Merge tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
[deliverable/linux.git] / drivers / mtd / ubi / eba.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21 /*
22 * The UBI Eraseblock Association (EBA) sub-system.
23 *
24 * This sub-system is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51
52 /**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
55 *
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
59 */
60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
61 {
62 unsigned long long sqnum;
63
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
67
68 return sqnum;
69 }
70
71 /**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
75 *
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
78 */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
84 }
85
86 /**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
91 *
92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
95 */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
98 {
99 struct rb_node *p;
100
101 p = ubi->ltree.rb_node;
102 while (p) {
103 struct ubi_ltree_entry *le;
104
105 le = rb_entry(p, struct ubi_ltree_entry, rb);
106
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
118 }
119 }
120
121 return NULL;
122 }
123
124 /**
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
129 *
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
134 */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
137 {
138 struct ubi_ltree_entry *le, *le1, *le_free;
139
140 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 if (!le)
142 return ERR_PTR(-ENOMEM);
143
144 le->users = 0;
145 init_rwsem(&le->mutex);
146 le->vol_id = vol_id;
147 le->lnum = lnum;
148
149 spin_lock(&ubi->ltree_lock);
150 le1 = ltree_lookup(ubi, vol_id, lnum);
151
152 if (le1) {
153 /*
154 * This logical eraseblock is already locked. The newly
155 * allocated lock entry is not needed.
156 */
157 le_free = le;
158 le = le1;
159 } else {
160 struct rb_node **p, *parent = NULL;
161
162 /*
163 * No lock entry, add the newly allocated one to the
164 * @ubi->ltree RB-tree.
165 */
166 le_free = NULL;
167
168 p = &ubi->ltree.rb_node;
169 while (*p) {
170 parent = *p;
171 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172
173 if (vol_id < le1->vol_id)
174 p = &(*p)->rb_left;
175 else if (vol_id > le1->vol_id)
176 p = &(*p)->rb_right;
177 else {
178 ubi_assert(lnum != le1->lnum);
179 if (lnum < le1->lnum)
180 p = &(*p)->rb_left;
181 else
182 p = &(*p)->rb_right;
183 }
184 }
185
186 rb_link_node(&le->rb, parent, p);
187 rb_insert_color(&le->rb, &ubi->ltree);
188 }
189 le->users += 1;
190 spin_unlock(&ubi->ltree_lock);
191
192 kfree(le_free);
193 return le;
194 }
195
196 /**
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
201 *
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
204 */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 struct ubi_ltree_entry *le;
208
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
214 }
215
216 /**
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
221 */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 struct ubi_ltree_entry *le;
225
226 spin_lock(&ubi->ltree_lock);
227 le = ltree_lookup(ubi, vol_id, lnum);
228 le->users -= 1;
229 ubi_assert(le->users >= 0);
230 up_read(&le->mutex);
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
233 kfree(le);
234 }
235 spin_unlock(&ubi->ltree_lock);
236 }
237
238 /**
239 * leb_write_lock - lock logical eraseblock for writing.
240 * @ubi: UBI device description object
241 * @vol_id: volume ID
242 * @lnum: logical eraseblock number
243 *
244 * This function locks a logical eraseblock for writing. Returns zero in case
245 * of success and a negative error code in case of failure.
246 */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 struct ubi_ltree_entry *le;
250
251 le = ltree_add_entry(ubi, vol_id, lnum);
252 if (IS_ERR(le))
253 return PTR_ERR(le);
254 down_write(&le->mutex);
255 return 0;
256 }
257
258 /**
259 * leb_write_lock - lock logical eraseblock for writing.
260 * @ubi: UBI device description object
261 * @vol_id: volume ID
262 * @lnum: logical eraseblock number
263 *
264 * This function locks a logical eraseblock for writing if there is no
265 * contention and does nothing if there is contention. Returns %0 in case of
266 * success, %1 in case of contention, and and a negative error code in case of
267 * failure.
268 */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 struct ubi_ltree_entry *le;
272
273 le = ltree_add_entry(ubi, vol_id, lnum);
274 if (IS_ERR(le))
275 return PTR_ERR(le);
276 if (down_write_trylock(&le->mutex))
277 return 0;
278
279 /* Contention, cancel */
280 spin_lock(&ubi->ltree_lock);
281 le->users -= 1;
282 ubi_assert(le->users >= 0);
283 if (le->users == 0) {
284 rb_erase(&le->rb, &ubi->ltree);
285 kfree(le);
286 }
287 spin_unlock(&ubi->ltree_lock);
288
289 return 1;
290 }
291
292 /**
293 * leb_write_unlock - unlock logical eraseblock.
294 * @ubi: UBI device description object
295 * @vol_id: volume ID
296 * @lnum: logical eraseblock number
297 */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 struct ubi_ltree_entry *le;
301
302 spin_lock(&ubi->ltree_lock);
303 le = ltree_lookup(ubi, vol_id, lnum);
304 le->users -= 1;
305 ubi_assert(le->users >= 0);
306 up_write(&le->mutex);
307 if (le->users == 0) {
308 rb_erase(&le->rb, &ubi->ltree);
309 kfree(le);
310 }
311 spin_unlock(&ubi->ltree_lock);
312 }
313
314 /**
315 * ubi_eba_unmap_leb - un-map logical eraseblock.
