5ebe280225d60a69f28bc81c5c4593a47e017365
[deliverable/linux.git] / drivers / mtd / ubi / build.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём),
20 * Frank Haverkamp
21 */
22
23 /*
24 * This file includes UBI initialization and building of UBI devices.
25 *
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
30 *
31 * At the moment we only attach UBI devices by scanning, which will become a
32 * bottleneck when flashes reach certain large size. Then one may improve UBI
33 * and add other methods, although it does not seem to be easy to do.
34 */
35
36 #include <linux/err.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/stringify.h>
40 #include <linux/namei.h>
41 #include <linux/stat.h>
42 #include <linux/miscdevice.h>
43 #include <linux/log2.h>
44 #include <linux/kthread.h>
45 #include <linux/kernel.h>
46 #include <linux/slab.h>
47 #include "ubi.h"
48
49 /* Maximum length of the 'mtd=' parameter */
50 #define MTD_PARAM_LEN_MAX 64
51
52 #ifdef CONFIG_MTD_UBI_MODULE
53 #define ubi_is_module() 1
54 #else
55 #define ubi_is_module() 0
56 #endif
57
58 /**
59 * struct mtd_dev_param - MTD device parameter description data structure.
60 * @name: MTD character device node path, MTD device name, or MTD device number
61 * string
62 * @vid_hdr_offs: VID header offset
63 */
64 struct mtd_dev_param {
65 char name[MTD_PARAM_LEN_MAX];
66 int vid_hdr_offs;
67 };
68
69 /* Numbers of elements set in the @mtd_dev_param array */
70 static int __initdata mtd_devs;
71
72 /* MTD devices specification parameters */
73 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
74
75 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
76 struct class *ubi_class;
77
78 /* Slab cache for wear-leveling entries */
79 struct kmem_cache *ubi_wl_entry_slab;
80
81 /* UBI control character device */
82 static struct miscdevice ubi_ctrl_cdev = {
83 .minor = MISC_DYNAMIC_MINOR,
84 .name = "ubi_ctrl",
85 .fops = &ubi_ctrl_cdev_operations,
86 };
87
88 /* All UBI devices in system */
89 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
90
91 /* Serializes UBI devices creations and removals */
92 DEFINE_MUTEX(ubi_devices_mutex);
93
94 /* Protects @ubi_devices and @ubi->ref_count */
95 static DEFINE_SPINLOCK(ubi_devices_lock);
96
97 /* "Show" method for files in '/<sysfs>/class/ubi/' */
98 static ssize_t ubi_version_show(struct class *class,
99 struct class_attribute *attr, char *buf)
100 {
101 return sprintf(buf, "%d\n", UBI_VERSION);
102 }
103
104 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
105 static struct class_attribute ubi_version =
106 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
107
108 static ssize_t dev_attribute_show(struct device *dev,
109 struct device_attribute *attr, char *buf);
110
111 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
112 static struct device_attribute dev_eraseblock_size =
113 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
114 static struct device_attribute dev_avail_eraseblocks =
115 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
116 static struct device_attribute dev_total_eraseblocks =
117 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
118 static struct device_attribute dev_volumes_count =
119 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
120 static struct device_attribute dev_max_ec =
121 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
122 static struct device_attribute dev_reserved_for_bad =
123 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_bad_peb_count =
125 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_max_vol_count =
127 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_min_io_size =
129 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_bgt_enabled =
131 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_mtd_num =
133 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
134
135 /**
136 * ubi_volume_notify - send a volume change notification.
137 * @ubi: UBI device description object
138 * @vol: volume description object of the changed volume
139 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
140 *
141 * This is a helper function which notifies all subscribers about a volume
142 * change event (creation, removal, re-sizing, re-naming, updating). Returns
143 * zero in case of success and a negative error code in case of failure.
144 */
145 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
146 {
147 struct ubi_notification nt;
148
149 ubi_do_get_device_info(ubi, &nt.di);
150 ubi_do_get_volume_info(ubi, vol, &nt.vi);
151 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
152 }
153
154 /**
155 * ubi_notify_all - send a notification to all volumes.
156 * @ubi: UBI device description object
157 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
158 * @nb: the notifier to call
159 *
160 * This function walks all volumes of UBI device @ubi and sends the @ntype
161 * notification for each volume. If @nb is %NULL, then all registered notifiers
162 * are called, otherwise only the @nb notifier is called. Returns the number of
163 * sent notifications.
164 */
165 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
166 {
167 struct ubi_notification nt;
168 int i, count = 0;
169
170 ubi_do_get_device_info(ubi, &nt.di);
171
172 mutex_lock(&ubi->device_mutex);
173 for (i = 0; i < ubi->vtbl_slots; i++) {
174 /*
175 * Since the @ubi->device is locked, and we are not going to
176 * change @ubi->volumes, we do not have to lock
177 * @ubi->volumes_lock.
178 */
179 if (!ubi->volumes[i])
180 continue;
181
182 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
183 if (nb)
184 nb->notifier_call(nb, ntype, &nt);
185 else
186 blocking_notifier_call_chain(&ubi_notifiers, ntype,
187 &nt);
188 count += 1;
189 }
190 mutex_unlock(&ubi->device_mutex);
191
192 return count;
193 }
194
195 /**
196 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
197 * @nb: the notifier to call
198 *
199 * This function walks all UBI devices and volumes and sends the
200 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
201 * registered notifiers are called, otherwise only the @nb notifier is called.
