Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / mtd / ubi / eba.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21 /*
22 * The UBI Eraseblock Association (EBA) sub-system.
23 *
24 * This sub-system is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51
52 /**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
55 *
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
59 */
60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
61 {
62 unsigned long long sqnum;
63
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
67
68 return sqnum;
69 }
70
71 /**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
75 *
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
78 */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
84 }
85
86 /**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
91 *
92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
95 */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
98 {
99 struct rb_node *p;
100
101 p = ubi->ltree.rb_node;
102 while (p) {
103 struct ubi_ltree_entry *le;
104
105 le = rb_entry(p, struct ubi_ltree_entry, rb);
106
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
118 }
119 }
120
121 return NULL;
122 }
123
124 /**
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
129 *
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
134 */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
137 {
138 struct ubi_ltree_entry *le, *le1, *le_free;
139
140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 if (!le)
142 return ERR_PTR(-ENOMEM);
143
144 le->users = 0;
145 init_rwsem(&le->mutex);
146 le->vol_id = vol_id;
147 le->lnum = lnum;
148
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
151
152 if (le1) {
153 /*
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
156 */
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
161
162 /*
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
165 */
166 le_free = NULL;
167
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
183 }
184 }
185
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
188 }
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
191
192 kfree(le_free);
193 return le;
194 }
195
196 /**
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
201 *
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
204 */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 struct ubi_ltree_entry *le;
208
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
214 }
215
216 /**
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
221 */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 struct ubi_ltree_entry *le;
225
226 spin_lock(&ubi->ltree_lock);
227 le = ltree_lookup(ubi, vol_id, lnum);
228 le->users -= 1;
229 ubi_assert(le->users >= 0);
230 up_read(&le->mutex);
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
233 kfree(le);
234 }
235 spin_unlock(&ubi->ltree_lock);
236 }
237
238 /**
239 * leb_write_lock - lock logical eraseblock for writing.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
243 *
244 * This function locks a logical eraseblock for writing. Returns zero in case
245 * of success and a negative error code in case of failure.
246 */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 struct ubi_ltree_entry *le;
250
251 le = ltree_add_entry(ubi, vol_id, lnum);
252 if (IS_ERR(le))
253 return PTR_ERR(le);
254 down_write(&le->mutex);
255 return 0;
256 }
257
258 /**
259 * leb_write_lock - lock logical eraseblock for writing.
260 * @ubi: UBI device description object
261 * @vol_id: volume ID
262 * @lnum: logical eraseblock number
263 *
264 * This function locks a logical eraseblock for writing if there is no
265 * contention and does nothing if there is contention. Returns %0 in case of
266 * success, %1 in case of contention, and and a negative error code in case of
267 * failure.
268 */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 struct ubi_ltree_entry *le;
272
273 le = ltree_add_entry(ubi, vol_id, lnum);
274 if (IS_ERR(le))
275 return PTR_ERR(le);
276 if (down_write_trylock(&le->mutex))
277 return 0;
278
279 /* Contention, cancel */
280 spin_lock(&ubi->ltree_lock);
281 le->users -= 1;
282 ubi_assert(le->users >= 0);
283 if (le->users == 0) {
284 rb_erase(&le->rb, &ubi->ltree);
285 kfree(le);
286 }
287 spin_unlock(&ubi->ltree_lock);
288
289 return 1;
290 }
291
292 /**
293 * leb_write_unlock - unlock logical eraseblock.
294 * @ubi: UBI device description object
295 * @vol_id: volume ID
296 * @lnum: logical eraseblock number
297 */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 struct ubi_ltree_entry *le;
301
302 spin_lock(&ubi->ltree_lock);
303 le = ltree_lookup(ubi, vol_id, lnum);
304 le->users -= 1;
305 ubi_assert(le->users >= 0);
306 up_write(&le->mutex);
307 if (le->users == 0) {
308 rb_erase(&le->rb, &ubi->ltree);
309 kfree(le);
310 }
311 spin_unlock(&ubi->ltree_lock);
312 }
313
314 /**
315 * ubi_eba_unmap_leb - un-map logical eraseblock.
316 * @ubi: UBI device description object
317 * @vol: volume description object
318 * @lnum: logical eraseblock number
319 *
320 * This function un-maps logical eraseblock @lnum and schedules corresponding
321 * physical eraseblock for erasure. Returns zero in case of success and a
322 * negative error code in case of failure.
323 */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 int lnum)
326 {
327 int err, pnum, vol_id = vol->vol_id;
328
329 if (ubi->ro_mode)
330 return -EROFS;
331
332 err = leb_write_lock(ubi, vol_id, lnum);
333 if (err)
334 return err;
335
336 pnum = vol->eba_tbl[lnum];
337 if (pnum < 0)
338 /* This logical eraseblock is already unmapped */
339 goto out_unlock;
340
341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342
343 down_read(&ubi->fm_sem);
344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
345 up_read(&ubi->fm_sem);
346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
347
348 out_unlock:
349 leb_write_unlock(ubi, vol_id, lnum);
350 return err;
351 }
352
353 /**
354 * ubi_eba_read_leb - read data.