316 * @ubi: UBI device description object
317 * @vol: volume description object
318 * @lnum: logical eraseblock number
319 *
320 * This function un-maps logical eraseblock @lnum and schedules corresponding
321 * physical eraseblock for erasure. Returns zero in case of success and a
322 * negative error code in case of failure.
323 */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 int lnum)
326 {
327 int err, pnum, vol_id = vol->vol_id;
328
329 if (ubi->ro_mode)
330 return -EROFS;
331
332 err = leb_write_lock(ubi, vol_id, lnum);
333 if (err)
334 return err;
335
336 pnum = vol->eba_tbl[lnum];
337 if (pnum < 0)
338 /* This logical eraseblock is already unmapped */
339 goto out_unlock;
340
341 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342
343 down_read(&ubi->fm_eba_sem);
344 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
345 up_read(&ubi->fm_eba_sem);
346 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
347
348 out_unlock:
349 leb_write_unlock(ubi, vol_id, lnum);
350 return err;
351 }
352
353 /**
354 * ubi_eba_read_leb - read data.
355 * @ubi: UBI device description object
356 * @vol: volume description object
357 * @lnum: logical eraseblock number
358 * @buf: buffer to store the read data
359 * @offset: offset from where to read
360 * @len: how many bytes to read
361 * @check: data CRC check flag
362 *
363 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364 * bytes. The @check flag only makes sense for static volumes and forces
365 * eraseblock data CRC checking.
366 *
367 * In case of success this function returns zero. In case of a static volume,
368 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369 * returned for any volume type if an ECC error was detected by the MTD device
370 * driver. Other negative error cored may be returned in case of other errors.
371 */
372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 void *buf, int offset, int len, int check)
374 {
375 int err, pnum, scrub = 0, vol_id = vol->vol_id;
376 struct ubi_vid_hdr *vid_hdr;
377 uint32_t uninitialized_var(crc);
378
379 err = leb_read_lock(ubi, vol_id, lnum);
380 if (err)
381 return err;
382
383 pnum = vol->eba_tbl[lnum];
384 if (pnum < 0) {
385 /*
386 * The logical eraseblock is not mapped, fill the whole buffer
387 * with 0xFF bytes. The exception is static volumes for which
388 * it is an error to read unmapped logical eraseblocks.
389 */
390 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 len, offset, vol_id, lnum);
392 leb_read_unlock(ubi, vol_id, lnum);
393 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 memset(buf, 0xFF, len);
395 return 0;
396 }
397
398 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 len, offset, vol_id, lnum, pnum);
400
401 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 check = 0;
403
404 retry:
405 if (check) {
406 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
407 if (!vid_hdr) {
408 err = -ENOMEM;
409 goto out_unlock;
410 }
411
412 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 if (err && err != UBI_IO_BITFLIPS) {
414 if (err > 0) {
415 /*
416 * The header is either absent or corrupted.
417 * The former case means there is a bug -
418 * switch to read-only mode just in case.
419 * The latter case means a real corruption - we
420 * may try to recover data. FIXME: but this is
421 * not implemented.
422 */
423 if (err == UBI_IO_BAD_HDR_EBADMSG ||
424 err == UBI_IO_BAD_HDR) {
425 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
426 pnum, vol_id, lnum);
427 err = -EBADMSG;
428 } else {
429 /*
430 * Ending up here in the non-Fastmap case
431 * is a clear bug as the VID header had to
432 * be present at scan time to have it referenced.
433 * With fastmap the story is more complicated.
434 * Fastmap has the mapping info without the need
435 * of a full scan. So the LEB could have been
436 * unmapped, Fastmap cannot know this and keeps
437 * the LEB referenced.
438 * This is valid and works as the layer above UBI
439 * has to do bookkeeping about used/referenced
440 * LEBs in any case.
441 */
442 if (ubi->fast_attach) {
443 err = -EBADMSG;
444 } else {
445 err = -EINVAL;
446 ubi_ro_mode(ubi);
447 }
448 }
449 }
450 goto out_free;
451 } else if (err == UBI_IO_BITFLIPS)
452 scrub = 1;
453
454 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
455 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
456
457 crc = be32_to_cpu(vid_hdr->data_crc);
458 ubi_free_vid_hdr(ubi, vid_hdr);
459 }
460
461 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
462 if (err) {
463 if (err == UBI_IO_BITFLIPS)
464 scrub = 1;
465 else if (mtd_is_eccerr(err)) {
466 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
467 goto out_unlock;
468 scrub = 1;
469 if (!check) {
470 ubi_msg(ubi, "force data checking");
471 check = 1;
472 goto retry;
473 }
474 } else
475 goto out_unlock;
476 }
477
478 if (check) {
479 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
480 if (crc1 != crc) {
481 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
482 crc1, crc);
483 err = -EBADMSG;
484 goto out_unlock;
485 }
486 }
487
488 if (scrub)
489 err = ubi_wl_scrub_peb(ubi, pnum);
490
491 leb_read_unlock(ubi, vol_id, lnum);
492 return err;
493
494 out_free:
495 ubi_free_vid_hdr(ubi, vid_hdr);
496 out_unlock:
497 leb_read_unlock(ubi, vol_id, lnum);
498 return err;
499 }
500
501 /**
502 * ubi_eba_read_leb_sg - read data into a scatter gather list.
