ed0bcb35472f99785555d271f34175fc8807cc9d
[deliverable/linux.git] / drivers / mtd / ubi / io.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * UBI input/output sub-system.
24 *
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
87 */
88
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93
94 static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
101 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
102 int offset, int len);
103
104 /**
105 * ubi_io_read - read data from a physical eraseblock.
106 * @ubi: UBI device description object
107 * @buf: buffer where to store the read data
108 * @pnum: physical eraseblock number to read from
109 * @offset: offset within the physical eraseblock from where to read
110 * @len: how many bytes to read
111 *
112 * This function reads data from offset @offset of physical eraseblock @pnum
113 * and stores the read data in the @buf buffer. The following return codes are
114 * possible:
115 *
116 * o %0 if all the requested data were successfully read;
117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
118 * correctable bit-flips were detected; this is harmless but may indicate
119 * that this eraseblock may become bad soon (but do not have to);
120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
121 * example it can be an ECC error in case of NAND; this most probably means
122 * that the data is corrupted;
123 * o %-EIO if some I/O error occurred;
124 * o other negative error codes in case of other errors.
125 */
126 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
127 int len)
128 {
129 int err, retries = 0;
130 size_t read;
131 loff_t addr;
132
133 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
134
135 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
136 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
137 ubi_assert(len > 0);
138
139 err = self_check_not_bad(ubi, pnum);
140 if (err)
141 return err;
142
143 /*
144 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
145 * do not do this, the following may happen:
146 * 1. The buffer contains data from previous operation, e.g., read from
147 * another PEB previously. The data looks like expected, e.g., if we
148 * just do not read anything and return - the caller would not
149 * notice this. E.g., if we are reading a VID header, the buffer may
150 * contain a valid VID header from another PEB.
151 * 2. The driver is buggy and returns us success or -EBADMSG or
152 * -EUCLEAN, but it does not actually put any data to the buffer.
153 *
154 * This may confuse UBI or upper layers - they may think the buffer
155 * contains valid data while in fact it is just old data. This is
156 * especially possible because UBI (and UBIFS) relies on CRC, and
157 * treats data as correct even in case of ECC errors if the CRC is
158 * correct.
159 *
160 * Try to prevent this situation by changing the first byte of the
161 * buffer.
162 */
163 *((uint8_t *)buf) ^= 0xFF;
164
165 addr = (loff_t)pnum * ubi->peb_size + offset;
166 retry:
167 err = mtd_read(ubi->mtd, addr, len, &read, buf);
168 if (err) {
169 const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
170
171 if (mtd_is_bitflip(err)) {
172 /*
173 * -EUCLEAN is reported if there was a bit-flip which
174 * was corrected, so this is harmless.
175 *
176 * We do not report about it here unless debugging is
177 * enabled. A corresponding message will be printed
178 * later, when it is has been scrubbed.
179 */
180 ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
181 pnum);
182 ubi_assert(len == read);
183 return UBI_IO_BITFLIPS;
184 }
185
186 if (retries++ < UBI_IO_RETRIES) {
187 ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
188 err, errstr, len, pnum, offset, read);
189 yield();
190 goto retry;
191 }
192
193 ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
194 err, errstr, len, pnum, offset, read);
195 dump_stack();
196
197 /*
198 * The driver should never return -EBADMSG if it failed to read
199 * all the requested data. But some buggy drivers might do
200 * this, so we change it to -EIO.
201 */
202 if (read != len && mtd_is_eccerr(err)) {
203 ubi_assert(0);
204 err = -EIO;
205 }
206 } else {
207 ubi_assert(len == read);
208
209 if (ubi_dbg_is_bitflip(ubi)) {
210 dbg_gen("bit-flip (emulated)");
211 err = UBI_IO_BITFLIPS;
212 }
213 }
214
215 return err;
216 }
217
218 /**
219 * ubi_io_write - write data to a physical eraseblock.
220 * @ubi: UBI device description object
221 * @buf: buffer with the data to write
222 * @pnum: physical eraseblock number to write to
223 * @offset: offset within the physical eraseblock where to write
224 * @len: how many bytes to write
225 *
226 * This function writes @len bytes of data from buffer @buf to offset @offset
227 * of physical eraseblock @pnum. If all the data were successfully written,
228 * zero is returned. If an error occurred, this function returns a negative
229 * error code. If %-EIO is returned, the physical eraseblock most probably went
230 * bad.
231 *
232 * Note, in case of an error, it is possible that something was still written
233 * to the flash media, but may be some garbage.