202 * Returns the number of sent notifications.
203 */
204 int ubi_enumerate_volumes(struct notifier_block *nb)
205 {
206 int i, count = 0;
207
208 /*
209 * Since the @ubi_devices_mutex is locked, and we are not going to
210 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
211 */
212 for (i = 0; i < UBI_MAX_DEVICES; i++) {
213 struct ubi_device *ubi = ubi_devices[i];
214
215 if (!ubi)
216 continue;
217 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
218 }
219
220 return count;
221 }
222
223 /**
224 * ubi_get_device - get UBI device.
225 * @ubi_num: UBI device number
226 *
227 * This function returns UBI device description object for UBI device number
228 * @ubi_num, or %NULL if the device does not exist. This function increases the
229 * device reference count to prevent removal of the device. In other words, the
230 * device cannot be removed if its reference count is not zero.
231 */
232 struct ubi_device *ubi_get_device(int ubi_num)
233 {
234 struct ubi_device *ubi;
235
236 spin_lock(&ubi_devices_lock);
237 ubi = ubi_devices[ubi_num];
238 if (ubi) {
239 ubi_assert(ubi->ref_count >= 0);
240 ubi->ref_count += 1;
241 get_device(&ubi->dev);
242 }
243 spin_unlock(&ubi_devices_lock);
244
245 return ubi;
246 }
247
248 /**
249 * ubi_put_device - drop an UBI device reference.
250 * @ubi: UBI device description object
251 */
252 void ubi_put_device(struct ubi_device *ubi)
253 {
254 spin_lock(&ubi_devices_lock);
255 ubi->ref_count -= 1;
256 put_device(&ubi->dev);
257 spin_unlock(&ubi_devices_lock);
258 }
259
260 /**
261 * ubi_get_by_major - get UBI device by character device major number.
262 * @major: major number
263 *
264 * This function is similar to 'ubi_get_device()', but it searches the device
265 * by its major number.
266 */
267 struct ubi_device *ubi_get_by_major(int major)
268 {
269 int i;
270 struct ubi_device *ubi;
271
272 spin_lock(&ubi_devices_lock);
273 for (i = 0; i < UBI_MAX_DEVICES; i++) {
274 ubi = ubi_devices[i];
275 if (ubi && MAJOR(ubi->cdev.dev) == major) {
276 ubi_assert(ubi->ref_count >= 0);
277 ubi->ref_count += 1;
278 get_device(&ubi->dev);
279 spin_unlock(&ubi_devices_lock);
280 return ubi;
281 }
282 }
283 spin_unlock(&ubi_devices_lock);
284
285 return NULL;
286 }
287
288 /**
289 * ubi_major2num - get UBI device number by character device major number.
290 * @major: major number
291 *
292 * This function searches UBI device number object by its major number. If UBI
293 * device was not found, this function returns -ENODEV, otherwise the UBI device
294 * number is returned.
295 */
296 int ubi_major2num(int major)
297 {
298 int i, ubi_num = -ENODEV;
299
300 spin_lock(&ubi_devices_lock);
301 for (i = 0; i < UBI_MAX_DEVICES; i++) {
302 struct ubi_device *ubi = ubi_devices[i];
303
304 if (ubi && MAJOR(ubi->cdev.dev) == major) {
305 ubi_num = ubi->ubi_num;
306 break;
307 }
308 }
309 spin_unlock(&ubi_devices_lock);
310
311 return ubi_num;
312 }
313
314 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
315 static ssize_t dev_attribute_show(struct device *dev,
316 struct device_attribute *attr, char *buf)
317 {
318 ssize_t ret;
319 struct ubi_device *ubi;
320
321 /*
322 * The below code looks weird, but it actually makes sense. We get the
323 * UBI device reference from the contained 'struct ubi_device'. But it
324 * is unclear if the device was removed or not yet. Indeed, if the
325 * device was removed before we increased its reference count,
326 * 'ubi_get_device()' will return -ENODEV and we fail.
327 *
328 * Remember, 'struct ubi_device' is freed in the release function, so
329 * we still can use 'ubi->ubi_num'.
330 */
331 ubi = container_of(dev, struct ubi_device, dev);
332 ubi = ubi_get_device(ubi->ubi_num);
333 if (!ubi)
334 return -ENODEV;
335
336 if (attr == &dev_eraseblock_size)
337 ret = sprintf(buf, "%d\n", ubi->leb_size);
338 else if (attr == &dev_avail_eraseblocks)
339 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
340 else if (attr == &dev_total_eraseblocks)
341 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
342 else if (attr == &dev_volumes_count)
343 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
344 else if (attr == &dev_max_ec)
345 ret = sprintf(buf, "%d\n", ubi->max_ec);
346 else if (attr == &dev_reserved_for_bad)
347 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
348 else if (attr == &dev_bad_peb_count)
349 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
350 else if (attr == &dev_max_vol_count)
351 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
352 else if (attr == &dev_min_io_size)
353 ret = sprintf(buf, "%d\n", ubi->min_io_size);
354 else if (attr == &dev_bgt_enabled)
355 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
356 else if (attr == &dev_mtd_num)
357 ret = sprintf(buf, "%d\n", ubi->mtd->index);
358 else
359 ret = -EINVAL;
360
361 ubi_put_device(ubi);
362 return ret;
363 }
364
365 static void dev_release(struct device *dev)
366 {
367 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
368
369 kfree(ubi);
370 }
371
372 /**
373 * ubi_sysfs_init - initialize sysfs for an UBI device.