503 * @ubi: UBI device description object
504 * @vol: volume description object
505 * @lnum: logical eraseblock number
506 * @sgl: UBI scatter gather list to store the read data
507 * @offset: offset from where to read
508 * @len: how many bytes to read
509 * @check: data CRC check flag
510 *
511 * This function works exactly like ubi_eba_read_leb(). But instead of
512 * storing the read data into a buffer it writes to an UBI scatter gather
513 * list.
514 */
515 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
516 struct ubi_sgl *sgl, int lnum, int offset, int len,
517 int check)
518 {
519 int to_read;
520 int ret;
521 struct scatterlist *sg;
522
523 for (;;) {
524 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
525 sg = &sgl->sg[sgl->list_pos];
526 if (len < sg->length - sgl->page_pos)
527 to_read = len;
528 else
529 to_read = sg->length - sgl->page_pos;
530
531 ret = ubi_eba_read_leb(ubi, vol, lnum,
532 sg_virt(sg) + sgl->page_pos, offset,
533 to_read, check);
534 if (ret < 0)
535 return ret;
536
537 offset += to_read;
538 len -= to_read;
539 if (!len) {
540 sgl->page_pos += to_read;
541 if (sgl->page_pos == sg->length) {
542 sgl->list_pos++;
543 sgl->page_pos = 0;
544 }
545
546 break;
547 }
548
549 sgl->list_pos++;
550 sgl->page_pos = 0;
551 }
552
553 return ret;
554 }
555
556 /**
557 * recover_peb - recover from write failure.
558 * @ubi: UBI device description object
559 * @pnum: the physical eraseblock to recover
560 * @vol_id: volume ID
561 * @lnum: logical eraseblock number
562 * @buf: data which was not written because of the write failure
563 * @offset: offset of the failed write
564 * @len: how many bytes should have been written
565 *
566 * This function is called in case of a write failure and moves all good data
567 * from the potentially bad physical eraseblock to a good physical eraseblock.
568 * This function also writes the data which was not written due to the failure.
569 * Returns new physical eraseblock number in case of success, and a negative
570 * error code in case of failure.
571 */
572 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
573 const void *buf, int offset, int len)
574 {
575 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
576 struct ubi_volume *vol = ubi->volumes[idx];
577 struct ubi_vid_hdr *vid_hdr;
578 uint32_t crc;
579
580 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
581 if (!vid_hdr)
582 return -ENOMEM;
583
584 retry:
585 new_pnum = ubi_wl_get_peb(ubi);
586 if (new_pnum < 0) {
587 ubi_free_vid_hdr(ubi, vid_hdr);
588 up_read(&ubi->fm_eba_sem);
589 return new_pnum;
590 }
591
592 ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
593 pnum, new_pnum);
594
595 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
596 if (err && err != UBI_IO_BITFLIPS) {
597 if (err > 0)
598 err = -EIO;
599 up_read(&ubi->fm_eba_sem);
600 goto out_put;
601 }
602
603 ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
604
605 mutex_lock(&ubi->buf_mutex);
606 memset(ubi->peb_buf + offset, 0xFF, len);
607
608 /* Read everything before the area where the write failure happened */
609 if (offset > 0) {
610 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
611 if (err && err != UBI_IO_BITFLIPS) {
612 up_read(&ubi->fm_eba_sem);
613 goto out_unlock;
614 }
615 }
616
617 memcpy(ubi->peb_buf + offset, buf, len);
618
619 data_size = offset + len;
620 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
621 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
622 vid_hdr->copy_flag = 1;
623 vid_hdr->data_size = cpu_to_be32(data_size);
624 vid_hdr->data_crc = cpu_to_be32(crc);
625 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
626 if (err) {
627 mutex_unlock(&ubi->buf_mutex);
628 up_read(&ubi->fm_eba_sem);
629 goto write_error;
630 }
631
632 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
633 if (err) {
634 mutex_unlock(&ubi->buf_mutex);
635 up_read(&ubi->fm_eba_sem);
636 goto write_error;
637 }
638
639 mutex_unlock(&ubi->buf_mutex);
640 ubi_free_vid_hdr(ubi, vid_hdr);
641
642 vol->eba_tbl[lnum] = new_pnum;
643 up_read(&ubi->fm_eba_sem);
644 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
645
646 ubi_msg(ubi, "data was successfully recovered");
647 return 0;
648
649 out_unlock:
650 mutex_unlock(&ubi->buf_mutex);
651 out_put:
652 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
653 ubi_free_vid_hdr(ubi, vid_hdr);
654 return err;
655
656 write_error:
657 /*
658 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
659 * get another one.
