UBI: bugfix: protect from volume removal
[deliverable/linux.git] / drivers / mtd / ubi / eba.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21 /*
22 * The UBI Eraseblock Association (EBA) unit.
23 *
24 * This unit is responsible for I/O to/from logical eraseblock.
25 *
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
29 *
30 * The EBA unit implements per-logical eraseblock locking. Before accessing a
31 * logical eraseblock it is locked for reading or writing. The per-logical
32 * eraseblock locking is implemented by means of the lock tree. The lock tree
33 * is an RB-tree which refers all the currently locked logical eraseblocks. The
34 * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
35 * (@vol_id, @lnum) pairs.
36 *
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
42 */
43
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51
52 /**
53 * next_sqnum - get next sequence number.
54 * @ubi: UBI device description object
55 *
56 * This function returns next sequence number to use, which is just the current
57 * global sequence counter value. It also increases the global sequence
58 * counter.
59 */
60 static unsigned long long next_sqnum(struct ubi_device *ubi)
61 {
62 unsigned long long sqnum;
63
64 spin_lock(&ubi->ltree_lock);
65 sqnum = ubi->global_sqnum++;
66 spin_unlock(&ubi->ltree_lock);
67
68 return sqnum;
69 }
70
71 /**
72 * ubi_get_compat - get compatibility flags of a volume.
73 * @ubi: UBI device description object
74 * @vol_id: volume ID
75 *
76 * This function returns compatibility flags for an internal volume. User
77 * volumes have no compatibility flags, so %0 is returned.
78 */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 if (vol_id == UBI_LAYOUT_VOL_ID)
82 return UBI_LAYOUT_VOLUME_COMPAT;
83 return 0;
84 }
85
86 /**
87 * ltree_lookup - look up the lock tree.
88 * @ubi: UBI device description object
89 * @vol_id: volume ID
90 * @lnum: logical eraseblock number
91 *
92 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93 * object if the logical eraseblock is locked and %NULL if it is not.
94 * @ubi->ltree_lock has to be locked.
95 */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 int lnum)
98 {
99 struct rb_node *p;
100
101 p = ubi->ltree.rb_node;
102 while (p) {
103 struct ubi_ltree_entry *le;
104
105 le = rb_entry(p, struct ubi_ltree_entry, rb);
106
107 if (vol_id < le->vol_id)
108 p = p->rb_left;
109 else if (vol_id > le->vol_id)
110 p = p->rb_right;
111 else {
112 if (lnum < le->lnum)
113 p = p->rb_left;
114 else if (lnum > le->lnum)
115 p = p->rb_right;
116 else
117 return le;
118 }
119 }
120
121 return NULL;
122 }
123
124 /**
125 * ltree_add_entry - add new entry to the lock tree.
126 * @ubi: UBI device description object
127 * @vol_id: volume ID
128 * @lnum: logical eraseblock number
129 *
130 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131 * lock tree. If such entry is already there, its usage counter is increased.
132 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133 * failed.
134 */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 int vol_id, int lnum)
137 {
138 struct ubi_ltree_entry *le, *le1, *le_free;
139
140 le = kmem_cache_alloc(ubi_ltree_slab, GFP_NOFS);
141 if (!le)
142 return ERR_PTR(-ENOMEM);
143
144 le->vol_id = vol_id;
145 le->lnum = lnum;
146
147 spin_lock(&ubi->ltree_lock);
148 le1 = ltree_lookup(ubi, vol_id, lnum);
149
150 if (le1) {
151 /*
152 * This logical eraseblock is already locked. The newly
153 * allocated lock entry is not needed.
154 */
155 le_free = le;
156 le = le1;
157 } else {
158 struct rb_node **p, *parent = NULL;
159
160 /*
161 * No lock entry, add the newly allocated one to the
162 * @ubi->ltree RB-tree.
163 */
164 le_free = NULL;
165
166 p = &ubi->ltree.rb_node;
167 while (*p) {
168 parent = *p;
169 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
170
171 if (vol_id < le1->vol_id)
172 p = &(*p)->rb_left;
173 else if (vol_id > le1->vol_id)
174 p = &(*p)->rb_right;
175 else {
176 ubi_assert(lnum != le1->lnum);
177 if (lnum < le1->lnum)
178 p = &(*p)->rb_left;
179 else
180 p = &(*p)->rb_right;
181 }
182 }
183
184 rb_link_node(&le->rb, parent, p);
185 rb_insert_color(&le->rb, &ubi->ltree);
186 }
187 le->users += 1;
188 spin_unlock(&ubi->ltree_lock);
189
190 if (le_free)
191 kmem_cache_free(ubi_ltree_slab, le_free);
192
193 return le;
194 }
195
196 /**
197 * leb_read_lock - lock logical eraseblock for reading.
