rtlwifi: Change order in device startup
[deliverable/linux.git] / drivers / mtd / spi-nor / fsl-quadspi.c
1 /*
2 * Freescale QuadSPI driver.
3 *
4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/errno.h>
15 #include <linux/platform_device.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/timer.h>
24 #include <linux/jiffies.h>
25 #include <linux/completion.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/mtd/spi-nor.h>
29
30 /* The registers */
31 #define QUADSPI_MCR 0x00
32 #define QUADSPI_MCR_RESERVED_SHIFT 16
33 #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
34 #define QUADSPI_MCR_MDIS_SHIFT 14
35 #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
36 #define QUADSPI_MCR_CLR_TXF_SHIFT 11
37 #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
38 #define QUADSPI_MCR_CLR_RXF_SHIFT 10
39 #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
40 #define QUADSPI_MCR_DDR_EN_SHIFT 7
41 #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
42 #define QUADSPI_MCR_END_CFG_SHIFT 2
43 #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
44 #define QUADSPI_MCR_SWRSTHD_SHIFT 1
45 #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
46 #define QUADSPI_MCR_SWRSTSD_SHIFT 0
47 #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
48
49 #define QUADSPI_IPCR 0x08
50 #define QUADSPI_IPCR_SEQID_SHIFT 24
51 #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
52
53 #define QUADSPI_BUF0CR 0x10
54 #define QUADSPI_BUF1CR 0x14
55 #define QUADSPI_BUF2CR 0x18
56 #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
57
58 #define QUADSPI_BUF3CR 0x1c
59 #define QUADSPI_BUF3CR_ALLMST_SHIFT 31
60 #define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
61
62 #define QUADSPI_BFGENCR 0x20
63 #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
64 #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
65 #define QUADSPI_BFGENCR_SEQID_SHIFT 12
66 #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
67
68 #define QUADSPI_BUF0IND 0x30
69 #define QUADSPI_BUF1IND 0x34
70 #define QUADSPI_BUF2IND 0x38
71 #define QUADSPI_SFAR 0x100
72
73 #define QUADSPI_SMPR 0x108
74 #define QUADSPI_SMPR_DDRSMP_SHIFT 16
75 #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
76 #define QUADSPI_SMPR_FSDLY_SHIFT 6
77 #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
78 #define QUADSPI_SMPR_FSPHS_SHIFT 5
79 #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
80 #define QUADSPI_SMPR_HSENA_SHIFT 0
81 #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
82
83 #define QUADSPI_RBSR 0x10c
84 #define QUADSPI_RBSR_RDBFL_SHIFT 8
85 #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
86
87 #define QUADSPI_RBCT 0x110
88 #define QUADSPI_RBCT_WMRK_MASK 0x1F
89 #define QUADSPI_RBCT_RXBRD_SHIFT 8
90 #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
91
92 #define QUADSPI_TBSR 0x150
93 #define QUADSPI_TBDR 0x154
94 #define QUADSPI_SR 0x15c
95 #define QUADSPI_SR_IP_ACC_SHIFT 1
96 #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
97 #define QUADSPI_SR_AHB_ACC_SHIFT 2
98 #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
99
100 #define QUADSPI_FR 0x160
101 #define QUADSPI_FR_TFF_MASK 0x1
102
103 #define QUADSPI_SFA1AD 0x180
104 #define QUADSPI_SFA2AD 0x184
105 #define QUADSPI_SFB1AD 0x188
106 #define QUADSPI_SFB2AD 0x18c
107 #define QUADSPI_RBDR 0x200
108
109 #define QUADSPI_LUTKEY 0x300
110 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
111
112 #define QUADSPI_LCKCR 0x304
113 #define QUADSPI_LCKER_LOCK 0x1
114 #define QUADSPI_LCKER_UNLOCK 0x2
115
116 #define QUADSPI_RSER 0x164
117 #define QUADSPI_RSER_TFIE (0x1 << 0)
118
119 #define QUADSPI_LUT_BASE 0x310
120
121 /*
122 * The definition of the LUT register shows below:
123 *
124 * ---------------------------------------------------
125 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
126 * ---------------------------------------------------
127 */
128 #define OPRND0_SHIFT 0
129 #define PAD0_SHIFT 8
130 #define INSTR0_SHIFT 10
131 #define OPRND1_SHIFT 16
132
133 /* Instruction set for the LUT register. */
134 #define LUT_STOP 0
135 #define LUT_CMD 1
136 #define LUT_ADDR 2
137 #define LUT_DUMMY 3
138 #define LUT_MODE 4
139 #define LUT_MODE2 5
140 #define LUT_MODE4 6
141 #define LUT_READ 7
142 #define LUT_WRITE 8
143 #define LUT_JMP_ON_CS 9
144 #define LUT_ADDR_DDR 10
145 #define LUT_MODE_DDR 11
146 #define LUT_MODE2_DDR 12
147 #define LUT_MODE4_DDR 13
148 #define LUT_READ_DDR 14
149 #define LUT_WRITE_DDR 15
150 #define LUT_DATA_LEARN 16
151
152 /*
153 * The PAD definitions for LUT register.