374 * @ubi: UBI device description object
375 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
376 * taken
377 *
378 * This function returns zero in case of success and a negative error code in
379 * case of failure.
380 */
381 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
382 {
383 int err;
384
385 ubi->dev.release = dev_release;
386 ubi->dev.devt = ubi->cdev.dev;
387 ubi->dev.class = ubi_class;
388 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
389 err = device_register(&ubi->dev);
390 if (err)
391 return err;
392
393 *ref = 1;
394 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
395 if (err)
396 return err;
397 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
398 if (err)
399 return err;
400 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
401 if (err)
402 return err;
403 err = device_create_file(&ubi->dev, &dev_volumes_count);
404 if (err)
405 return err;
406 err = device_create_file(&ubi->dev, &dev_max_ec);
407 if (err)
408 return err;
409 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
410 if (err)
411 return err;
412 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
413 if (err)
414 return err;
415 err = device_create_file(&ubi->dev, &dev_max_vol_count);
416 if (err)
417 return err;
418 err = device_create_file(&ubi->dev, &dev_min_io_size);
419 if (err)
420 return err;
421 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
422 if (err)
423 return err;
424 err = device_create_file(&ubi->dev, &dev_mtd_num);
425 return err;
426 }
427
428 /**
429 * ubi_sysfs_close - close sysfs for an UBI device.
430 * @ubi: UBI device description object
431 */
432 static void ubi_sysfs_close(struct ubi_device *ubi)
433 {
434 device_remove_file(&ubi->dev, &dev_mtd_num);
435 device_remove_file(&ubi->dev, &dev_bgt_enabled);
436 device_remove_file(&ubi->dev, &dev_min_io_size);
437 device_remove_file(&ubi->dev, &dev_max_vol_count);
438 device_remove_file(&ubi->dev, &dev_bad_peb_count);
439 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
440 device_remove_file(&ubi->dev, &dev_max_ec);
441 device_remove_file(&ubi->dev, &dev_volumes_count);
442 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
443 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
444 device_remove_file(&ubi->dev, &dev_eraseblock_size);
445 device_unregister(&ubi->dev);
446 }
447
448 /**
449 * kill_volumes - destroy all user volumes.
450 * @ubi: UBI device description object
451 */
452 static void kill_volumes(struct ubi_device *ubi)
453 {
454 int i;
455
456 for (i = 0; i < ubi->vtbl_slots; i++)
457 if (ubi->volumes[i])
458 ubi_free_volume(ubi, ubi->volumes[i]);
459 }
460
461 /**
462 * uif_init - initialize user interfaces for an UBI device.
463 * @ubi: UBI device description object
464 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
465 * taken, otherwise set to %0
466 *
467 * This function initializes various user interfaces for an UBI device. If the
468 * initialization fails at an early stage, this function frees all the
469 * resources it allocated, returns an error, and @ref is set to %0. However,
470 * if the initialization fails after the UBI device was registered in the
471 * driver core subsystem, this function takes a reference to @ubi->dev, because
472 * otherwise the release function ('dev_release()') would free whole @ubi
473 * object. The @ref argument is set to %1 in this case. The caller has to put
474 * this reference.
475 *
476 * This function returns zero in case of success and a negative error code in
477 * case of failure.
478 */
479 static int uif_init(struct ubi_device *ubi, int *ref)
480 {
481 int i, err;
482 dev_t dev;
483
484 *ref = 0;
485 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
486
487 /*
488 * Major numbers for the UBI character devices are allocated
489 * dynamically. Major numbers of volume character devices are
490 * equivalent to ones of the corresponding UBI character device. Minor
491 * numbers of UBI character devices are 0, while minor numbers of
492 * volume character devices start from 1. Thus, we allocate one major
493 * number and ubi->vtbl_slots + 1 minor numbers.
494 */
495 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
496 if (err) {
497 ubi_err("cannot register UBI character devices");
498 return err;
499 }
500
501 ubi_assert(MINOR(dev) == 0);
502 cdev_init(&ubi->cdev, &ubi_cdev_operations);
503 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
504 ubi->cdev.owner = THIS_MODULE;
505
506 err = cdev_add(&ubi->cdev, dev, 1);
507 if (err) {
508 ubi_err("cannot add character device");
509 goto out_unreg;
510 }
511
512 err = ubi_sysfs_init(ubi, ref);
513 if (err)
514 goto out_sysfs;
515
516 for (i = 0; i < ubi->vtbl_slots; i++)
517 if (ubi->volumes[i]) {
518 err = ubi_add_volume(ubi, ubi->volumes[i]);
519 if (err) {
520 ubi_err("cannot add volume %d", i);
521 goto out_volumes;
522 }
523 }
524
525 return 0;
526
527 out_volumes:
528 kill_volumes(ubi);
529 out_sysfs:
530 if (*ref)
531 get_device(&ubi->dev);
532 ubi_sysfs_close(ubi);
533 cdev_del(&ubi->cdev);
534 out_unreg:
535 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
536 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
537 return err;
538 }
539
540 /**
541 * uif_close - close user interfaces for an UBI device.
542 * @ubi: UBI device description object
543 *
544 * Note, since this function un-registers UBI volume device objects (@vol->dev),
545 * the memory allocated voe the volumes is freed as well (in the release
546 * function).
