;
1509 }
1510
1511 /**
1512 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1513 * @param mtd MTD device structure
1514 * @param state state to select the max. timeout value
1515 *
1516 * Wait for command done.
1517 */
1518 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1519 {
1520 struct onenand_chip *this = mtd->priv;
1521 unsigned long timeout;
1522 unsigned int interrupt, ctrl, ecc, addr1, addr8;
1523
1524 /* The 20 msec is enough */
1525 timeout = jiffies + msecs_to_jiffies(20);
1526 while (time_before(jiffies, timeout)) {
1527 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1528 if (interrupt & ONENAND_INT_MASTER)
1529 break;
1530 }
1531 /* To get correct interrupt status in timeout case */
1532 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1533 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1534 addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1535 addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1536
1537 if (interrupt & ONENAND_INT_READ) {
1538 ecc = onenand_read_ecc(this);
1539 if (ecc & ONENAND_ECC_2BIT_ALL) {
1540 printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1541 "intr 0x%04x addr1 %#x addr8 %#x\n",
1542 __func__, ecc, ctrl, interrupt, addr1, addr8);
1543 return ONENAND_BBT_READ_ECC_ERROR;
1544 }
1545 } else {
1546 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1547 "intr 0x%04x addr1 %#x addr8 %#x\n",
1548 __func__, ctrl, interrupt, addr1, addr8);
1549 return ONENAND_BBT_READ_FATAL_ERROR;
1550 }
1551
1552 /* Initial bad block case: 0x2400 or 0x0400 */
1553 if (ctrl & ONENAND_CTRL_ERROR) {
1554 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1555 "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1556 return ONENAND_BBT_READ_ERROR;
1557 }
1558
1559 return 0;
1560 }
1561
1562 /**
1563 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1564 * @param mtd MTD device structure
1565 * @param from offset to read from
1566 * @param ops oob operation description structure
1567 *
1568 * OneNAND read out-of-band data from the spare area for bbt scan
1569 */
1570 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1571 struct mtd_oob_ops *ops)
1572 {
1573 struct onenand_chip *this = mtd->priv;
1574 int read = 0, thislen, column;
1575 int ret = 0, readcmd;
1576 size_t len = ops->ooblen;
1577 u_char *buf = ops->oobbuf;
1578
1579 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1580 len);
1581
1582 /* Initialize return value */
1583 ops->oobretlen = 0;
1584
1585 /* Do not allow reads past end of device */
1586 if (unlikely((from + len) > mtd->size)) {
1587 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1588 __func__);
1589 return ONENAND_BBT_READ_FATAL_ERROR;
1590 }
1591
1592 /* Grab the lock and see if the device is available */
1593 onenand_get_device(mtd, FL_READING);
1594
1595 column = from & (mtd->oobsize - 1);
1596
1597 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1598
1599 while (read < len) {
1600 cond_resched();
1601
1602 thislen = mtd->oobsize - column;
1603 thislen = min_t(int, thislen, len);
1604
1605 this->command(mtd, readcmd, from, mtd->oobsize);
1606
1607 onenand_update_bufferram(mtd, from, 0);
1608
1609 ret = this->bbt_wait(mtd, FL_READING);
1610 if (unlikely(ret))
1611 ret = onenand_recover_lsb(mtd, from, ret);
1612
1613 if (ret)
1614 break;
1615
1616 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1617 read += thislen;
1618 if (read == len)
1619 break;
1620
1621 buf += thislen;
1622
1623 /* Read more? */
1624 if (read < len) {
1625 /* Update Page size */
1626 from += this->writesize;
1627 column = 0;
1628 }
1629 }
1630
1631 /* Deselect and wake up anyone waiting on the device */
1632 onenand_release_device(mtd);
1633
1634 ops->oobretlen = read;
1635 return ret;
1636 }
1637
1638 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1639 /**
1640 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1641 * @param mtd MTD device structure
1642 * @param buf the databuffer to verify
1643 * @param to offset to read from
1644 */
1645 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1646 {
1647 struct onenand_chip *this = mtd->priv;
1648 u_char *oob_buf = this->oob_buf;
1649 int status, i, readcmd;
1650
1651 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1652
1653 this->command(mtd, readcmd, to, mtd->oobsize);
1654 onenand_update_bufferram(mtd, to, 0);
1655 status = this->wait(mtd, FL_READING);
1656 if (status)
1657 return status;
1658
1659 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1660 for (i = 0; i < mtd->oobsize; i++)
1661 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1662 return -EBADMSG;
1663
1664 return 0;
1665 }
1666
1667 /**
1668 * onenand_verify - [GENERIC] verify the chip contents after a write
1669 * @param mtd MTD device structure
1670 * @param buf the databuffer to verify
1671 * @param addr offset to read from
1672 * @param len number of bytes to read and compare
1673 */
1674 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1675 {
1676 struct onenand_chip *this = mtd->priv;
1677 int ret = 0;
1678 int thislen, column;
1679
1680 column = addr & (this->writesize - 1);
1681
1682 while (len != 0) {
1683 thislen = min_t(int, this->writesize - column, len);
1684
1685 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1686
1687 onenand_update_bufferram(mtd, addr, 0);
1688
1689 ret = this->wait(mtd, FL_READING);
1690 if (ret)
1691 return ret;
1692
1693 onenand_update_bufferram(mtd, addr, 1);
1694
1695 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1696
1697 if (memcmp(buf, this->verify_buf + column, thislen))
1698 return -EBADMSG;
1699
1700 len -= thislen;
1701 buf += thislen;
1702 addr += thislen;
1703 column = 0;
1704 }
1705
1706 return 0;
1707 }
1708 #else
1709 #define onenand_verify(...) (0)
1710 #define onenand_verify_oob(...) (0)
1711 #endif
1712
1713 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1714
1715 static void onenand_panic_wait(struct mtd_info *mtd)
1716 {
1717 struct onenand_chip *this = mtd->priv;
1718 unsigned int interrupt;
1719 int i;
1720
1721 for (i = 0; i < 2000; i++) {
1722 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1723 if (interrupt & ONENAND_INT_MASTER)
1724 break;
1725 udelay(10);
1726 }
1727 }
1728
1729 /**
1730 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1731 * @param mtd MTD device structure
1732 * @param to offset to write to
1733 * @param len number of bytes to write
1734 * @param retlen pointer to variable to store the number of written bytes
1735 * @param buf the data to write
1736 *
1737 * Write with ECC
1738 */
1739 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1740 size_t *retlen, const u_char *buf)
1741 {
1742 struct onenand_chip *this = mtd->priv;
1743 int column, subpage;
1744 int written = 0;
1745 int ret = 0;
1746
1747 if (this->state == FL_PM_SUSPENDED)
1748 return -EBUSY;
1749
1750 /* Wait for any existing operation to clear */
1751 onenand_panic_wait(mtd);
1752
1753 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1754 (int)len);
1755
1756 /* Initialize retlen, in case of early exit */
1757 *retlen = 0;
1758
1759 /* Do not allow writes past end of device */
1760 if (unlikely((to + len) > mtd->size)) {
1761 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1762 __func__);
1763 return -EINVAL;
1764 }
1765
1766 /* Reject writes, which are not page aligned */
1767 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1768 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1769 __func__);
1770 return -EINVAL;
1771 }
1772
1773 column = to & (mtd->writesize - 1);
1774
1775 /* Loop until all data write */
1776 while (written < len) {
1777 int thislen = min_t(int, mtd->writesize - column, len - written);
1778 u_char *wbuf = (u_char *) buf;
1779
1780 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1781
1782 /* Partial page write */
1783 subpage = thislen < mtd->writesize;
1784 if (subpage) {
1785 memset(this->page_buf, 0xff, mtd->writesize);
1786 memcpy(this->page_buf + column, buf, thislen);
1787 wbuf = this->page_buf;
1788 }
1789
1790 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1791 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1792
1793 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1794
1795 onenand_panic_wait(mtd);
1796
1797 /* In partial page write we don't update bufferram */
1798 onenand_update_bufferram(mtd, to, !ret && !subpage);
1799 if (ONENAND_IS_2PLANE(this)) {
1800 ONENAND_SET_BUFFERRAM1(this);
1801 onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1802 }
1803
1804 if (ret) {
1805 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1806 break;
1807 }
1808
1809 written += thislen;
1810
1811 if (written == len)
1812 break;
1813
1814 column = 0;
1815 to += thislen;
1816 buf += thislen;
1817 }
1818
1819 *retlen = written;
1820 return ret;
1821 }
1822
1823 /**
1824 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1825 * @param mtd MTD device structure
1826 * @param oob_buf oob buffer
1827 * @param buf source address
1828 * @param column oob offset to write to
1829 * @param thislen oob length to write
1830 */
1831 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1832 const u_char *buf, int column, int thislen)
1833 {
1834 struct onenand_chip *this = mtd->priv;
1835 struct nand_oobfree *free;
1836 int writecol = column;
1837 int writeend = column + thislen;
1838 int lastgap = 0;
1839 unsigned int i;
1840
1841 free = this->ecclayout->oobfree;
1842 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1843 if (writecol >= lastgap)
1844 writecol += free->offset - lastgap;
1845 if (writeend >= lastgap)
1846 writeend += free->offset - lastgap;
1847 lastgap = free->offset + free->length;
1848 }
1849 free = this->ecclayout->oobfree;
1850 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1851 int free_end = free->offset + free->length;
1852 if (free->offset < writeend && free_end > writecol) {
1853 int st = max_t(int,free->offset,writecol);
1854 int ed = min_t(int,free_end,writeend);
1855 int n = ed - st;
1856 memcpy(oob_buf + st, buf, n);
1857 buf += n;
1858 } else if (column == 0)
1859 break;
1860 }
1861 return 0;
1862 }
1863
1864 /**
1865 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1866 * @param mtd MTD device structure
1867 * @param to offset to write to
1868 * @param ops oob operation description structure
1869 *
1870 * Write main and/or oob with ECC
1871 */
1872 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1873 struct mtd_oob_ops *ops)
1874 {
1875 struct onenand_chip *this = mtd->priv;
1876 int written = 0, column, thislen = 0, subpage = 0;
1877 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1878 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1879 size_t len = ops->len;
1880 size_t ooblen = ops->ooblen;
1881 const u_char *buf = ops->datbuf;
1882 const u_char *oob = ops->oobbuf;
1883 u_char *oobbuf;
1884 int ret = 0, cmd;
1885
1886 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1887 (int)len);
1888
1889 /* Initialize retlen, in case of early exit */
1890 ops->retlen = 0;
1891 ops->oobretlen = 0;
1892
1893 /* Do not allow writes past end of device */
1894 if (unlikely((to + len) > mtd->size)) {
1895 printk(KERN_ERR "%s: Attempt write to past end of device\n",
1896 __func__);
1897 return -EINVAL;
1898 }
1899
1900 /* Reject writes, which are not page aligned */
1901 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1902 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1903 __func__);
1904 return -EINVAL;
1905 }
1906
1907 /* Check zero length */
1908 if (!len)
1909 return 0;
1910
1911 if (ops->mode == MTD_OPS_AUTO_OOB)
1912 oobsize = this->ecclayout->oobavail;
1913 else
1914 oobsize = mtd->oobsize;
1915
1916 oobcolumn = to & (mtd->oobsize - 1);
1917
1918 column = to & (mtd->writesize - 1);
1919
1920 /* Loop until all data write */
1921 while (1) {
1922 if (written < len) {
1923 u_char *wbuf = (u_char *) buf;
1924
1925 thislen = min_t(int, mtd->writesize - column, len - written);
1926 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1927
1928 cond_resched();
1929
1930 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1931
1932 /* Partial page write */
1933 subpage = thislen < mtd->writesize;
1934 if (subpage) {
1935 memset(this->page_buf, 0xff, mtd->writesize);
1936 memcpy(this->page_buf + column, buf, thislen);
1937 wbuf = this->page_buf;
1938 }
1939
1940 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1941
1942 if (oob) {
1943 oobbuf = this->oob_buf;
1944
1945 /* We send data to spare ram with oobsize
1946 * to prevent byte access */
1947 memset(oobbuf, 0xff, mtd->oobsize);
1948 if (ops->mode == MTD_OPS_AUTO_OOB)
1949 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1950 else
1951 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1952
1953 oobwritten += thisooblen;
1954 oob += thisooblen;
1955 oobcolumn = 0;
1956 } else
1957 oobbuf = (u_char *) ffchars;
1958
1959 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1960 } else
1961 ONENAND_SET_NEXT_BUFFERRAM(this);
1962
1963 /*
1964 * 2 PLANE, MLC, and Flex-OneNAND do not support
1965 * write-while-program feature.
