Merge tag 'upstream-3.11-rc1' of git://git.infradead.org/linux-ubi
[deliverable/linux.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 */
31
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include "ubi.h"
45
46 /* Maximum length of the 'mtd=' parameter */
47 #define MTD_PARAM_LEN_MAX 64
48
49 /* Maximum number of comma-separated items in the 'mtd=' parameter */
50 #define MTD_PARAM_MAX_COUNT 4
51
52 /* Maximum value for the number of bad PEBs per 1024 PEBs */
53 #define MAX_MTD_UBI_BEB_LIMIT 768
54
55 #ifdef CONFIG_MTD_UBI_MODULE
56 #define ubi_is_module() 1
57 #else
58 #define ubi_is_module() 0
59 #endif
60
61 /**
62 * struct mtd_dev_param - MTD device parameter description data structure.
63 * @name: MTD character device node path, MTD device name, or MTD device number
64 * string
65 * @vid_hdr_offs: VID header offset
66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
67 */
68 struct mtd_dev_param {
69 char name[MTD_PARAM_LEN_MAX];
70 int ubi_num;
71 int vid_hdr_offs;
72 int max_beb_per1024;
73 };
74
75 /* Numbers of elements set in the @mtd_dev_param array */
76 static int __initdata mtd_devs;
77
78 /* MTD devices specification parameters */
79 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
80 #ifdef CONFIG_MTD_UBI_FASTMAP
81 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
82 static bool fm_autoconvert;
83 #endif
84 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
85 struct class *ubi_class;
86
87 /* Slab cache for wear-leveling entries */
88 struct kmem_cache *ubi_wl_entry_slab;
89
90 /* UBI control character device */
91 static struct miscdevice ubi_ctrl_cdev = {
92 .minor = MISC_DYNAMIC_MINOR,
93 .name = "ubi_ctrl",
94 .fops = &ubi_ctrl_cdev_operations,
95 };
96
97 /* All UBI devices in system */
98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
99
100 /* Serializes UBI devices creations and removals */
101 DEFINE_MUTEX(ubi_devices_mutex);
102
103 /* Protects @ubi_devices and @ubi->ref_count */
104 static DEFINE_SPINLOCK(ubi_devices_lock);
105
106 /* "Show" method for files in '/<sysfs>/class/ubi/' */
107 static ssize_t ubi_version_show(struct class *class,
108 struct class_attribute *attr, char *buf)
109 {
110 return sprintf(buf, "%d\n", UBI_VERSION);
111 }
112
113 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
114 static struct class_attribute ubi_version =
115 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
116
117 static ssize_t dev_attribute_show(struct device *dev,
118 struct device_attribute *attr, char *buf);
119
120 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
121 static struct device_attribute dev_eraseblock_size =
122 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
123 static struct device_attribute dev_avail_eraseblocks =
124 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
125 static struct device_attribute dev_total_eraseblocks =
126 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
127 static struct device_attribute dev_volumes_count =
128 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
129 static struct device_attribute dev_max_ec =
130 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
131 static struct device_attribute dev_reserved_for_bad =
132 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
133 static struct device_attribute dev_bad_peb_count =
134 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
135 static struct device_attribute dev_max_vol_count =
136 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
137 static struct device_attribute dev_min_io_size =
138 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
139 static struct device_attribute dev_bgt_enabled =
140 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
141 static struct device_attribute dev_mtd_num =
142 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
143
144 /**
145 * ubi_volume_notify - send a volume change notification.
146 * @ubi: UBI device description object
147 * @vol: volume description object of the changed volume
148 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
149 *
150 * This is a helper function which notifies all subscribers about a volume
151 * change event (creation, removal, re-sizing, re-naming, updating). Returns
152 * zero in case of success and a negative error code in case of failure.
153 */
154 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
155 {
156 struct ubi_notification nt;
157
158 ubi_do_get_device_info(ubi, &nt.di);
159 ubi_do_get_volume_info(ubi, vol, &nt.vi);
160
161 #ifdef CONFIG_MTD_UBI_FASTMAP
162 switch (ntype) {
163 case UBI_VOLUME_ADDED:
164 case UBI_VOLUME_REMOVED:
165 case UBI_VOLUME_RESIZED:
166 case UBI_VOLUME_RENAMED:
167 if (ubi_update_fastmap(ubi)) {
168 ubi_err("Unable to update fastmap!");
169 ubi_ro_mode(ubi);
170 }
171 }
172 #endif
173 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
174 }
175
176 /**
177 * ubi_notify_all - send a notification to all volumes.
178 * @ubi: UBI device description object
179 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
180 * @nb: the notifier to call
181 *
182 * This function walks all volumes of UBI device @ubi and sends the @ntype
183 * notification for each volume. If @nb is %NULL, then all registered notifiers
184 * are called, otherwise only the @nb notifier is called. Returns the number of
185 * sent notifications.
186 */
187 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
188 {
189 struct ubi_notification nt;
190 int i, count = 0;
191
192 ubi_do_get_device_info(ubi, &nt.di);
193
194 mutex_lock(&ubi->device_mutex);
195 for (i = 0; i < ubi->vtbl_slots; i++) {
196 /*
197 * Since the @ubi->device is locked, and we are not going to
198 * change @ubi->volumes, we do not have to lock
199 * @ubi->volumes_lock.
200 */
201 if (!ubi->volumes[i])
202 continue;
203
204 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
205 if (nb)
206 nb->notifier_call(nb, ntype, &nt);
207 else
208 blocking_notifier_call_chain(&ubi_notifiers, ntype,
209 &nt);
210 count += 1;
211 }
212 mutex_unlock(&ubi->device_mutex);
213
214 return count;
215 }
216
217 /**
218 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
219 * @nb: the notifier to call
220 *
221 * This function walks all UBI devices and volumes and sends the
222 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
223 * registered notifiers are called, otherwise only the @nb notifier is called.