547 */
548 static void uif_close(struct ubi_device *ubi)
549 {
550 kill_volumes(ubi);
551 ubi_sysfs_close(ubi);
552 cdev_del(&ubi->cdev);
553 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
554 }
555
556 /**
557 * free_internal_volumes - free internal volumes.
558 * @ubi: UBI device description object
559 */
560 static void free_internal_volumes(struct ubi_device *ubi)
561 {
562 int i;
563
564 for (i = ubi->vtbl_slots;
565 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
566 kfree(ubi->volumes[i]->eba_tbl);
567 kfree(ubi->volumes[i]);
568 }
569 }
570
571 /**
572 * attach_by_scanning - attach an MTD device using scanning method.
573 * @ubi: UBI device descriptor
574 *
575 * This function returns zero in case of success and a negative error code in
576 * case of failure.
577 *
578 * Note, currently this is the only method to attach UBI devices. Hopefully in
579 * the future we'll have more scalable attaching methods and avoid full media
580 * scanning. But even in this case scanning will be needed as a fall-back
581 * attaching method if there are some on-flash table corruptions.
582 */
583 static int attach_by_scanning(struct ubi_device *ubi)
584 {
585 int err;
586 struct ubi_scan_info *si;
587
588 si = ubi_scan(ubi);
589 if (IS_ERR(si))
590 return PTR_ERR(si);
591
592 ubi->bad_peb_count = si->bad_peb_count;
593 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
594 ubi->corr_peb_count = si->corr_peb_count;
595 ubi->max_ec = si->max_ec;
596 ubi->mean_ec = si->mean_ec;
597 ubi_msg("max. sequence number: %llu", si->max_sqnum);
598
599 err = ubi_read_volume_table(ubi, si);
600 if (err)
601 goto out_si;
602
603 err = ubi_wl_init_scan(ubi, si);
604 if (err)
605 goto out_vtbl;
606
607 err = ubi_eba_init_scan(ubi, si);
608 if (err)
609 goto out_wl;
610
611 ubi_scan_destroy_si(si);
612 return 0;
613
614 out_wl:
615 ubi_wl_close(ubi);
616 out_vtbl:
617 free_internal_volumes(ubi);
618 vfree(ubi->vtbl);
619 out_si:
620 ubi_scan_destroy_si(si);
621 return err;
622 }
623
624 /**
625 * io_init - initialize I/O sub-system for a given UBI device.
626 * @ubi: UBI device description object
627 *
628 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
629 * assumed:
630 * o EC header is always at offset zero - this cannot be changed;
631 * o VID header starts just after the EC header at the closest address
632 * aligned to @io->hdrs_min_io_size;
633 * o data starts just after the VID header at the closest address aligned to
634 * @io->min_io_size
635 *
636 * This function returns zero in case of success and a negative error code in
637 * case of failure.
638 */
639 static int io_init(struct ubi_device *ubi)
640 {
641 if (ubi->mtd->numeraseregions != 0) {
642 /*
643 * Some flashes have several erase regions. Different regions
644 * may have different eraseblock size and other
645 * characteristics. It looks like mostly multi-region flashes
646 * have one "main" region and one or more small regions to
647 * store boot loader code or boot parameters or whatever. I
648 * guess we should just pick the largest region. But this is
649 * not implemented.
650 */
651 ubi_err("multiple regions, not implemented");
652 return -EINVAL;
653 }
654
655 if (ubi->vid_hdr_offset < 0)
656 return -EINVAL;
657
658 /*
659 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
660 * physical eraseblocks maximum.
661 */
662
663 ubi->peb_size = ubi->mtd->erasesize;
664 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
665 ubi->flash_size = ubi->mtd->size;
666
667 if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
668 ubi->bad_allowed = 1;
669
670 if (ubi->mtd->type == MTD_NORFLASH) {
671 ubi_assert(ubi->mtd->writesize == 1);
672 ubi->nor_flash = 1;
673 }
674
675 ubi->min_io_size = ubi->mtd->writesize;
676 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
677
678 /*
679 * Make sure minimal I/O unit is power of 2. Note, there is no
680 * fundamental reason for this assumption. It is just an optimization
681 * which allows us to avoid costly division operations.
682 */
683 if (!is_power_of_2(ubi->min_io_size)) {
684 ubi_err("min. I/O unit (%d) is not power of 2",
685 ubi->min_io_size);
686 return -EINVAL;
687 }
688
689 ubi_assert(ubi->hdrs_min_io_size > 0);
690 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
691 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
692
693 /* Calculate default aligned sizes of EC and VID headers */
694 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
695 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
696
697 dbg_msg("min_io_size %d", ubi->min_io_size);
698 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
699 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
700 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
701
702 if (ubi->vid_hdr_offset == 0)
703 /* Default offset */
704 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
705 ubi->ec_hdr_alsize;
706 else {
707 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
708 ~(ubi->hdrs_min_io_size - 1);
709 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
710 ubi->vid_hdr_aloffset;
711 }
712
713 /* Similar for the data offset */
714 ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
715 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
716
717 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset);
718 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
719 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift);
720 dbg_msg("leb_start %d", ubi->leb_start);
721
722 /* The shift must be aligned to 32-bit boundary */
723 if (ubi->vid_hdr_shift % 4) {
724 ubi_err("unaligned VID header shift %d",
725 ubi->vid_hdr_shift);
726 return -EINVAL;
727 }
728
729 /* Check sanity */
730 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
731 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
732 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
733 ubi->leb_start & (ubi->min_io_size - 1)) {
734 ubi_err("bad VID header (%d) or data offsets (%d)",
735 ubi->vid_hdr_offset, ubi->leb_start);
736 return -EINVAL;
737 }
738
739 /*
740 * Set maximum amount of physical erroneous eraseblocks to be 10%.