198 * @ubi: UBI device description object
199 * @vol_id: volume ID
200 * @lnum: logical eraseblock number
201 *
202 * This function locks a logical eraseblock for reading. Returns zero in case
203 * of success and a negative error code in case of failure.
204 */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 struct ubi_ltree_entry *le;
208
209 le = ltree_add_entry(ubi, vol_id, lnum);
210 if (IS_ERR(le))
211 return PTR_ERR(le);
212 down_read(&le->mutex);
213 return 0;
214 }
215
216 /**
217 * leb_read_unlock - unlock logical eraseblock.
218 * @ubi: UBI device description object
219 * @vol_id: volume ID
220 * @lnum: logical eraseblock number
221 */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 int free = 0;
225 struct ubi_ltree_entry *le;
226
227 spin_lock(&ubi->ltree_lock);
228 le = ltree_lookup(ubi, vol_id, lnum);
229 le->users -= 1;
230 ubi_assert(le->users >= 0);
231 if (le->users == 0) {
232 rb_erase(&le->rb, &ubi->ltree);
233 free = 1;
234 }
235 spin_unlock(&ubi->ltree_lock);
236
237 up_read(&le->mutex);
238 if (free)
239 kmem_cache_free(ubi_ltree_slab, le);
240 }
241
242 /**
243 * leb_write_lock - lock logical eraseblock for writing.
244 * @ubi: UBI device description object
245 * @vol_id: volume ID
246 * @lnum: logical eraseblock number
247 *
248 * This function locks a logical eraseblock for writing. Returns zero in case
249 * of success and a negative error code in case of failure.
250 */
251 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
252 {
253 struct ubi_ltree_entry *le;
254
255 le = ltree_add_entry(ubi, vol_id, lnum);
256 if (IS_ERR(le))
257 return PTR_ERR(le);
258 down_write(&le->mutex);
259 return 0;
260 }
261
262 /**
263 * leb_write_lock - lock logical eraseblock for writing.
264 * @ubi: UBI device description object
265 * @vol_id: volume ID
266 * @lnum: logical eraseblock number
267 *
268 * This function locks a logical eraseblock for writing if there is no
269 * contention and does nothing if there is contention. Returns %0 in case of
270 * success, %1 in case of contention, and and a negative error code in case of
271 * failure.
272 */
273 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
274 {
275 int free;
276 struct ubi_ltree_entry *le;
277
278 le = ltree_add_entry(ubi, vol_id, lnum);
279 if (IS_ERR(le))
280 return PTR_ERR(le);
281 if (down_write_trylock(&le->mutex))
282 return 0;
283
284 /* Contention, cancel */
285 spin_lock(&ubi->ltree_lock);
286 le->users -= 1;
287 ubi_assert(le->users >= 0);
288 if (le->users == 0) {
289 rb_erase(&le->rb, &ubi->ltree);
290 free = 1;
291 } else
292 free = 0;
293 spin_unlock(&ubi->ltree_lock);
294 if (free)
295 kmem_cache_free(ubi_ltree_slab, le);
296
297 return 1;
298 }
299
300 /**
301 * leb_write_unlock - unlock logical eraseblock.
302 * @ubi: UBI device description object
303 * @vol_id: volume ID
304 * @lnum: logical eraseblock number
305 */
306 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
307 {
308 int free;
309 struct ubi_ltree_entry *le;
310
311 spin_lock(&ubi->ltree_lock);
312 le = ltree_lookup(ubi, vol_id, lnum);
313 le->users -= 1;
314 ubi_assert(le->users >= 0);
315 if (le->users == 0) {
316 rb_erase(&le->rb, &ubi->ltree);
317 free = 1;
318 } else
319 free = 0;
320 spin_unlock(&ubi->ltree_lock);
321
322 up_write(&le->mutex);
323 if (free)
324 kmem_cache_free(ubi_ltree_slab, le);
325 }
326
327 /**
328 * ubi_eba_unmap_leb - un-map logical eraseblock.
329 * @ubi: UBI device description object
330 * @vol: volume description object
331 * @lnum: logical eraseblock number
332 *
333 * This function un-maps logical eraseblock @lnum and schedules corresponding
334 * physical eraseblock for erasure. Returns zero in case of success and a
335 * negative error code in case of failure.