1966 */
1967 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1968 ONENAND_SET_PREV_BUFFERRAM(this);
1969
1970 ret = this->wait(mtd, FL_WRITING);
1971
1972 /* In partial page write we don't update bufferram */
1973 onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1974 if (ret) {
1975 written -= prevlen;
1976 printk(KERN_ERR "%s: write failed %d\n",
1977 __func__, ret);
1978 break;
1979 }
1980
1981 if (written == len) {
1982 /* Only check verify write turn on */
1983 ret = onenand_verify(mtd, buf - len, to - len, len);
1984 if (ret)
1985 printk(KERN_ERR "%s: verify failed %d\n",
1986 __func__, ret);
1987 break;
1988 }
1989
1990 ONENAND_SET_NEXT_BUFFERRAM(this);
1991 }
1992
1993 this->ongoing = 0;
1994 cmd = ONENAND_CMD_PROG;
1995
1996 /* Exclude 1st OTP and OTP blocks for cache program feature */
1997 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1998 likely(onenand_block(this, to) != 0) &&
1999 ONENAND_IS_4KB_PAGE(this) &&
2000 ((written + thislen) < len)) {
2001 cmd = ONENAND_CMD_2X_CACHE_PROG;
2002 this->ongoing = 1;
2003 }
2004
2005 this->command(mtd, cmd, to, mtd->writesize);
2006
2007 /*
2008 * 2 PLANE, MLC, and Flex-OneNAND wait here
2009 */
2010 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
2011 ret = this->wait(mtd, FL_WRITING);
2012
2013 /* In partial page write we don't update bufferram */
2014 onenand_update_bufferram(mtd, to, !ret && !subpage);
2015 if (ret) {
2016 printk(KERN_ERR "%s: write failed %d\n",
2017 __func__, ret);
2018 break;
2019 }
2020
2021 /* Only check verify write turn on */
2022 ret = onenand_verify(mtd, buf, to, thislen);
2023 if (ret) {
2024 printk(KERN_ERR "%s: verify failed %d\n",
2025 __func__, ret);
2026 break;
2027 }
2028
2029 written += thislen;
2030
2031 if (written == len)
2032 break;
2033
2034 } else
2035 written += thislen;
2036
2037 column = 0;
2038 prev_subpage = subpage;
2039 prev = to;
2040 prevlen = thislen;
2041 to += thislen;
2042 buf += thislen;
2043 first = 0;
2044 }
2045
2046 /* In error case, clear all bufferrams */
2047 if (written != len)
2048 onenand_invalidate_bufferram(mtd, 0, -1);
2049
2050 ops->retlen = written;
2051 ops->oobretlen = oobwritten;
2052
2053 return ret;
2054 }
2055
2056
2057 /**
2058 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
2059 * @param mtd MTD device structure
2060 * @param to offset to write to
2061 * @param len number of bytes to write
2062 * @param retlen pointer to variable to store the number of written bytes
2063 * @param buf the data to write
2064 * @param mode operation mode
2065 *
2066 * OneNAND write out-of-band
2067 */
2068 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2069 struct mtd_oob_ops *ops)
2070 {
2071 struct onenand_chip *this = mtd->priv;
2072 int column, ret = 0, oobsize;
2073 int written = 0, oobcmd;
2074 u_char *oobbuf;
2075 size_t len = ops->ooblen;
2076 const u_char *buf = ops->oobbuf;
2077 unsigned int mode = ops->mode;
2078
2079 to += ops->ooboffs;
2080
2081 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
2082 (int)len);
2083
2084 /* Initialize retlen, in case of early exit */
2085 ops->oobretlen = 0;
2086
2087 if (mode == MTD_OPS_AUTO_OOB)
2088 oobsize = this->ecclayout->oobavail;
2089 else
2090 oobsize = mtd->oobsize;
2091
2092 column = to & (mtd->oobsize - 1);
2093
2094 if (unlikely(column >= oobsize)) {
2095 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2096 __func__);
2097 return -EINVAL;
2098 }
2099
2100 /* For compatibility with NAND: Do not allow write past end of page */
2101 if (unlikely(column + len > oobsize)) {
2102 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2103 __func__);
2104 return -EINVAL;
2105 }
2106
2107 /* Do not allow reads past end of device */
2108 if (unlikely(to >= mtd->size ||
2109 column + len > ((mtd->size >> this->page_shift) -
2110 (to >> this->page_shift)) * oobsize)) {
2111 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2112 __func__);
2113 return -EINVAL;
2114 }
2115
2116 oobbuf = this->oob_buf;
2117
2118 oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2119
2120 /* Loop until all data write */
2121 while (written < len) {
2122 int thislen = min_t(int, oobsize, len - written);
2123
2124 cond_resched();
2125
2126 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2127
2128 /* We send data to spare ram with oobsize
2129 * to prevent byte access */
2130 memset(oobbuf, 0xff, mtd->oobsize);
2131 if (mode == MTD_OPS_AUTO_OOB)
2132 onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2133 else
2134 memcpy(oobbuf + column, buf, thislen);
2135 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2136
2137 if (ONENAND_IS_4KB_PAGE(this)) {
2138 /* Set main area of DataRAM to 0xff*/
2139 memset(this->page_buf, 0xff, mtd->writesize);
2140 this->write_bufferram(mtd, ONENAND_DATARAM,
2141 this->page_buf, 0, mtd->writesize);
2142 }
2143
2144 this->command(mtd, oobcmd, to, mtd->oobsize);
2145
2146 onenand_update_bufferram(mtd, to, 0);
2147 if (ONENAND_IS_2PLANE(this)) {
2148 ONENAND_SET_BUFFERRAM1(this);
2149 onenand_update_bufferram(mtd, to + this->writesize, 0);
2150 }
2151
2152 ret = this->wait(mtd, FL_WRITING);
2153 if (ret) {
2154 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2155 break;
2156 }
2157
2158 ret = onenand_verify_oob(mtd, oobbuf, to);
2159 if (ret) {
2160 printk(KERN_ERR "%s: verify failed %d\n",
2161 __func__, ret);
2162 break;
2163 }
2164
2165 written += thislen;
2166 if (written == len)
2167 break;
2168
2169 to += mtd->writesize;
2170 buf += thislen;
2171 column = 0;
2172 }
2173
2174 ops->oobretlen = written;
2175
2176 return ret;
2177 }
2178
2179 /**
2180 * onenand_write - [MTD Interface] write buffer to FLASH
2181 * @param mtd MTD device structure
2182 * @param to offset to write to
2183 * @param len number of bytes to write
2184 * @param retlen pointer to variable to store the number of written bytes
2185 * @param buf the data to write
2186 *
2187 * Write with ECC
2188 */
2189 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2190 size_t *retlen, const u_char *buf)
2191 {
2192 struct mtd_oob_ops ops = {
2193 .len = len,
2194 .ooblen = 0,
2195 .datbuf = (u_char *) buf,
2196 .oobbuf = NULL,
2197 };
2198 int ret;
2199
2200 onenand_get_device(mtd, FL_WRITING);
2201 ret = onenand_write_ops_nolock(mtd, to, &ops);
2202 onenand_release_device(mtd);
2203
2204 *retlen = ops.retlen;
2205 return ret;
2206 }
2207
2208 /**
2209 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2210 * @param mtd: MTD device structure
2211 * @param to: offset to write
2212 * @param ops: oob operation description structure
2213 */
2214 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2215 struct mtd_oob_ops *ops)
2216 {
2217 int ret;
2218
2219 switch (ops->mode) {
2220 case MTD_OPS_PLACE_OOB:
2221 case MTD_OPS_AUTO_OOB:
2222 break;
2223 case MTD_OPS_RAW:
2224 /* Not implemented yet */
2225 default:
2226 return -EINVAL;
2227 }
2228
2229 onenand_get_device(mtd, FL_WRITING);
2230 if (ops->datbuf)
2231 ret = onenand_write_ops_nolock(mtd, to, ops);
2232 else
2233 ret = onenand_write_oob_nolock(mtd, to, ops);
2234 onenand_release_device(mtd);
2235
2236 return ret;
2237 }
2238
2239 /**
2240 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2241 * @param mtd MTD device structure
2242 * @param ofs offset from device start
2243 * @param allowbbt 1, if its allowed to access the bbt area
2244 *
2245 * Check, if the block is bad. Either by reading the bad block table or
2246 * calling of the scan function.