355 * @ubi: UBI device description object
356 * @vol: volume description object
357 * @lnum: logical eraseblock number
358 * @buf: buffer to store the read data
359 * @offset: offset from where to read
360 * @len: how many bytes to read
361 * @check: data CRC check flag
362 *
363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364 * bytes. The @check flag only makes sense for static volumes and forces
365 * eraseblock data CRC checking.
366 *
367 * In case of success this function returns zero. In case of a static volume,
368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369 * returned for any volume type if an ECC error was detected by the MTD device
370 * driver. Other negative error cored may be returned in case of other errors.
371 */
372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 void *buf, int offset, int len, int check)
374 {
375 int err, pnum, scrub = 0, vol_id = vol->vol_id;
376 struct ubi_vid_hdr *vid_hdr;
377 uint32_t uninitialized_var(crc);
378
379 err = leb_read_lock(ubi, vol_id, lnum);
380 if (err)
381 return err;
382
383 pnum = vol->eba_tbl[lnum];
384 if (pnum < 0) {
385 /*
386 * The logical eraseblock is not mapped, fill the whole buffer
387 * with 0xFF bytes. The exception is static volumes for which
388 * it is an error to read unmapped logical eraseblocks.
389 */
390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 len, offset, vol_id, lnum);
392 leb_read_unlock(ubi, vol_id, lnum);
393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 memset(buf, 0xFF, len);
395 return 0;
396 }
397
398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 len, offset, vol_id, lnum, pnum);
400
401 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 check = 0;
403
404 retry:
405 if (check) {
406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
407 if (!vid_hdr) {
408 err = -ENOMEM;
409 goto out_unlock;
410 }
411
412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 if (err && err != UBI_IO_BITFLIPS) {
414 if (err > 0) {
415 /*
416 * The header is either absent or corrupted.
417 * The former case means there is a bug -
418 * switch to read-only mode just in case.
419 * The latter case means a real corruption - we
420 * may try to recover data. FIXME: but this is
421 * not implemented.
422 */
423 if (err == UBI_IO_BAD_HDR_EBADMSG ||
424 err == UBI_IO_BAD_HDR) {
425 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
426 pnum, vol_id, lnum);
427 err = -EBADMSG;
428 } else {
429 err = -EINVAL;
430 ubi_ro_mode(ubi);
431 }
432 }
433 goto out_free;
434 } else if (err == UBI_IO_BITFLIPS)
435 scrub = 1;
436
437 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
438 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
439
440 crc = be32_to_cpu(vid_hdr->data_crc);
441 ubi_free_vid_hdr(ubi, vid_hdr);
442 }
443
444 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
445 if (err) {
446 if (err == UBI_IO_BITFLIPS)
447 scrub = 1;
448 else if (mtd_is_eccerr(err)) {
449 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
450 goto out_unlock;
451 scrub = 1;
452 if (!check) {
453 ubi_msg(ubi, "force data checking");
454 check = 1;
455 goto retry;
456 }
457 } else
458 goto out_unlock;
459 }
460
461 if (check) {
462 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
463 if (crc1 != crc) {
464 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
465 crc1, crc);
466 err = -EBADMSG;
467 goto out_unlock;
468 }
469 }
470
471 if (scrub)
472 err = ubi_wl_scrub_peb(ubi, pnum);
473
474 leb_read_unlock(ubi, vol_id, lnum);
475 return err;
476
477 out_free:
478 ubi_free_vid_hdr(ubi, vid_hdr);
479 out_unlock:
480 leb_read_unlock(ubi, vol_id, lnum);
481 return err;
482 }
483
484 /**
485 * ubi_eba_read_leb_sg - read data into a scatter gather list.
486 * @ubi: UBI device description object
487 * @vol: volume description object
488 * @lnum: logical eraseblock number
489 * @sgl: UBI scatter gather list to store the read data
490 * @offset: offset from where to read
491 * @len: how many bytes to read
492 * @check: data CRC check flag
493 *
494 * This function works exactly like ubi_eba_read_leb(). But instead of
495 * storing the read data into a buffer it writes to an UBI scatter gather
496 * list.