336 */
337 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
338 int lnum)
339 {
340 int err, pnum, vol_id = vol->vol_id;
341
342 ubi_assert(vol->ref_count > 0);
343
344 if (ubi->ro_mode)
345 return -EROFS;
346
347 err = leb_write_lock(ubi, vol_id, lnum);
348 if (err)
349 return err;
350
351 pnum = vol->eba_tbl[lnum];
352 if (pnum < 0)
353 /* This logical eraseblock is already unmapped */
354 goto out_unlock;
355
356 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
357
358 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
359 err = ubi_wl_put_peb(ubi, pnum, 0);
360
361 out_unlock:
362 leb_write_unlock(ubi, vol_id, lnum);
363 return err;
364 }
365
366 /**
367 * ubi_eba_read_leb - read data.
368 * @ubi: UBI device description object
369 * @vol: volume description object
370 * @lnum: logical eraseblock number
371 * @buf: buffer to store the read data
372 * @offset: offset from where to read
373 * @len: how many bytes to read
374 * @check: data CRC check flag
375 *
376 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
377 * bytes. The @check flag only makes sense for static volumes and forces
378 * eraseblock data CRC checking.
379 *
380 * In case of success this function returns zero. In case of a static volume,
381 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
382 * returned for any volume type if an ECC error was detected by the MTD device
383 * driver. Other negative error cored may be returned in case of other errors.
384 */
385 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
386 void *buf, int offset, int len, int check)
387 {
388 int err, pnum, scrub = 0, vol_id = vol->vol_id;
389 struct ubi_vid_hdr *vid_hdr;
390 uint32_t uninitialized_var(crc);
391
392 ubi_assert(vol->ref_count > 0);
393
394 err = leb_read_lock(ubi, vol_id, lnum);
395 if (err)
396 return err;
397
398 pnum = vol->eba_tbl[lnum];
399 if (pnum < 0) {
400 /*
401 * The logical eraseblock is not mapped, fill the whole buffer
402 * with 0xFF bytes. The exception is static volumes for which
403 * it is an error to read unmapped logical eraseblocks.
404 */
405 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
406 len, offset, vol_id, lnum);
407 leb_read_unlock(ubi, vol_id, lnum);
408 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
409 memset(buf, 0xFF, len);
410 return 0;
411 }
412
413 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
414 len, offset, vol_id, lnum, pnum);
415
416 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
417 check = 0;
418
419 retry:
420 if (check) {
421 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
422 if (!vid_hdr) {
423 err = -ENOMEM;
424 goto out_unlock;
425 }
426
427 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
428 if (err && err != UBI_IO_BITFLIPS) {
429 if (err > 0) {
430 /*
431 * The header is either absent or corrupted.
432 * The former case means there is a bug -
433 * switch to read-only mode just in case.
434 * The latter case means a real corruption - we
435 * may try to recover data. FIXME: but this is
436 * not implemented.
437 */
438 if (err == UBI_IO_BAD_VID_HDR) {
439 ubi_warn("bad VID header at PEB %d, LEB"
440 "%d:%d", pnum, vol_id, lnum);
441 err = -EBADMSG;
442 } else
443 ubi_ro_mode(ubi);
444 }
445 goto out_free;
446 } else if (err == UBI_IO_BITFLIPS)
447 scrub = 1;
448
449 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
450 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
451
452 crc = be32_to_cpu(vid_hdr->data_crc);
453 ubi_free_vid_hdr(ubi, vid_hdr);
454 }
455
456 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
457 if (err) {
458 if (err == UBI_IO_BITFLIPS) {
459 scrub = 1;
460 err = 0;
461 } else if (err == -EBADMSG) {
462 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
463 goto out_unlock;
464 scrub = 1;
465 if (!check) {
466 ubi_msg("force data checking");
467 check = 1;
468 goto retry;
469 }
470 } else
471 goto out_unlock;
472 }
473
474 if (check) {
475 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
476 if (crc1 != crc) {
477 ubi_warn("CRC error: calculated %#08x, must be %#08x",
478 crc1, crc);
479 err = -EBADMSG;
480 goto out_unlock;
481 }
482 }
483
484 if (scrub)
485 err = ubi_wl_scrub_peb(ubi, pnum);
486
487 leb_read_unlock(ubi, vol_id, lnum);
488 return err;
489
490 out_free:
491 ubi_free_vid_hdr(ubi, vid_hdr);
492 out_unlock:
493 leb_read_unlock(ubi, vol_id, lnum);
494 return err;
495 }
496
497 /**
498 * recover_peb - recover from write failure.
499 * @ubi: UBI device description object
500 * @pnum: the physical eraseblock to recover
501 * @vol_id: volume ID
502 * @lnum: logical eraseblock number
503 * @buf: data which was not written because of the write failure
504 * @offset: offset of the failed write
505 * @len: how many bytes should have been written
506 *
507 * This function is called in case of a write failure and moves all good data
508 * from the potentially bad physical eraseblock to a good physical eraseblock.
509 * This function also writes the data which was not written due to the failure.
510 * Returns new physical eraseblock number in case of success, and a negative
511 * error code in case of failure.