234 */
235 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
236 int len)
237 {
238 int err;
239 size_t written;
240 loff_t addr;
241
242 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
243
244 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
245 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
246 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
247 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
248
249 if (ubi->ro_mode) {
250 ubi_err(ubi, "read-only mode");
251 return -EROFS;
252 }
253
254 err = self_check_not_bad(ubi, pnum);
255 if (err)
256 return err;
257
258 /* The area we are writing to has to contain all 0xFF bytes */
259 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
260 if (err)
261 return err;
262
263 if (offset >= ubi->leb_start) {
264 /*
265 * We write to the data area of the physical eraseblock. Make
266 * sure it has valid EC and VID headers.
267 */
268 err = self_check_peb_ec_hdr(ubi, pnum);
269 if (err)
270 return err;
271 err = self_check_peb_vid_hdr(ubi, pnum);
272 if (err)
273 return err;
274 }
275
276 if (ubi_dbg_is_write_failure(ubi)) {
277 ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
278 len, pnum, offset);
279 dump_stack();
280 return -EIO;
281 }
282
283 addr = (loff_t)pnum * ubi->peb_size + offset;
284 err = mtd_write(ubi->mtd, addr, len, &written, buf);
285 if (err) {
286 ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
287 err, len, pnum, offset, written);
288 dump_stack();
289 ubi_dump_flash(ubi, pnum, offset, len);
290 } else
291 ubi_assert(written == len);
292
293 if (!err) {
294 err = self_check_write(ubi, buf, pnum, offset, len);
295 if (err)
296 return err;
297
298 /*
299 * Since we always write sequentially, the rest of the PEB has
300 * to contain only 0xFF bytes.
301 */
302 offset += len;
303 len = ubi->peb_size - offset;
304 if (len)
305 err = ubi_self_check_all_ff(ubi, pnum, offset, len);
306 }
307
308 return err;
309 }
310
311 /**
312 * erase_callback - MTD erasure call-back.
313 * @ei: MTD erase information object.
314 *
315 * Note, even though MTD erase interface is asynchronous, all the current
316 * implementations are synchronous anyway.
317 */
318 static void erase_callback(struct erase_info *ei)
319 {
320 wake_up_interruptible((wait_queue_head_t *)ei->priv);
321 }
322
323 /**
324 * do_sync_erase - synchronously erase a physical eraseblock.
325 * @ubi: UBI device description object
326 * @pnum: the physical eraseblock number to erase
327 *
328 * This function synchronously erases physical eraseblock @pnum and returns
329 * zero in case of success and a negative error code in case of failure. If
330 * %-EIO is returned, the physical eraseblock most probably went bad.
331 */
332 static int do_sync_erase(struct ubi_device *ubi, int pnum)
333 {
334 int err, retries = 0;
335 struct erase_info ei;
336 wait_queue_head_t wq;
337
338 dbg_io("erase PEB %d", pnum);
339 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
340
341 if (ubi->ro_mode) {
342 ubi_err(ubi, "read-only mode");
343 return -EROFS;
344 }
345
346 retry:
347 init_waitqueue_head(&wq);
348 memset(&ei, 0, sizeof(struct erase_info));
349
350 ei.mtd = ubi->mtd;
351 ei.addr = (loff_t)pnum * ubi->peb_size;
352 ei.len = ubi->peb_size;
353 ei.callback = erase_callback;
354 ei.priv = (unsigned long)&wq;
355
356 err = mtd_erase(ubi->mtd, &ei);
357 if (err) {
358 if (retries++ < UBI_IO_RETRIES) {
359 ubi_warn(ubi, "error %d while erasing PEB %d, retry",
360 err, pnum);
361 yield();
362 goto retry;
363 }
364 ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
365 dump_stack();
366 return err;
367 }
368
369 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
370 ei.state == MTD_ERASE_FAILED);
371 if (err) {
372 ubi_err(ubi, "interrupted PEB %d erasure", pnum);
373 return -EINTR;
374 }
375
376 if (ei.state == MTD_ERASE_FAILED) {
377 if (retries++ < UBI_IO_RETRIES) {
378 ubi_warn(ubi, "error while erasing PEB %d, retry",
379 pnum);
380 yield();
381 goto retry;
382 }
383 ubi_err(ubi, "cannot erase PEB %d", pnum);
384 dump_stack();
385 return -EIO;
386 }
387
388 err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
389 if (err)
390 return err;
391
392 if (ubi_dbg_is_erase_failure(ubi)) {
393 ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
394 return -EIO;
395 }
396
397 return 0;
398 }
399
400 /* Patterns to write to a physical eraseblock when torturing it */
401 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
402
403 /**
404 * torture_peb - test a supposedly bad physical eraseblock.