497 */
498 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
499 struct ubi_sgl *sgl, int lnum, int offset, int len,
500 int check)
501 {
502 int to_read;
503 int ret;
504 struct scatterlist *sg;
505
506 for (;;) {
507 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
508 sg = &sgl->sg[sgl->list_pos];
509 if (len < sg->length - sgl->page_pos)
510 to_read = len;
511 else
512 to_read = sg->length - sgl->page_pos;
513
514 ret = ubi_eba_read_leb(ubi, vol, lnum,
515 sg_virt(sg) + sgl->page_pos, offset,
516 to_read, check);
517 if (ret < 0)
518 return ret;
519
520 offset += to_read;
521 len -= to_read;
522 if (!len) {
523 sgl->page_pos += to_read;
524 if (sgl->page_pos == sg->length) {
525 sgl->list_pos++;
526 sgl->page_pos = 0;
527 }
528
529 break;
530 }
531
532 sgl->list_pos++;
533 sgl->page_pos = 0;
534 }
535
536 return ret;
537 }
538
539 /**
540 * recover_peb - recover from write failure.
541 * @ubi: UBI device description object
542 * @pnum: the physical eraseblock to recover
543 * @vol_id: volume ID
544 * @lnum: logical eraseblock number
545 * @buf: data which was not written because of the write failure
546 * @offset: offset of the failed write
547 * @len: how many bytes should have been written
548 *
549 * This function is called in case of a write failure and moves all good data
550 * from the potentially bad physical eraseblock to a good physical eraseblock.
551 * This function also writes the data which was not written due to the failure.
552 * Returns new physical eraseblock number in case of success, and a negative
553 * error code in case of failure.
554 */
555 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
556 const void *buf, int offset, int len)
557 {
558 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
559 struct ubi_volume *vol = ubi->volumes[idx];
560 struct ubi_vid_hdr *vid_hdr;
561
562 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
563 if (!vid_hdr)
564 return -ENOMEM;
565
566 retry:
567 new_pnum = ubi_wl_get_peb(ubi);
568 if (new_pnum < 0) {
569 ubi_free_vid_hdr(ubi, vid_hdr);
570 return new_pnum;
571 }
572
573 ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
574 pnum, new_pnum);
575
576 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
577 if (err && err != UBI_IO_BITFLIPS) {
578 if (err > 0)
579 err = -EIO;
580 goto out_put;
581 }
582
583 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
584 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
585 if (err)
586 goto write_error;
587
588 data_size = offset + len;
589 mutex_lock(&ubi->buf_mutex);
590 memset(ubi->peb_buf + offset, 0xFF, len);
591
592 /* Read everything before the area where the write failure happened */
593 if (offset > 0) {
594 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
595 if (err && err != UBI_IO_BITFLIPS)
596 goto out_unlock;
597 }
598
599 memcpy(ubi->peb_buf + offset, buf, len);
600
601 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
602 if (err) {
603 mutex_unlock(&ubi->buf_mutex);
604 goto write_error;
605 }
606
607 mutex_unlock(&ubi->buf_mutex);
608 ubi_free_vid_hdr(ubi, vid_hdr);
609
610 down_read(&ubi->fm_sem);
611 vol->eba_tbl[lnum] = new_pnum;
612 up_read(&ubi->fm_sem);
613 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
614
615 ubi_msg(ubi, "data was successfully recovered");
616 return 0;
617
618 out_unlock:
619 mutex_unlock(&ubi->buf_mutex);
620 out_put:
621 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
622 ubi_free_vid_hdr(ubi, vid_hdr);
623 return err;
624
625 write_error:
626 /*
627 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
628 * get another one.
629 */
630 ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
631 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
632 if (++tries > UBI_IO_RETRIES) {
633 ubi_free_vid_hdr(ubi, vid_hdr);
634 return err;
635 }
636 ubi_msg(ubi, "try again");
637 goto retry;
638 }
639
640 /**
641 * ubi_eba_write_leb - write data to dynamic volume.
642 * @ubi: UBI device description object
643 * @vol: volume description object
644 * @lnum: logical eraseblock number
645 * @buf: the data to write
646 * @offset: offset within the logical eraseblock where to write
647 * @len: how many bytes to write
648 *
649 * This function writes data to logical eraseblock @lnum of a dynamic volume
650 * @vol. Returns zero in case of success and a negative error code in case
651 * of failure. In case of error, it is possible that something was still
652 * written to the flash media, but may be some garbage.
653 */
654 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
655 const void *buf, int offset, int len)
656 {
657 int err, pnum, tries = 0, vol_id = vol->vol_id;
658 struct ubi_vid_hdr *vid_hdr;
659
660 if (ubi->ro_mode)
661 return -EROFS;
662
663 err = leb_write_lock(ubi, vol_id, lnum);
664 if (err)
665 return err;
666
667 pnum = vol->eba_tbl[lnum];
668 if (pnum >= 0) {
669 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
670 len, offset, vol_id, lnum, pnum);
671
672 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
673 if (err) {
674 ubi_warn(ubi, "failed to write data to PEB %d", pnum);
675 if (err == -EIO && ubi->bad_allowed)
676 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
677 offset, len);
678 if (err)
679 ubi_ro_mode(ubi);
680 }
681 leb_write_unlock(ubi, vol_id, lnum);
682 return err;
683 }
684
685 /*
686 * The logical eraseblock is not mapped. We have to get a free physical
687 * eraseblock and write the volume identifier header there first.