512 */
513 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
514 const void *buf, int offset, int len)
515 {
516 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
517 struct ubi_volume *vol = ubi->volumes[idx];
518 struct ubi_vid_hdr *vid_hdr;
519
520 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
521 if (!vid_hdr) {
522 return -ENOMEM;
523 }
524
525 mutex_lock(&ubi->buf_mutex);
526
527 retry:
528 new_pnum = ubi_wl_get_peb(ubi, UBI_UNKNOWN);
529 if (new_pnum < 0) {
530 mutex_unlock(&ubi->buf_mutex);
531 ubi_free_vid_hdr(ubi, vid_hdr);
532 return new_pnum;
533 }
534
535 ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
536
537 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
538 if (err && err != UBI_IO_BITFLIPS) {
539 if (err > 0)
540 err = -EIO;
541 goto out_put;
542 }
543
544 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
545 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
546 if (err)
547 goto write_error;
548
549 data_size = offset + len;
550 memset(ubi->peb_buf1 + offset, 0xFF, len);
551
552 /* Read everything before the area where the write failure happened */
553 if (offset > 0) {
554 err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset);
555 if (err && err != UBI_IO_BITFLIPS)
556 goto out_put;
557 }
558
559 memcpy(ubi->peb_buf1 + offset, buf, len);
560
561 err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size);
562 if (err)
563 goto write_error;
564
565 mutex_unlock(&ubi->buf_mutex);
566 ubi_free_vid_hdr(ubi, vid_hdr);
567
568 vol->eba_tbl[lnum] = new_pnum;
569 ubi_wl_put_peb(ubi, pnum, 1);
570
571 ubi_msg("data was successfully recovered");
572 return 0;
573
574 out_put:
575 mutex_unlock(&ubi->buf_mutex);
576 ubi_wl_put_peb(ubi, new_pnum, 1);
577 ubi_free_vid_hdr(ubi, vid_hdr);
578 return err;
579
580 write_error:
581 /*
582 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
583 * get another one.
584 */
585 ubi_warn("failed to write to PEB %d", new_pnum);
586 ubi_wl_put_peb(ubi, new_pnum, 1);
587 if (++tries > UBI_IO_RETRIES) {
588 mutex_unlock(&ubi->buf_mutex);
589 ubi_free_vid_hdr(ubi, vid_hdr);
590 return err;
591 }
592 ubi_msg("try again");
593 goto retry;
594 }
595
596 /**
597 * ubi_eba_write_leb - write data to dynamic volume.
598 * @ubi: UBI device description object
599 * @vol: volume description object
600 * @lnum: logical eraseblock number
601 * @buf: the data to write
602 * @offset: offset within the logical eraseblock where to write
603 * @len: how many bytes to write
604 * @dtype: data type
605 *
606 * This function writes data to logical eraseblock @lnum of a dynamic volume
607 * @vol. Returns zero in case of success and a negative error code in case
608 * of failure. In case of error, it is possible that something was still
609 * written to the flash media, but may be some garbage.
610 */
611 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
612 const void *buf, int offset, int len, int dtype)
613 {
614 int err, pnum, tries = 0, vol_id = vol->vol_id;
615 struct ubi_vid_hdr *vid_hdr;
616
617 ubi_assert(vol->ref_count > 0);
618
619 if (ubi->ro_mode)
620 return -EROFS;
621
622 err = leb_write_lock(ubi, vol_id, lnum);
623 if (err)
624 return err;
625
626 pnum = vol->eba_tbl[lnum];
627 if (pnum >= 0) {
628 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
629 len, offset, vol_id, lnum, pnum);
630
631 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
632 if (err) {
633 ubi_warn("failed to write data to PEB %d", pnum);
634 if (err == -EIO && ubi->bad_allowed)
635 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
636 offset, len);
637 if (err)
638 ubi_ro_mode(ubi);
639 }
640 leb_write_unlock(ubi, vol_id, lnum);
641 return err;
642 }
643
644 /*
645 * The logical eraseblock is not mapped. We have to get a free physical
646 * eraseblock and write the volume identifier header there first.