660 */
661 ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
662 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
663 if (++tries > UBI_IO_RETRIES) {
664 ubi_free_vid_hdr(ubi, vid_hdr);
665 return err;
666 }
667 ubi_msg(ubi, "try again");
668 goto retry;
669 }
670
671 /**
672 * ubi_eba_write_leb - write data to dynamic volume.
673 * @ubi: UBI device description object
674 * @vol: volume description object
675 * @lnum: logical eraseblock number
676 * @buf: the data to write
677 * @offset: offset within the logical eraseblock where to write
678 * @len: how many bytes to write
679 *
680 * This function writes data to logical eraseblock @lnum of a dynamic volume
681 * @vol. Returns zero in case of success and a negative error code in case
682 * of failure. In case of error, it is possible that something was still
683 * written to the flash media, but may be some garbage.
684 */
685 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
686 const void *buf, int offset, int len)
687 {
688 int err, pnum, tries = 0, vol_id = vol->vol_id;
689 struct ubi_vid_hdr *vid_hdr;
690
691 if (ubi->ro_mode)
692 return -EROFS;
693
694 err = leb_write_lock(ubi, vol_id, lnum);
695 if (err)
696 return err;
697
698 pnum = vol->eba_tbl[lnum];
699 if (pnum >= 0) {
700 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
701 len, offset, vol_id, lnum, pnum);
702
703 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
704 if (err) {
705 ubi_warn(ubi, "failed to write data to PEB %d", pnum);
706 if (err == -EIO && ubi->bad_allowed)
707 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
708 offset, len);
709 if (err)
710 ubi_ro_mode(ubi);
711 }
712 leb_write_unlock(ubi, vol_id, lnum);
713 return err;
714 }
715
716 /*
717 * The logical eraseblock is not mapped. We have to get a free physical
718 * eraseblock and write the volume identifier header there first.
719 */
720 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
721 if (!vid_hdr) {
722 leb_write_unlock(ubi, vol_id, lnum);
723 return -ENOMEM;
724 }
725
726 vid_hdr->vol_type = UBI_VID_DYNAMIC;
727 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
728 vid_hdr->vol_id = cpu_to_be32(vol_id);
729 vid_hdr->lnum = cpu_to_be32(lnum);
730 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
731 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
732
733 retry:
734 pnum = ubi_wl_get_peb(ubi);
735 if (pnum < 0) {
736 ubi_free_vid_hdr(ubi, vid_hdr);
737 leb_write_unlock(ubi, vol_id, lnum);
738 up_read(&ubi->fm_eba_sem);
739 return pnum;
740 }
741
742 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
743 len, offset, vol_id, lnum, pnum);
744
745 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
746 if (err) {
747 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
748 vol_id, lnum, pnum);
749 up_read(&ubi->fm_eba_sem);
750 goto write_error;
751 }
752
753 if (len) {
754 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
755 if (err) {
756 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
757 len, offset, vol_id, lnum, pnum);
758 up_read(&ubi->fm_eba_sem);
759 goto write_error;
760 }
761 }
762
763 vol->eba_tbl[lnum] = pnum;
764 up_read(&ubi->fm_eba_sem);
765
766 leb_write_unlock(ubi, vol_id, lnum);
767 ubi_free_vid_hdr(ubi, vid_hdr);
768 return 0;
769
770 write_error:
771 if (err != -EIO || !ubi->bad_allowed) {
772 ubi_ro_mode(ubi);
773 leb_write_unlock(ubi, vol_id, lnum);
774 ubi_free_vid_hdr(ubi, vid_hdr);
775 return err;
776 }
777
778 /*
779 * Fortunately, this is the first write operation to this physical
780 * eraseblock, so just put it and request a new one. We assume that if
781 * this physical eraseblock went bad, the erase code will handle that.
782 */
783 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
784 if (err || ++tries > UBI_IO_RETRIES) {
785 ubi_ro_mode(ubi);
786 leb_write_unlock(ubi, vol_id, lnum);
787 ubi_free_vid_hdr(ubi, vid_hdr);
788 return err;
789 }
790
791 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
792 ubi_msg(ubi, "try another PEB");
793 goto retry;
794 }
795
796 /**
797 * ubi_eba_write_leb_st - write data to static volume.
798 * @ubi: UBI device description object
799 * @vol: volume description object
800 * @lnum: logical eraseblock number
801 * @buf: data to write
802 * @len: how many bytes to write
803 * @used_ebs: how many logical eraseblocks will this volume contain
804 *
805 * This function writes data to logical eraseblock @lnum of static volume
806 * @vol. The @used_ebs argument should contain total number of logical
807 * eraseblock in this static volume.
808 *
809 * When writing to the last logical eraseblock, the @len argument doesn't have
810 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
811 * to the real data size, although the @buf buffer has to contain the
812 * alignment. In all other cases, @len has to be aligned.
813 *
814 * It is prohibited to write more than once to logical eraseblocks of static
815 * volumes. This function returns zero in case of success and a negative error
816 * code in case of failure.