154 *
155 * The pad stands for the lines number of IO[0:3].
156 * For example, the Quad read need four IO lines, so you should
157 * set LUT_PAD4 which means we use four IO lines.
158 */
159 #define LUT_PAD1 0
160 #define LUT_PAD2 1
161 #define LUT_PAD4 2
162
163 /* Oprands for the LUT register. */
164 #define ADDR24BIT 0x18
165 #define ADDR32BIT 0x20
166
167 /* Macros for constructing the LUT register. */
168 #define LUT0(ins, pad, opr) \
169 (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
170 ((LUT_##ins) << INSTR0_SHIFT))
171
172 #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
173
174 /* other macros for LUT register. */
175 #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
176 #define QUADSPI_LUT_NUM 64
177
178 /* SEQID -- we can have 16 seqids at most. */
179 #define SEQID_QUAD_READ 0
180 #define SEQID_WREN 1
181 #define SEQID_WRDI 2
182 #define SEQID_RDSR 3
183 #define SEQID_SE 4
184 #define SEQID_CHIP_ERASE 5
185 #define SEQID_PP 6
186 #define SEQID_RDID 7
187 #define SEQID_WRSR 8
188 #define SEQID_RDCR 9
189 #define SEQID_EN4B 10
190 #define SEQID_BRWR 11
191
192 enum fsl_qspi_devtype {
193 FSL_QUADSPI_VYBRID,
194 FSL_QUADSPI_IMX6SX,
195 };
196
197 struct fsl_qspi_devtype_data {
198 enum fsl_qspi_devtype devtype;
199 int rxfifo;
200 int txfifo;
201 };
202
203 static struct fsl_qspi_devtype_data vybrid_data = {
204 .devtype = FSL_QUADSPI_VYBRID,
205 .rxfifo = 128,
206 .txfifo = 64
207 };
208
209 static struct fsl_qspi_devtype_data imx6sx_data = {
210 .devtype = FSL_QUADSPI_IMX6SX,
211 .rxfifo = 128,
212 .txfifo = 512
213 };
214
215 #define FSL_QSPI_MAX_CHIP 4
216 struct fsl_qspi {
217 struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
218 struct spi_nor nor[FSL_QSPI_MAX_CHIP];
219 void __iomem *iobase;
220 void __iomem *ahb_base; /* Used when read from AHB bus */
221 u32 memmap_phy;
222 struct clk *clk, *clk_en;
223 struct device *dev;
224 struct completion c;
225 struct fsl_qspi_devtype_data *devtype_data;
226 u32 nor_size;
227 u32 nor_num;
228 u32 clk_rate;
229 unsigned int chip_base_addr; /* We may support two chips. */
230 };
231
232 static inline int is_vybrid_qspi(struct fsl_qspi *q)
233 {
234 return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
235 }
236
237 static inline int is_imx6sx_qspi(struct fsl_qspi *q)
238 {
239 return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
240 }
241
242 /*
243 * An IC bug makes us to re-arrange the 32-bit data.
244 * The following chips, such as IMX6SLX, have fixed this bug.