647 */
648 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
649 if (!vid_hdr) {
650 leb_write_unlock(ubi, vol_id, lnum);
651 return -ENOMEM;
652 }
653
654 vid_hdr->vol_type = UBI_VID_DYNAMIC;
655 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
656 vid_hdr->vol_id = cpu_to_be32(vol_id);
657 vid_hdr->lnum = cpu_to_be32(lnum);
658 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
659 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
660
661 retry:
662 pnum = ubi_wl_get_peb(ubi, dtype);
663 if (pnum < 0) {
664 ubi_free_vid_hdr(ubi, vid_hdr);
665 leb_write_unlock(ubi, vol_id, lnum);
666 return pnum;
667 }
668
669 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
670 len, offset, vol_id, lnum, pnum);
671
672 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
673 if (err) {
674 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
675 vol_id, lnum, pnum);
676 goto write_error;
677 }
678
679 if (len) {
680 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
681 if (err) {
682 ubi_warn("failed to write %d bytes at offset %d of "
683 "LEB %d:%d, PEB %d", len, offset, vol_id,
684 lnum, pnum);
685 goto write_error;
686 }
687 }
688
689 vol->eba_tbl[lnum] = pnum;
690
691 leb_write_unlock(ubi, vol_id, lnum);
692 ubi_free_vid_hdr(ubi, vid_hdr);
693 return 0;
694
695 write_error:
696 if (err != -EIO || !ubi->bad_allowed) {
697 ubi_ro_mode(ubi);
698 leb_write_unlock(ubi, vol_id, lnum);
699 ubi_free_vid_hdr(ubi, vid_hdr);
700 return err;
701 }
702
703 /*
704 * Fortunately, this is the first write operation to this physical
705 * eraseblock, so just put it and request a new one. We assume that if
706 * this physical eraseblock went bad, the erase code will handle that.
707 */
708 err = ubi_wl_put_peb(ubi, pnum, 1);
709 if (err || ++tries > UBI_IO_RETRIES) {
710 ubi_ro_mode(ubi);
711 leb_write_unlock(ubi, vol_id, lnum);
712 ubi_free_vid_hdr(ubi, vid_hdr);
713 return err;
714 }
715
716 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
717 ubi_msg("try another PEB");
718 goto retry;
719 }
720
721 /**
722 * ubi_eba_write_leb_st - write data to static volume.
723 * @ubi: UBI device description object
724 * @vol: volume description object
725 * @lnum: logical eraseblock number
726 * @buf: data to write
727 * @len: how many bytes to write
728 * @dtype: data type
729 * @used_ebs: how many logical eraseblocks will this volume contain
730 *
731 * This function writes data to logical eraseblock @lnum of static volume
732 * @vol. The @used_ebs argument should contain total number of logical
733 * eraseblock in this static volume.
734 *
735 * When writing to the last logical eraseblock, the @len argument doesn't have
736 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
737 * to the real data size, although the @buf buffer has to contain the
738 * alignment. In all other cases, @len has to be aligned.
739 *
740 * It is prohibited to write more then once to logical eraseblocks of static
741 * volumes. This function returns zero in case of success and a negative error
742 * code in case of failure.
743 */
744 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
745 int lnum, const void *buf, int len, int dtype,
746 int used_ebs)
747 {
748 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
749 struct ubi_vid_hdr *vid_hdr;
750 uint32_t crc;
751
752 ubi_assert(vol->ref_count > 0);
753
754 if (ubi->ro_mode)
755 return -EROFS;
756
757 if (lnum == used_ebs - 1)
758 /* If this is the last LEB @len may be unaligned */
759 len = ALIGN(data_size, ubi->min_io_size);
760 else
761 ubi_assert(len % ubi->min_io_size == 0);
762
763 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
764 if (!vid_hdr)
765 return -ENOMEM;
766
767 err = leb_write_lock(ubi, vol_id, lnum);
768 if (err) {
769 ubi_free_vid_hdr(ubi, vid_hdr);
770 return err;
771 }
772
773 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
774 vid_hdr->vol_id = cpu_to_be32(vol_id);
775 vid_hdr->lnum = cpu_to_be32(lnum);
776 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
777 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
778
779 crc = crc32(UBI_CRC32_INIT, buf, data_size);
780 vid_hdr->vol_type = UBI_VID_STATIC;
781 vid_hdr->data_size = cpu_to_be32(data_size);
782 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
783 vid_hdr->data_crc = cpu_to_be32(crc);
784
785 retry:
786 pnum = ubi_wl_get_peb(ubi, dtype);
787 if (pnum < 0) {
788 ubi_free_vid_hdr(ubi, vid_hdr);
789 leb_write_unlock(ubi, vol_id, lnum);
790 return pnum;
791 }
792
793 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
794 len, vol_id, lnum, pnum, used_ebs);
795
796 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
797 if (err) {
798 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
799 vol_id, lnum, pnum);
800 goto write_error;
801 }
802
803 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
804 if (err) {
805 ubi_warn("failed to write %d bytes of data to PEB %d",
806 len, pnum);
807 goto write_error;
808 }
809
810 ubi_assert(vol->eba_tbl[lnum] < 0);
811 vol->eba_tbl[lnum] = pnum;
812
813 leb_write_unlock(ubi, vol_id, lnum);
814 ubi_free_vid_hdr(ubi, vid_hdr);
815 return 0;
816
817 write_error:
818 if (err != -EIO || !ubi->bad_allowed) {
819 /*
820 * This flash device does not admit of bad eraseblocks or
821 * something nasty and unexpected happened. Switch to read-only
822 * mode just in case.