2247 */
2248 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2249 {
2250 struct onenand_chip *this = mtd->priv;
2251 struct bbm_info *bbm = this->bbm;
2252
2253 /* Return info from the table */
2254 return bbm->isbad_bbt(mtd, ofs, allowbbt);
2255 }
2256
2257
2258 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2259 struct erase_info *instr)
2260 {
2261 struct onenand_chip *this = mtd->priv;
2262 loff_t addr = instr->addr;
2263 int len = instr->len;
2264 unsigned int block_size = (1 << this->erase_shift);
2265 int ret = 0;
2266
2267 while (len) {
2268 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2269 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2270 if (ret) {
2271 printk(KERN_ERR "%s: Failed verify, block %d\n",
2272 __func__, onenand_block(this, addr));
2273 instr->state = MTD_ERASE_FAILED;
2274 instr->fail_addr = addr;
2275 return -1;
2276 }
2277 len -= block_size;
2278 addr += block_size;
2279 }
2280 return 0;
2281 }
2282
2283 /**
2284 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2285 * @param mtd MTD device structure
2286 * @param instr erase instruction
2287 * @param region erase region
2288 *
2289 * Erase one or more blocks up to 64 block at a time
2290 */
2291 static int onenand_multiblock_erase(struct mtd_info *mtd,
2292 struct erase_info *instr,
2293 unsigned int block_size)
2294 {
2295 struct onenand_chip *this = mtd->priv;
2296 loff_t addr = instr->addr;
2297 int len = instr->len;
2298 int eb_count = 0;
2299 int ret = 0;
2300 int bdry_block = 0;
2301
2302 instr->state = MTD_ERASING;
2303
2304 if (ONENAND_IS_DDP(this)) {
2305 loff_t bdry_addr = this->chipsize >> 1;
2306 if (addr < bdry_addr && (addr + len) > bdry_addr)
2307 bdry_block = bdry_addr >> this->erase_shift;
2308 }
2309
2310 /* Pre-check bbs */
2311 while (len) {
2312 /* Check if we have a bad block, we do not erase bad blocks */
2313 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2314 printk(KERN_WARNING "%s: attempt to erase a bad block "
2315 "at addr 0x%012llx\n",
2316 __func__, (unsigned long long) addr);
2317 instr->state = MTD_ERASE_FAILED;
2318 return -EIO;
2319 }
2320 len -= block_size;
2321 addr += block_size;
2322 }
2323
2324 len = instr->len;
2325 addr = instr->addr;
2326
2327 /* loop over 64 eb batches */
2328 while (len) {
2329 struct erase_info verify_instr = *instr;
2330 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2331
2332 verify_instr.addr = addr;
2333 verify_instr.len = 0;
2334
2335 /* do not cross chip boundary */
2336 if (bdry_block) {
2337 int this_block = (addr >> this->erase_shift);
2338
2339 if (this_block < bdry_block) {
2340 max_eb_count = min(max_eb_count,
2341 (bdry_block - this_block));
2342 }
2343 }
2344
2345 eb_count = 0;
2346
2347 while (len > block_size && eb_count < (max_eb_count - 1)) {
2348 this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2349 addr, block_size);
2350 onenand_invalidate_bufferram(mtd, addr, block_size);
2351
2352 ret = this->wait(mtd, FL_PREPARING_ERASE);
2353 if (ret) {
2354 printk(KERN_ERR "%s: Failed multiblock erase, "
2355 "block %d\n", __func__,
2356 onenand_block(this, addr));
2357 instr->state = MTD_ERASE_FAILED;
2358 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2359 return -EIO;
2360 }
2361
2362 len -= block_size;
2363 addr += block_size;
2364 eb_count++;
2365 }
2366
2367 /* last block of 64-eb series */
2368 cond_resched();
2369 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2370 onenand_invalidate_bufferram(mtd, addr, block_size);
2371
2372 ret = this->wait(mtd, FL_ERASING);
2373 /* Check if it is write protected */
2374 if (ret) {
2375 printk(KERN_ERR "%s: Failed erase, block %d\n",
2376 __func__, onenand_block(this, addr));
2377 instr->state = MTD_ERASE_FAILED;
2378 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2379 return -EIO;
2380 }
2381
2382 len -= block_size;
2383 addr += block_size;
2384 eb_count++;
2385
2386 /* verify */
2387 verify_instr.len = eb_count * block_size;
2388 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2389 instr->state = verify_instr.state;
2390 instr->fail_addr = verify_instr.fail_addr;
2391 return -EIO;
2392 }
2393
2394 }
2395 return 0;
2396 }
2397
2398
2399 /**
2400 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2401 * @param mtd MTD device structure
2402 * @param instr erase instruction
2403 * @param region erase region
2404 * @param block_size erase block size
2405 *
2406 * Erase one or more blocks one block at a time
2407 */
2408 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2409 struct erase_info *instr,
2410 struct mtd_erase_region_info *region,
2411 unsigned int block_size)
2412 {
2413 struct onenand_chip *this = mtd->priv;
2414 loff_t addr = instr->addr;
2415 int len = instr->len;
2416 loff_t region_end = 0;
2417 int ret = 0;
2418
2419 if (region) {
2420 /* region is set for Flex-OneNAND */
2421 region_end = region->offset + region->erasesize * region->numblocks;
2422 }
2423
2424 instr->state = MTD_ERASING;
2425
2426 /* Loop through the blocks */
2427 while (len) {
2428 cond_resched();
2429
2430 /* Check if we have a bad block, we do not erase bad blocks */
2431 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2432 printk(KERN_WARNING "%s: attempt to erase a bad block "
2433 "at addr 0x%012llx\n",
2434 __func__, (unsigned long long) addr);
2435 instr->state = MTD_ERASE_FAILED;
2436 return -EIO;
2437 }
2438
2439 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2440
2441 onenand_invalidate_bufferram(mtd, addr, block_size);
2442
2443 ret = this->wait(mtd, FL_ERASING);
2444 /* Check, if it is write protected */
2445 if (ret) {
2446 printk(KERN_ERR "%s: Failed erase, block %d\n",
2447 __func__, onenand_block(this, addr));
2448 instr->state = MTD_ERASE_FAILED;
2449 instr->fail_addr = addr;
2450 return -EIO;
2451 }
2452
2453 len -= block_size;
2454 addr += block_size;
2455
2456 if (region && addr == region_end) {
2457 if (!len)
2458 break;
2459 region++;
2460
2461 block_size = region->erasesize;
2462 region_end = region->offset + region->erasesize * region->numblocks;
2463
2464 if (len & (block_size - 1)) {
2465 /* FIXME: This should be handled at MTD partitioning level. */
2466 printk(KERN_ERR "%s: Unaligned address\n",
2467 __func__);
2468 return -EIO;
2469 }
2470 }
2471 }
2472 return 0;
2473 }
2474
2475 /**
2476 * onenand_erase - [MTD Interface] erase block(s)
2477 * @param mtd MTD device structure
2478 * @param instr erase instruction
2479 *
2480 * Erase one or more blocks
2481 */
2482 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2483 {
2484 struct onenand_chip *this = mtd->priv;
2485 unsigned int block_size;
2486 loff_t addr = instr->addr;
2487 loff_t len = instr->len;
2488 int ret = 0;
2489 struct mtd_erase_region_info *region = NULL;
2490 loff_t region_offset = 0;
2491
2492 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2493 (unsigned long long)instr->addr,
2494 (unsigned long long)instr->len);
2495
2496 /* Do not allow erase past end of device */
2497 if (unlikely((len + addr) > mtd->size)) {
2498 printk(KERN_ERR "%s: Erase past end of device\n", __func__);
2499 return -EINVAL;
2500 }
2501
2502 if (FLEXONENAND(this)) {
2503 /* Find the eraseregion of this address */
2504 int i = flexonenand_region(mtd, addr);
2505
2506 region = &mtd->eraseregions[i];
2507 block_size = region->erasesize;
2508
2509 /* Start address within region must align on block boundary.
2510 * Erase region's start offset is always block start address.