245 */
246 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
247 {
248 return is_vybrid_qspi(q) ? __swab32(a) : a;
249 }
250
251 static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
252 {
253 writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
254 writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
255 }
256
257 static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
258 {
259 writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
260 writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
261 }
262
263 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
264 {
265 struct fsl_qspi *q = dev_id;
266 u32 reg;
267
268 /* clear interrupt */
269 reg = readl(q->iobase + QUADSPI_FR);
270 writel(reg, q->iobase + QUADSPI_FR);
271
272 if (reg & QUADSPI_FR_TFF_MASK)
273 complete(&q->c);
274
275 dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
276 return IRQ_HANDLED;
277 }
278
279 static void fsl_qspi_init_lut(struct fsl_qspi *q)
280 {
281 void __iomem *base = q->iobase;
282 int rxfifo = q->devtype_data->rxfifo;
283 u32 lut_base;
284 u8 cmd, addrlen, dummy;
285 int i;
286
287 fsl_qspi_unlock_lut(q);
288
289 /* Clear all the LUT table */
290 for (i = 0; i < QUADSPI_LUT_NUM; i++)
291 writel(0, base + QUADSPI_LUT_BASE + i * 4);
292
293 /* Quad Read */
294 lut_base = SEQID_QUAD_READ * 4;
295
296 if (q->nor_size <= SZ_16M) {
297 cmd = SPINOR_OP_READ_1_1_4;
298 addrlen = ADDR24BIT;
299 dummy = 8;
300 } else {
301 /* use the 4-byte address */
302 cmd = SPINOR_OP_READ_1_1_4;
303 addrlen = ADDR32BIT;
304 dummy = 8;
305 }
306
307 writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
308 base + QUADSPI_LUT(lut_base));
309 writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
310 base + QUADSPI_LUT(lut_base + 1));
311
312 /* Write enable */
313 lut_base = SEQID_WREN * 4;
314 writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
315
316 /* Page Program */
317 lut_base = SEQID_PP * 4;
318
319 if (q->nor_size <= SZ_16M) {
320 cmd = SPINOR_OP_PP;
321 addrlen = ADDR24BIT;
322 } else {
323 /* use the 4-byte address */
324 cmd = SPINOR_OP_PP;
325 addrlen = ADDR32BIT;
326 }
327
328 writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
329 base + QUADSPI_LUT(lut_base));
330 writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
331
332 /* Read Status */
333 lut_base = SEQID_RDSR * 4;
334 writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
335 base + QUADSPI_LUT(lut_base));
336
337 /* Erase a sector */
338 lut_base = SEQID_SE * 4;
339
340 if (q->nor_size <= SZ_16M) {
341 cmd = SPINOR_OP_SE;
342 addrlen = ADDR24BIT;
343 } else {
344 /* use the 4-byte address */
345 cmd = SPINOR_OP_SE;
346 addrlen = ADDR32BIT;
347 }
348
349 writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
350 base + QUADSPI_LUT(lut_base));
351
352 /* Erase the whole chip */
353 lut_base = SEQID_CHIP_ERASE * 4;
354 writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
355 base + QUADSPI_LUT(lut_base));
356
357 /* READ ID */
358 lut_base = SEQID_RDID * 4;
359 writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
360 base + QUADSPI_LUT(lut_base));
361
362 /* Write Register */
363 lut_base = SEQID_WRSR * 4;
364 writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
365 base + QUADSPI_LUT(lut_base));
366
367 /* Read Configuration Register */
368 lut_base = SEQID_RDCR * 4;
369 writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
370 base + QUADSPI_LUT(lut_base));
371
372 /* Write disable */
373 lut_base = SEQID_WRDI * 4;
374 writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
375
376 /* Enter 4 Byte Mode (Micron) */
377 lut_base = SEQID_EN4B * 4;
378 writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
379
380 /* Enter 4 Byte Mode (Spansion) */
381 lut_base = SEQID_BRWR * 4;
382 writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
383
384 fsl_qspi_lock_lut(q);
385 }
386
387 /* Get the SEQID for the command */
388 static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
389 {
390 switch (cmd) {
391 case SPINOR_OP_READ_1_1_4:
392 return SEQID_QUAD_READ;
393 case SPINOR_OP_WREN:
394 return SEQID_WREN;
395 case SPINOR_OP_WRDI:
396 return SEQID_WRDI;
397 case SPINOR_OP_RDSR:
398 return SEQID_RDSR;
399 case SPINOR_OP_SE:
400 return SEQID_SE;
401 case SPINOR_OP_CHIP_ERASE:
402 return SEQID_CHIP_ERASE;
403 case SPINOR_OP_PP:
404 return SEQID_PP;
405 case SPINOR_OP_RDID:
406 return SEQID_RDID;
407 case SPINOR_OP_WRSR:
408 return SEQID_WRSR;
409 case SPINOR_OP_RDCR:
410 return SEQID_RDCR;
411 case SPINOR_OP_EN4B:
412 return SEQID_EN4B;
413 case SPINOR_OP_BRWR:
414 return SEQID_BRWR;
415 default:
416 dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
417 break;
418 }
419 return -EINVAL;
420 }
421
422 static int
423 fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
424 {
425 void __iomem *base = q->iobase;
426 int seqid;
427 u32 reg, reg2;
428 int err;
429
430 init_completion(&q->c);
431 dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
432 q->chip_base_addr, addr, len, cmd);
433
434 /* save the reg */
435 reg = readl(base + QUADSPI_MCR);
436
437 writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
438 writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
439 base + QUADSPI_RBCT);
440 writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
441
442 do {
443 reg2 = readl(base + QUADSPI_SR);
444 if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
445 udelay(1);
446 dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
447 continue;
448 }
449 break;
450 } while (1);
451
452 /* trigger the LUT now */
453 seqid = fsl_qspi_get_seqid(q, cmd);
454 writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
455
456 /* Wait for the interrupt. */
457 err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
458 if (!err) {
459 dev_err(q->dev,
460 "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
461 cmd, addr, readl(base + QUADSPI_FR),
462 readl(base + QUADSPI_SR));
463 err = -ETIMEDOUT;
464 } else {
465 err = 0;
466 }
467
468 /* restore the MCR */
469 writel(reg, base + QUADSPI_MCR);
470
471 return err;
472 }
473
474 /* Read out the data from the QUADSPI_RBDR buffer registers. */
475 static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
476 {
477 u32 tmp;
478 int i = 0;
479
480 while (len > 0) {
481 tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
482 tmp = fsl_qspi_endian_xchg(q, tmp);
483 dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
484 q->chip_base_addr, tmp);
485
486 if (len >= 4) {
487 *((u32 *)rxbuf) = tmp;
488 rxbuf += 4;
489 } else {
490 memcpy(rxbuf, &tmp, len);
491 break;
492 }
493
494 len -= 4;
495 i++;
496 }
497 }
498
499 /*
500 * If we have changed the content of the flash by writing or erasing,
501 * we need to invalidate the AHB buffer. If we do not do so, we may read out
502 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
503 * domain at the same time.
504 */
505 static inline void fsl_qspi_invalid(struct fsl_qspi *q)
506 {
507 u32 reg;
508
509 reg = readl(q->iobase + QUADSPI_MCR);
510 reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
511 writel(reg, q->iobase + QUADSPI_MCR);
512
513 /*
514 * The minimum delay : 1 AHB + 2 SFCK clocks.
515 * Delay 1 us is enough.
516 */
517 udelay(1);
518
519 reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
520 writel(reg, q->iobase + QUADSPI_MCR);
521 }
522
523 static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
524 u8 opcode, unsigned int to, u32 *txbuf,
525 unsigned count, size_t *retlen)
526 {
527 int ret, i, j;
528 u32 tmp;
529
530 dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
531 q->chip_base_addr, to, count);
532
533 /* clear the TX FIFO. */
534 tmp = readl(q->iobase + QUADSPI_MCR);
535 writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
536
537 /* fill the TX data to the FIFO */
538 for (j = 0, i = ((count + 3) / 4); j < i; j++) {
539 tmp = fsl_qspi_endian_xchg(q, *txbuf);
540 writel(tmp, q->iobase + QUADSPI_TBDR);
541 txbuf++;
542 }
543
544 /* Trigger it */
545 ret = fsl_qspi_runcmd(q, opcode, to, count);
546
547 if (ret == 0 && retlen)
548 *retlen += count;
549
550 return ret;
551 }
552
553 static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
554 {
555 int nor_size = q->nor_size;
556 void __iomem *base = q->iobase;
557
558 writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
559 writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
560 writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
561 writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
562 }
563
564 /*
565 * There are two different ways to read out the data from the flash:
566 * the "IP Command Read" and the "AHB Command Read".