688 */
689 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
690 if (!vid_hdr) {
691 leb_write_unlock(ubi, vol_id, lnum);
692 return -ENOMEM;
693 }
694
695 vid_hdr->vol_type = UBI_VID_DYNAMIC;
696 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
697 vid_hdr->vol_id = cpu_to_be32(vol_id);
698 vid_hdr->lnum = cpu_to_be32(lnum);
699 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
700 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
701
702 retry:
703 pnum = ubi_wl_get_peb(ubi);
704 if (pnum < 0) {
705 ubi_free_vid_hdr(ubi, vid_hdr);
706 leb_write_unlock(ubi, vol_id, lnum);
707 return pnum;
708 }
709
710 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
711 len, offset, vol_id, lnum, pnum);
712
713 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
714 if (err) {
715 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
716 vol_id, lnum, pnum);
717 goto write_error;
718 }
719
720 if (len) {
721 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
722 if (err) {
723 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
724 len, offset, vol_id, lnum, pnum);
725 goto write_error;
726 }
727 }
728
729 down_read(&ubi->fm_sem);
730 vol->eba_tbl[lnum] = pnum;
731 up_read(&ubi->fm_sem);
732
733 leb_write_unlock(ubi, vol_id, lnum);
734 ubi_free_vid_hdr(ubi, vid_hdr);
735 return 0;
736
737 write_error:
738 if (err != -EIO || !ubi->bad_allowed) {
739 ubi_ro_mode(ubi);
740 leb_write_unlock(ubi, vol_id, lnum);
741 ubi_free_vid_hdr(ubi, vid_hdr);
742 return err;
743 }
744
745 /*
746 * Fortunately, this is the first write operation to this physical
747 * eraseblock, so just put it and request a new one. We assume that if
748 * this physical eraseblock went bad, the erase code will handle that.
749 */
750 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
751 if (err || ++tries > UBI_IO_RETRIES) {
752 ubi_ro_mode(ubi);
753 leb_write_unlock(ubi, vol_id, lnum);
754 ubi_free_vid_hdr(ubi, vid_hdr);
755 return err;
756 }
757
758 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
759 ubi_msg(ubi, "try another PEB");
760 goto retry;
761 }
762
763 /**
764 * ubi_eba_write_leb_st - write data to static volume.
765 * @ubi: UBI device description object
766 * @vol: volume description object
767 * @lnum: logical eraseblock number
768 * @buf: data to write
769 * @len: how many bytes to write
770 * @used_ebs: how many logical eraseblocks will this volume contain
771 *
772 * This function writes data to logical eraseblock @lnum of static volume
773 * @vol. The @used_ebs argument should contain total number of logical
774 * eraseblock in this static volume.
775 *
776 * When writing to the last logical eraseblock, the @len argument doesn't have
777 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
778 * to the real data size, although the @buf buffer has to contain the
779 * alignment. In all other cases, @len has to be aligned.
780 *
781 * It is prohibited to write more than once to logical eraseblocks of static
782 * volumes. This function returns zero in case of success and a negative error
783 * code in case of failure.
784 */
785 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
786 int lnum, const void *buf, int len, int used_ebs)
787 {
788 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
789 struct ubi_vid_hdr *vid_hdr;
790 uint32_t crc;
791
792 if (ubi->ro_mode)
793 return -EROFS;
794
795 if (lnum == used_ebs - 1)
796 /* If this is the last LEB @len may be unaligned */
797 len = ALIGN(data_size, ubi->min_io_size);
798 else
799 ubi_assert(!(len & (ubi->min_io_size - 1)));
800
801 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
802 if (!vid_hdr)
803 return -ENOMEM;
804
805 err = leb_write_lock(ubi, vol_id, lnum);
806 if (err) {
807 ubi_free_vid_hdr(ubi, vid_hdr);
808 return err;
809 }
810
811 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
812 vid_hdr->vol_id = cpu_to_be32(vol_id);
813 vid_hdr->lnum = cpu_to_be32(lnum);
814 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
815 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
816
817 crc = crc32(UBI_CRC32_INIT, buf, data_size);
818 vid_hdr->vol_type = UBI_VID_STATIC;
819 vid_hdr->data_size = cpu_to_be32(data_size);
820 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
821 vid_hdr->data_crc = cpu_to_be32(crc);
822
823 retry:
824 pnum = ubi_wl_get_peb(ubi);
825 if (pnum < 0) {
826 ubi_free_vid_hdr(ubi, vid_hdr);
827 leb_write_unlock(ubi, vol_id, lnum);
828 return pnum;
829 }
830
831 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
832 len, vol_id, lnum, pnum, used_ebs);
833
834 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
835 if (err) {
836 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
837 vol_id, lnum, pnum);
838 goto write_error;
839 }
840
841 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
842 if (err) {
843 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
844 len, pnum);
845 goto write_error;
846 }
847
848 ubi_assert(vol->eba_tbl[lnum] < 0);
849 down_read(&ubi->fm_sem);
850 vol->eba_tbl[lnum] = pnum;
851 up_read(&ubi->fm_sem);
852
853 leb_write_unlock(ubi, vol_id, lnum);
854 ubi_free_vid_hdr(ubi, vid_hdr);
855 return 0;
856
857 write_error:
858 if (err != -EIO || !ubi->bad_allowed) {
859 /*
860 * This flash device does not admit of bad eraseblocks or
861 * something nasty and unexpected happened. Switch to read-only
862 * mode just in case.