2511 */
2512 region_offset = region->offset;
2513 } else
2514 block_size = 1 << this->erase_shift;
2515
2516 /* Start address must align on block boundary */
2517 if (unlikely((addr - region_offset) & (block_size - 1))) {
2518 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2519 return -EINVAL;
2520 }
2521
2522 /* Length must align on block boundary */
2523 if (unlikely(len & (block_size - 1))) {
2524 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2525 return -EINVAL;
2526 }
2527
2528 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2529
2530 /* Grab the lock and see if the device is available */
2531 onenand_get_device(mtd, FL_ERASING);
2532
2533 if (ONENAND_IS_4KB_PAGE(this) || region ||
2534 instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2535 /* region is set for Flex-OneNAND (no mb erase) */
2536 ret = onenand_block_by_block_erase(mtd, instr,
2537 region, block_size);
2538 } else {
2539 ret = onenand_multiblock_erase(mtd, instr, block_size);
2540 }
2541
2542 /* Deselect and wake up anyone waiting on the device */
2543 onenand_release_device(mtd);
2544
2545 /* Do call back function */
2546 if (!ret) {
2547 instr->state = MTD_ERASE_DONE;
2548 mtd_erase_callback(instr);
2549 }
2550
2551 return ret;
2552 }
2553
2554 /**
2555 * onenand_sync - [MTD Interface] sync
2556 * @param mtd MTD device structure
2557 *
2558 * Sync is actually a wait for chip ready function
2559 */
2560 static void onenand_sync(struct mtd_info *mtd)
2561 {
2562 pr_debug("%s: called\n", __func__);
2563
2564 /* Grab the lock and see if the device is available */
2565 onenand_get_device(mtd, FL_SYNCING);
2566
2567 /* Release it and go back */
2568 onenand_release_device(mtd);
2569 }
2570
2571 /**
2572 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2573 * @param mtd MTD device structure
2574 * @param ofs offset relative to mtd start
2575 *
2576 * Check whether the block is bad
2577 */
2578 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2579 {
2580 int ret;
2581
2582 /* Check for invalid offset */
2583 if (ofs > mtd->size)
2584 return -EINVAL;
2585
2586 onenand_get_device(mtd, FL_READING);
2587 ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2588 onenand_release_device(mtd);
2589 return ret;
2590 }
2591
2592 /**
2593 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2594 * @param mtd MTD device structure
2595 * @param ofs offset from device start
2596 *
2597 * This is the default implementation, which can be overridden by
2598 * a hardware specific driver.
2599 */
2600 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2601 {
2602 struct onenand_chip *this = mtd->priv;
2603 struct bbm_info *bbm = this->bbm;
2604 u_char buf[2] = {0, 0};
2605 struct mtd_oob_ops ops = {
2606 .mode = MTD_OPS_PLACE_OOB,
2607 .ooblen = 2,
2608 .oobbuf = buf,
2609 .ooboffs = 0,
2610 };
2611 int block;
2612
2613 /* Get block number */
2614 block = onenand_block(this, ofs);
2615 if (bbm->bbt)
2616 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2617
2618 /* We write two bytes, so we don't have to mess with 16-bit access */
2619 ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2620 /* FIXME : What to do when marking SLC block in partition
2621 * with MLC erasesize? For now, it is not advisable to
2622 * create partitions containing both SLC and MLC regions.
2623 */
2624 return onenand_write_oob_nolock(mtd, ofs, &ops);
2625 }
2626
2627 /**
2628 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2629 * @param mtd MTD device structure
2630 * @param ofs offset relative to mtd start
2631 *
2632 * Mark the block as bad
2633 */
2634 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2635 {
2636 int ret;
2637
2638 ret = onenand_block_isbad(mtd, ofs);
2639 if (ret) {
2640 /* If it was bad already, return success and do nothing */
2641 if (ret > 0)
2642 return 0;
2643 return ret;
2644 }
2645
2646 onenand_get_device(mtd, FL_WRITING);
2647 ret = mtd_block_markbad(mtd, ofs);
2648 onenand_release_device(mtd);
2649 return ret;
2650 }
2651
2652 /**
2653 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2654 * @param mtd MTD device structure
2655 * @param ofs offset relative to mtd start
2656 * @param len number of bytes to lock or unlock
2657 * @param cmd lock or unlock command
2658 *
2659 * Lock or unlock one or more blocks
2660 */
2661 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2662 {
2663 struct onenand_chip *this = mtd->priv;
2664 int start, end, block, value, status;
2665 int wp_status_mask;
2666
2667 start = onenand_block(this, ofs);
2668 end = onenand_block(this, ofs + len) - 1;
2669
2670 if (cmd == ONENAND_CMD_LOCK)
2671 wp_status_mask = ONENAND_WP_LS;
2672 else
2673 wp_status_mask = ONENAND_WP_US;
2674
2675 /* Continuous lock scheme */
2676 if (this->options & ONENAND_HAS_CONT_LOCK) {
2677 /* Set start block address */
2678 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2679 /* Set end block address */
2680 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
2681 /* Write lock command */
2682 this->command(mtd, cmd, 0, 0);
2683
2684 /* There's no return value */
2685 this->wait(mtd, FL_LOCKING);
2686
2687 /* Sanity check */
2688 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2689 & ONENAND_CTRL_ONGO)
2690 continue;
2691
2692 /* Check lock status */
2693 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2694 if (!(status & wp_status_mask))
2695 printk(KERN_ERR "%s: wp status = 0x%x\n",
2696 __func__, status);
2697
2698 return 0;
2699 }
2700
2701 /* Block lock scheme */
2702 for (block = start; block < end + 1; block++) {
2703 /* Set block address */
2704 value = onenand_block_address(this, block);
2705 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2706 /* Select DataRAM for DDP */
2707 value = onenand_bufferram_address(this, block);
2708 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2709 /* Set start block address */
2710 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2711 /* Write lock command */
2712 this->command(mtd, cmd, 0, 0);
2713
2714 /* There's no return value */
2715 this->wait(mtd, FL_LOCKING);
2716
2717 /* Sanity check */
2718 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2719 & ONENAND_CTRL_ONGO)
2720 continue;
2721
2722 /* Check lock status */
2723 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2724 if (!(status & wp_status_mask))
2725 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2726 __func__, block, status);
2727 }
2728
2729 return 0;
2730 }
2731
2732 /**
2733 * onenand_lock - [MTD Interface] Lock block(s)
2734 * @param mtd MTD device structure
2735 * @param ofs offset relative to mtd start
2736 * @param len number of bytes to unlock
2737 *
2738 * Lock one or more blocks
2739 */
2740 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2741 {
2742 int ret;
2743
2744 onenand_get_device(mtd, FL_LOCKING);
2745 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2746 onenand_release_device(mtd);
2747 return ret;
2748 }
2749
2750 /**
2751 * onenand_unlock - [MTD Interface] Unlock block(s)
2752 * @param mtd MTD device structure
2753 * @param ofs offset relative to mtd start
2754 * @param len number of bytes to unlock
2755 *
2756 * Unlock one or more blocks
2757 */
2758 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2759 {
2760 int ret;
2761
2762 onenand_get_device(mtd, FL_LOCKING);
2763 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2764 onenand_release_device(mtd);
2765 return ret;
2766 }
2767
2768 /**
2769 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2770 * @param this onenand chip data structure
2771 *
2772 * Check lock status
2773 */
2774 static int onenand_check_lock_status(struct onenand_chip *this)
2775 {
2776 unsigned int value, block, status;
2777 unsigned int end;
2778
2779 end = this->chipsize >> this->erase_shift;
2780 for (block = 0; block < end; block++) {
2781 /* Set block address */
2782 value = onenand_block_address(this, block);
2783 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2784 /* Select DataRAM for DDP */
2785 value = onenand_bufferram_address(this, block);
2786 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2787 /* Set start block address */
2788 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2789
2790 /* Check lock status */
2791 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2792 if (!(status & ONENAND_WP_US)) {
2793 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2794 __func__, block, status);
2795 return 0;
2796 }
2797 }
2798
2799 return 1;
2800 }
2801
2802 /**
2803 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2804 * @param mtd MTD device structure
2805 *
2806 * Unlock all blocks
2807 */
2808 static void onenand_unlock_all(struct mtd_info *mtd)
2809 {
2810 struct onenand_chip *this = mtd->priv;
2811 loff_t ofs = 0;
2812 loff_t len = mtd->size;
2813
2814 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2815 /* Set start block address */
2816 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2817 /* Write unlock command */
2818 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2819
2820 /* There's no return value */
2821 this->wait(mtd, FL_LOCKING);
2822
2823 /* Sanity check */
2824 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2825 & ONENAND_CTRL_ONGO)
2826 continue;
2827
2828 /* Don't check lock status */
2829 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2830 return;
2831
2832 /* Check lock status */
2833 if (onenand_check_lock_status(this))
2834 return;
2835
2836 /* Workaround for all block unlock in DDP */
2837 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2838 /* All blocks on another chip */
2839 ofs = this->chipsize >> 1;
2840 len = this->chipsize >> 1;
2841 }
2842 }
2843
2844 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2845 }
2846
2847 #ifdef CONFIG_MTD_ONENAND_OTP
2848
2849 /**