224 * Returns the number of sent notifications.
225 */
226 int ubi_enumerate_volumes(struct notifier_block *nb)
227 {
228 int i, count = 0;
229
230 /*
231 * Since the @ubi_devices_mutex is locked, and we are not going to
232 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
233 */
234 for (i = 0; i < UBI_MAX_DEVICES; i++) {
235 struct ubi_device *ubi = ubi_devices[i];
236
237 if (!ubi)
238 continue;
239 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
240 }
241
242 return count;
243 }
244
245 /**
246 * ubi_get_device - get UBI device.
247 * @ubi_num: UBI device number
248 *
249 * This function returns UBI device description object for UBI device number
250 * @ubi_num, or %NULL if the device does not exist. This function increases the
251 * device reference count to prevent removal of the device. In other words, the
252 * device cannot be removed if its reference count is not zero.
253 */
254 struct ubi_device *ubi_get_device(int ubi_num)
255 {
256 struct ubi_device *ubi;
257
258 spin_lock(&ubi_devices_lock);
259 ubi = ubi_devices[ubi_num];
260 if (ubi) {
261 ubi_assert(ubi->ref_count >= 0);
262 ubi->ref_count += 1;
263 get_device(&ubi->dev);
264 }
265 spin_unlock(&ubi_devices_lock);
266
267 return ubi;
268 }
269
270 /**
271 * ubi_put_device - drop an UBI device reference.
272 * @ubi: UBI device description object
273 */
274 void ubi_put_device(struct ubi_device *ubi)
275 {
276 spin_lock(&ubi_devices_lock);
277 ubi->ref_count -= 1;
278 put_device(&ubi->dev);
279 spin_unlock(&ubi_devices_lock);
280 }
281
282 /**
283 * ubi_get_by_major - get UBI device by character device major number.
284 * @major: major number
285 *
286 * This function is similar to 'ubi_get_device()', but it searches the device
287 * by its major number.
288 */
289 struct ubi_device *ubi_get_by_major(int major)
290 {
291 int i;
292 struct ubi_device *ubi;
293
294 spin_lock(&ubi_devices_lock);
295 for (i = 0; i < UBI_MAX_DEVICES; i++) {
296 ubi = ubi_devices[i];
297 if (ubi && MAJOR(ubi->cdev.dev) == major) {
298 ubi_assert(ubi->ref_count >= 0);
299 ubi->ref_count += 1;
300 get_device(&ubi->dev);
301 spin_unlock(&ubi_devices_lock);
302 return ubi;
303 }
304 }
305 spin_unlock(&ubi_devices_lock);
306
307 return NULL;
308 }
309
310 /**
311 * ubi_major2num - get UBI device number by character device major number.
312 * @major: major number
313 *
314 * This function searches UBI device number object by its major number. If UBI
315 * device was not found, this function returns -ENODEV, otherwise the UBI device
316 * number is returned.
317 */
318 int ubi_major2num(int major)
319 {
320 int i, ubi_num = -ENODEV;
321
322 spin_lock(&ubi_devices_lock);
323 for (i = 0; i < UBI_MAX_DEVICES; i++) {
324 struct ubi_device *ubi = ubi_devices[i];
325
326 if (ubi && MAJOR(ubi->cdev.dev) == major) {
327 ubi_num = ubi->ubi_num;
328 break;
329 }
330 }
331 spin_unlock(&ubi_devices_lock);
332
333 return ubi_num;
334 }
335
336 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
337 static ssize_t dev_attribute_show(struct device *dev,
338 struct device_attribute *attr, char *buf)
339 {
340 ssize_t ret;
341 struct ubi_device *ubi;
342
343 /*
344 * The below code looks weird, but it actually makes sense. We get the
345 * UBI device reference from the contained 'struct ubi_device'. But it
346 * is unclear if the device was removed or not yet. Indeed, if the
347 * device was removed before we increased its reference count,
348 * 'ubi_get_device()' will return -ENODEV and we fail.
349 *
350 * Remember, 'struct ubi_device' is freed in the release function, so
351 * we still can use 'ubi->ubi_num'.
352 */
353 ubi = container_of(dev, struct ubi_device, dev);
354 ubi = ubi_get_device(ubi->ubi_num);
355 if (!ubi)
356 return -ENODEV;
357
358 if (attr == &dev_eraseblock_size)
359 ret = sprintf(buf, "%d\n", ubi->leb_size);
360 else if (attr == &dev_avail_eraseblocks)
361 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
362 else if (attr == &dev_total_eraseblocks)
363 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
364 else if (attr == &dev_volumes_count)
365 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
366 else if (attr == &dev_max_ec)
367 ret = sprintf(buf, "%d\n", ubi->max_ec);
368 else if (attr == &dev_reserved_for_bad)
369 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
370 else if (attr == &dev_bad_peb_count)
371 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
372 else if (attr == &dev_max_vol_count)
373 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
374 else if (attr == &dev_min_io_size)
375 ret = sprintf(buf, "%d\n", ubi->min_io_size);
376 else if (attr == &dev_bgt_enabled)
377 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
378 else if (attr == &dev_mtd_num)
379 ret = sprintf(buf, "%d\n", ubi->mtd->index);
380 else
381 ret = -EINVAL;
382
383 ubi_put_device(ubi);
384 return ret;
385 }
386
387 static void dev_release(struct device *dev)
388 {
389 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
390
391 kfree(ubi);
392 }
393
394 /**
395 * ubi_sysfs_init - initialize sysfs for an UBI device.