863 */
864 ubi_ro_mode(ubi);
865 leb_write_unlock(ubi, vol_id, lnum);
866 ubi_free_vid_hdr(ubi, vid_hdr);
867 return err;
868 }
869
870 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
871 if (err || ++tries > UBI_IO_RETRIES) {
872 ubi_ro_mode(ubi);
873 leb_write_unlock(ubi, vol_id, lnum);
874 ubi_free_vid_hdr(ubi, vid_hdr);
875 return err;
876 }
877
878 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
879 ubi_msg(ubi, "try another PEB");
880 goto retry;
881 }
882
883 /*
884 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
885 * @ubi: UBI device description object
886 * @vol: volume description object
887 * @lnum: logical eraseblock number
888 * @buf: data to write
889 * @len: how many bytes to write
890 *
891 * This function changes the contents of a logical eraseblock atomically. @buf
892 * has to contain new logical eraseblock data, and @len - the length of the
893 * data, which has to be aligned. This function guarantees that in case of an
894 * unclean reboot the old contents is preserved. Returns zero in case of
895 * success and a negative error code in case of failure.
896 *
897 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
898 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
899 */
900 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
901 int lnum, const void *buf, int len)
902 {
903 int err, pnum, tries = 0, vol_id = vol->vol_id;
904 struct ubi_vid_hdr *vid_hdr;
905 uint32_t crc;
906
907 if (ubi->ro_mode)
908 return -EROFS;
909
910 if (len == 0) {
911 /*
912 * Special case when data length is zero. In this case the LEB
913 * has to be unmapped and mapped somewhere else.
914 */
915 err = ubi_eba_unmap_leb(ubi, vol, lnum);
916 if (err)
917 return err;
918 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
919 }
920
921 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
922 if (!vid_hdr)
923 return -ENOMEM;
924
925 mutex_lock(&ubi->alc_mutex);
926 err = leb_write_lock(ubi, vol_id, lnum);
927 if (err)
928 goto out_mutex;
929
930 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
931 vid_hdr->vol_id = cpu_to_be32(vol_id);
932 vid_hdr->lnum = cpu_to_be32(lnum);
933 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
934 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
935
936 crc = crc32(UBI_CRC32_INIT, buf, len);
937 vid_hdr->vol_type = UBI_VID_DYNAMIC;
938 vid_hdr->data_size = cpu_to_be32(len);
939 vid_hdr->copy_flag = 1;
940 vid_hdr->data_crc = cpu_to_be32(crc);
941
942 retry:
943 pnum = ubi_wl_get_peb(ubi);
944 if (pnum < 0) {
945 err = pnum;
946 goto out_leb_unlock;
947 }
948
949 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
950 vol_id, lnum, vol->eba_tbl[lnum], pnum);
951
952 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
953 if (err) {
954 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
955 vol_id, lnum, pnum);
956 goto write_error;
957 }
958
959 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
960 if (err) {
961 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
962 len, pnum);
963 goto write_error;
964 }
965
966 if (vol->eba_tbl[lnum] >= 0) {
967 err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
968 if (err)
969 goto out_leb_unlock;
970 }
971
972 down_read(&ubi->fm_sem);
973 vol->eba_tbl[lnum] = pnum;
974 up_read(&ubi->fm_sem);
975
976 out_leb_unlock:
977 leb_write_unlock(ubi, vol_id, lnum);
978 out_mutex:
979 mutex_unlock(&ubi->alc_mutex);
980 ubi_free_vid_hdr(ubi, vid_hdr);
981 return err;
982
983 write_error:
984 if (err != -EIO || !ubi->bad_allowed) {
985 /*
986 * This flash device does not admit of bad eraseblocks or
987 * something nasty and unexpected happened. Switch to read-only
988 * mode just in case.
989 */
990 ubi_ro_mode(ubi);
991 goto out_leb_unlock;
992 }
993
994 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
995 if (err || ++tries > UBI_IO_RETRIES) {
996 ubi_ro_mode(ubi);
997 goto out_leb_unlock;
998 }
999
1000 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1001 ubi_msg(ubi, "try another PEB");
1002 goto retry;
1003 }
1004
1005 /**
1006 * is_error_sane - check whether a read error is sane.