2850 * onenand_otp_command - Send OTP specific command to OneNAND device
2851 * @param mtd MTD device structure
2852 * @param cmd the command to be sent
2853 * @param addr offset to read from or write to
2854 * @param len number of bytes to read or write
2855 */
2856 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2857 size_t len)
2858 {
2859 struct onenand_chip *this = mtd->priv;
2860 int value, block, page;
2861
2862 /* Address translation */
2863 switch (cmd) {
2864 case ONENAND_CMD_OTP_ACCESS:
2865 block = (int) (addr >> this->erase_shift);
2866 page = -1;
2867 break;
2868
2869 default:
2870 block = (int) (addr >> this->erase_shift);
2871 page = (int) (addr >> this->page_shift);
2872
2873 if (ONENAND_IS_2PLANE(this)) {
2874 /* Make the even block number */
2875 block &= ~1;
2876 /* Is it the odd plane? */
2877 if (addr & this->writesize)
2878 block++;
2879 page >>= 1;
2880 }
2881 page &= this->page_mask;
2882 break;
2883 }
2884
2885 if (block != -1) {
2886 /* Write 'DFS, FBA' of Flash */
2887 value = onenand_block_address(this, block);
2888 this->write_word(value, this->base +
2889 ONENAND_REG_START_ADDRESS1);
2890 }
2891
2892 if (page != -1) {
2893 /* Now we use page size operation */
2894 int sectors = 4, count = 4;
2895 int dataram;
2896
2897 switch (cmd) {
2898 default:
2899 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2900 cmd = ONENAND_CMD_2X_PROG;
2901 dataram = ONENAND_CURRENT_BUFFERRAM(this);
2902 break;
2903 }
2904
2905 /* Write 'FPA, FSA' of Flash */
2906 value = onenand_page_address(page, sectors);
2907 this->write_word(value, this->base +
2908 ONENAND_REG_START_ADDRESS8);
2909
2910 /* Write 'BSA, BSC' of DataRAM */
2911 value = onenand_buffer_address(dataram, sectors, count);
2912 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2913 }
2914
2915 /* Interrupt clear */
2916 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2917
2918 /* Write command */
2919 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2920
2921 return 0;
2922 }
2923
2924 /**
2925 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2926 * @param mtd MTD device structure
2927 * @param to offset to write to
2928 * @param len number of bytes to write
2929 * @param retlen pointer to variable to store the number of written bytes
2930 * @param buf the data to write
2931 *
2932 * OneNAND write out-of-band only for OTP
2933 */
2934 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2935 struct mtd_oob_ops *ops)
2936 {
2937 struct onenand_chip *this = mtd->priv;
2938 int column, ret = 0, oobsize;
2939 int written = 0;
2940 u_char *oobbuf;
2941 size_t len = ops->ooblen;
2942 const u_char *buf = ops->oobbuf;
2943 int block, value, status;
2944
2945 to += ops->ooboffs;
2946
2947 /* Initialize retlen, in case of early exit */
2948 ops->oobretlen = 0;
2949
2950 oobsize = mtd->oobsize;
2951
2952 column = to & (mtd->oobsize - 1);
2953
2954 oobbuf = this->oob_buf;
2955
2956 /* Loop until all data write */
2957 while (written < len) {
2958 int thislen = min_t(int, oobsize, len - written);
2959
2960 cond_resched();
2961
2962 block = (int) (to >> this->erase_shift);
2963 /*
2964 * Write 'DFS, FBA' of Flash
2965 * Add: F100h DQ=DFS, FBA
2966 */
2967
2968 value = onenand_block_address(this, block);
2969 this->write_word(value, this->base +
2970 ONENAND_REG_START_ADDRESS1);
2971
2972 /*
2973 * Select DataRAM for DDP
2974 * Add: F101h DQ=DBS
2975 */
2976
2977 value = onenand_bufferram_address(this, block);
2978 this->write_word(value, this->base +
2979 ONENAND_REG_START_ADDRESS2);
2980 ONENAND_SET_NEXT_BUFFERRAM(this);
2981
2982 /*
2983 * Enter OTP access mode
2984 */
2985 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2986 this->wait(mtd, FL_OTPING);
2987
2988 /* We send data to spare ram with oobsize
2989 * to prevent byte access */
2990 memcpy(oobbuf + column, buf, thislen);
2991
2992 /*
2993 * Write Data into DataRAM
2994 * Add: 8th Word
2995 * in sector0/spare/page0
2996 * DQ=XXFCh
2997 */
2998 this->write_bufferram(mtd, ONENAND_SPARERAM,
2999 oobbuf, 0, mtd->oobsize);
3000
3001 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
3002 onenand_update_bufferram(mtd, to, 0);
3003 if (ONENAND_IS_2PLANE(this)) {
3004 ONENAND_SET_BUFFERRAM1(this);
3005 onenand_update_bufferram(mtd, to + this->writesize, 0);
3006 }
3007
3008 ret = this->wait(mtd, FL_WRITING);
3009 if (ret) {
3010 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
3011 break;
3012 }
3013
3014 /* Exit OTP access mode */
3015 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3016 this->wait(mtd, FL_RESETING);
3017
3018 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
3019 status &= 0x60;
3020
3021 if (status == 0x60) {
3022 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3023 printk(KERN_DEBUG "1st Block\tLOCKED\n");
3024 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3025 } else if (status == 0x20) {
3026 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3027 printk(KERN_DEBUG "1st Block\tLOCKED\n");
3028 printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
3029 } else if (status == 0x40) {
3030 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3031 printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
3032 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3033 } else {
3034 printk(KERN_DEBUG "Reboot to check\n");
3035 }
3036
3037 written += thislen;
3038 if (written == len)
3039 break;
3040
3041 to += mtd->writesize;
3042 buf += thislen;
3043 column = 0;
3044 }
3045
3046 ops->oobretlen = written;
3047
3048 return ret;
3049 }
3050
3051 /* Internal OTP operation */
3052 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3053 size_t *retlen, u_char *buf);
3054
3055 /**
3056 * do_otp_read - [DEFAULT] Read OTP block area
3057 * @param mtd MTD device structure
3058 * @param from The offset to read
3059 * @param len number of bytes to read
3060 * @param retlen pointer to variable to store the number of readbytes
3061 * @param buf the databuffer to put/get data
3062 *
3063 * Read OTP block area.
3064 */
3065 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3066 size_t *retlen, u_char *buf)
3067 {
3068 struct onenand_chip *this = mtd->priv;
3069 struct mtd_oob_ops ops = {
3070 .len = len,
3071 .ooblen = 0,
3072 .datbuf = buf,
3073 .oobbuf = NULL,
3074 };
3075 int ret;
3076
3077 /* Enter OTP access mode */
3078 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3079 this->wait(mtd, FL_OTPING);
3080
3081 ret = ONENAND_IS_4KB_PAGE(this) ?
3082 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3083 onenand_read_ops_nolock(mtd, from, &ops);
3084
3085 /* Exit OTP access mode */
3086 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3087 this->wait(mtd, FL_RESETING);
3088
3089 return ret;
3090 }
3091
3092 /**
3093 * do_otp_write - [DEFAULT] Write OTP block area
3094 * @param mtd MTD device structure
3095 * @param to The offset to write
3096 * @param len number of bytes to write
3097 * @param retlen pointer to variable to store the number of write bytes
3098 * @param buf the databuffer to put/get data
3099 *
3100 * Write OTP block area.
3101 */
3102 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3103 size_t *retlen, u_char *buf)
3104 {
3105 struct onenand_chip *this = mtd->priv;
3106 unsigned char *pbuf = buf;
3107 int ret;
3108 struct mtd_oob_ops ops;
3109
3110 /* Force buffer page aligned */
3111 if (len < mtd->writesize) {
3112 memcpy(this->page_buf, buf, len);
3113 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3114 pbuf = this->page_buf;
3115 len = mtd->writesize;
3116 }
3117
3118 /* Enter OTP access mode */
3119 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3120 this->wait(mtd, FL_OTPING);
3121
3122 ops.len = len;
3123 ops.ooblen = 0;
3124 ops.datbuf = pbuf;
3125 ops.oobbuf = NULL;
3126 ret = onenand_write_ops_nolock(mtd, to, &ops);
3127 *retlen = ops.retlen;
3128
3129 /* Exit OTP access mode */
3130 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3131 this->wait(mtd, FL_RESETING);
3132
3133 return ret;
3134 }
3135
3136 /**
3137 * do_otp_lock - [DEFAULT] Lock OTP block area
3138 * @param mtd MTD device structure
3139 * @param from The offset to lock
3140 * @param len number of bytes to lock
3141 * @param retlen pointer to variable to store the number of lock bytes
3142 * @param buf the databuffer to put/get data
3143 *
3144 * Lock OTP block area.
3145 */
3146 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3147 size_t *retlen, u_char *buf)
3148 {
3149 struct onenand_chip *this = mtd->priv;
3150 struct mtd_oob_ops ops;
3151 int ret;
3152
3153 if (FLEXONENAND(this)) {
3154
3155 /* Enter OTP access mode */
3156 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3157 this->wait(mtd, FL_OTPING);
3158 /*
3159 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3160 * main area of page 49.
3161 */
3162 ops.len = mtd->writesize;
3163 ops.ooblen = 0;
3164 ops.datbuf = buf;
3165 ops.oobbuf = NULL;
3166 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3167 *retlen = ops.retlen;
3168
3169 /* Exit OTP access mode */
3170 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3171 this->wait(mtd, FL_RESETING);
3172 } else {
3173 ops.mode = MTD_OPS_PLACE_OOB;
3174 ops.ooblen = len;
3175 ops.oobbuf = buf;
3176 ops.ooboffs = 0;
3177 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3178 *retlen = ops.oobretlen;
3179 }
3180
3181 return ret;
3182 }
3183
3184 /**
3185 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3186 * @param mtd MTD device structure
3187 * @param from The offset to read/write
3188 * @param len number of bytes to read/write
3189 * @param retlen pointer to variable to store the number of read bytes
3190 * @param buf the databuffer to put/get data
3191 * @param action do given action
3192 * @param mode specify user and factory
3193 *
3194 * Handle OTP operation.