817 */
818 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
819 int lnum, const void *buf, int len, int used_ebs)
820 {
821 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
822 struct ubi_vid_hdr *vid_hdr;
823 uint32_t crc;
824
825 if (ubi->ro_mode)
826 return -EROFS;
827
828 if (lnum == used_ebs - 1)
829 /* If this is the last LEB @len may be unaligned */
830 len = ALIGN(data_size, ubi->min_io_size);
831 else
832 ubi_assert(!(len & (ubi->min_io_size - 1)));
833
834 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
835 if (!vid_hdr)
836 return -ENOMEM;
837
838 err = leb_write_lock(ubi, vol_id, lnum);
839 if (err) {
840 ubi_free_vid_hdr(ubi, vid_hdr);
841 return err;
842 }
843
844 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
845 vid_hdr->vol_id = cpu_to_be32(vol_id);
846 vid_hdr->lnum = cpu_to_be32(lnum);
847 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
848 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
849
850 crc = crc32(UBI_CRC32_INIT, buf, data_size);
851 vid_hdr->vol_type = UBI_VID_STATIC;
852 vid_hdr->data_size = cpu_to_be32(data_size);
853 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
854 vid_hdr->data_crc = cpu_to_be32(crc);
855
856 retry:
857 pnum = ubi_wl_get_peb(ubi);
858 if (pnum < 0) {
859 ubi_free_vid_hdr(ubi, vid_hdr);
860 leb_write_unlock(ubi, vol_id, lnum);
861 up_read(&ubi->fm_eba_sem);
862 return pnum;
863 }
864
865 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
866 len, vol_id, lnum, pnum, used_ebs);
867
868 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
869 if (err) {
870 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
871 vol_id, lnum, pnum);
872 up_read(&ubi->fm_eba_sem);
873 goto write_error;
874 }
875
876 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
877 if (err) {
878 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
879 len, pnum);
880 up_read(&ubi->fm_eba_sem);
881 goto write_error;
882 }
883
884 ubi_assert(vol->eba_tbl[lnum] < 0);
885 vol->eba_tbl[lnum] = pnum;
886 up_read(&ubi->fm_eba_sem);
887
888 leb_write_unlock(ubi, vol_id, lnum);
889 ubi_free_vid_hdr(ubi, vid_hdr);
890 return 0;
891
892 write_error:
893 if (err != -EIO || !ubi->bad_allowed) {
894 /*
895 * This flash device does not admit of bad eraseblocks or
896 * something nasty and unexpected happened. Switch to read-only
897 * mode just in case.
898 */
899 ubi_ro_mode(ubi);
900 leb_write_unlock(ubi, vol_id, lnum);
901 ubi_free_vid_hdr(ubi, vid_hdr);
902 return err;
903 }
904
905 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
906 if (err || ++tries > UBI_IO_RETRIES) {
907 ubi_ro_mode(ubi);
908 leb_write_unlock(ubi, vol_id, lnum);
909 ubi_free_vid_hdr(ubi, vid_hdr);
910 return err;
911 }
912
913 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
914 ubi_msg(ubi, "try another PEB");
915 goto retry;
916 }
917
918 /*
919 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
920 * @ubi: UBI device description object
921 * @vol: volume description object
922 * @lnum: logical eraseblock number
923 * @buf: data to write
924 * @len: how many bytes to write
925 *
926 * This function changes the contents of a logical eraseblock atomically. @buf
927 * has to contain new logical eraseblock data, and @len - the length of the
928 * data, which has to be aligned. This function guarantees that in case of an
929 * unclean reboot the old contents is preserved. Returns zero in case of
930 * success and a negative error code in case of failure.
931 *
932 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
933 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
934 */
935 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
936 int lnum, const void *buf, int len)
937 {
938 int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
939 struct ubi_vid_hdr *vid_hdr;
940 uint32_t crc;
941
942 if (ubi->ro_mode)
943 return -EROFS;
944
945 if (len == 0) {
946 /*
947 * Special case when data length is zero. In this case the LEB
948 * has to be unmapped and mapped somewhere else.