567 *
568 * The IC guy suggests we use the "AHB Command Read" which is faster
569 * then the "IP Command Read". (What's more is that there is a bug in
570 * the "IP Command Read" in the Vybrid.)
571 *
572 * After we set up the registers for the "AHB Command Read", we can use
573 * the memcpy to read the data directly. A "missed" access to the buffer
574 * causes the controller to clear the buffer, and use the sequence pointed
575 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
576 */
577 static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
578 {
579 void __iomem *base = q->iobase;
580 int seqid;
581
582 /* AHB configuration for access buffer 0/1/2 .*/
583 writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
584 writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
585 writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
586 writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR);
587
588 /* We only use the buffer3 */
589 writel(0, base + QUADSPI_BUF0IND);
590 writel(0, base + QUADSPI_BUF1IND);
591 writel(0, base + QUADSPI_BUF2IND);
592
593 /* Set the default lut sequence for AHB Read. */
594 seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
595 writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
596 q->iobase + QUADSPI_BFGENCR);
597 }
598
599 /* We use this function to do some basic init for spi_nor_scan(). */
600 static int fsl_qspi_nor_setup(struct fsl_qspi *q)
601 {
602 void __iomem *base = q->iobase;
603 u32 reg;
604 int ret;
605
606 /* the default frequency, we will change it in the future.*/
607 ret = clk_set_rate(q->clk, 66000000);
608 if (ret)
609 return ret;
610
611 /* Init the LUT table. */
612 fsl_qspi_init_lut(q);
613
614 /* Disable the module */
615 writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
616 base + QUADSPI_MCR);
617
618 reg = readl(base + QUADSPI_SMPR);
619 writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
620 | QUADSPI_SMPR_FSPHS_MASK
621 | QUADSPI_SMPR_HSENA_MASK
622 | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
623
624 /* Enable the module */
625 writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
626 base + QUADSPI_MCR);
627
628 /* enable the interrupt */
629 writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
630
631 return 0;
632 }
633
634 static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
635 {
636 unsigned long rate = q->clk_rate;
637 int ret;
638
639 if (is_imx6sx_qspi(q))
640 rate *= 4;
641
642 ret = clk_set_rate(q->clk, rate);
643 if (ret)
644 return ret;
645
646 /* Init the LUT table again. */
647 fsl_qspi_init_lut(q);
648
649 /* Init for AHB read */
650 fsl_qspi_init_abh_read(q);
651
652 return 0;
653 }
654
655 static struct of_device_id fsl_qspi_dt_ids[] = {
656 { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
657 { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
658 { /* sentinel */ }
659 };
660 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
661
662 static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
663 {
664 q->chip_base_addr = q->nor_size * (nor - q->nor);
665 }
666
667 static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
668 {
669 int ret;
670 struct fsl_qspi *q = nor->priv;
671
672 ret = fsl_qspi_runcmd(q, opcode, 0, len);
673 if (ret)
674 return ret;
675
676 fsl_qspi_read_data(q, len, buf);
677 return 0;
678 }
679
680 static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
681 int write_enable)
682 {
683 struct fsl_qspi *q = nor->priv;
684 int ret;
685
686 if (!buf) {
687 ret = fsl_qspi_runcmd(q, opcode, 0, 1);
688 if (ret)
689 return ret;
690
691 if (opcode == SPINOR_OP_CHIP_ERASE)
692 fsl_qspi_invalid(q);
693
694 } else if (len > 0) {
695 ret = fsl_qspi_nor_write(q, nor, opcode, 0,
696 (u32 *)buf, len, NULL);
697 } else {
698 dev_err(q->dev, "invalid cmd %d\n", opcode);
699 ret = -EINVAL;
700 }
701
702 return ret;
703 }
704