3195 */
3196 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3197 size_t *retlen, u_char *buf,
3198 otp_op_t action, int mode)
3199 {
3200 struct onenand_chip *this = mtd->priv;
3201 int otp_pages;
3202 int density;
3203 int ret = 0;
3204
3205 *retlen = 0;
3206
3207 density = onenand_get_density(this->device_id);
3208 if (density < ONENAND_DEVICE_DENSITY_512Mb)
3209 otp_pages = 20;
3210 else
3211 otp_pages = 50;
3212
3213 if (mode == MTD_OTP_FACTORY) {
3214 from += mtd->writesize * otp_pages;
3215 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3216 }
3217
3218 /* Check User/Factory boundary */
3219 if (mode == MTD_OTP_USER) {
3220 if (mtd->writesize * otp_pages < from + len)
3221 return 0;
3222 } else {
3223 if (mtd->writesize * otp_pages < len)
3224 return 0;
3225 }
3226
3227 onenand_get_device(mtd, FL_OTPING);
3228 while (len > 0 && otp_pages > 0) {
3229 if (!action) { /* OTP Info functions */
3230 struct otp_info *otpinfo;
3231
3232 len -= sizeof(struct otp_info);
3233 if (len <= 0) {
3234 ret = -ENOSPC;
3235 break;
3236 }
3237
3238 otpinfo = (struct otp_info *) buf;
3239 otpinfo->start = from;
3240 otpinfo->length = mtd->writesize;
3241 otpinfo->locked = 0;
3242
3243 from += mtd->writesize;
3244 buf += sizeof(struct otp_info);
3245 *retlen += sizeof(struct otp_info);
3246 } else {
3247 size_t tmp_retlen;
3248
3249 ret = action(mtd, from, len, &tmp_retlen, buf);
3250
3251 buf += tmp_retlen;
3252 len -= tmp_retlen;
3253 *retlen += tmp_retlen;
3254
3255 if (ret)
3256 break;
3257 }
3258 otp_pages--;
3259 }
3260 onenand_release_device(mtd);
3261
3262 return ret;
3263 }
3264
3265 /**
3266 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3267 * @param mtd MTD device structure
3268 * @param buf the databuffer to put/get data
3269 * @param len number of bytes to read
3270 *
3271 * Read factory OTP info.
3272 */
3273 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3274 struct otp_info *buf, size_t len)
3275 {
3276 size_t retlen;
3277 int ret;
3278
3279 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3280
3281 return ret ? : retlen;
3282 }
3283
3284 /**
3285 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3286 * @param mtd MTD device structure
3287 * @param from The offset to read
3288 * @param len number of bytes to read
3289 * @param retlen pointer to variable to store the number of read bytes
3290 * @param buf the databuffer to put/get data
3291 *
3292 * Read factory OTP area.
3293 */
3294 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3295 size_t len, size_t *retlen, u_char *buf)
3296 {
3297 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3298 }
3299
3300 /**
3301 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3302 * @param mtd MTD device structure
3303 * @param buf the databuffer to put/get data
3304 * @param len number of bytes to read
3305 *
3306 * Read user OTP info.
3307 */
3308 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3309 struct otp_info *buf, size_t len)
3310 {
3311 size_t retlen;
3312 int ret;
3313
3314 ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3315
3316 return ret ? : retlen;
3317 }
3318
3319 /**
3320 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3321 * @param mtd MTD device structure
3322 * @param from The offset to read
3323 * @param len number of bytes to read
3324 * @param retlen pointer to variable to store the number of read bytes
3325 * @param buf the databuffer to put/get data
3326 *
3327 * Read user OTP area.
3328 */
3329 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3330 size_t len, size_t *retlen, u_char *buf)
3331 {
3332 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3333 }
3334
3335 /**
3336 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3337 * @param mtd MTD device structure
3338 * @param from The offset to write
3339 * @param len number of bytes to write
3340 * @param retlen pointer to variable to store the number of write bytes
3341 * @param buf the databuffer to put/get data
3342 *
3343 * Write user OTP area.
3344 */
3345 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3346 size_t len, size_t *retlen, u_char *buf)
3347 {
3348 return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3349 }
3350
3351 /**
3352 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3353 * @param mtd MTD device structure
3354 * @param from The offset to lock
3355 * @param len number of bytes to unlock
3356 *
3357 * Write lock mark on spare area in page 0 in OTP block
3358 */
3359 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3360 size_t len)
3361 {
3362 struct onenand_chip *this = mtd->priv;
3363 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3364 size_t retlen;
3365 int ret;
3366 unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3367
3368 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3369 : mtd->oobsize);
3370 /*
3371 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3372 * We write 16 bytes spare area instead of 2 bytes.
3373 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3374 * main area of page 49.
3375 */
3376
3377 from = 0;
3378 len = FLEXONENAND(this) ? mtd->writesize : 16;
3379
3380 /*
3381 * Note: OTP lock operation
3382 * OTP block : 0xXXFC XX 1111 1100
3383 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3384 * Both : 0xXXF0 (If chip support) XX 1111 0000
3385 */
3386 if (FLEXONENAND(this))
3387 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3388
3389 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3390 if (otp == 1)
3391 buf[otp_lock_offset] = 0xFC;
3392 else if (otp == 2)
3393 buf[otp_lock_offset] = 0xF3;
3394 else if (otp == 3)
3395 buf[otp_lock_offset] = 0xF0;
3396 else if (otp != 0)
3397 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3398
3399 ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3400
3401 return ret ? : retlen;
3402 }
3403
3404 #endif /* CONFIG_MTD_ONENAND_OTP */
3405
3406 /**
3407 * onenand_check_features - Check and set OneNAND features
3408 * @param mtd MTD data structure
3409 *
3410 * Check and set OneNAND features
3411 * - lock scheme
3412 * - two plane
3413 */
3414 static void onenand_check_features(struct mtd_info *mtd)
3415 {
3416 struct onenand_chip *this = mtd->priv;
3417 unsigned int density, process, numbufs;
3418
3419 /* Lock scheme depends on density and process */
3420 density = onenand_get_density(this->device_id);
3421 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3422 numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3423
3424 /* Lock scheme */
3425 switch (density) {
3426 case ONENAND_DEVICE_DENSITY_4Gb:
3427 if (ONENAND_IS_DDP(this))
3428 this->options |= ONENAND_HAS_2PLANE;
3429 else if (numbufs == 1) {
3430 this->options |= ONENAND_HAS_4KB_PAGE;
3431 this->options |= ONENAND_HAS_CACHE_PROGRAM;
3432 /*
3433 * There are two different 4KiB pagesize chips
3434 * and no way to detect it by H/W config values.
3435 *
3436 * To detect the correct NOP for each chips,
3437 * It should check the version ID as workaround.
3438 *
3439 * Now it has as following
3440 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3441 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3442 */
3443 if ((this->version_id & 0xf) == 0xe)
3444 this->options |= ONENAND_HAS_NOP_1;
3445 }
3446
3447 case ONENAND_DEVICE_DENSITY_2Gb:
3448 /* 2Gb DDP does not have 2 plane */
3449 if (!ONENAND_IS_DDP(this))
3450 this->options |= ONENAND_HAS_2PLANE;
3451 this->options |= ONENAND_HAS_UNLOCK_ALL;
3452
3453 case ONENAND_DEVICE_DENSITY_1Gb:
3454 /* A-Die has all block unlock */
3455 if (process)
3456 this->options |= ONENAND_HAS_UNLOCK_ALL;
3457 break;
3458
3459 default:
3460 /* Some OneNAND has continuous lock scheme */
3461 if (!process)
3462 this->options |= ONENAND_HAS_CONT_LOCK;
3463 break;
3464 }
3465
3466 /* The MLC has 4KiB pagesize. */
3467 if (ONENAND_IS_MLC(this))
3468 this->options |= ONENAND_HAS_4KB_PAGE;
3469
3470 if (ONENAND_IS_4KB_PAGE(this))
3471 this->options &= ~ONENAND_HAS_2PLANE;
3472
3473 if (FLEXONENAND(this)) {
3474 this->options &= ~ONENAND_HAS_CONT_LOCK;
3475 this->options |= ONENAND_HAS_UNLOCK_ALL;
3476 }
3477
3478 if (this->options & ONENAND_HAS_CONT_LOCK)
3479 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3480 if (this->options & ONENAND_HAS_UNLOCK_ALL)
3481 printk(KERN_DEBUG "Chip support all block unlock\n");
3482 if (this->options & ONENAND_HAS_2PLANE)
3483 printk(KERN_DEBUG "Chip has 2 plane\n");
3484 if (this->options & ONENAND_HAS_4KB_PAGE)
3485 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3486 if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3487 printk(KERN_DEBUG "Chip has cache program feature\n");
3488 }
3489
3490 /**
3491 * onenand_print_device_info - Print device & version ID
3492 * @param device device ID
3493 * @param version version ID
3494 *
3495 * Print device & version ID
3496 */
3497 static void onenand_print_device_info(int device, int version)
3498 {
3499 int vcc, demuxed, ddp, density, flexonenand;
3500
3501 vcc = device & ONENAND_DEVICE_VCC_MASK;
3502 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3503 ddp = device & ONENAND_DEVICE_IS_DDP;
3504 density = onenand_get_density(device);
3505 flexonenand = device & DEVICE_IS_FLEXONENAND;
3506 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3507 demuxed ? "" : "Muxed ",
3508 flexonenand ? "Flex-" : "",
3509 ddp ? "(DDP)" : "",
3510 (16 << density),
3511 vcc ? "2.65/3.3" : "1.8",
3512 device);
3513 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3514 }
3515
3516 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3517 {ONENAND_MFR_SAMSUNG, "Samsung"},
3518 {ONENAND_MFR_NUMONYX, "Numonyx"},
3519 };
3520
3521 /**
3522 * onenand_check_maf - Check manufacturer ID
3523 * @param manuf manufacturer ID
3524 *
3525 * Check manufacturer ID
3526 */
3527 static int onenand_check_maf(int manuf)
3528 {
3529 int size = ARRAY_SIZE(onenand_manuf_ids);
3530 char *name;
3531 int i;
3532
3533 for (i = 0; i < size; i++)
3534 if (manuf == onenand_manuf_ids[i].id)
3535 break;
3536
3537 if (i < size)
3538 name = onenand_manuf_ids[i].name;
3539 else
3540 name = "Unknown";
3541
3542 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3543
3544 return (i == size);
3545 }
3546
3547 /**
3548 * flexonenand_get_boundary - Reads the SLC boundary
3549 * @param onenand_info - onenand info structure
3550 **/
3551 static int flexonenand_get_boundary(struct mtd_info *mtd)
3552 {
3553 struct onenand_chip *this = mtd->priv;
3554 unsigned die, bdry;
3555 int ret, syscfg, locked;
3556
3557 /* Disable ECC */
3558 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3559 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3560
3561 for (die = 0; die < this->dies; die++) {