741 * Erroneous PEB are those which have read errors.
742 */
743 ubi->max_erroneous = ubi->peb_count / 10;
744 if (ubi->max_erroneous < 16)
745 ubi->max_erroneous = 16;
746 dbg_msg("max_erroneous %d", ubi->max_erroneous);
747
748 /*
749 * It may happen that EC and VID headers are situated in one minimal
750 * I/O unit. In this case we can only accept this UBI image in
751 * read-only mode.
752 */
753 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
754 ubi_warn("EC and VID headers are in the same minimal I/O unit, "
755 "switch to read-only mode");
756 ubi->ro_mode = 1;
757 }
758
759 ubi->leb_size = ubi->peb_size - ubi->leb_start;
760
761 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
762 ubi_msg("MTD device %d is write-protected, attach in "
763 "read-only mode", ubi->mtd->index);
764 ubi->ro_mode = 1;
765 }
766
767 ubi_msg("physical eraseblock size: %d bytes (%d KiB)",
768 ubi->peb_size, ubi->peb_size >> 10);
769 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size);
770 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size);
771 if (ubi->hdrs_min_io_size != ubi->min_io_size)
772 ubi_msg("sub-page size: %d",
773 ubi->hdrs_min_io_size);
774 ubi_msg("VID header offset: %d (aligned %d)",
775 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
776 ubi_msg("data offset: %d", ubi->leb_start);
777
778 /*
779 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
780 * unfortunately, MTD does not provide this information. We should loop
781 * over all physical eraseblocks and invoke mtd->block_is_bad() for
782 * each physical eraseblock. So, we skip ubi->bad_peb_count
783 * uninitialized and initialize it after scanning.
784 */
785
786 return 0;
787 }
788
789 /**
790 * autoresize - re-size the volume which has the "auto-resize" flag set.
791 * @ubi: UBI device description object
792 * @vol_id: ID of the volume to re-size
793 *
794 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
795 * the volume table to the largest possible size. See comments in ubi-header.h
796 * for more description of the flag. Returns zero in case of success and a
797 * negative error code in case of failure.
798 */
799 static int autoresize(struct ubi_device *ubi, int vol_id)
800 {
801 struct ubi_volume_desc desc;
802 struct ubi_volume *vol = ubi->volumes[vol_id];
803 int err, old_reserved_pebs = vol->reserved_pebs;
804
805 /*
806 * Clear the auto-resize flag in the volume in-memory copy of the
807 * volume table, and 'ubi_resize_volume()' will propagate this change
808 * to the flash.
809 */
810 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
811
812 if (ubi->avail_pebs == 0) {
813 struct ubi_vtbl_record vtbl_rec;
814
815 /*
816 * No available PEBs to re-size the volume, clear the flag on
817 * flash and exit.
818 */
819 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
820 sizeof(struct ubi_vtbl_record));
821 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
822 if (err)
823 ubi_err("cannot clean auto-resize flag for volume %d",
824 vol_id);
825 } else {
826 desc.vol = vol;
827 err = ubi_resize_volume(&desc,
828 old_reserved_pebs + ubi->avail_pebs);
829 if (err)
830 ubi_err("cannot auto-resize volume %d", vol_id);
831 }
832
833 if (err)
834 return err;
835
836 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
837 vol->name, old_reserved_pebs, vol->reserved_pebs);
838 return 0;
839 }
840
841 /**
842 * ubi_attach_mtd_dev - attach an MTD device.
843 * @mtd: MTD device description object
844 * @ubi_num: number to assign to the new UBI device
845 * @vid_hdr_offset: VID header offset
846 *
847 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
848 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
849 * which case this function finds a vacant device number and assigns it
850 * automatically. Returns the new UBI device number in case of success and a
851 * negative error code in case of failure.
852 *
853 * Note, the invocations of this function has to be serialized by the
854 * @ubi_devices_mutex.
855 */
856 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
857 {
858 struct ubi_device *ubi;
859 int i, err, ref = 0;
860
861 /*
862 * Check if we already have the same MTD device attached.
863 *
864 * Note, this function assumes that UBI devices creations and deletions
865 * are serialized, so it does not take the &ubi_devices_lock.
866 */
867 for (i = 0; i < UBI_MAX_DEVICES; i++) {
868 ubi = ubi_devices[i];
869 if (ubi && mtd->index == ubi->mtd->index) {
870 dbg_err("mtd%d is already attached to ubi%d",
871 mtd->index, i);
872 return -EEXIST;
873 }
874 }
875
876 /*
877 * Make sure this MTD device is not emulated on top of an UBI volume
878 * already. Well, generally this recursion works fine, but there are
879 * different problems like the UBI module takes a reference to itself
880 * by attaching (and thus, opening) the emulated MTD device. This
881 * results in inability to unload the module. And in general it makes
882 * no sense to attach emulated MTD devices, so we prohibit this.