823 */
824 ubi_ro_mode(ubi);
825 leb_write_unlock(ubi, vol_id, lnum);
826 ubi_free_vid_hdr(ubi, vid_hdr);
827 return err;
828 }
829
830 err = ubi_wl_put_peb(ubi, pnum, 1);
831 if (err || ++tries > UBI_IO_RETRIES) {
832 ubi_ro_mode(ubi);
833 leb_write_unlock(ubi, vol_id, lnum);
834 ubi_free_vid_hdr(ubi, vid_hdr);
835 return err;
836 }
837
838 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
839 ubi_msg("try another PEB");
840 goto retry;
841 }
842
843 /*
844 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
845 * @ubi: UBI device description object
846 * @vol: volume description object
847 * @lnum: logical eraseblock number
848 * @buf: data to write
849 * @len: how many bytes to write
850 * @dtype: data type
851 *
852 * This function changes the contents of a logical eraseblock atomically. @buf
853 * has to contain new logical eraseblock data, and @len - the length of the
854 * data, which has to be aligned. This function guarantees that in case of an
855 * unclean reboot the old contents is preserved. Returns zero in case of
856 * success and a negative error code in case of failure.
857 *
858 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
859 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
860 */
861 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
862 int lnum, const void *buf, int len, int dtype)
863 {
864 int err, pnum, tries = 0, vol_id = vol->vol_id;
865 struct ubi_vid_hdr *vid_hdr;
866 uint32_t crc;
867
868 ubi_assert(vol->ref_count > 0);
869
870 if (ubi->ro_mode)
871 return -EROFS;
872
873 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
874 if (!vid_hdr)
875 return -ENOMEM;
876
877 mutex_lock(&ubi->alc_mutex);
878 err = leb_write_lock(ubi, vol_id, lnum);
879 if (err)
880 goto out_mutex;
881
882 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
883 vid_hdr->vol_id = cpu_to_be32(vol_id);
884 vid_hdr->lnum = cpu_to_be32(lnum);
885 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
886 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
887
888 crc = crc32(UBI_CRC32_INIT, buf, len);
889 vid_hdr->vol_type = UBI_VID_DYNAMIC;
890 vid_hdr->data_size = cpu_to_be32(len);
891 vid_hdr->copy_flag = 1;
892 vid_hdr->data_crc = cpu_to_be32(crc);
893
894 retry:
895 pnum = ubi_wl_get_peb(ubi, dtype);
896 if (pnum < 0) {
897 err = pnum;
898 goto out_leb_unlock;
899 }
900
901 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
902 vol_id, lnum, vol->eba_tbl[lnum], pnum);
903
904 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
905 if (err) {
906 ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
907 vol_id, lnum, pnum);
908 goto write_error;
909 }
910
911 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
912 if (err) {
913 ubi_warn("failed to write %d bytes of data to PEB %d",
914 len, pnum);
915 goto write_error;
916 }
917
918 if (vol->eba_tbl[lnum] >= 0) {
919 err = ubi_wl_put_peb(ubi, vol->eba_tbl[lnum], 1);
920 if (err)
921 goto out_leb_unlock;
922 }
923
924 vol->eba_tbl[lnum] = pnum;
925
926 out_leb_unlock:
927 leb_write_unlock(ubi, vol_id, lnum);
928 out_mutex:
929 mutex_unlock(&ubi->alc_mutex);
930 ubi_free_vid_hdr(ubi, vid_hdr);
931 return err;
932
933 write_error:
934 if (err != -EIO || !ubi->bad_allowed) {
935 /*
936 * This flash device does not admit of bad eraseblocks or
937 * something nasty and unexpected happened. Switch to read-only
938 * mode just in case.
939 */
940 ubi_ro_mode(ubi);
941 goto out_leb_unlock;
942 }
943
944 err = ubi_wl_put_peb(ubi, pnum, 1);
945 if (err || ++tries > UBI_IO_RETRIES) {
946 ubi_ro_mode(ubi);
947 goto out_leb_unlock;
948 }
949
950 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
951 ubi_msg("try another PEB");
952 goto retry;
953 }
954
955 /**
956 * ubi_eba_copy_leb - copy logical eraseblock.