949 */
950 err = ubi_eba_unmap_leb(ubi, vol, lnum);
951 if (err)
952 return err;
953 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
954 }
955
956 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
957 if (!vid_hdr)
958 return -ENOMEM;
959
960 mutex_lock(&ubi->alc_mutex);
961 err = leb_write_lock(ubi, vol_id, lnum);
962 if (err)
963 goto out_mutex;
964
965 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
966 vid_hdr->vol_id = cpu_to_be32(vol_id);
967 vid_hdr->lnum = cpu_to_be32(lnum);
968 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
969 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
970
971 crc = crc32(UBI_CRC32_INIT, buf, len);
972 vid_hdr->vol_type = UBI_VID_DYNAMIC;
973 vid_hdr->data_size = cpu_to_be32(len);
974 vid_hdr->copy_flag = 1;
975 vid_hdr->data_crc = cpu_to_be32(crc);
976
977 retry:
978 pnum = ubi_wl_get_peb(ubi);
979 if (pnum < 0) {
980 err = pnum;
981 up_read(&ubi->fm_eba_sem);
982 goto out_leb_unlock;
983 }
984
985 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
986 vol_id, lnum, vol->eba_tbl[lnum], pnum);
987
988 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
989 if (err) {
990 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
991 vol_id, lnum, pnum);
992 up_read(&ubi->fm_eba_sem);
993 goto write_error;
994 }
995
996 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
997 if (err) {
998 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
999 len, pnum);
1000 up_read(&ubi->fm_eba_sem);
1001 goto write_error;
1002 }
1003
1004 old_pnum = vol->eba_tbl[lnum];
1005 vol->eba_tbl[lnum] = pnum;
1006 up_read(&ubi->fm_eba_sem);
1007
1008 if (old_pnum >= 0) {
1009 err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
1010 if (err)
1011 goto out_leb_unlock;
1012 }
1013
1014 out_leb_unlock:
1015 leb_write_unlock(ubi, vol_id, lnum);
1016 out_mutex:
1017 mutex_unlock(&ubi->alc_mutex);
1018 ubi_free_vid_hdr(ubi, vid_hdr);
1019 return err;
1020
1021 write_error:
1022 if (err != -EIO || !ubi->bad_allowed) {
1023 /*
1024 * This flash device does not admit of bad eraseblocks or
1025 * something nasty and unexpected happened. Switch to read-only
1026 * mode just in case.
1027 */
1028 ubi_ro_mode(ubi);
1029 goto out_leb_unlock;
1030 }
1031
1032 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1033 if (err || ++tries > UBI_IO_RETRIES) {
1034 ubi_ro_mode(ubi);
1035 goto out_leb_unlock;
1036 }
1037
1038 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1039 ubi_msg(ubi, "try another PEB");
1040 goto retry;
1041 }
1042
1043 /**
1044 * is_error_sane - check whether a read error is sane.
1045 * @err: code of the error happened during reading
1046 *
1047 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1048 * cannot read data from the target PEB (an error @err happened). If the error
1049 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1050 * fatal and UBI will be switched to R/O mode later.
1051 *
1052 * The idea is that we try not to switch to R/O mode if the read error is
1053 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1054 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1055 * mode, simply because we do not know what happened at the MTD level, and we
1056 * cannot handle this. E.g., the underlying driver may have become crazy, and
1057 * it is safer to switch to R/O mode to preserve the data.
1058 *
1059 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1060 * which we have just written.
1061 */
1062 static int is_error_sane(int err)
1063 {
1064 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1065 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1066 return 0;
1067 return 1;
1068 }
1069
1070 /**
1071 * ubi_eba_copy_leb - copy logical eraseblock.
1072 * @ubi: UBI device description object
1073 * @from: physical eraseblock number from where to copy
1074 * @to: physical eraseblock number where to copy
1075 * @vid_hdr: VID header of the @from physical eraseblock
1076 *
1077 * This function copies logical eraseblock from physical eraseblock @from to
1078 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1079 * function. Returns:
1080 * o %0 in case of success;
1081 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1082 * o a negative error code in case of failure.
1083 */
1084 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1085 struct ubi_vid_hdr *vid_hdr)
1086 {
1087 int err, vol_id, lnum, data_size, aldata_size, idx;
1088 struct ubi_volume *vol;
1089 uint32_t crc;
1090
1091 vol_id = be32_to_cpu(vid_hdr->vol_id);
1092 lnum = be32_to_cpu(vid_hdr->lnum);
1093
1094 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1095
1096 if (vid_hdr->vol_type == UBI_VID_STATIC) {
1097 data_size = be32_to_cpu(vid_hdr->data_size);
1098 aldata_size = ALIGN(data_size, ubi->min_io_size);
1099 } else
1100 data_size = aldata_size =
1101 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1102
1103 idx = vol_id2idx(ubi, vol_id);
1104 spin_lock(&ubi->volumes_lock);
1105 /*
1106 * Note, we may race with volume deletion, which means that the volume
1107 * this logical eraseblock belongs to might be being deleted. Since the
1108 * volume deletion un-maps all the volume's logical eraseblocks, it will
1109 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1110 */
1111 vol = ubi->volumes[idx];
1112 spin_unlock(&ubi->volumes_lock);
1113 if (!vol) {
1114 /* No need to do further work, cancel */
1115 dbg_wl("volume %d is being removed, cancel", vol_id);
1116 return MOVE_CANCEL_RACE;
1117 }
1118
1119 /*
1120 * We do not want anybody to write to this logical eraseblock while we
1121 * are moving it, so lock it.
1122 *
1123 * Note, we are using non-waiting locking here, because we cannot sleep
1124 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1125 * unmapping the LEB which is mapped to the PEB we are going to move
1126 * (@from). This task locks the LEB and goes sleep in the
1127 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1128 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1129 * LEB is already locked, we just do not move it and return
1130 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1131 * we do not know the reasons of the contention - it may be just a
1132 * normal I/O on this LEB, so we want to re-try.
1133 */
1134 err = leb_write_trylock(ubi, vol_id, lnum);
1135 if (err) {
1136 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1137 return MOVE_RETRY;
1138 }
1139
1140 /*
1141 * The LEB might have been put meanwhile, and the task which put it is
1142 * probably waiting on @ubi->move_mutex. No need to continue the work,
1143 * cancel it.