396 * @ubi: UBI device description object
397 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
398 * taken
399 *
400 * This function returns zero in case of success and a negative error code in
401 * case of failure.
402 */
403 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
404 {
405 int err;
406
407 ubi->dev.release = dev_release;
408 ubi->dev.devt = ubi->cdev.dev;
409 ubi->dev.class = ubi_class;
410 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
411 err = device_register(&ubi->dev);
412 if (err)
413 return err;
414
415 *ref = 1;
416 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
417 if (err)
418 return err;
419 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
420 if (err)
421 return err;
422 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
423 if (err)
424 return err;
425 err = device_create_file(&ubi->dev, &dev_volumes_count);
426 if (err)
427 return err;
428 err = device_create_file(&ubi->dev, &dev_max_ec);
429 if (err)
430 return err;
431 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
432 if (err)
433 return err;
434 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
435 if (err)
436 return err;
437 err = device_create_file(&ubi->dev, &dev_max_vol_count);
438 if (err)
439 return err;
440 err = device_create_file(&ubi->dev, &dev_min_io_size);
441 if (err)
442 return err;
443 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
444 if (err)
445 return err;
446 err = device_create_file(&ubi->dev, &dev_mtd_num);
447 return err;
448 }
449
450 /**
451 * ubi_sysfs_close - close sysfs for an UBI device.
452 * @ubi: UBI device description object
453 */
454 static void ubi_sysfs_close(struct ubi_device *ubi)
455 {
456 device_remove_file(&ubi->dev, &dev_mtd_num);
457 device_remove_file(&ubi->dev, &dev_bgt_enabled);
458 device_remove_file(&ubi->dev, &dev_min_io_size);
459 device_remove_file(&ubi->dev, &dev_max_vol_count);
460 device_remove_file(&ubi->dev, &dev_bad_peb_count);
461 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
462 device_remove_file(&ubi->dev, &dev_max_ec);
463 device_remove_file(&ubi->dev, &dev_volumes_count);
464 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
465 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
466 device_remove_file(&ubi->dev, &dev_eraseblock_size);
467 device_unregister(&ubi->dev);
468 }
469
470 /**
471 * kill_volumes - destroy all user volumes.
472 * @ubi: UBI device description object
473 */
474 static void kill_volumes(struct ubi_device *ubi)
475 {
476 int i;
477
478 for (i = 0; i < ubi->vtbl_slots; i++)
479 if (ubi->volumes[i])
480 ubi_free_volume(ubi, ubi->volumes[i]);
481 }
482
483 /**
484 * uif_init - initialize user interfaces for an UBI device.
485 * @ubi: UBI device description object
486 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
487 * taken, otherwise set to %0
488 *
489 * This function initializes various user interfaces for an UBI device. If the
490 * initialization fails at an early stage, this function frees all the
491 * resources it allocated, returns an error, and @ref is set to %0. However,
492 * if the initialization fails after the UBI device was registered in the
493 * driver core subsystem, this function takes a reference to @ubi->dev, because
494 * otherwise the release function ('dev_release()') would free whole @ubi
495 * object. The @ref argument is set to %1 in this case. The caller has to put
496 * this reference.
497 *
498 * This function returns zero in case of success and a negative error code in
499 * case of failure.
500 */
501 static int uif_init(struct ubi_device *ubi, int *ref)
502 {
503 int i, err;
504 dev_t dev;
505
506 *ref = 0;
507 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
508
509 /*
510 * Major numbers for the UBI character devices are allocated
511 * dynamically. Major numbers of volume character devices are
512 * equivalent to ones of the corresponding UBI character device. Minor
513 * numbers of UBI character devices are 0, while minor numbers of
514 * volume character devices start from 1. Thus, we allocate one major
515 * number and ubi->vtbl_slots + 1 minor numbers.
516 */
517 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
518 if (err) {
519 ubi_err("cannot register UBI character devices");
520 return err;
521 }
522
523 ubi_assert(MINOR(dev) == 0);
524 cdev_init(&ubi->cdev, &ubi_cdev_operations);
525 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
526 ubi->cdev.owner = THIS_MODULE;
527
528 err = cdev_add(&ubi->cdev, dev, 1);
529 if (err) {
530 ubi_err("cannot add character device");
531 goto out_unreg;
532 }
533
534 err = ubi_sysfs_init(ubi, ref);
535 if (err)
536 goto out_sysfs;
537
538 for (i = 0; i < ubi->vtbl_slots; i++)
539 if (ubi->volumes[i]) {
540 err = ubi_add_volume(ubi, ubi->volumes[i]);
541 if (err) {
542 ubi_err("cannot add volume %d", i);
543 goto out_volumes;
544 }
545 }
546
547 return 0;
548
549 out_volumes:
550 kill_volumes(ubi);
551 out_sysfs:
552 if (*ref)
553 get_device(&ubi->dev);
554 ubi_sysfs_close(ubi);
555 cdev_del(&ubi->cdev);
556 out_unreg:
557 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
558 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
559 return err;
560 }
561
562 /**
563 * uif_close - close user interfaces for an UBI device.
564 * @ubi: UBI device description object
565 *
566 * Note, since this function un-registers UBI volume device objects (@vol->dev),
567 * the memory allocated voe the volumes is freed as well (in the release
568 * function).
569 */
570 static void uif_close(struct ubi_device *ubi)
571 {
572 kill_volumes(ubi);
573 ubi_sysfs_close(ubi);
574 cdev_del(&ubi->cdev);
575 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
576 }
577
578 /**
579 * ubi_free_internal_volumes - free internal volumes.