957 * @ubi: UBI device description object
958 * @from: physical eraseblock number from where to copy
959 * @to: physical eraseblock number where to copy
960 * @vid_hdr: VID header of the @from physical eraseblock
961 *
962 * This function copies logical eraseblock from physical eraseblock @from to
963 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
964 * function. Returns:
965 * o %0 in case of success;
966 * o %1 if the operation was canceled and should be tried later (e.g.,
967 * because a bit-flip was detected at the target PEB);
968 * o %2 if the volume is being deleted and this LEB should not be moved.
969 */
970 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
971 struct ubi_vid_hdr *vid_hdr)
972 {
973 int err, vol_id, lnum, data_size, aldata_size, idx;
974 struct ubi_volume *vol;
975 uint32_t crc;
976
977 vol_id = be32_to_cpu(vid_hdr->vol_id);
978 lnum = be32_to_cpu(vid_hdr->lnum);
979
980 dbg_eba("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
981
982 if (vid_hdr->vol_type == UBI_VID_STATIC) {
983 data_size = be32_to_cpu(vid_hdr->data_size);
984 aldata_size = ALIGN(data_size, ubi->min_io_size);
985 } else
986 data_size = aldata_size =
987 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
988
989 idx = vol_id2idx(ubi, vol_id);
990 spin_lock(&ubi->volumes_lock);
991 /*
992 * Note, we may race with volume deletion, which means that the volume
993 * this logical eraseblock belongs to might be being deleted. Since the
994 * volume deletion unmaps all the volume's logical eraseblocks, it will
995 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
996 */
997 vol = ubi->volumes[idx];
998 if (!vol) {
999 /* No need to do further work, cancel */
1000 dbg_eba("volume %d is being removed, cancel", vol_id);
1001 spin_unlock(&ubi->volumes_lock);
1002 return 2;
1003 }
1004 spin_unlock(&ubi->volumes_lock);
1005
1006 /*
1007 * We do not want anybody to write to this logical eraseblock while we
1008 * are moving it, so lock it.
1009 *
1010 * Note, we are using non-waiting locking here, because we cannot sleep
1011 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1012 * unmapping the LEB which is mapped to the PEB we are going to move
1013 * (@from). This task locks the LEB and goes sleep in the
1014 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1015 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1016 * LEB is already locked, we just do not move it and return %1.
1017 */
1018 err = leb_write_trylock(ubi, vol_id, lnum);
1019 if (err) {
1020 dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
1021 return err;
1022 }
1023
1024 /*
1025 * The LEB might have been put meanwhile, and the task which put it is
1026 * probably waiting on @ubi->move_mutex. No need to continue the work,
1027 * cancel it.
1028 */
1029 if (vol->eba_tbl[lnum] != from) {
1030 dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
1031 "PEB %d, cancel", vol_id, lnum, from,
1032 vol->eba_tbl[lnum]);
1033 err = 1;
1034 goto out_unlock_leb;
1035 }
1036
1037 /*
1038 * OK, now the LEB is locked and we can safely start moving iy. Since
1039 * this function utilizes thie @ubi->peb1_buf buffer which is shared
1040 * with some other functions, so lock the buffer by taking the
1041 * @ubi->buf_mutex.
1042 */
1043 mutex_lock(&ubi->buf_mutex);
1044 dbg_eba("read %d bytes of data", aldata_size);
1045 err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
1046 if (err && err != UBI_IO_BITFLIPS) {
1047 ubi_warn("error %d while reading data from PEB %d",
1048 err, from);
1049 goto out_unlock_buf;
1050 }
1051
1052 /*
1053 * Now we have got to calculate how much data we have to to copy. In
1054 * case of a static volume it is fairly easy - the VID header contains
1055 * the data size. In case of a dynamic volume it is more difficult - we
1056 * have to read the contents, cut 0xFF bytes from the end and copy only
1057 * the first part. We must do this to avoid writing 0xFF bytes as it
1058 * may have some side-effects. And not only this. It is important not
1059 * to include those 0xFFs to CRC because later the they may be filled
1060 * by data.
1061 */
1062 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1063 aldata_size = data_size =
1064 ubi_calc_data_len(ubi, ubi->peb_buf1, data_size);
1065
1066 cond_resched();
1067 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size);
1068 cond_resched();
1069
1070 /*
1071 * It may turn out to me that the whole @from physical eraseblock
1072 * contains only 0xFF bytes. Then we have to only write the VID header
1073 * and do not write any data. This also means we should not set
1074 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1075 */
1076 if (data_size > 0) {
1077 vid_hdr->copy_flag = 1;
1078 vid_hdr->data_size = cpu_to_be32(data_size);
1079 vid_hdr->data_crc = cpu_to_be32(crc);
1080 }
1081 vid_hdr->sqnum = cpu_to_be64(next_sqnum(ubi));
1082
1083 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1084 if (err)
1085 goto out_unlock_buf;
1086
1087 cond_resched();
1088
1089 /* Read the VID header back and check if it was written correctly */
1090 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1091 if (err) {
1092 if (err != UBI_IO_BITFLIPS)
1093 ubi_warn("cannot read VID header back from PEB %d", to);
1094 else
1095 err = 1;
1096 goto out_unlock_buf;
1097 }
1098
1099 if (data_size > 0) {
1100 err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
1101 if (err)
1102 goto out_unlock_buf;
1103
1104 cond_resched();
1105
1106 /*
1107 * We've written the data and are going to read it back to make
1108 * sure it was written correctly.