1007 * @err: code of the error happened during reading
1008 *
1009 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1010 * cannot read data from the target PEB (an error @err happened). If the error
1011 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1012 * fatal and UBI will be switched to R/O mode later.
1013 *
1014 * The idea is that we try not to switch to R/O mode if the read error is
1015 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1016 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1017 * mode, simply because we do not know what happened at the MTD level, and we
1018 * cannot handle this. E.g., the underlying driver may have become crazy, and
1019 * it is safer to switch to R/O mode to preserve the data.
1020 *
1021 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1022 * which we have just written.
1023 */
1024 static int is_error_sane(int err)
1025 {
1026 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1027 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1028 return 0;
1029 return 1;
1030 }
1031
1032 /**
1033 * ubi_eba_copy_leb - copy logical eraseblock.
1034 * @ubi: UBI device description object
1035 * @from: physical eraseblock number from where to copy
1036 * @to: physical eraseblock number where to copy
1037 * @vid_hdr: VID header of the @from physical eraseblock
1038 *
1039 * This function copies logical eraseblock from physical eraseblock @from to
1040 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1041 * function. Returns:
1042 * o %0 in case of success;
1043 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1044 * o a negative error code in case of failure.
1045 */
1046 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1047 struct ubi_vid_hdr *vid_hdr)
1048 {
1049 int err, vol_id, lnum, data_size, aldata_size, idx;
1050 struct ubi_volume *vol;
1051 uint32_t crc;
1052
1053 vol_id = be32_to_cpu(vid_hdr->vol_id);
1054 lnum = be32_to_cpu(vid_hdr->lnum);
1055
1056 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1057
1058 if (vid_hdr->vol_type == UBI_VID_STATIC) {
1059 data_size = be32_to_cpu(vid_hdr->data_size);
1060 aldata_size = ALIGN(data_size, ubi->min_io_size);
1061 } else
1062 data_size = aldata_size =
1063 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1064
1065 idx = vol_id2idx(ubi, vol_id);
1066 spin_lock(&ubi->volumes_lock);
1067 /*
1068 * Note, we may race with volume deletion, which means that the volume
1069 * this logical eraseblock belongs to might be being deleted. Since the
1070 * volume deletion un-maps all the volume's logical eraseblocks, it will
1071 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1072 */
1073 vol = ubi->volumes[idx];
1074 spin_unlock(&ubi->volumes_lock);
1075 if (!vol) {
1076 /* No need to do further work, cancel */
1077 dbg_wl("volume %d is being removed, cancel", vol_id);
1078 return MOVE_CANCEL_RACE;
1079 }
1080
1081 /*
1082 * We do not want anybody to write to this logical eraseblock while we
1083 * are moving it, so lock it.
1084 *
1085 * Note, we are using non-waiting locking here, because we cannot sleep
1086 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1087 * unmapping the LEB which is mapped to the PEB we are going to move
1088 * (@from). This task locks the LEB and goes sleep in the
1089 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1090 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1091 * LEB is already locked, we just do not move it and return
1092 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1093 * we do not know the reasons of the contention - it may be just a
1094 * normal I/O on this LEB, so we want to re-try.
1095 */
1096 err = leb_write_trylock(ubi, vol_id, lnum);
1097 if (err) {
1098 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1099 return MOVE_RETRY;
1100 }
1101
1102 /*
1103 * The LEB might have been put meanwhile, and the task which put it is
1104 * probably waiting on @ubi->move_mutex. No need to continue the work,
1105 * cancel it.
1106 */
1107 if (vol->eba_tbl[lnum] != from) {
1108 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1109 vol_id, lnum, from, vol->eba_tbl[lnum]);
1110 err = MOVE_CANCEL_RACE;
1111 goto out_unlock_leb;
1112 }
1113
1114 /*
1115 * OK, now the LEB is locked and we can safely start moving it. Since
1116 * this function utilizes the @ubi->peb_buf buffer which is shared
1117 * with some other functions - we lock the buffer by taking the
1118 * @ubi->buf_mutex.
1119 */
1120 mutex_lock(&ubi->buf_mutex);
1121 dbg_wl("read %d bytes of data", aldata_size);
1122 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1123 if (err && err != UBI_IO_BITFLIPS) {
1124 ubi_warn(ubi, "error %d while reading data from PEB %d",
1125 err, from);
1126 err = MOVE_SOURCE_RD_ERR;
1127 goto out_unlock_buf;
1128 }
1129
1130 /*
1131 * Now we have got to calculate how much data we have to copy. In
1132 * case of a static volume it is fairly easy - the VID header contains
1133 * the data size. In case of a dynamic volume it is more difficult - we
1134 * have to read the contents, cut 0xFF bytes from the end and copy only
1135 * the first part. We must do this to avoid writing 0xFF bytes as it
1136 * may have some side-effects. And not only this. It is important not
1137 * to include those 0xFFs to CRC because later the they may be filled
1138 * by data.