883 */
884 if (mtd->type == MTD_UBIVOLUME) {
885 ubi_err("refuse attaching mtd%d - it is already emulated on "
886 "top of UBI", mtd->index);
887 return -EINVAL;
888 }
889
890 if (ubi_num == UBI_DEV_NUM_AUTO) {
891 /* Search for an empty slot in the @ubi_devices array */
892 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
893 if (!ubi_devices[ubi_num])
894 break;
895 if (ubi_num == UBI_MAX_DEVICES) {
896 dbg_err("only %d UBI devices may be created",
897 UBI_MAX_DEVICES);
898 return -ENFILE;
899 }
900 } else {
901 if (ubi_num >= UBI_MAX_DEVICES)
902 return -EINVAL;
903
904 /* Make sure ubi_num is not busy */
905 if (ubi_devices[ubi_num]) {
906 dbg_err("ubi%d already exists", ubi_num);
907 return -EEXIST;
908 }
909 }
910
911 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
912 if (!ubi)
913 return -ENOMEM;
914
915 ubi->mtd = mtd;
916 ubi->ubi_num = ubi_num;
917 ubi->vid_hdr_offset = vid_hdr_offset;
918 ubi->autoresize_vol_id = -1;
919
920 mutex_init(&ubi->buf_mutex);
921 mutex_init(&ubi->ckvol_mutex);
922 mutex_init(&ubi->device_mutex);
923 spin_lock_init(&ubi->volumes_lock);
924
925 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
926
927 err = io_init(ubi);
928 if (err)
929 goto out_free;
930
931 err = -ENOMEM;
932 ubi->peb_buf1 = vmalloc(ubi->peb_size);
933 if (!ubi->peb_buf1)
934 goto out_free;
935
936 ubi->peb_buf2 = vmalloc(ubi->peb_size);
937 if (!ubi->peb_buf2)
938 goto out_free;
939
940 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
941 mutex_init(&ubi->dbg_buf_mutex);
942 ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
943 if (!ubi->dbg_peb_buf)
944 goto out_free;
945 #endif
946
947 err = attach_by_scanning(ubi);
948 if (err) {
949 dbg_err("failed to attach by scanning, error %d", err);
950 goto out_free;
951 }
952
953 if (ubi->autoresize_vol_id != -1) {
954 err = autoresize(ubi, ubi->autoresize_vol_id);
955 if (err)
956 goto out_detach;
957 }
958
959 err = uif_init(ubi, &ref);
960 if (err)
961 goto out_detach;
962
963 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
964 if (IS_ERR(ubi->bgt_thread)) {
965 err = PTR_ERR(ubi->bgt_thread);
966 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
967 err);
968 goto out_uif;
969 }
970
971 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
972 ubi_msg("MTD device name: \"%s\"", mtd->name);
973 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20);
974 ubi_msg("number of good PEBs: %d", ubi->good_peb_count);
975 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count);
976 ubi_msg("number of corrupted PEBs: %d", ubi->corr_peb_count);
977 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots);
978 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD);
979 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
980 ubi_msg("number of user volumes: %d",
981 ubi->vol_count - UBI_INT_VOL_COUNT);
982 ubi_msg("available PEBs: %d", ubi->avail_pebs);
983 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
984 ubi_msg("number of PEBs reserved for bad PEB handling: %d",
985 ubi->beb_rsvd_pebs);
986 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
987 ubi_msg("image sequence number: %d", ubi->image_seq);
988
989 /*
990 * The below lock makes sure we do not race with 'ubi_thread()' which
991 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
992 */
993 spin_lock(&ubi->wl_lock);
994 if (!DBG_DISABLE_BGT)
995 ubi->thread_enabled = 1;
996 wake_up_process(ubi->bgt_thread);
997 spin_unlock(&ubi->wl_lock);
998
999 ubi_devices[ubi_num] = ubi;
1000 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1001 return ubi_num;
1002
1003 out_uif:
1004 uif_close(ubi);
1005 out_detach:
1006 ubi_wl_close(ubi);
1007 free_internal_volumes(ubi);
1008 vfree(ubi->vtbl);
1009 out_free:
1010 vfree(ubi->peb_buf1);
1011 vfree(ubi->peb_buf2);
1012 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1013 vfree(ubi->dbg_peb_buf);
1014 #endif
1015 if (ref)
1016 put_device(&ubi->dev);
1017 else
1018 kfree(ubi);
1019 return err;
1020 }
1021
1022 /**
1023 * ubi_detach_mtd_dev - detach an MTD device.
1024 * @ubi_num: UBI device number to detach from
1025 * @anyway: detach MTD even if device reference count is not zero
1026 *
1027 * This function destroys an UBI device number @ubi_num and detaches the
1028 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1029 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1030 * exist.
1031 *
1032 * Note, the invocations of this function has to be serialized by the
1033 * @ubi_devices_mutex.
1034 */
1035 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1036 {
1037 struct ubi_device *ubi;
1038
1039 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1040 return -EINVAL;
1041
1042 ubi = ubi_get_device(ubi_num);
1043 if (!ubi)
1044 return -EINVAL;
1045
1046 spin_lock(&ubi_devices_lock);
1047 put_device(&ubi->dev);
1048 ubi->ref_count -= 1;
1049 if (ubi->ref_count) {
1050 if (!anyway) {
1051 spin_unlock(&ubi_devices_lock);
1052 return -EBUSY;
1053 }
1054 /* This may only happen if there is a bug */
1055 ubi_err("%s reference count %d, destroy anyway",
1056 ubi->ubi_name, ubi->ref_count);
1057 }
1058 ubi_devices[ubi_num] = NULL;
1059 spin_unlock(&ubi_devices_lock);
1060
1061 ubi_assert(ubi_num == ubi->ubi_num);
1062 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1063 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
1064
1065 /*
1066 * Before freeing anything, we have to stop the background thread to
1067 * prevent it from doing anything on this device while we are freeing.