580 * @ubi: UBI device description object
581 */
582 void ubi_free_internal_volumes(struct ubi_device *ubi)
583 {
584 int i;
585
586 for (i = ubi->vtbl_slots;
587 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
588 kfree(ubi->volumes[i]->eba_tbl);
589 kfree(ubi->volumes[i]);
590 }
591 }
592
593 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
594 {
595 int limit, device_pebs;
596 uint64_t device_size;
597
598 if (!max_beb_per1024)
599 return 0;
600
601 /*
602 * Here we are using size of the entire flash chip and
603 * not just the MTD partition size because the maximum
604 * number of bad eraseblocks is a percentage of the
605 * whole device and bad eraseblocks are not fairly
606 * distributed over the flash chip. So the worst case
607 * is that all the bad eraseblocks of the chip are in
608 * the MTD partition we are attaching (ubi->mtd).
609 */
610 device_size = mtd_get_device_size(ubi->mtd);
611 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
612 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
613
614 /* Round it up */
615 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
616 limit += 1;
617
618 return limit;
619 }
620
621 /**
622 * io_init - initialize I/O sub-system for a given UBI device.
623 * @ubi: UBI device description object
624 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
625 *
626 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
627 * assumed:
628 * o EC header is always at offset zero - this cannot be changed;
629 * o VID header starts just after the EC header at the closest address
630 * aligned to @io->hdrs_min_io_size;
631 * o data starts just after the VID header at the closest address aligned to
632 * @io->min_io_size
633 *
634 * This function returns zero in case of success and a negative error code in
635 * case of failure.
636 */
637 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
638 {
639 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
640 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
641
642 if (ubi->mtd->numeraseregions != 0) {
643 /*
644 * Some flashes have several erase regions. Different regions
645 * may have different eraseblock size and other
646 * characteristics. It looks like mostly multi-region flashes
647 * have one "main" region and one or more small regions to
648 * store boot loader code or boot parameters or whatever. I
649 * guess we should just pick the largest region. But this is
650 * not implemented.
651 */
652 ubi_err("multiple regions, not implemented");
653 return -EINVAL;
654 }
655
656 if (ubi->vid_hdr_offset < 0)
657 return -EINVAL;
658
659 /*
660 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
661 * physical eraseblocks maximum.
662 */
663
664 ubi->peb_size = ubi->mtd->erasesize;
665 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
666 ubi->flash_size = ubi->mtd->size;
667
668 if (mtd_can_have_bb(ubi->mtd)) {
669 ubi->bad_allowed = 1;
670 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
671 }
672
673 if (ubi->mtd->type == MTD_NORFLASH) {
674 ubi_assert(ubi->mtd->writesize == 1);
675 ubi->nor_flash = 1;
676 }
677
678 ubi->min_io_size = ubi->mtd->writesize;
679 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
680
681 /*
682 * Make sure minimal I/O unit is power of 2. Note, there is no
683 * fundamental reason for this assumption. It is just an optimization
684 * which allows us to avoid costly division operations.
685 */
686 if (!is_power_of_2(ubi->min_io_size)) {
687 ubi_err("min. I/O unit (%d) is not power of 2",
688 ubi->min_io_size);
689 return -EINVAL;
690 }
691
692 ubi_assert(ubi->hdrs_min_io_size > 0);
693 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
694 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
695
696 ubi->max_write_size = ubi->mtd->writebufsize;
697 /*
698 * Maximum write size has to be greater or equivalent to min. I/O
699 * size, and be multiple of min. I/O size.
700 */
701 if (ubi->max_write_size < ubi->min_io_size ||
702 ubi->max_write_size % ubi->min_io_size ||
703 !is_power_of_2(ubi->max_write_size)) {
704 ubi_err("bad write buffer size %d for %d min. I/O unit",
705 ubi->max_write_size, ubi->min_io_size);
706 return -EINVAL;
707 }
708
709 /* Calculate default aligned sizes of EC and VID headers */
710 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
711 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
712
713 dbg_gen("min_io_size %d", ubi->min_io_size);
714 dbg_gen("max_write_size %d", ubi->max_write_size);
715 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
716 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
717 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
718
719 if (ubi->vid_hdr_offset == 0)
720 /* Default offset */
721 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
722 ubi->ec_hdr_alsize;
723 else {
724 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
725 ~(ubi->hdrs_min_io_size - 1);
726 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
727 ubi->vid_hdr_aloffset;
728 }
729
730 /* Similar for the data offset */
731 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
732 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
733
734 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
735 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
736 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
737 dbg_gen("leb_start %d", ubi->leb_start);
738
739 /* The shift must be aligned to 32-bit boundary */
740 if (ubi->vid_hdr_shift % 4) {
741 ubi_err("unaligned VID header shift %d",
742 ubi->vid_hdr_shift);
743 return -EINVAL;
744 }
745
746 /* Check sanity */
747 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
748 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
749 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
750 ubi->leb_start & (ubi->min_io_size - 1)) {
751 ubi_err("bad VID header (%d) or data offsets (%d)",
752 ubi->vid_hdr_offset, ubi->leb_start);
753 return -EINVAL;
754 }
755
756 /*
757 * Set maximum amount of physical erroneous eraseblocks to be 10%.
758 * Erroneous PEB are those which have read errors.
759 */
760 ubi->max_erroneous = ubi->peb_count / 10;
761 if (ubi->max_erroneous < 16)
762 ubi->max_erroneous = 16;
763 dbg_gen("max_erroneous %d", ubi->max_erroneous);
764
765 /*
766 * It may happen that EC and VID headers are situated in one minimal
767 * I/O unit. In this case we can only accept this UBI image in
768 * read-only mode.