1144 */
1145 if (vol->eba_tbl[lnum] != from) {
1146 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1147 vol_id, lnum, from, vol->eba_tbl[lnum]);
1148 err = MOVE_CANCEL_RACE;
1149 goto out_unlock_leb;
1150 }
1151
1152 /*
1153 * OK, now the LEB is locked and we can safely start moving it. Since
1154 * this function utilizes the @ubi->peb_buf buffer which is shared
1155 * with some other functions - we lock the buffer by taking the
1156 * @ubi->buf_mutex.
1157 */
1158 mutex_lock(&ubi->buf_mutex);
1159 dbg_wl("read %d bytes of data", aldata_size);
1160 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1161 if (err && err != UBI_IO_BITFLIPS) {
1162 ubi_warn(ubi, "error %d while reading data from PEB %d",
1163 err, from);
1164 err = MOVE_SOURCE_RD_ERR;
1165 goto out_unlock_buf;
1166 }
1167
1168 /*
1169 * Now we have got to calculate how much data we have to copy. In
1170 * case of a static volume it is fairly easy - the VID header contains
1171 * the data size. In case of a dynamic volume it is more difficult - we
1172 * have to read the contents, cut 0xFF bytes from the end and copy only
1173 * the first part. We must do this to avoid writing 0xFF bytes as it
1174 * may have some side-effects. And not only this. It is important not
1175 * to include those 0xFFs to CRC because later the they may be filled
1176 * by data.
1177 */
1178 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1179 aldata_size = data_size =
1180 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1181
1182 cond_resched();
1183 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1184 cond_resched();
1185
1186 /*
1187 * It may turn out to be that the whole @from physical eraseblock
1188 * contains only 0xFF bytes. Then we have to only write the VID header
1189 * and do not write any data. This also means we should not set
1190 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1191 */
1192 if (data_size > 0) {
1193 vid_hdr->copy_flag = 1;
1194 vid_hdr->data_size = cpu_to_be32(data_size);
1195 vid_hdr->data_crc = cpu_to_be32(crc);
1196 }
1197 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1198
1199 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1200 if (err) {
1201 if (err == -EIO)
1202 err = MOVE_TARGET_WR_ERR;
1203 goto out_unlock_buf;
1204 }
1205
1206 cond_resched();
1207
1208 /* Read the VID header back and check if it was written correctly */
1209 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1210 if (err) {
1211 if (err != UBI_IO_BITFLIPS) {
1212 ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1213 err, to);
1214 if (is_error_sane(err))
1215 err = MOVE_TARGET_RD_ERR;
1216 } else
1217 err = MOVE_TARGET_BITFLIPS;
1218 goto out_unlock_buf;
1219 }
1220
1221 if (data_size > 0) {
1222 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1223 if (err) {
1224 if (err == -EIO)
1225 err = MOVE_TARGET_WR_ERR;
1226 goto out_unlock_buf;
1227 }
1228
1229 cond_resched();
1230 }
1231
1232 ubi_assert(vol->eba_tbl[lnum] == from);
1233 down_read(&ubi->fm_eba_sem);
1234 vol->eba_tbl[lnum] = to;
1235 up_read(&ubi->fm_eba_sem);
1236
1237 out_unlock_buf:
1238 mutex_unlock(&ubi->buf_mutex);
1239 out_unlock_leb:
1240 leb_write_unlock(ubi, vol_id, lnum);
1241 return err;
1242 }
1243
1244 /**
1245 * print_rsvd_warning - warn about not having enough reserved PEBs.
1246 * @ubi: UBI device description object
1247 *
1248 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1249 * cannot reserve enough PEBs for bad block handling. This function makes a
1250 * decision whether we have to print a warning or not. The algorithm is as
1251 * follows:
1252 * o if this is a new UBI image, then just print the warning
1253 * o if this is an UBI image which has already been used for some time, print
1254 * a warning only if we can reserve less than 10% of the expected amount of
1255 * the reserved PEB.
1256 *
1257 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1258 * of PEBs becomes smaller, which is normal and we do not want to scare users
1259 * with a warning every time they attach the MTD device. This was an issue
1260 * reported by real users.
1261 */
1262 static void print_rsvd_warning(struct ubi_device *ubi,
1263 struct ubi_attach_info *ai)
1264 {
1265 /*
1266 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1267 * large number to distinguish between newly flashed and used images.
1268 */
1269 if (ai->max_sqnum > (1 << 18)) {
1270 int min = ubi->beb_rsvd_level / 10;
1271
1272 if (!min)
1273 min = 1;
1274 if (ubi->beb_rsvd_pebs > min)
1275 return;
1276 }
1277
1278 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1279 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1280 if (ubi->corr_peb_count)
1281 ubi_warn(ubi, "%d PEBs are corrupted and not used",
1282 ubi->corr_peb_count);
1283 }
1284
1285 /**
1286 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1287 * @ubi: UBI device description object
1288 * @ai_fastmap: UBI attach info object created by fastmap
1289 * @ai_scan: UBI attach info object created by scanning
1290 *
1291 * Returns < 0 in case of an internal error, 0 otherwise.