405 * @ubi: UBI device description object
406 * @pnum: the physical eraseblock number to test
407 *
408 * This function returns %-EIO if the physical eraseblock did not pass the
409 * test, a positive number of erase operations done if the test was
410 * successfully passed, and other negative error codes in case of other errors.
411 */
412 static int torture_peb(struct ubi_device *ubi, int pnum)
413 {
414 int err, i, patt_count;
415
416 ubi_msg(ubi, "run torture test for PEB %d", pnum);
417 patt_count = ARRAY_SIZE(patterns);
418 ubi_assert(patt_count > 0);
419
420 mutex_lock(&ubi->buf_mutex);
421 for (i = 0; i < patt_count; i++) {
422 err = do_sync_erase(ubi, pnum);
423 if (err)
424 goto out;
425
426 /* Make sure the PEB contains only 0xFF bytes */
427 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
428 if (err)
429 goto out;
430
431 err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
432 if (err == 0) {
433 ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
434 pnum);
435 err = -EIO;
436 goto out;
437 }
438
439 /* Write a pattern and check it */
440 memset(ubi->peb_buf, patterns[i], ubi->peb_size);
441 err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
442 if (err)
443 goto out;
444
445 memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
446 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
447 if (err)
448 goto out;
449
450 err = ubi_check_pattern(ubi->peb_buf, patterns[i],
451 ubi->peb_size);
452 if (err == 0) {
453 ubi_err(ubi, "pattern %x checking failed for PEB %d",
454 patterns[i], pnum);
455 err = -EIO;
456 goto out;
457 }
458 }
459
460 err = patt_count;
461 ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
462
463 out:
464 mutex_unlock(&ubi->buf_mutex);
465 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
466 /*
467 * If a bit-flip or data integrity error was detected, the test
468 * has not passed because it happened on a freshly erased
469 * physical eraseblock which means something is wrong with it.
470 */
471 ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
472 pnum);
473 err = -EIO;
474 }
475 return err;
476 }
477
478 /**
479 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
480 * @ubi: UBI device description object
481 * @pnum: physical eraseblock number to prepare
482 *
483 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
484 * algorithm: the PEB is first filled with zeroes, then it is erased. And
485 * filling with zeroes starts from the end of the PEB. This was observed with
486 * Spansion S29GL512N NOR flash.
487 *
488 * This means that in case of a power cut we may end up with intact data at the
489 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
490 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
491 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
492 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
493 *
494 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
495 * magic numbers in order to invalidate them and prevent the failures. Returns
496 * zero in case of success and a negative error code in case of failure.
497 */
498 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
499 {
500 int err;
501 size_t written;
502 loff_t addr;
503 uint32_t data = 0;
504 struct ubi_ec_hdr ec_hdr;
505
506 /*
507 * Note, we cannot generally define VID header buffers on stack,
508 * because of the way we deal with these buffers (see the header
509 * comment in this file). But we know this is a NOR-specific piece of
510 * code, so we can do this. But yes, this is error-prone and we should
511 * (pre-)allocate VID header buffer instead.
512 */
513 struct ubi_vid_hdr vid_hdr;
514
515 /*
516 * If VID or EC is valid, we have to corrupt them before erasing.
517 * It is important to first invalidate the EC header, and then the VID
518 * header. Otherwise a power cut may lead to valid EC header and
519 * invalid VID header, in which case UBI will treat this PEB as
520 * corrupted and will try to preserve it, and print scary warnings.
521 */
522 addr = (loff_t)pnum * ubi->peb_size;
523 err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
524 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
525 err != UBI_IO_FF){
526 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
527 if(err)
528 goto error;
529 }
530
531 err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
532 if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
533 err != UBI_IO_FF){
534 addr += ubi->vid_hdr_aloffset;
535 err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
536 if (err)
537 goto error;
538 }
539 return 0;
540
541 error:
542 /*
543 * The PEB contains a valid VID or EC header, but we cannot invalidate
544 * it. Supposedly the flash media or the driver is screwed up, so
545 * return an error.
546 */
547 ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
548 ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
549 return -EIO;
550 }
551
552 /**
553 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
554 * @ubi: UBI device description object
555 * @pnum: physical eraseblock number to erase
556 * @torture: if this physical eraseblock has to be tortured
557 *
558 * This function synchronously erases physical eraseblock @pnum. If @torture
559 * flag is not zero, the physical eraseblock is checked by means of writing
560 * different patterns to it and reading them back. If the torturing is enabled,
561 * the physical eraseblock is erased more than once.