769 */
770 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
771 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
772 ubi->ro_mode = 1;
773 }
774
775 ubi->leb_size = ubi->peb_size - ubi->leb_start;
776
777 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
778 ubi_msg("MTD device %d is write-protected, attach in read-only mode",
779 ubi->mtd->index);
780 ubi->ro_mode = 1;
781 }
782
783 /*
784 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
785 * unfortunately, MTD does not provide this information. We should loop
786 * over all physical eraseblocks and invoke mtd->block_is_bad() for
787 * each physical eraseblock. So, we leave @ubi->bad_peb_count
788 * uninitialized so far.
789 */
790
791 return 0;
792 }
793
794 /**
795 * autoresize - re-size the volume which has the "auto-resize" flag set.
796 * @ubi: UBI device description object
797 * @vol_id: ID of the volume to re-size
798 *
799 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
800 * the volume table to the largest possible size. See comments in ubi-header.h
801 * for more description of the flag. Returns zero in case of success and a
802 * negative error code in case of failure.
803 */
804 static int autoresize(struct ubi_device *ubi, int vol_id)
805 {
806 struct ubi_volume_desc desc;
807 struct ubi_volume *vol = ubi->volumes[vol_id];
808 int err, old_reserved_pebs = vol->reserved_pebs;
809
810 if (ubi->ro_mode) {
811 ubi_warn("skip auto-resize because of R/O mode");
812 return 0;
813 }
814
815 /*
816 * Clear the auto-resize flag in the volume in-memory copy of the
817 * volume table, and 'ubi_resize_volume()' will propagate this change
818 * to the flash.
819 */
820 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
821
822 if (ubi->avail_pebs == 0) {
823 struct ubi_vtbl_record vtbl_rec;
824
825 /*
826 * No available PEBs to re-size the volume, clear the flag on
827 * flash and exit.
828 */
829 vtbl_rec = ubi->vtbl[vol_id];
830 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
831 if (err)
832 ubi_err("cannot clean auto-resize flag for volume %d",
833 vol_id);
834 } else {
835 desc.vol = vol;
836 err = ubi_resize_volume(&desc,
837 old_reserved_pebs + ubi->avail_pebs);
838 if (err)
839 ubi_err("cannot auto-resize volume %d", vol_id);
840 }
841
842 if (err)
843 return err;
844
845 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
846 vol->name, old_reserved_pebs, vol->reserved_pebs);
847 return 0;
848 }
849
850 /**
851 * ubi_attach_mtd_dev - attach an MTD device.
852 * @mtd: MTD device description object
853 * @ubi_num: number to assign to the new UBI device
854 * @vid_hdr_offset: VID header offset
855 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
856 *
857 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
858 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
859 * which case this function finds a vacant device number and assigns it
860 * automatically. Returns the new UBI device number in case of success and a
861 * negative error code in case of failure.
862 *
863 * Note, the invocations of this function has to be serialized by the
864 * @ubi_devices_mutex.
865 */
866 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
867 int vid_hdr_offset, int max_beb_per1024)
868 {
869 struct ubi_device *ubi;
870 int i, err, ref = 0;
871
872 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
873 return -EINVAL;
874
875 if (!max_beb_per1024)
876 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
877
878 /*
879 * Check if we already have the same MTD device attached.
880 *
881 * Note, this function assumes that UBI devices creations and deletions
882 * are serialized, so it does not take the &ubi_devices_lock.
883 */
884 for (i = 0; i < UBI_MAX_DEVICES; i++) {
885 ubi = ubi_devices[i];
886 if (ubi && mtd->index == ubi->mtd->index) {
887 ubi_err("mtd%d is already attached to ubi%d",
888 mtd->index, i);
889 return -EEXIST;
890 }
891 }
892
893 /*
894 * Make sure this MTD device is not emulated on top of an UBI volume
895 * already. Well, generally this recursion works fine, but there are
896 * different problems like the UBI module takes a reference to itself
897 * by attaching (and thus, opening) the emulated MTD device. This
898 * results in inability to unload the module. And in general it makes
899 * no sense to attach emulated MTD devices, so we prohibit this.