1292 * If a bad EBA table entry was found it will be printed out and
1293 * ubi_assert() triggers.
1294 */
1295 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1296 struct ubi_attach_info *ai_scan)
1297 {
1298 int i, j, num_volumes, ret = 0;
1299 int **scan_eba, **fm_eba;
1300 struct ubi_ainf_volume *av;
1301 struct ubi_volume *vol;
1302 struct ubi_ainf_peb *aeb;
1303 struct rb_node *rb;
1304
1305 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1306
1307 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1308 if (!scan_eba)
1309 return -ENOMEM;
1310
1311 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1312 if (!fm_eba) {
1313 kfree(scan_eba);
1314 return -ENOMEM;
1315 }
1316
1317 for (i = 0; i < num_volumes; i++) {
1318 vol = ubi->volumes[i];
1319 if (!vol)
1320 continue;
1321
1322 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1323 GFP_KERNEL);
1324 if (!scan_eba[i]) {
1325 ret = -ENOMEM;
1326 goto out_free;
1327 }
1328
1329 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1330 GFP_KERNEL);
1331 if (!fm_eba[i]) {
1332 ret = -ENOMEM;
1333 goto out_free;
1334 }
1335
1336 for (j = 0; j < vol->reserved_pebs; j++)
1337 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1338
1339 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1340 if (!av)
1341 continue;
1342
1343 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1344 scan_eba[i][aeb->lnum] = aeb->pnum;
1345
1346 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1347 if (!av)
1348 continue;
1349
1350 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1351 fm_eba[i][aeb->lnum] = aeb->pnum;
1352
1353 for (j = 0; j < vol->reserved_pebs; j++) {
1354 if (scan_eba[i][j] != fm_eba[i][j]) {
1355 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1356 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1357 continue;
1358
1359 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1360 vol->vol_id, j, fm_eba[i][j],
1361 scan_eba[i][j]);
1362 ubi_assert(0);
1363 }
1364 }
1365 }
1366
1367 out_free:
1368 for (i = 0; i < num_volumes; i++) {
1369 if (!ubi->volumes[i])
1370 continue;
1371
1372 kfree(scan_eba[i]);
1373 kfree(fm_eba[i]);
1374 }
1375
1376 kfree(scan_eba);
1377 kfree(fm_eba);
1378 return ret;
1379 }
1380
1381 /**
1382 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1383 * @ubi: UBI device description object
1384 * @ai: attaching information
1385 *
1386 * This function returns zero in case of success and a negative error code in
1387 * case of failure.
1388 */
1389 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1390 {
1391 int i, j, err, num_volumes;
1392 struct ubi_ainf_volume *av;
1393 struct ubi_volume *vol;
1394 struct ubi_ainf_peb *aeb;
1395 struct rb_node *rb;
1396
1397 dbg_eba("initialize EBA sub-system");
1398
1399 spin_lock_init(&ubi->ltree_lock);
1400 mutex_init(&ubi->alc_mutex);
1401 ubi->ltree = RB_ROOT;
1402
1403 ubi->global_sqnum = ai->max_sqnum + 1;
1404 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1405
1406 for (i = 0; i < num_volumes; i++) {
1407 vol = ubi->volumes[i];
1408 if (!vol)
1409 continue;
1410
1411 cond_resched();
1412
1413 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1414 GFP_KERNEL);
1415 if (!vol->eba_tbl) {
1416 err = -ENOMEM;
1417 goto out_free;
1418 }
1419
1420 for (j = 0; j < vol->reserved_pebs; j++)
1421 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1422
1423 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1424 if (!av)
1425 continue;
1426
1427 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1428 if (aeb->lnum >= vol->reserved_pebs)
1429 /*
1430 * This may happen in case of an unclean reboot
1431 * during re-size.
1432 */
1433 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1434 else
1435 vol->eba_tbl[aeb->lnum] = aeb->pnum;
1436 }
1437 }
1438
1439 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1440 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1441 ubi->avail_pebs, EBA_RESERVED_PEBS);
1442 if (ubi->corr_peb_count)
1443 ubi_err(ubi, "%d PEBs are corrupted and not used",
1444 ubi->corr_peb_count);
1445 err = -ENOSPC;
1446 goto out_free;
1447 }
1448 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1449 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1450
1451 if (ubi->bad_allowed) {
1452 ubi_calculate_reserved(ubi);
1453
1454 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1455 /* No enough free physical eraseblocks */
1456 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1457 print_rsvd_warning(ubi, ai);
1458 } else
1459 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1460
1461 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1462 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1463 }
1464
1465 dbg_eba("EBA sub-system is initialized");
1466 return 0;
1467
1468 out_free:
1469 for (i = 0; i < num_volumes; i++) {
1470 if (!ubi->volumes[i])
1471 continue;
1472 kfree(ubi->volumes[i]->eba_tbl);
1473 ubi->volumes[i]->eba_tbl = NULL;
1474 }
1475 return err;
1476 }
This page took 0.059876 seconds and 5 git commands to generate.