705 static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
706 size_t len, size_t *retlen, const u_char *buf)
707 {
708 struct fsl_qspi *q = nor->priv;
709
710 fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
711 (u32 *)buf, len, retlen);
712
713 /* invalid the data in the AHB buffer. */
714 fsl_qspi_invalid(q);
715 }
716
717 static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
718 size_t len, size_t *retlen, u_char *buf)
719 {
720 struct fsl_qspi *q = nor->priv;
721 u8 cmd = nor->read_opcode;
722 int ret;
723
724 dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
725 cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);
726
727 /* Wait until the previous command is finished. */
728 ret = nor->wait_till_ready(nor);
729 if (ret)
730 return ret;
731
732 /* Read out the data directly from the AHB buffer.*/
733 memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);
734
735 *retlen += len;
736 return 0;
737 }
738
739 static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
740 {
741 struct fsl_qspi *q = nor->priv;
742 int ret;
743
744 dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
745 nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
746
747 /* Wait until finished previous write command. */
748 ret = nor->wait_till_ready(nor);
749 if (ret)
750 return ret;
751
752 /* Send write enable, then erase commands. */
753 ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
754 if (ret)
755 return ret;
756
757 ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
758 if (ret)
759 return ret;
760
761 fsl_qspi_invalid(q);
762 return 0;
763 }
764
765 static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
766 {
767 struct fsl_qspi *q = nor->priv;
768 int ret;
769
770 ret = clk_enable(q->clk_en);
771 if (ret)
772 return ret;
773
774 ret = clk_enable(q->clk);
775 if (ret) {
776 clk_disable(q->clk_en);
777 return ret;
778 }
779
780 fsl_qspi_set_base_addr(q, nor);
781 return 0;
782 }
783
784 static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
785 {
786 struct fsl_qspi *q = nor->priv;
787
788 clk_disable(q->clk);
789 clk_disable(q->clk_en);
790 }
791
792 static int fsl_qspi_probe(struct platform_device *pdev)
793 {
794 struct device_node *np = pdev->dev.of_node;
795 struct mtd_part_parser_data ppdata;
796 struct device *dev = &pdev->dev;
797 struct fsl_qspi *q;
798 struct resource *res;
799 struct spi_nor *nor;
800 struct mtd_info *mtd;
801 int ret, i = 0;
802 bool has_second_chip = false;
803 const struct of_device_id *of_id =
804 of_match_device(fsl_qspi_dt_ids, &pdev->dev);
805
806 q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
807 if (!q)
808 return -ENOMEM;
809
810 q->nor_num = of_get_child_count(dev->of_node);
811 if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
812 return -ENODEV;
813
814 /* find the resources */
815 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
816 q->iobase = devm_ioremap_resource(dev, res);
817 if (IS_ERR(q->iobase)) {
818 ret = PTR_ERR(q->iobase);
819 goto map_failed;
820 }
821
822 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
823 "QuadSPI-memory");
824 q->ahb_base = devm_ioremap_resource(dev, res);
825 if (IS_ERR(q->ahb_base)) {
826 ret = PTR_ERR(q->ahb_base);
827 goto map_failed;
828 }
829 q->memmap_phy = res->start;
830
831 /* find the clocks */
832 q->clk_en = devm_clk_get(dev, "qspi_en");
833 if (IS_ERR(q->clk_en)) {
834 ret = PTR_ERR(q->clk_en);
835 goto map_failed;
836 }
837
838 q->clk = devm_clk_get(dev, "qspi");
839 if (IS_ERR(q->clk)) {
840 ret = PTR_ERR(q->clk);
841 goto map_failed;
842 }
843
844 ret = clk_prepare_enable(q->clk_en);
845 if (ret) {
846 dev_err(dev, "can not enable the qspi_en clock\n");
847 goto map_failed;
848 }
849
850 ret = clk_prepare_enable(q->clk);
851 if (ret) {
852 clk_disable_unprepare(q->clk_en);
853 dev_err(dev, "can not enable the qspi clock\n");
854 goto map_failed;
855 }
856
857 /* find the irq */