900 */
901 if (mtd->type == MTD_UBIVOLUME) {
902 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI",
903 mtd->index);
904 return -EINVAL;
905 }
906
907 if (ubi_num == UBI_DEV_NUM_AUTO) {
908 /* Search for an empty slot in the @ubi_devices array */
909 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
910 if (!ubi_devices[ubi_num])
911 break;
912 if (ubi_num == UBI_MAX_DEVICES) {
913 ubi_err("only %d UBI devices may be created",
914 UBI_MAX_DEVICES);
915 return -ENFILE;
916 }
917 } else {
918 if (ubi_num >= UBI_MAX_DEVICES)
919 return -EINVAL;
920
921 /* Make sure ubi_num is not busy */
922 if (ubi_devices[ubi_num]) {
923 ubi_err("ubi%d already exists", ubi_num);
924 return -EEXIST;
925 }
926 }
927
928 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
929 if (!ubi)
930 return -ENOMEM;
931
932 ubi->mtd = mtd;
933 ubi->ubi_num = ubi_num;
934 ubi->vid_hdr_offset = vid_hdr_offset;
935 ubi->autoresize_vol_id = -1;
936
937 #ifdef CONFIG_MTD_UBI_FASTMAP
938 ubi->fm_pool.used = ubi->fm_pool.size = 0;
939 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
940
941 /*
942 * fm_pool.max_size is 5% of the total number of PEBs but it's also
943 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
944 */
945 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
946 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
947 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
948 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
949
950 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
951 ubi->fm_disabled = !fm_autoconvert;
952
953 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
954 <= UBI_FM_MAX_START) {
955 ubi_err("More than %i PEBs are needed for fastmap, sorry.",
956 UBI_FM_MAX_START);
957 ubi->fm_disabled = 1;
958 }
959
960 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size);
961 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
962 #else
963 ubi->fm_disabled = 1;
964 #endif
965 mutex_init(&ubi->buf_mutex);
966 mutex_init(&ubi->ckvol_mutex);
967 mutex_init(&ubi->device_mutex);
968 spin_lock_init(&ubi->volumes_lock);
969 mutex_init(&ubi->fm_mutex);
970 init_rwsem(&ubi->fm_sem);
971
972 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
973
974 err = io_init(ubi, max_beb_per1024);
975 if (err)
976 goto out_free;
977
978 err = -ENOMEM;
979 ubi->peb_buf = vmalloc(ubi->peb_size);
980 if (!ubi->peb_buf)
981 goto out_free;
982
983 #ifdef CONFIG_MTD_UBI_FASTMAP
984 ubi->fm_size = ubi_calc_fm_size(ubi);
985 ubi->fm_buf = vzalloc(ubi->fm_size);
986 if (!ubi->fm_buf)
987 goto out_free;
988 #endif
989 err = ubi_attach(ubi, 0);
990 if (err) {
991 ubi_err("failed to attach mtd%d, error %d", mtd->index, err);
992 goto out_free;
993 }
994
995 if (ubi->autoresize_vol_id != -1) {
996 err = autoresize(ubi, ubi->autoresize_vol_id);
997 if (err)
998 goto out_detach;
999 }
1000
1001 err = uif_init(ubi, &ref);
1002 if (err)
1003 goto out_detach;
1004
1005 err = ubi_debugfs_init_dev(ubi);
1006 if (err)
1007 goto out_uif;
1008
1009 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1010 if (IS_ERR(ubi->bgt_thread)) {
1011 err = PTR_ERR(ubi->bgt_thread);
1012 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
1013 err);
1014 goto out_debugfs;
1015 }
1016
1017 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d",
1018 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num);
1019 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1020 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1021 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d",
1022 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1023 ubi_msg("VID header offset: %d (aligned %d), data offset: %d",
1024 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1025 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1026 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1027 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d",
1028 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1029 ubi->vtbl_slots);
1030 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1031 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1032 ubi->image_seq);
1033 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1034 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1035
1036 /*
1037 * The below lock makes sure we do not race with 'ubi_thread()' which
1038 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1039 */
1040 spin_lock(&ubi->wl_lock);
1041 ubi->thread_enabled = 1;
1042 wake_up_process(ubi->bgt_thread);
1043 spin_unlock(&ubi->wl_lock);
1044
1045 ubi_devices[ubi_num] = ubi;
1046 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1047 return ubi_num;
1048
1049 out_debugfs:
1050 ubi_debugfs_exit_dev(ubi);
1051 out_uif:
1052 get_device(&ubi->dev);
1053 ubi_assert(ref);
1054 uif_close(ubi);
1055 out_detach:
1056 ubi_wl_close(ubi);
1057 ubi_free_internal_volumes(ubi);
1058 vfree(ubi->vtbl);
1059 out_free:
1060 vfree(ubi->peb_buf);
1061 vfree(ubi->fm_buf);
1062 if (ref)
1063 put_device(&ubi->dev);
1064 else
1065 kfree(ubi);
1066 return err;
1067 }
1068
1069 /**
1070 * ubi_detach_mtd_dev - detach an MTD device.
1071 * @ubi_num: UBI device number to detach from
1072 * @anyway: detach MTD even if device reference count is not zero
1073 *
1074 * This function destroys an UBI device number @ubi_num and detaches the
1075 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1076 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1077 * exist.
1078 *
1079 * Note, the invocations of this function has to be serialized by the
1080 * @ubi_devices_mutex.
1081 */
1082 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1083 {
1084 struct ubi_device *ubi;
1085
1086 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1087 return -EINVAL;
1088
1089 ubi = ubi_get_device(ubi_num);
1090 if (!ubi)
1091 return -EINVAL;
1092
1093 spin_lock(&ubi_devices_lock);
1094 put_device(&ubi->dev);
1095 ubi->ref_count -= 1;
1096 if (ubi->ref_count) {
1097 if (!anyway) {
1098 spin_unlock(&ubi_devices_lock);
1099 return -EBUSY;
1100 }
1101 /* This may only happen if there is a bug */
1102 ubi_err("%s reference count %d, destroy anyway",
1103 ubi->ubi_name, ubi->ref_count);
1104 }
1105 ubi_devices[ubi_num] = NULL;
1106 spin_unlock(&ubi_devices_lock);
1107
1108 ubi_assert(ubi_num == ubi->ubi_num);
1109 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1110 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1111 #ifdef CONFIG_MTD_UBI_FASTMAP
1112 /* If we don't write a new fastmap at detach time we lose all
1113 * EC updates that have been made since the last written fastmap. */
1114 ubi_update_fastmap(ubi);
1115 #endif
1116 /*
1117 * Before freeing anything, we have to stop the background thread to
1118 * prevent it from doing anything on this device while we are freeing.
1119 */
1120 if (ubi->bgt_thread)
1121 kthread_stop(ubi->bgt_thread);
1122
1123 /*
1124 * Get a reference to the device in order to prevent 'dev_release()'
1125 * from freeing the @ubi object.