3562 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3563 this->wait(mtd, FL_SYNCING);
3564
3565 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3566 ret = this->wait(mtd, FL_READING);
3567
3568 bdry = this->read_word(this->base + ONENAND_DATARAM);
3569 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3570 locked = 0;
3571 else
3572 locked = 1;
3573 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3574
3575 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3576 ret = this->wait(mtd, FL_RESETING);
3577
3578 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3579 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3580 }
3581
3582 /* Enable ECC */
3583 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3584 return 0;
3585 }
3586
3587 /**
3588 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3589 * boundary[], diesize[], mtd->size, mtd->erasesize
3590 * @param mtd - MTD device structure
3591 */
3592 static void flexonenand_get_size(struct mtd_info *mtd)
3593 {
3594 struct onenand_chip *this = mtd->priv;
3595 int die, i, eraseshift, density;
3596 int blksperdie, maxbdry;
3597 loff_t ofs;
3598
3599 density = onenand_get_density(this->device_id);
3600 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3601 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3602 maxbdry = blksperdie - 1;
3603 eraseshift = this->erase_shift - 1;
3604
3605 mtd->numeraseregions = this->dies << 1;
3606
3607 /* This fills up the device boundary */
3608 flexonenand_get_boundary(mtd);
3609 die = ofs = 0;
3610 i = -1;
3611 for (; die < this->dies; die++) {
3612 if (!die || this->boundary[die-1] != maxbdry) {
3613 i++;
3614 mtd->eraseregions[i].offset = ofs;
3615 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3616 mtd->eraseregions[i].numblocks =
3617 this->boundary[die] + 1;
3618 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3619 eraseshift++;
3620 } else {
3621 mtd->numeraseregions -= 1;
3622 mtd->eraseregions[i].numblocks +=
3623 this->boundary[die] + 1;
3624 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3625 }
3626 if (this->boundary[die] != maxbdry) {
3627 i++;
3628 mtd->eraseregions[i].offset = ofs;
3629 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3630 mtd->eraseregions[i].numblocks = maxbdry ^
3631 this->boundary[die];
3632 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3633 eraseshift--;
3634 } else
3635 mtd->numeraseregions -= 1;
3636 }
3637
3638 /* Expose MLC erase size except when all blocks are SLC */
3639 mtd->erasesize = 1 << this->erase_shift;
3640 if (mtd->numeraseregions == 1)
3641 mtd->erasesize >>= 1;
3642
3643 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3644 for (i = 0; i < mtd->numeraseregions; i++)
3645 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3646 " numblocks: %04u]\n",
3647 (unsigned int) mtd->eraseregions[i].offset,
3648 mtd->eraseregions[i].erasesize,
3649 mtd->eraseregions[i].numblocks);
3650
3651 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3652 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3653 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3654 << (this->erase_shift - 1);
3655 mtd->size += this->diesize[die];
3656 }
3657 }
3658
3659 /**
3660 * flexonenand_check_blocks_erased - Check if blocks are erased
3661 * @param mtd_info - mtd info structure
3662 * @param start - first erase block to check
3663 * @param end - last erase block to check
3664 *
3665 * Converting an unerased block from MLC to SLC
3666 * causes byte values to change. Since both data and its ECC
3667 * have changed, reads on the block give uncorrectable error.
3668 * This might lead to the block being detected as bad.
3669 *
3670 * Avoid this by ensuring that the block to be converted is
3671 * erased.
3672 */
3673 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3674 {
3675 struct onenand_chip *this = mtd->priv;
3676 int i, ret;
3677 int block;
3678 struct mtd_oob_ops ops = {
3679 .mode = MTD_OPS_PLACE_OOB,
3680 .ooboffs = 0,
3681 .ooblen = mtd->oobsize,
3682 .datbuf = NULL,
3683 .oobbuf = this->oob_buf,
3684 };
3685 loff_t addr;
3686
3687 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3688
3689 for (block = start; block <= end; block++) {
3690 addr = flexonenand_addr(this, block);
3691 if (onenand_block_isbad_nolock(mtd, addr, 0))
3692 continue;
3693
3694 /*
3695 * Since main area write results in ECC write to spare,
3696 * it is sufficient to check only ECC bytes for change.
3697 */
3698 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3699 if (ret)
3700 return ret;
3701
3702 for (i = 0; i < mtd->oobsize; i++)
3703 if (this->oob_buf[i] != 0xff)
3704 break;
3705
3706 if (i != mtd->oobsize) {
3707 printk(KERN_WARNING "%s: Block %d not erased.\n",
3708 __func__, block);
3709 return 1;
3710 }
3711 }
3712
3713 return 0;
3714 }
3715
3716 /**
3717 * flexonenand_set_boundary - Writes the SLC boundary
3718 * @param mtd - mtd info structure
3719 */
3720 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3721 int boundary, int lock)
3722 {
3723 struct onenand_chip *this = mtd->priv;
3724 int ret, density, blksperdie, old, new, thisboundary;
3725 loff_t addr;
3726
3727 /* Change only once for SDP Flex-OneNAND */
3728 if (die && (!ONENAND_IS_DDP(this)))
3729 return 0;
3730
3731 /* boundary value of -1 indicates no required change */
3732 if (boundary < 0 || boundary == this->boundary[die])
3733 return 0;
3734
3735 density = onenand_get_density(this->device_id);
3736 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3737 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3738
3739 if (boundary >= blksperdie) {
3740 printk(KERN_ERR "%s: Invalid boundary value. "
3741 "Boundary not changed.\n", __func__);
3742 return -EINVAL;
3743 }
3744
3745 /* Check if converting blocks are erased */
3746 old = this->boundary[die] + (die * this->density_mask);
3747 new = boundary + (die * this->density_mask);
3748 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3749 if (ret) {
3750 printk(KERN_ERR "%s: Please erase blocks "
3751 "before boundary change\n", __func__);
3752 return ret;
3753 }
3754
3755 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3756 this->wait(mtd, FL_SYNCING);
3757
3758 /* Check is boundary is locked */
3759 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3760 ret = this->wait(mtd, FL_READING);
3761
3762 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3763 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3764 printk(KERN_ERR "%s: boundary locked\n", __func__);
3765 ret = 1;
3766 goto out;
3767 }
3768
3769 printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3770 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3771
3772 addr = die ? this->diesize[0] : 0;
3773
3774 boundary &= FLEXONENAND_PI_MASK;
3775 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3776
3777 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3778 ret = this->wait(mtd, FL_ERASING);
3779 if (ret) {
3780 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3781 __func__, die);
3782 goto out;
3783 }
3784
3785 this->write_word(boundary, this->base + ONENAND_DATARAM);
3786 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3787 ret = this->wait(mtd, FL_WRITING);
3788 if (ret) {
3789 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3790 __func__, die);
3791 goto out;
3792 }
3793
3794 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3795 ret = this->wait(mtd, FL_WRITING);
3796 out:
3797 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3798 this->wait(mtd, FL_RESETING);
3799 if (!ret)
3800 /* Recalculate device size on boundary change*/
3801 flexonenand_get_size(mtd);
3802
3803 return ret;
3804 }
3805
3806 /**
3807 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3808 * @param mtd MTD device structure
3809 *
3810 * OneNAND detection method:
3811 * Compare the values from command with ones from register
3812 */
3813 static int onenand_chip_probe(struct mtd_info *mtd)
3814 {
3815 struct onenand_chip *this = mtd->priv;
3816 int bram_maf_id, bram_dev_id, maf_id, dev_id;
3817 int syscfg;
3818
3819 /* Save system configuration 1 */
3820 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3821 /* Clear Sync. Burst Read mode to read BootRAM */
3822 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3823
3824 /* Send the command for reading device ID from BootRAM */
3825 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3826
3827 /* Read manufacturer and device IDs from BootRAM */
3828 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3829 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3830
3831 /* Reset OneNAND to read default register values */
3832 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3833 /* Wait reset */
3834 this->wait(mtd, FL_RESETING);
3835
3836 /* Restore system configuration 1 */
3837 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3838
3839 /* Check manufacturer ID */
3840 if (onenand_check_maf(bram_maf_id))
3841 return -ENXIO;
3842
3843 /* Read manufacturer and device IDs from Register */
3844 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3845 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3846
3847 /* Check OneNAND device */
3848 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3849 return -ENXIO;
3850
3851 return 0;
3852 }
3853
3854 /**
3855 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3856 * @param mtd MTD device structure
3857 */
3858 static int onenand_probe(struct mtd_info *mtd)
3859 {
3860 struct onenand_chip *this = mtd->priv;
3861 int maf_id, dev_id, ver_id;
3862 int density;
3863 int ret;
3864
3865 ret = this->chip_probe(mtd);
3866 if (ret)
3867 return ret;
3868
3869 /* Read manufacturer and device IDs from Register */
3870 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3871 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3872 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3873 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3874
3875 /* Flash device information */
3876 onenand_print_device_info(dev_id, ver_id);
3877 this->device_id = dev_id;
3878 this->version_id = ver_id;
3879
3880 /* Check OneNAND features */
3881 onenand_check_features(mtd);
3882
3883 density = onenand_get_density(dev_id);
3884 if (FLEXONENAND(this)) {
3885 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3886 /* Maximum possible erase regions */
3887 mtd->numeraseregions = this->dies << 1;
3888 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3889 * (this->dies << 1), GFP_KERNEL);
3890 if (!mtd->eraseregions)
3891 return -ENOMEM;
3892 }
3893
3894 /*
3895 * For Flex-OneNAND, chipsize represents maximum possible device size.
3896 * mtd->size represents the actual device size.