562 *
563 * This function returns the number of erasures made in case of success, %-EIO
564 * if the erasure failed or the torturing test failed, and other negative error
565 * codes in case of other errors. Note, %-EIO means that the physical
566 * eraseblock is bad.
567 */
568 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
569 {
570 int err, ret = 0;
571
572 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
573
574 err = self_check_not_bad(ubi, pnum);
575 if (err != 0)
576 return err;
577
578 if (ubi->ro_mode) {
579 ubi_err(ubi, "read-only mode");
580 return -EROFS;
581 }
582
583 if (ubi->nor_flash) {
584 err = nor_erase_prepare(ubi, pnum);
585 if (err)
586 return err;
587 }
588
589 if (torture) {
590 ret = torture_peb(ubi, pnum);
591 if (ret < 0)
592 return ret;
593 }
594
595 err = do_sync_erase(ubi, pnum);
596 if (err)
597 return err;
598
599 return ret + 1;
600 }
601
602 /**
603 * ubi_io_is_bad - check if a physical eraseblock is bad.
604 * @ubi: UBI device description object
605 * @pnum: the physical eraseblock number to check
606 *
607 * This function returns a positive number if the physical eraseblock is bad,
608 * zero if not, and a negative error code if an error occurred.
609 */
610 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
611 {
612 struct mtd_info *mtd = ubi->mtd;
613
614 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
615
616 if (ubi->bad_allowed) {
617 int ret;
618
619 ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
620 if (ret < 0)
621 ubi_err(ubi, "error %d while checking if PEB %d is bad",
622 ret, pnum);
623 else if (ret)
624 dbg_io("PEB %d is bad", pnum);
625 return ret;
626 }
627
628 return 0;
629 }
630
631 /**
632 * ubi_io_mark_bad - mark a physical eraseblock as bad.
633 * @ubi: UBI device description object
634 * @pnum: the physical eraseblock number to mark
635 *
636 * This function returns zero in case of success and a negative error code in
637 * case of failure.
638 */
639 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
640 {
641 int err;
642 struct mtd_info *mtd = ubi->mtd;
643
644 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
645
646 if (ubi->ro_mode) {
647 ubi_err(ubi, "read-only mode");
648 return -EROFS;
649 }
650
651 if (!ubi->bad_allowed)
652 return 0;
653
654 err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
655 if (err)
656 ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
657 return err;
658 }
659
660 /**
661 * validate_ec_hdr - validate an erase counter header.
662 * @ubi: UBI device description object
663 * @ec_hdr: the erase counter header to check
664 *
665 * This function returns zero if the erase counter header is OK, and %1 if
666 * not.
667 */
668 static int validate_ec_hdr(const struct ubi_device *ubi,
669 const struct ubi_ec_hdr *ec_hdr)
670 {
671 long long ec;
672 int vid_hdr_offset, leb_start;
673
674 ec = be64_to_cpu(ec_hdr->ec);
675 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
676 leb_start = be32_to_cpu(ec_hdr->data_offset);
677
678 if (ec_hdr->version != UBI_VERSION) {
679 ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
680 UBI_VERSION, (int)ec_hdr->version);
681 goto bad;
682 }
683
684 if (vid_hdr_offset != ubi->vid_hdr_offset) {
685 ubi_err(ubi, "bad VID header offset %d, expected %d",
686 vid_hdr_offset, ubi->vid_hdr_offset);
687 goto bad;
688 }
689
690 if (leb_start != ubi->leb_start) {
691 ubi_err(ubi, "bad data offset %d, expected %d",
692 leb_start, ubi->leb_start);
693 goto bad;
694 }
695
696 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
697 ubi_err(ubi, "bad erase counter %lld", ec);
698 goto bad;
699 }
700
701 return 0;
702
703 bad:
704 ubi_err(ubi, "bad EC header");
705 ubi_dump_ec_hdr(ec_hdr);
706 dump_stack();
707 return 1;
708 }
709
710 /**
711 * ubi_io_read_ec_hdr - read and check an erase counter header.
712 * @ubi: UBI device description object
713 * @pnum: physical eraseblock to read from
714 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
715 * header
716 * @verbose: be verbose if the header is corrupted or was not found
717 *
718 * This function reads erase counter header from physical eraseblock @pnum and
719 * stores it in @ec_hdr. This function also checks CRC checksum of the read
720 * erase counter header. The following codes may be returned:
721 *
722 * o %0 if the CRC checksum is correct and the header was successfully read;
723 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
724 * and corrected by the flash driver; this is harmless but may indicate that
725 * this eraseblock may become bad soon (but may be not);
726 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
727 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
728 * a data integrity error (uncorrectable ECC error in case of NAND);
729 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
730 * o a negative error code in case of failure.