858 ret = platform_get_irq(pdev, 0);
859 if (ret < 0) {
860 dev_err(dev, "failed to get the irq\n");
861 goto irq_failed;
862 }
863
864 ret = devm_request_irq(dev, ret,
865 fsl_qspi_irq_handler, 0, pdev->name, q);
866 if (ret) {
867 dev_err(dev, "failed to request irq.\n");
868 goto irq_failed;
869 }
870
871 q->dev = dev;
872 q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
873 platform_set_drvdata(pdev, q);
874
875 ret = fsl_qspi_nor_setup(q);
876 if (ret)
877 goto irq_failed;
878
879 if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
880 has_second_chip = true;
881
882 /* iterate the subnodes. */
883 for_each_available_child_of_node(dev->of_node, np) {
884 const struct spi_device_id *id;
885 char modalias[40];
886
887 /* skip the holes */
888 if (!has_second_chip)
889 i *= 2;
890
891 nor = &q->nor[i];
892 mtd = &q->mtd[i];
893
894 nor->mtd = mtd;
895 nor->dev = dev;
896 nor->priv = q;
897 mtd->priv = nor;
898
899 /* fill the hooks */
900 nor->read_reg = fsl_qspi_read_reg;
901 nor->write_reg = fsl_qspi_write_reg;
902 nor->read = fsl_qspi_read;
903 nor->write = fsl_qspi_write;
904 nor->erase = fsl_qspi_erase;
905
906 nor->prepare = fsl_qspi_prep;
907 nor->unprepare = fsl_qspi_unprep;
908
909 if (of_modalias_node(np, modalias, sizeof(modalias)) < 0)
910 goto map_failed;
911
912 id = spi_nor_match_id(modalias);
913 if (!id)
914 goto map_failed;
915
916 ret = of_property_read_u32(np, "spi-max-frequency",
917 &q->clk_rate);
918 if (ret < 0)
919 goto map_failed;
920
921 /* set the chip address for READID */
922 fsl_qspi_set_base_addr(q, nor);
923
924 ret = spi_nor_scan(nor, id, SPI_NOR_QUAD);
925 if (ret)
926 goto map_failed;
927
928 ppdata.of_node = np;
929 ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
930 if (ret)
931 goto map_failed;
932
933 /* Set the correct NOR size now. */
934 if (q->nor_size == 0) {
935 q->nor_size = mtd->size;
936
937 /* Map the SPI NOR to accessiable address */
938 fsl_qspi_set_map_addr(q);
939 }
940
941 /*
942 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
943 * may writes 265 bytes per time. The write is working in the
944 * unit of the TX FIFO, not in the unit of the SPI NOR's page
945 * size.
946 *
947 * So shrink the spi_nor->page_size if it is larger then the
948 * TX FIFO.
949 */
950 if (nor->page_size > q->devtype_data->txfifo)
951 nor->page_size = q->devtype_data->txfifo;
952
953 i++;
954 }
955
956 /* finish the rest init. */
957 ret = fsl_qspi_nor_setup_last(q);
958 if (ret)
959 goto last_init_failed;
960
961 clk_disable(q->clk);
962 clk_disable(q->clk_en);
963 dev_info(dev, "QuadSPI SPI NOR flash driver\n");
964 return 0;
965
966 last_init_failed:
967 for (i = 0; i < q->nor_num; i++)
968 mtd_device_unregister(&q->mtd[i]);
969
970 irq_failed:
971 clk_disable_unprepare(q->clk);
972 clk_disable_unprepare(q->clk_en);
973 map_failed:
974 dev_err(dev, "Freescale QuadSPI probe failed\n");
975 return ret;
976 }
977
978 static int fsl_qspi_remove(struct platform_device *pdev)
979 {
980 struct fsl_qspi *q = platform_get_drvdata(pdev);
981 int i;
982
983 for (i = 0; i < q->nor_num; i++)
984 mtd_device_unregister(&q->mtd[i]);
985
986 /* disable the hardware */
987 writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
988 writel(0x0, q->iobase + QUADSPI_RSER);
989
990 clk_unprepare(q->clk);
991 clk_unprepare(q->clk_en);
992 return 0;
993 }
994
995 static struct platform_driver fsl_qspi_driver = {
996 .driver = {
997 .name = "fsl-quadspi",
998 .bus = &platform_bus_type,
999 .owner = THIS_MODULE,
1000 .of_match_table = fsl_qspi_dt_ids,
1001 },
1002 .probe = fsl_qspi_probe,
1003 .remove = fsl_qspi_remove,
1004 };
1005 module_platform_driver(fsl_qspi_driver);
1006
1007 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1008 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1009 MODULE_LICENSE("GPL v2");
This page took 0.08625 seconds and 5 git commands to generate.