3897 */
3898 this->chipsize = (16 << density) << 20;
3899
3900 /* OneNAND page size & block size */
3901 /* The data buffer size is equal to page size */
3902 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3903 /* We use the full BufferRAM */
3904 if (ONENAND_IS_4KB_PAGE(this))
3905 mtd->writesize <<= 1;
3906
3907 mtd->oobsize = mtd->writesize >> 5;
3908 /* Pages per a block are always 64 in OneNAND */
3909 mtd->erasesize = mtd->writesize << 6;
3910 /*
3911 * Flex-OneNAND SLC area has 64 pages per block.
3912 * Flex-OneNAND MLC area has 128 pages per block.
3913 * Expose MLC erase size to find erase_shift and page_mask.
3914 */
3915 if (FLEXONENAND(this))
3916 mtd->erasesize <<= 1;
3917
3918 this->erase_shift = ffs(mtd->erasesize) - 1;
3919 this->page_shift = ffs(mtd->writesize) - 1;
3920 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3921 /* Set density mask. it is used for DDP */
3922 if (ONENAND_IS_DDP(this))
3923 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3924 /* It's real page size */
3925 this->writesize = mtd->writesize;
3926
3927 /* REVISIT: Multichip handling */
3928
3929 if (FLEXONENAND(this))
3930 flexonenand_get_size(mtd);
3931 else
3932 mtd->size = this->chipsize;
3933
3934 /*
3935 * We emulate the 4KiB page and 256KiB erase block size
3936 * But oobsize is still 64 bytes.
3937 * It is only valid if you turn on 2X program support,
3938 * Otherwise it will be ignored by compiler.
3939 */
3940 if (ONENAND_IS_2PLANE(this)) {
3941 mtd->writesize <<= 1;
3942 mtd->erasesize <<= 1;
3943 }
3944
3945 return 0;
3946 }
3947
3948 /**
3949 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3950 * @param mtd MTD device structure
3951 */
3952 static int onenand_suspend(struct mtd_info *mtd)
3953 {
3954 return onenand_get_device(mtd, FL_PM_SUSPENDED);
3955 }
3956
3957 /**
3958 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3959 * @param mtd MTD device structure
3960 */
3961 static void onenand_resume(struct mtd_info *mtd)
3962 {
3963 struct onenand_chip *this = mtd->priv;
3964
3965 if (this->state == FL_PM_SUSPENDED)
3966 onenand_release_device(mtd);
3967 else
3968 printk(KERN_ERR "%s: resume() called for the chip which is not "
3969 "in suspended state\n", __func__);
3970 }
3971
3972 /**
3973 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3974 * @param mtd MTD device structure
3975 * @param maxchips Number of chips to scan for
3976 *
3977 * This fills out all the not initialized function pointers
3978 * with the defaults.
3979 * The flash ID is read and the mtd/chip structures are
3980 * filled with the appropriate values.
3981 */
3982 int onenand_scan(struct mtd_info *mtd, int maxchips)
3983 {
3984 int i, ret;
3985 struct onenand_chip *this = mtd->priv;
3986
3987 if (!this->read_word)
3988 this->read_word = onenand_readw;
3989 if (!this->write_word)
3990 this->write_word = onenand_writew;
3991
3992 if (!this->command)
3993 this->command = onenand_command;
3994 if (!this->wait)
3995 onenand_setup_wait(mtd);
3996 if (!this->bbt_wait)
3997 this->bbt_wait = onenand_bbt_wait;
3998 if (!this->unlock_all)
3999 this->unlock_all = onenand_unlock_all;
4000
4001 if (!this->chip_probe)
4002 this->chip_probe = onenand_chip_probe;
4003
4004 if (!this->read_bufferram)
4005 this->read_bufferram = onenand_read_bufferram;
4006 if (!this->write_bufferram)
4007 this->write_bufferram = onenand_write_bufferram;
4008
4009 if (!this->block_markbad)
4010 this->block_markbad = onenand_default_block_markbad;
4011 if (!this->scan_bbt)
4012 this->scan_bbt = onenand_default_bbt;
4013
4014 if (onenand_probe(mtd))
4015 return -ENXIO;
4016
4017 /* Set Sync. Burst Read after probing */
4018 if (this->mmcontrol) {
4019 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
4020 this->read_bufferram = onenand_sync_read_bufferram;
4021 }
4022
4023 /* Allocate buffers, if necessary */
4024 if (!this->page_buf) {
4025 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
4026 if (!this->page_buf) {
4027 printk(KERN_ERR "%s: Can't allocate page_buf\n",
4028 __func__);
4029 return -ENOMEM;
4030 }
4031 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4032 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
4033 if (!this->verify_buf) {
4034 kfree(this->page_buf);
4035 return -ENOMEM;
4036 }
4037 #endif
4038 this->options |= ONENAND_PAGEBUF_ALLOC;
4039 }
4040 if (!this->oob_buf) {
4041 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
4042 if (!this->oob_buf) {
4043 printk(KERN_ERR "%s: Can't allocate oob_buf\n",
4044 __func__);
4045 if (this->options & ONENAND_PAGEBUF_ALLOC) {
4046 this->options &= ~ONENAND_PAGEBUF_ALLOC;
4047 kfree(this->page_buf);
4048 }
4049 return -ENOMEM;
4050 }
4051 this->options |= ONENAND_OOBBUF_ALLOC;
4052 }
4053
4054 this->state = FL_READY;
4055 init_waitqueue_head(&this->wq);
4056 spin_lock_init(&this->chip_lock);
4057
4058 /*
4059 * Allow subpage writes up to oobsize.
4060 */
4061 switch (mtd->oobsize) {
4062 case 128:
4063 if (FLEXONENAND(this)) {
4064 this->ecclayout = &flexonenand_oob_128;
4065 mtd->subpage_sft = 0;
4066 } else {
4067 this->ecclayout = &onenand_oob_128;
4068 mtd->subpage_sft = 2;
4069 }
4070 if (ONENAND_IS_NOP_1(this))
4071 mtd->subpage_sft = 0;
4072 break;
4073 case 64:
4074 this->ecclayout = &onenand_oob_64;
4075 mtd->subpage_sft = 2;
4076 break;
4077
4078 case 32:
4079 this->ecclayout = &onenand_oob_32;
4080 mtd->subpage_sft = 1;
4081 break;
4082
4083 default:
4084 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4085 __func__, mtd->oobsize);
4086 mtd->subpage_sft = 0;
4087 /* To prevent kernel oops */
4088 this->ecclayout = &onenand_oob_32;
4089 break;
4090 }
4091
4092 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4093
4094 /*
4095 * The number of bytes available for a client to place data into
4096 * the out of band area
4097 */
4098 this->ecclayout->oobavail = 0;
4099 for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4100 this->ecclayout->oobfree[i].length; i++)
4101 this->ecclayout->oobavail +=
4102 this->ecclayout->oobfree[i].length;
4103 mtd->oobavail = this->ecclayout->oobavail;
4104
4105 mtd->ecclayout = this->ecclayout;
4106
4107 /* Fill in remaining MTD driver data */
4108 mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4109 mtd->flags = MTD_CAP_NANDFLASH;
4110 mtd->_erase = onenand_erase;
4111 mtd->_point = NULL;
4112 mtd->_unpoint = NULL;
4113 mtd->_read = onenand_read;
4114 mtd->_write = onenand_write;
4115 mtd->_read_oob = onenand_read_oob;
4116 mtd->_write_oob = onenand_write_oob;
4117 mtd->_panic_write = onenand_panic_write;
4118 #ifdef CONFIG_MTD_ONENAND_OTP
4119 mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
4120 mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
4121 mtd->_get_user_prot_info = onenand_get_user_prot_info;
4122 mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
4123 mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
4124 mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
4125 #endif
4126 mtd->_sync = onenand_sync;
4127 mtd->_lock = onenand_lock;
4128 mtd->_unlock = onenand_unlock;
4129 mtd->_suspend = onenand_suspend;
4130 mtd->_resume = onenand_resume;
4131 mtd->_block_isbad = onenand_block_isbad;
4132 mtd->_block_markbad = onenand_block_markbad;
4133 mtd->owner = THIS_MODULE;
4134 mtd->writebufsize = mtd->writesize;
4135
4136 /* Unlock whole block */
4137 if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4138 this->unlock_all(mtd);
4139
4140 ret = this->scan_bbt(mtd);
4141 if ((!FLEXONENAND(this)) || ret)
4142 return ret;
4143
4144 /* Change Flex-OneNAND boundaries if required */
4145 for (i = 0; i < MAX_DIES; i++)
4146 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4147 flex_bdry[(2 * i) + 1]);
4148
4149 return 0;
4150 }
4151
4152 /**
4153 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4154 * @param mtd MTD device structure
4155 */
4156 void onenand_release(struct mtd_info *mtd)
4157 {
4158 struct onenand_chip *this = mtd->priv;
4159
4160 /* Deregister partitions */
4161 mtd_device_unregister(mtd);
4162
4163 /* Free bad block table memory, if allocated */
4164 if (this->bbm) {
4165 struct bbm_info *bbm = this->bbm;
4166 kfree(bbm->bbt);
4167 kfree(this->bbm);
4168 }
4169 /* Buffers allocated by onenand_scan */
4170 if (this->options & ONENAND_PAGEBUF_ALLOC) {
4171 kfree(this->page_buf);
4172 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4173 kfree(this->verify_buf);
4174 #endif
4175 }
4176 if (this->options & ONENAND_OOBBUF_ALLOC)
4177 kfree(this->oob_buf);
4178 kfree(mtd->eraseregions);
4179 }
4180
4181 EXPORT_SYMBOL_GPL(onenand_scan);
4182 EXPORT_SYMBOL_GPL(onenand_release);
4183
4184 MODULE_LICENSE("GPL");
4185 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4186 MODULE_DESCRIPTION("Generic OneNAND flash driver code");
This page took 0.202113 seconds and 5 git commands to generate.