731 */
732 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
733 struct ubi_ec_hdr *ec_hdr, int verbose)
734 {
735 int err, read_err;
736 uint32_t crc, magic, hdr_crc;
737
738 dbg_io("read EC header from PEB %d", pnum);
739 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
740
741 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
742 if (read_err) {
743 if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
744 return read_err;
745
746 /*
747 * We read all the data, but either a correctable bit-flip
748 * occurred, or MTD reported a data integrity error
749 * (uncorrectable ECC error in case of NAND). The former is
750 * harmless, the later may mean that the read data is
751 * corrupted. But we have a CRC check-sum and we will detect
752 * this. If the EC header is still OK, we just report this as
753 * there was a bit-flip, to force scrubbing.
754 */
755 }
756
757 magic = be32_to_cpu(ec_hdr->magic);
758 if (magic != UBI_EC_HDR_MAGIC) {
759 if (mtd_is_eccerr(read_err))
760 return UBI_IO_BAD_HDR_EBADMSG;
761
762 /*
763 * The magic field is wrong. Let's check if we have read all
764 * 0xFF. If yes, this physical eraseblock is assumed to be
765 * empty.
766 */
767 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
768 /* The physical eraseblock is supposedly empty */
769 if (verbose)
770 ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
771 pnum);
772 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
773 pnum);
774 if (!read_err)
775 return UBI_IO_FF;
776 else
777 return UBI_IO_FF_BITFLIPS;
778 }
779
780 /*
781 * This is not a valid erase counter header, and these are not
782 * 0xFF bytes. Report that the header is corrupted.
783 */
784 if (verbose) {
785 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
786 pnum, magic, UBI_EC_HDR_MAGIC);
787 ubi_dump_ec_hdr(ec_hdr);
788 }
789 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
790 pnum, magic, UBI_EC_HDR_MAGIC);
791 return UBI_IO_BAD_HDR;
792 }
793
794 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
795 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
796
797 if (hdr_crc != crc) {
798 if (verbose) {
799 ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
800 pnum, crc, hdr_crc);
801 ubi_dump_ec_hdr(ec_hdr);
802 }
803 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
804 pnum, crc, hdr_crc);
805
806 if (!read_err)
807 return UBI_IO_BAD_HDR;
808 else
809 return UBI_IO_BAD_HDR_EBADMSG;
810 }
811
812 /* And of course validate what has just been read from the media */
813 err = validate_ec_hdr(ubi, ec_hdr);
814 if (err) {
815 ubi_err(ubi, "validation failed for PEB %d", pnum);
816 return -EINVAL;
817 }
818
819 /*
820 * If there was %-EBADMSG, but the header CRC is still OK, report about
821 * a bit-flip to force scrubbing on this PEB.
822 */
823 return read_err ? UBI_IO_BITFLIPS : 0;
824 }
825
826 /**
827 * ubi_io_write_ec_hdr - write an erase counter header.
828 * @ubi: UBI device description object
829 * @pnum: physical eraseblock to write to
830 * @ec_hdr: the erase counter header to write
831 *
832 * This function writes erase counter header described by @ec_hdr to physical
833 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
834 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
835 * field.
836 *
837 * This function returns zero in case of success and a negative error code in
838 * case of failure. If %-EIO is returned, the physical eraseblock most probably
839 * went bad.
840 */
841 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
842 struct ubi_ec_hdr *ec_hdr)
843 {
844 int err;
845 uint32_t crc;
846
847 dbg_io("write EC header to PEB %d", pnum);
848 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
849
850 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
851 ec_hdr->version = UBI_VERSION;
852 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
853 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
854 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
855 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
856 ec_hdr->hdr_crc = cpu_to_be32(crc);
857
858 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
859 if (err)
860 return err;
861
862 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
863 return err;
864 }
865
866 /**
867 * validate_vid_hdr - validate a volume identifier header.