1139 */
1140 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1141 aldata_size = data_size =
1142 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1143
1144 cond_resched();
1145 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1146 cond_resched();
1147
1148 /*
1149 * It may turn out to be that the whole @from physical eraseblock
1150 * contains only 0xFF bytes. Then we have to only write the VID header
1151 * and do not write any data. This also means we should not set
1152 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1153 */
1154 if (data_size > 0) {
1155 vid_hdr->copy_flag = 1;
1156 vid_hdr->data_size = cpu_to_be32(data_size);
1157 vid_hdr->data_crc = cpu_to_be32(crc);
1158 }
1159 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1160
1161 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1162 if (err) {
1163 if (err == -EIO)
1164 err = MOVE_TARGET_WR_ERR;
1165 goto out_unlock_buf;
1166 }
1167
1168 cond_resched();
1169
1170 /* Read the VID header back and check if it was written correctly */
1171 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1172 if (err) {
1173 if (err != UBI_IO_BITFLIPS) {
1174 ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1175 err, to);
1176 if (is_error_sane(err))
1177 err = MOVE_TARGET_RD_ERR;
1178 } else
1179 err = MOVE_TARGET_BITFLIPS;
1180 goto out_unlock_buf;
1181 }
1182
1183 if (data_size > 0) {
1184 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1185 if (err) {
1186 if (err == -EIO)
1187 err = MOVE_TARGET_WR_ERR;
1188 goto out_unlock_buf;
1189 }
1190
1191 cond_resched();
1192
1193 /*
1194 * We've written the data and are going to read it back to make
1195 * sure it was written correctly.
1196 */
1197 memset(ubi->peb_buf, 0xFF, aldata_size);
1198 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1199 if (err) {
1200 if (err != UBI_IO_BITFLIPS) {
1201 ubi_warn(ubi, "error %d while reading data back from PEB %d",
1202 err, to);
1203 if (is_error_sane(err))
1204 err = MOVE_TARGET_RD_ERR;
1205 } else
1206 err = MOVE_TARGET_BITFLIPS;
1207 goto out_unlock_buf;
1208 }
1209
1210 cond_resched();
1211
1212 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1213 ubi_warn(ubi, "read data back from PEB %d and it is different",
1214 to);
1215 err = -EINVAL;
1216 goto out_unlock_buf;
1217 }
1218 }
1219
1220 ubi_assert(vol->eba_tbl[lnum] == from);
1221 down_read(&ubi->fm_sem);
1222 vol->eba_tbl[lnum] = to;
1223 up_read(&ubi->fm_sem);
1224
1225 out_unlock_buf:
1226 mutex_unlock(&ubi->buf_mutex);
1227 out_unlock_leb:
1228 leb_write_unlock(ubi, vol_id, lnum);
1229 return err;
1230 }
1231
1232 /**
1233 * print_rsvd_warning - warn about not having enough reserved PEBs.
1234 * @ubi: UBI device description object
1235 *
1236 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1237 * cannot reserve enough PEBs for bad block handling. This function makes a
1238 * decision whether we have to print a warning or not. The algorithm is as
1239 * follows:
1240 * o if this is a new UBI image, then just print the warning
1241 * o if this is an UBI image which has already been used for some time, print
1242 * a warning only if we can reserve less than 10% of the expected amount of
1243 * the reserved PEB.
1244 *
1245 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1246 * of PEBs becomes smaller, which is normal and we do not want to scare users
1247 * with a warning every time they attach the MTD device. This was an issue
1248 * reported by real users.
1249 */
1250 static void print_rsvd_warning(struct ubi_device *ubi,
1251 struct ubi_attach_info *ai)
1252 {
1253 /*
1254 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1255 * large number to distinguish between newly flashed and used images.
1256 */
1257 if (ai->max_sqnum > (1 << 18)) {
1258 int min = ubi->beb_rsvd_level / 10;
1259
1260 if (!min)
1261 min = 1;
1262 if (ubi->beb_rsvd_pebs > min)
1263 return;
1264 }
1265
1266 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1267 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1268 if (ubi->corr_peb_count)
1269 ubi_warn(ubi, "%d PEBs are corrupted and not used",
1270 ubi->corr_peb_count);
1271 }
1272
1273 /**
1274 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1275 * @ubi: UBI device description object
1276 * @ai_fastmap: UBI attach info object created by fastmap
1277 * @ai_scan: UBI attach info object created by scanning
1278 *
1279 * Returns < 0 in case of an internal error, 0 otherwise.
1280 * If a bad EBA table entry was found it will be printed out and
1281 * ubi_assert() triggers.