1126 */
1127 get_device(&ubi->dev);
1128
1129 ubi_debugfs_exit_dev(ubi);
1130 uif_close(ubi);
1131
1132 ubi_wl_close(ubi);
1133 ubi_free_internal_volumes(ubi);
1134 vfree(ubi->vtbl);
1135 put_mtd_device(ubi->mtd);
1136 vfree(ubi->peb_buf);
1137 vfree(ubi->fm_buf);
1138 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1139 put_device(&ubi->dev);
1140 return 0;
1141 }
1142
1143 /**
1144 * open_mtd_by_chdev - open an MTD device by its character device node path.
1145 * @mtd_dev: MTD character device node path
1146 *
1147 * This helper function opens an MTD device by its character node device path.
1148 * Returns MTD device description object in case of success and a negative
1149 * error code in case of failure.
1150 */
1151 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1152 {
1153 int err, major, minor, mode;
1154 struct path path;
1155
1156 /* Probably this is an MTD character device node path */
1157 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1158 if (err)
1159 return ERR_PTR(err);
1160
1161 /* MTD device number is defined by the major / minor numbers */
1162 major = imajor(path.dentry->d_inode);
1163 minor = iminor(path.dentry->d_inode);
1164 mode = path.dentry->d_inode->i_mode;
1165 path_put(&path);
1166 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1167 return ERR_PTR(-EINVAL);
1168
1169 if (minor & 1)
1170 /*
1171 * Just do not think the "/dev/mtdrX" devices support is need,
1172 * so do not support them to avoid doing extra work.
1173 */
1174 return ERR_PTR(-EINVAL);
1175
1176 return get_mtd_device(NULL, minor / 2);
1177 }
1178
1179 /**
1180 * open_mtd_device - open MTD device by name, character device path, or number.
1181 * @mtd_dev: name, character device node path, or MTD device device number
1182 *
1183 * This function tries to open and MTD device described by @mtd_dev string,
1184 * which is first treated as ASCII MTD device number, and if it is not true, it
1185 * is treated as MTD device name, and if that is also not true, it is treated
1186 * as MTD character device node path. Returns MTD device description object in
1187 * case of success and a negative error code in case of failure.
1188 */
1189 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1190 {
1191 struct mtd_info *mtd;
1192 int mtd_num;
1193 char *endp;
1194
1195 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1196 if (*endp != '\0' || mtd_dev == endp) {
1197 /*
1198 * This does not look like an ASCII integer, probably this is
1199 * MTD device name.
1200 */
1201 mtd = get_mtd_device_nm(mtd_dev);
1202 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1203 /* Probably this is an MTD character device node path */
1204 mtd = open_mtd_by_chdev(mtd_dev);
1205 } else
1206 mtd = get_mtd_device(NULL, mtd_num);
1207
1208 return mtd;
1209 }
1210
1211 static int __init ubi_init(void)
1212 {
1213 int err, i, k;
1214
1215 /* Ensure that EC and VID headers have correct size */
1216 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1217 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1218
1219 if (mtd_devs > UBI_MAX_DEVICES) {
1220 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1221 return -EINVAL;
1222 }
1223
1224 /* Create base sysfs directory and sysfs files */
1225 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1226 if (IS_ERR(ubi_class)) {
1227 err = PTR_ERR(ubi_class);
1228 ubi_err("cannot create UBI class");
1229 goto out;
1230 }
1231
1232 err = class_create_file(ubi_class, &ubi_version);
1233 if (err) {
1234 ubi_err("cannot create sysfs file");
1235 goto out_class;
1236 }
1237
1238 err = misc_register(&ubi_ctrl_cdev);
1239 if (err) {
1240 ubi_err("cannot register device");
1241 goto out_version;
1242 }
1243
1244 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1245 sizeof(struct ubi_wl_entry),
1246 0, 0, NULL);
1247 if (!ubi_wl_entry_slab)
1248 goto out_dev_unreg;
1249
1250 err = ubi_debugfs_init();
1251 if (err)
1252 goto out_slab;
1253
1254
1255 /* Attach MTD devices */
1256 for (i = 0; i < mtd_devs; i++) {
1257 struct mtd_dev_param *p = &mtd_dev_param[i];
1258 struct mtd_info *mtd;
1259
1260 cond_resched();
1261
1262 mtd = open_mtd_device(p->name);
1263 if (IS_ERR(mtd)) {
1264 err = PTR_ERR(mtd);
1265 ubi_err("cannot open mtd %s, error %d", p->name, err);
1266 /* See comment below re-ubi_is_module(). */
1267 if (ubi_is_module())
1268 goto out_detach;
1269 continue;
1270 }
1271
1272 mutex_lock(&ubi_devices_mutex);
1273 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1274 p->vid_hdr_offs, p->max_beb_per1024);
1275 mutex_unlock(&ubi_devices_mutex);
1276 if (err < 0) {
1277 ubi_err("cannot attach mtd%d", mtd->index);
1278 put_mtd_device(mtd);
1279
1280 /*
1281 * Originally UBI stopped initializing on any error.
1282 * However, later on it was found out that this
1283 * behavior is not very good when UBI is compiled into
1284 * the kernel and the MTD devices to attach are passed
1285 * through the command line. Indeed, UBI failure
1286 * stopped whole boot sequence.
1287 *
1288 * To fix this, we changed the behavior for the
1289 * non-module case, but preserved the old behavior for
1290 * the module case, just for compatibility. This is a
1291 * little inconsistent, though.