868 * @ubi: UBI device description object
869 * @vid_hdr: the volume identifier header to check
870 *
871 * This function checks that data stored in the volume identifier header
872 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
873 */
874 static int validate_vid_hdr(const struct ubi_device *ubi,
875 const struct ubi_vid_hdr *vid_hdr)
876 {
877 int vol_type = vid_hdr->vol_type;
878 int copy_flag = vid_hdr->copy_flag;
879 int vol_id = be32_to_cpu(vid_hdr->vol_id);
880 int lnum = be32_to_cpu(vid_hdr->lnum);
881 int compat = vid_hdr->compat;
882 int data_size = be32_to_cpu(vid_hdr->data_size);
883 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
884 int data_pad = be32_to_cpu(vid_hdr->data_pad);
885 int data_crc = be32_to_cpu(vid_hdr->data_crc);
886 int usable_leb_size = ubi->leb_size - data_pad;
887
888 if (copy_flag != 0 && copy_flag != 1) {
889 ubi_err(ubi, "bad copy_flag");
890 goto bad;
891 }
892
893 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
894 data_pad < 0) {
895 ubi_err(ubi, "negative values");
896 goto bad;
897 }
898
899 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
900 ubi_err(ubi, "bad vol_id");
901 goto bad;
902 }
903
904 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
905 ubi_err(ubi, "bad compat");
906 goto bad;
907 }
908
909 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
910 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
911 compat != UBI_COMPAT_REJECT) {
912 ubi_err(ubi, "bad compat");
913 goto bad;
914 }
915
916 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
917 ubi_err(ubi, "bad vol_type");
918 goto bad;
919 }
920
921 if (data_pad >= ubi->leb_size / 2) {
922 ubi_err(ubi, "bad data_pad");
923 goto bad;
924 }
925
926 if (vol_type == UBI_VID_STATIC) {
927 /*
928 * Although from high-level point of view static volumes may
929 * contain zero bytes of data, but no VID headers can contain
930 * zero at these fields, because they empty volumes do not have
931 * mapped logical eraseblocks.
932 */
933 if (used_ebs == 0) {
934 ubi_err(ubi, "zero used_ebs");
935 goto bad;
936 }
937 if (data_size == 0) {
938 ubi_err(ubi, "zero data_size");
939 goto bad;
940 }
941 if (lnum < used_ebs - 1) {
942 if (data_size != usable_leb_size) {
943 ubi_err(ubi, "bad data_size");
944 goto bad;
945 }
946 } else if (lnum == used_ebs - 1) {
947 if (data_size == 0) {
948 ubi_err(ubi, "bad data_size at last LEB");
949 goto bad;
950 }
951 } else {
952 ubi_err(ubi, "too high lnum");
953 goto bad;
954 }
955 } else {
956 if (copy_flag == 0) {
957 if (data_crc != 0) {
958 ubi_err(ubi, "non-zero data CRC");
959 goto bad;
960 }
961 if (data_size != 0) {
962 ubi_err(ubi, "non-zero data_size");
963 goto bad;
964 }
965 } else {
966 if (data_size == 0) {
967 ubi_err(ubi, "zero data_size of copy");
968 goto bad;
969 }
970 }
971 if (used_ebs != 0) {
972 ubi_err(ubi, "bad used_ebs");
973 goto bad;
974 }
975 }
976
977 return 0;
978
979 bad:
980 ubi_err(ubi, "bad VID header");
981 ubi_dump_vid_hdr(vid_hdr);
982 dump_stack();
983 return 1;
984 }
985
986 /**
987 * ubi_io_read_vid_hdr - read and check a volume identifier header.
988 * @ubi: UBI device description object
989 * @pnum: physical eraseblock number to read from
990 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
991 * identifier header
992 * @verbose: be verbose if the header is corrupted or wasn't found
993 *
994 * This function reads the volume identifier header from physical eraseblock
995 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
996 * volume identifier header. The error codes are the same as in
997 * 'ubi_io_read_ec_hdr()'.
998 *
999 * Note, the implementation of this function is also very similar to
1000 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1001 */
1002 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
1003 struct ubi_vid_hdr *vid_hdr, int verbose)
1004 {
1005 int err, read_err;
1006 uint32_t crc, magic, hdr_crc;
1007 void *p;
1008
1009 dbg_io("read VID header from PEB %d", pnum);
1010 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1011
1012 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1013 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1014 ubi->vid_hdr_alsize);
1015 if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
1016 return read_err;
1017
1018 magic = be32_to_cpu(vid_hdr->magic);
1019 if (magic != UBI_VID_HDR_MAGIC) {
1020 if (mtd_is_eccerr(read_err))
1021 return UBI_IO_BAD_HDR_EBADMSG;
1022
1023 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1024 if (verbose)
1025 ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1026 pnum);
1027 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1028 pnum);
1029 if (!read_err)
1030 return UBI_IO_FF;
1031 else
1032 return UBI_IO_FF_BITFLIPS;
1033 }
1034
1035 if (verbose) {
1036 ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1037 pnum, magic, UBI_VID_HDR_MAGIC);
1038 ubi_dump_vid_hdr(vid_hdr);
1039 }
1040 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1041 pnum, magic, UBI_VID_HDR_MAGIC);
1042 return UBI_IO_BAD_HDR;
1043 }
1044
1045 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1046 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1047
1048 if (hdr_crc != crc) {
1049 if (verbose) {
1050 ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1051 pnum, crc, hdr_crc);
1052 ubi_dump_vid_hdr(vid_hdr);
1053 }
1054 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1055 pnum, crc, hdr_crc);
1056 if (!read_err)
1057 return UBI_IO_BAD_HDR;
1058 else
1059 return UBI_IO_BAD_HDR_EBADMSG;
1060 }
1061
1062 err = validate_vid_hdr(ubi, vid_hdr);
1063 if (err) {
1064 ubi_err(ubi, "validation failed for PEB %d", pnum);
1065 return -EINVAL;
1066 }
1067
1068 return read_err ? UBI_IO_BITFLIPS : 0;
1069 }
1070
1071 /**
1072 * ubi_io_write_vid_hdr - write a volume identifier header.