1109 */
1110
1111 err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size);
1112 if (err) {
1113 if (err != UBI_IO_BITFLIPS)
1114 ubi_warn("cannot read data back from PEB %d",
1115 to);
1116 else
1117 err = 1;
1118 goto out_unlock_buf;
1119 }
1120
1121 cond_resched();
1122
1123 if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
1124 ubi_warn("read data back from PEB %d - it is different",
1125 to);
1126 goto out_unlock_buf;
1127 }
1128 }
1129
1130 ubi_assert(vol->eba_tbl[lnum] == from);
1131 vol->eba_tbl[lnum] = to;
1132
1133 out_unlock_buf:
1134 mutex_unlock(&ubi->buf_mutex);
1135 out_unlock_leb:
1136 leb_write_unlock(ubi, vol_id, lnum);
1137 return err;
1138 }
1139
1140 /**
1141 * ubi_eba_init_scan - initialize the EBA unit using scanning information.
1142 * @ubi: UBI device description object
1143 * @si: scanning information
1144 *
1145 * This function returns zero in case of success and a negative error code in
1146 * case of failure.
1147 */
1148 int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1149 {
1150 int i, j, err, num_volumes;
1151 struct ubi_scan_volume *sv;
1152 struct ubi_volume *vol;
1153 struct ubi_scan_leb *seb;
1154 struct rb_node *rb;
1155
1156 dbg_eba("initialize EBA unit");
1157
1158 spin_lock_init(&ubi->ltree_lock);
1159 mutex_init(&ubi->alc_mutex);
1160 ubi->ltree = RB_ROOT;
1161
1162 ubi->global_sqnum = si->max_sqnum + 1;
1163 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1164
1165 for (i = 0; i < num_volumes; i++) {
1166 vol = ubi->volumes[i];
1167 if (!vol)
1168 continue;
1169
1170 cond_resched();
1171
1172 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1173 GFP_KERNEL);
1174 if (!vol->eba_tbl) {
1175 err = -ENOMEM;
1176 goto out_free;
1177 }
1178
1179 for (j = 0; j < vol->reserved_pebs; j++)
1180 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1181
1182 sv = ubi_scan_find_sv(si, idx2vol_id(ubi, i));
1183 if (!sv)
1184 continue;
1185
1186 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
1187 if (seb->lnum >= vol->reserved_pebs)
1188 /*
1189 * This may happen in case of an unclean reboot
1190 * during re-size.
1191 */
1192 ubi_scan_move_to_list(sv, seb, &si->erase);
1193 vol->eba_tbl[seb->lnum] = seb->pnum;
1194 }
1195 }
1196
1197 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1198 ubi_err("no enough physical eraseblocks (%d, need %d)",
1199 ubi->avail_pebs, EBA_RESERVED_PEBS);
1200 err = -ENOSPC;
1201 goto out_free;
1202 }
1203 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1204 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1205
1206 if (ubi->bad_allowed) {
1207 ubi_calculate_reserved(ubi);
1208
1209 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1210 /* No enough free physical eraseblocks */
1211 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1212 ubi_warn("cannot reserve enough PEBs for bad PEB "
1213 "handling, reserved %d, need %d",
1214 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1215 } else
1216 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1217
1218 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1219 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1220 }
1221
1222 dbg_eba("EBA unit is initialized");
1223 return 0;
1224
1225 out_free:
1226 for (i = 0; i < num_volumes; i++) {
1227 if (!ubi->volumes[i])
1228 continue;
1229 kfree(ubi->volumes[i]->eba_tbl);
1230 }
1231 return err;
1232 }
1233
1234 /**
1235 * ubi_eba_close - close EBA unit.
1236 * @ubi: UBI device description object
1237 */
1238 void ubi_eba_close(const struct ubi_device *ubi)
1239 {
1240 int i, num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1241
1242 dbg_eba("close EBA unit");
1243
1244 for (i = 0; i < num_volumes; i++) {
1245 if (!ubi->volumes[i])
1246 continue;
1247 kfree(ubi->volumes[i]->eba_tbl);
1248 }
1249 }
This page took 0.054679 seconds and 6 git commands to generate.