1068 */
1069 if (ubi->bgt_thread)
1070 kthread_stop(ubi->bgt_thread);
1071
1072 /*
1073 * Get a reference to the device in order to prevent 'dev_release()'
1074 * from freeing the @ubi object.
1075 */
1076 get_device(&ubi->dev);
1077
1078 uif_close(ubi);
1079 ubi_wl_close(ubi);
1080 free_internal_volumes(ubi);
1081 vfree(ubi->vtbl);
1082 put_mtd_device(ubi->mtd);
1083 vfree(ubi->peb_buf1);
1084 vfree(ubi->peb_buf2);
1085 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1086 vfree(ubi->dbg_peb_buf);
1087 #endif
1088 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
1089 put_device(&ubi->dev);
1090 return 0;
1091 }
1092
1093 /**
1094 * open_mtd_by_chdev - open an MTD device by its character device node path.
1095 * @mtd_dev: MTD character device node path
1096 *
1097 * This helper function opens an MTD device by its character node device path.
1098 * Returns MTD device description object in case of success and a negative
1099 * error code in case of failure.
1100 */
1101 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1102 {
1103 int err, major, minor, mode;
1104 struct path path;
1105
1106 /* Probably this is an MTD character device node path */
1107 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1108 if (err)
1109 return ERR_PTR(err);
1110
1111 /* MTD device number is defined by the major / minor numbers */
1112 major = imajor(path.dentry->d_inode);
1113 minor = iminor(path.dentry->d_inode);
1114 mode = path.dentry->d_inode->i_mode;
1115 path_put(&path);
1116 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1117 return ERR_PTR(-EINVAL);
1118
1119 if (minor & 1)
1120 /*
1121 * Just do not think the "/dev/mtdrX" devices support is need,
1122 * so do not support them to avoid doing extra work.
1123 */
1124 return ERR_PTR(-EINVAL);
1125
1126 return get_mtd_device(NULL, minor / 2);
1127 }
1128
1129 /**
1130 * open_mtd_device - open MTD device by name, character device path, or number.
1131 * @mtd_dev: name, character device node path, or MTD device device number
1132 *
1133 * This function tries to open and MTD device described by @mtd_dev string,
1134 * which is first treated as ASCII MTD device number, and if it is not true, it
1135 * is treated as MTD device name, and if that is also not true, it is treated
1136 * as MTD character device node path. Returns MTD device description object in
1137 * case of success and a negative error code in case of failure.
1138 */
1139 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1140 {
1141 struct mtd_info *mtd;
1142 int mtd_num;
1143 char *endp;
1144
1145 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1146 if (*endp != '\0' || mtd_dev == endp) {
1147 /*
1148 * This does not look like an ASCII integer, probably this is
1149 * MTD device name.
1150 */
1151 mtd = get_mtd_device_nm(mtd_dev);
1152 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1153 /* Probably this is an MTD character device node path */
1154 mtd = open_mtd_by_chdev(mtd_dev);
1155 } else
1156 mtd = get_mtd_device(NULL, mtd_num);
1157
1158 return mtd;
1159 }
1160
1161 static int __init ubi_init(void)
1162 {
1163 int err, i, k;
1164
1165 /* Ensure that EC and VID headers have correct size */
1166 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1167 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1168
1169 if (mtd_devs > UBI_MAX_DEVICES) {
1170 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1171 return -EINVAL;
1172 }
1173
1174 /* Create base sysfs directory and sysfs files */
1175 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1176 if (IS_ERR(ubi_class)) {
1177 err = PTR_ERR(ubi_class);
1178 ubi_err("cannot create UBI class");
1179 goto out;
1180 }
1181
1182 err = class_create_file(ubi_class, &ubi_version);
1183 if (err) {
1184 ubi_err("cannot create sysfs file");
1185 goto out_class;
1186 }
1187
1188 err = misc_register(&ubi_ctrl_cdev);
1189 if (err) {
1190 ubi_err("cannot register device");
1191 goto out_version;
1192 }
1193
1194 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1195 sizeof(struct ubi_wl_entry),
1196 0, 0, NULL);
1197 if (!ubi_wl_entry_slab)
1198 goto out_dev_unreg;
1199
1200 /* Attach MTD devices */
1201 for (i = 0; i < mtd_devs; i++) {
1202 struct mtd_dev_param *p = &mtd_dev_param[i];
1203 struct mtd_info *mtd;
1204
1205 cond_resched();
1206
1207 mtd = open_mtd_device(p->name);
1208 if (IS_ERR(mtd)) {
1209 err = PTR_ERR(mtd);
1210 goto out_detach;
1211 }
1212
1213 mutex_lock(&ubi_devices_mutex);
1214 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1215 p->vid_hdr_offs);
1216 mutex_unlock(&ubi_devices_mutex);
1217 if (err < 0) {
1218 ubi_err("cannot attach mtd%d", mtd->index);
1219 put_mtd_device(mtd);
1220
1221 /*
1222 * Originally UBI stopped initializing on any error.