1073 * @ubi: UBI device description object
1074 * @pnum: the physical eraseblock number to write to
1075 * @vid_hdr: the volume identifier header to write
1076 *
1077 * This function writes the volume identifier header described by @vid_hdr to
1078 * physical eraseblock @pnum. This function automatically fills the
1079 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1080 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1081 *
1082 * This function returns zero in case of success and a negative error code in
1083 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1084 * bad.
1085 */
1086 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1087 struct ubi_vid_hdr *vid_hdr)
1088 {
1089 int err;
1090 uint32_t crc;
1091 void *p;
1092
1093 dbg_io("write VID header to PEB %d", pnum);
1094 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1095
1096 err = self_check_peb_ec_hdr(ubi, pnum);
1097 if (err)
1098 return err;
1099
1100 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1101 vid_hdr->version = UBI_VERSION;
1102 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1103 vid_hdr->hdr_crc = cpu_to_be32(crc);
1104
1105 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1106 if (err)
1107 return err;
1108
1109 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1110 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1111 ubi->vid_hdr_alsize);
1112 return err;
1113 }
1114
1115 /**
1116 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1117 * @ubi: UBI device description object
1118 * @pnum: physical eraseblock number to check
1119 *
1120 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1121 * it is bad and a negative error code if an error occurred.
1122 */
1123 static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1124 {
1125 int err;
1126
1127 if (!ubi_dbg_chk_io(ubi))
1128 return 0;
1129
1130 err = ubi_io_is_bad(ubi, pnum);
1131 if (!err)
1132 return err;
1133
1134 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1135 dump_stack();
1136 return err > 0 ? -EINVAL : err;
1137 }
1138
1139 /**
1140 * self_check_ec_hdr - check if an erase counter header is all right.
1141 * @ubi: UBI device description object
1142 * @pnum: physical eraseblock number the erase counter header belongs to
1143 * @ec_hdr: the erase counter header to check
1144 *
1145 * This function returns zero if the erase counter header contains valid
1146 * values, and %-EINVAL if not.
1147 */
1148 static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1149 const struct ubi_ec_hdr *ec_hdr)
1150 {
1151 int err;
1152 uint32_t magic;
1153
1154 if (!ubi_dbg_chk_io(ubi))
1155 return 0;
1156
1157 magic = be32_to_cpu(ec_hdr->magic);
1158 if (magic != UBI_EC_HDR_MAGIC) {
1159 ubi_err(ubi, "bad magic %#08x, must be %#08x",
1160 magic, UBI_EC_HDR_MAGIC);
1161 goto fail;
1162 }
1163
1164 err = validate_ec_hdr(ubi, ec_hdr);
1165 if (err) {
1166 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1167 goto fail;
1168 }
1169
1170 return 0;
1171
1172 fail:
1173 ubi_dump_ec_hdr(ec_hdr);
1174 dump_stack();
1175 return -EINVAL;
1176 }
1177
1178 /**
1179 * self_check_peb_ec_hdr - check erase counter header.
1180 * @ubi: UBI device description object
1181 * @pnum: the physical eraseblock number to check
1182 *
1183 * This function returns zero if the erase counter header is all right and and
1184 * a negative error code if not or if an error occurred.
1185 */
1186 static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1187 {
1188 int err;
1189 uint32_t crc, hdr_crc;
1190 struct ubi_ec_hdr *ec_hdr;
1191
1192 if (!ubi_dbg_chk_io(ubi))
1193 return 0;
1194
1195 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1196 if (!ec_hdr)
1197 return -ENOMEM;
1198
1199 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1200 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1201 goto exit;
1202
1203 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1204 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1205 if (hdr_crc != crc) {
1206 ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1207 crc, hdr_crc);
1208 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1209 ubi_dump_ec_hdr(ec_hdr);
1210 dump_stack();
1211 err = -EINVAL;
1212 goto exit;
1213 }
1214
1215 err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1216
1217 exit:
1218 kfree(ec_hdr);
1219 return err;
1220 }
1221
1222 /**
1223 * self_check_vid_hdr - check that a volume identifier header is all right.