1282 */
1283 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1284 struct ubi_attach_info *ai_scan)
1285 {
1286 int i, j, num_volumes, ret = 0;
1287 int **scan_eba, **fm_eba;
1288 struct ubi_ainf_volume *av;
1289 struct ubi_volume *vol;
1290 struct ubi_ainf_peb *aeb;
1291 struct rb_node *rb;
1292
1293 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1294
1295 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1296 if (!scan_eba)
1297 return -ENOMEM;
1298
1299 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1300 if (!fm_eba) {
1301 kfree(scan_eba);
1302 return -ENOMEM;
1303 }
1304
1305 for (i = 0; i < num_volumes; i++) {
1306 vol = ubi->volumes[i];
1307 if (!vol)
1308 continue;
1309
1310 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1311 GFP_KERNEL);
1312 if (!scan_eba[i]) {
1313 ret = -ENOMEM;
1314 goto out_free;
1315 }
1316
1317 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1318 GFP_KERNEL);
1319 if (!fm_eba[i]) {
1320 ret = -ENOMEM;
1321 goto out_free;
1322 }
1323
1324 for (j = 0; j < vol->reserved_pebs; j++)
1325 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1326
1327 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1328 if (!av)
1329 continue;
1330
1331 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1332 scan_eba[i][aeb->lnum] = aeb->pnum;
1333
1334 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1335 if (!av)
1336 continue;
1337
1338 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1339 fm_eba[i][aeb->lnum] = aeb->pnum;
1340
1341 for (j = 0; j < vol->reserved_pebs; j++) {
1342 if (scan_eba[i][j] != fm_eba[i][j]) {
1343 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1344 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1345 continue;
1346
1347 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1348 vol->vol_id, i, fm_eba[i][j],
1349 scan_eba[i][j]);
1350 ubi_assert(0);
1351 }
1352 }
1353 }
1354
1355 out_free:
1356 for (i = 0; i < num_volumes; i++) {
1357 if (!ubi->volumes[i])
1358 continue;
1359
1360 kfree(scan_eba[i]);
1361 kfree(fm_eba[i]);
1362 }
1363
1364 kfree(scan_eba);
1365 kfree(fm_eba);
1366 return ret;
1367 }
1368
1369 /**
1370 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1371 * @ubi: UBI device description object
1372 * @ai: attaching information
1373 *
1374 * This function returns zero in case of success and a negative error code in
1375 * case of failure.
1376 */
1377 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1378 {
1379 int i, j, err, num_volumes;
1380 struct ubi_ainf_volume *av;
1381 struct ubi_volume *vol;
1382 struct ubi_ainf_peb *aeb;
1383 struct rb_node *rb;
1384
1385 dbg_eba("initialize EBA sub-system");
1386
1387 spin_lock_init(&ubi->ltree_lock);
1388 mutex_init(&ubi->alc_mutex);
1389 ubi->ltree = RB_ROOT;
1390
1391 ubi->global_sqnum = ai->max_sqnum + 1;
1392 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1393
1394 for (i = 0; i < num_volumes; i++) {
1395 vol = ubi->volumes[i];
1396 if (!vol)
1397 continue;
1398
1399 cond_resched();
1400
1401 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1402 GFP_KERNEL);
1403 if (!vol->eba_tbl) {
1404 err = -ENOMEM;
1405 goto out_free;
1406 }
1407
1408 for (j = 0; j < vol->reserved_pebs; j++)
1409 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1410
1411 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1412 if (!av)
1413 continue;
1414
1415 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1416 if (aeb->lnum >= vol->reserved_pebs)
1417 /*
1418 * This may happen in case of an unclean reboot
1419 * during re-size.
1420 */
1421 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1422 vol->eba_tbl[aeb->lnum] = aeb->pnum;
1423 }
1424 }
1425
1426 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1427 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1428 ubi->avail_pebs, EBA_RESERVED_PEBS);
1429 if (ubi->corr_peb_count)
1430 ubi_err(ubi, "%d PEBs are corrupted and not used",
1431 ubi->corr_peb_count);
1432 err = -ENOSPC;
1433 goto out_free;
1434 }
1435 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1436 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1437
1438 if (ubi->bad_allowed) {
1439 ubi_calculate_reserved(ubi);
1440
1441 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1442 /* No enough free physical eraseblocks */
1443 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1444 print_rsvd_warning(ubi, ai);
1445 } else
1446 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1447
1448 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1449 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1450 }
1451
1452 dbg_eba("EBA sub-system is initialized");
1453 return 0;
1454
1455 out_free:
1456 for (i = 0; i < num_volumes; i++) {
1457 if (!ubi->volumes[i])
1458 continue;
1459 kfree(ubi->volumes[i]->eba_tbl);
1460 ubi->volumes[i]->eba_tbl = NULL;
1461 }
1462 return err;
1463 }
This page took 0.121103 seconds and 5 git commands to generate.