1292 */
1293 if (ubi_is_module())
1294 goto out_detach;
1295 }
1296 }
1297
1298 return 0;
1299
1300 out_detach:
1301 for (k = 0; k < i; k++)
1302 if (ubi_devices[k]) {
1303 mutex_lock(&ubi_devices_mutex);
1304 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1305 mutex_unlock(&ubi_devices_mutex);
1306 }
1307 ubi_debugfs_exit();
1308 out_slab:
1309 kmem_cache_destroy(ubi_wl_entry_slab);
1310 out_dev_unreg:
1311 misc_deregister(&ubi_ctrl_cdev);
1312 out_version:
1313 class_remove_file(ubi_class, &ubi_version);
1314 out_class:
1315 class_destroy(ubi_class);
1316 out:
1317 ubi_err("cannot initialize UBI, error %d", err);
1318 return err;
1319 }
1320 late_initcall(ubi_init);
1321
1322 static void __exit ubi_exit(void)
1323 {
1324 int i;
1325
1326 for (i = 0; i < UBI_MAX_DEVICES; i++)
1327 if (ubi_devices[i]) {
1328 mutex_lock(&ubi_devices_mutex);
1329 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1330 mutex_unlock(&ubi_devices_mutex);
1331 }
1332 ubi_debugfs_exit();
1333 kmem_cache_destroy(ubi_wl_entry_slab);
1334 misc_deregister(&ubi_ctrl_cdev);
1335 class_remove_file(ubi_class, &ubi_version);
1336 class_destroy(ubi_class);
1337 }
1338 module_exit(ubi_exit);
1339
1340 /**
1341 * bytes_str_to_int - convert a number of bytes string into an integer.
1342 * @str: the string to convert
1343 *
1344 * This function returns positive resulting integer in case of success and a
1345 * negative error code in case of failure.
1346 */
1347 static int __init bytes_str_to_int(const char *str)
1348 {
1349 char *endp;
1350 unsigned long result;
1351
1352 result = simple_strtoul(str, &endp, 0);
1353 if (str == endp || result >= INT_MAX) {
1354 ubi_err("incorrect bytes count: \"%s\"\n", str);
1355 return -EINVAL;
1356 }
1357
1358 switch (*endp) {
1359 case 'G':
1360 result *= 1024;
1361 case 'M':
1362 result *= 1024;
1363 case 'K':
1364 result *= 1024;
1365 if (endp[1] == 'i' && endp[2] == 'B')
1366 endp += 2;
1367 case '\0':
1368 break;
1369 default:
1370 ubi_err("incorrect bytes count: \"%s\"\n", str);
1371 return -EINVAL;
1372 }
1373
1374 return result;
1375 }
1376
1377 /**
1378 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1379 * @val: the parameter value to parse
1380 * @kp: not used
1381 *
1382 * This function returns zero in case of success and a negative error code in
1383 * case of error.
1384 */
1385 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1386 {
1387 int i, len;
1388 struct mtd_dev_param *p;
1389 char buf[MTD_PARAM_LEN_MAX];
1390 char *pbuf = &buf[0];
1391 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1392
1393 if (!val)
1394 return -EINVAL;
1395
1396 if (mtd_devs == UBI_MAX_DEVICES) {
1397 ubi_err("too many parameters, max. is %d\n",
1398 UBI_MAX_DEVICES);
1399 return -EINVAL;
1400 }
1401
1402 len = strnlen(val, MTD_PARAM_LEN_MAX);
1403 if (len == MTD_PARAM_LEN_MAX) {
1404 ubi_err("parameter \"%s\" is too long, max. is %d\n",
1405 val, MTD_PARAM_LEN_MAX);
1406 return -EINVAL;
1407 }
1408
1409 if (len == 0) {
1410 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1411 return 0;
1412 }
1413
1414 strcpy(buf, val);
1415
1416 /* Get rid of the final newline */
1417 if (buf[len - 1] == '\n')
1418 buf[len - 1] = '\0';
1419
1420 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1421 tokens[i] = strsep(&pbuf, ",");
1422
1423 if (pbuf) {
1424 ubi_err("too many arguments at \"%s\"\n", val);
1425 return -EINVAL;
1426 }
1427
1428 p = &mtd_dev_param[mtd_devs];
1429 strcpy(&p->name[0], tokens[0]);
1430
1431 token = tokens[1];
1432 if (token) {
1433 p->vid_hdr_offs = bytes_str_to_int(token);
1434
1435 if (p->vid_hdr_offs < 0)
1436 return p->vid_hdr_offs;
1437 }
1438
1439 token = tokens[2];
1440 if (token) {
1441 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1442
1443 if (err) {
1444 ubi_err("bad value for max_beb_per1024 parameter: %s",
1445 token);
1446 return -EINVAL;
1447 }
1448 }
1449
1450 token = tokens[3];
1451 if (token) {
1452 int err = kstrtoint(token, 10, &p->ubi_num);
1453
1454 if (err) {
1455 ubi_err("bad value for ubi_num parameter: %s", token);
1456 return -EINVAL;
1457 }
1458 } else
1459 p->ubi_num = UBI_DEV_NUM_AUTO;
1460
1461 mtd_devs += 1;
1462 return 0;
1463 }
1464
1465 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1466 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1467 "Multiple \"mtd\" parameters may be specified.\n"
1468 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1469 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1470 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1471 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1472 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1473 "\n"
1474 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1475 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1476 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1477 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1478 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1479 #ifdef CONFIG_MTD_UBI_FASTMAP
1480 module_param(fm_autoconvert, bool, 0644);
1481 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1482 #endif
1483 MODULE_VERSION(__stringify(UBI_VERSION));
1484 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1485 MODULE_AUTHOR("Artem Bityutskiy");
1486 MODULE_LICENSE("GPL");
This page took 0.175285 seconds and 5 git commands to generate.