1223 * However, later on it was found out that this
1224 * behavior is not very good when UBI is compiled into
1225 * the kernel and the MTD devices to attach are passed
1226 * through the command line. Indeed, UBI failure
1227 * stopped whole boot sequence.
1228 *
1229 * To fix this, we changed the behavior for the
1230 * non-module case, but preserved the old behavior for
1231 * the module case, just for compatibility. This is a
1232 * little inconsistent, though.
1233 */
1234 if (ubi_is_module())
1235 goto out_detach;
1236 }
1237 }
1238
1239 return 0;
1240
1241 out_detach:
1242 for (k = 0; k < i; k++)
1243 if (ubi_devices[k]) {
1244 mutex_lock(&ubi_devices_mutex);
1245 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1246 mutex_unlock(&ubi_devices_mutex);
1247 }
1248 kmem_cache_destroy(ubi_wl_entry_slab);
1249 out_dev_unreg:
1250 misc_deregister(&ubi_ctrl_cdev);
1251 out_version:
1252 class_remove_file(ubi_class, &ubi_version);
1253 out_class:
1254 class_destroy(ubi_class);
1255 out:
1256 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1257 return err;
1258 }
1259 module_init(ubi_init);
1260
1261 static void __exit ubi_exit(void)
1262 {
1263 int i;
1264
1265 for (i = 0; i < UBI_MAX_DEVICES; i++)
1266 if (ubi_devices[i]) {
1267 mutex_lock(&ubi_devices_mutex);
1268 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1269 mutex_unlock(&ubi_devices_mutex);
1270 }
1271 kmem_cache_destroy(ubi_wl_entry_slab);
1272 misc_deregister(&ubi_ctrl_cdev);
1273 class_remove_file(ubi_class, &ubi_version);
1274 class_destroy(ubi_class);
1275 }
1276 module_exit(ubi_exit);
1277
1278 /**
1279 * bytes_str_to_int - convert a number of bytes string into an integer.
1280 * @str: the string to convert
1281 *
1282 * This function returns positive resulting integer in case of success and a
1283 * negative error code in case of failure.
1284 */
1285 static int __init bytes_str_to_int(const char *str)
1286 {
1287 char *endp;
1288 unsigned long result;
1289
1290 result = simple_strtoul(str, &endp, 0);
1291 if (str == endp || result >= INT_MAX) {
1292 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1293 str);
1294 return -EINVAL;
1295 }
1296
1297 switch (*endp) {
1298 case 'G':
1299 result *= 1024;
1300 case 'M':
1301 result *= 1024;
1302 case 'K':
1303 result *= 1024;
1304 if (endp[1] == 'i' && endp[2] == 'B')
1305 endp += 2;
1306 case '\0':
1307 break;
1308 default:
1309 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1310 str);
1311 return -EINVAL;
1312 }
1313
1314 return result;
1315 }
1316
1317 /**
1318 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1319 * @val: the parameter value to parse
1320 * @kp: not used
1321 *
1322 * This function returns zero in case of success and a negative error code in
1323 * case of error.
1324 */
1325 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1326 {
1327 int i, len;
1328 struct mtd_dev_param *p;
1329 char buf[MTD_PARAM_LEN_MAX];
1330 char *pbuf = &buf[0];
1331 char *tokens[2] = {NULL, NULL};
1332
1333 if (!val)
1334 return -EINVAL;
1335
1336 if (mtd_devs == UBI_MAX_DEVICES) {
1337 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1338 UBI_MAX_DEVICES);
1339 return -EINVAL;
1340 }
1341
1342 len = strnlen(val, MTD_PARAM_LEN_MAX);
1343 if (len == MTD_PARAM_LEN_MAX) {
1344 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1345 "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1346 return -EINVAL;
1347 }
1348
1349 if (len == 0) {
1350 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1351 "ignored\n");
1352 return 0;
1353 }
1354
1355 strcpy(buf, val);
1356
1357 /* Get rid of the final newline */
1358 if (buf[len - 1] == '\n')
1359 buf[len - 1] = '\0';
1360
1361 for (i = 0; i < 2; i++)
1362 tokens[i] = strsep(&pbuf, ",");
1363
1364 if (pbuf) {
1365 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1366 val);
1367 return -EINVAL;
1368 }
1369
1370 p = &mtd_dev_param[mtd_devs];
1371 strcpy(&p->name[0], tokens[0]);
1372
1373 if (tokens[1])
1374 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1375
1376 if (p->vid_hdr_offs < 0)
1377 return p->vid_hdr_offs;
1378
1379 mtd_devs += 1;
1380 return 0;
1381 }
1382
1383 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1384 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1385 "mtd=<name|num|path>[,<vid_hdr_offs>].\n"
1386 "Multiple \"mtd\" parameters may be specified.\n"
1387 "MTD devices may be specified by their number, name, or "
1388 "path to the MTD character device node.\n"
1389 "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1390 "header position to be used by UBI.\n"
1391 "Example 1: mtd=/dev/mtd0 - attach MTD device "
1392 "/dev/mtd0.\n"
1393 "Example 2: mtd=content,1984 mtd=4 - attach MTD device "
1394 "with name \"content\" using VID header offset 1984, and "
1395 "MTD device number 4 with default VID header offset.");
1396
1397 MODULE_VERSION(__stringify(UBI_VERSION));
1398 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1399 MODULE_AUTHOR("Artem Bityutskiy");
1400 MODULE_LICENSE("GPL");
This page took 0.055837 seconds and 4 git commands to generate.