1224 * @ubi: UBI device description object
1225 * @pnum: physical eraseblock number the volume identifier header belongs to
1226 * @vid_hdr: the volume identifier header to check
1227 *
1228 * This function returns zero if the volume identifier header is all right, and
1229 * %-EINVAL if not.
1230 */
1231 static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1232 const struct ubi_vid_hdr *vid_hdr)
1233 {
1234 int err;
1235 uint32_t magic;
1236
1237 if (!ubi_dbg_chk_io(ubi))
1238 return 0;
1239
1240 magic = be32_to_cpu(vid_hdr->magic);
1241 if (magic != UBI_VID_HDR_MAGIC) {
1242 ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1243 magic, pnum, UBI_VID_HDR_MAGIC);
1244 goto fail;
1245 }
1246
1247 err = validate_vid_hdr(ubi, vid_hdr);
1248 if (err) {
1249 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1250 goto fail;
1251 }
1252
1253 return err;
1254
1255 fail:
1256 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1257 ubi_dump_vid_hdr(vid_hdr);
1258 dump_stack();
1259 return -EINVAL;
1260
1261 }
1262
1263 /**
1264 * self_check_peb_vid_hdr - check volume identifier header.
1265 * @ubi: UBI device description object
1266 * @pnum: the physical eraseblock number to check
1267 *
1268 * This function returns zero if the volume identifier header is all right,
1269 * and a negative error code if not or if an error occurred.
1270 */
1271 static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1272 {
1273 int err;
1274 uint32_t crc, hdr_crc;
1275 struct ubi_vid_hdr *vid_hdr;
1276 void *p;
1277
1278 if (!ubi_dbg_chk_io(ubi))
1279 return 0;
1280
1281 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1282 if (!vid_hdr)
1283 return -ENOMEM;
1284
1285 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1286 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1287 ubi->vid_hdr_alsize);
1288 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1289 goto exit;
1290
1291 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1292 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1293 if (hdr_crc != crc) {
1294 ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1295 pnum, crc, hdr_crc);
1296 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1297 ubi_dump_vid_hdr(vid_hdr);
1298 dump_stack();
1299 err = -EINVAL;
1300 goto exit;
1301 }
1302
1303 err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1304
1305 exit:
1306 ubi_free_vid_hdr(ubi, vid_hdr);
1307 return err;
1308 }
1309
1310 /**
1311 * self_check_write - make sure write succeeded.
1312 * @ubi: UBI device description object
1313 * @buf: buffer with data which were written
1314 * @pnum: physical eraseblock number the data were written to
1315 * @offset: offset within the physical eraseblock the data were written to
1316 * @len: how many bytes were written
1317 *
1318 * This functions reads data which were recently written and compares it with
1319 * the original data buffer - the data have to match. Returns zero if the data
1320 * match and a negative error code if not or in case of failure.
1321 */
1322 static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1323 int offset, int len)
1324 {
1325 int err, i;
1326 size_t read;
1327 void *buf1;
1328 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1329
1330 if (!ubi_dbg_chk_io(ubi))
1331 return 0;
1332
1333 buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1334 if (!buf1) {
1335 ubi_err(ubi, "cannot allocate memory to check writes");
1336 return 0;
1337 }
1338
1339 err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1340 if (err && !mtd_is_bitflip(err))
1341 goto out_free;
1342
1343 for (i = 0; i < len; i++) {
1344 uint8_t c = ((uint8_t *)buf)[i];
1345 uint8_t c1 = ((uint8_t *)buf1)[i];
1346 int dump_len;
1347
1348 if (c == c1)
1349 continue;
1350
1351 ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1352 pnum, offset, len);
1353 ubi_msg(ubi, "data differ at position %d", i);
1354 dump_len = max_t(int, 128, len - i);
1355 ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1356 i, i + dump_len);
1357 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1358 buf + i, dump_len, 1);
1359 ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1360 i, i + dump_len);
1361 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1362 buf1 + i, dump_len, 1);
1363 dump_stack();
1364 err = -EINVAL;
1365 goto out_free;
1366 }
1367
1368 vfree(buf1);
1369 return 0;
1370
1371 out_free:
1372 vfree(buf1);
1373 return err;
1374 }
1375
1376 /**
1377 * ubi_self_check_all_ff - check that a region of flash is empty.
1378 * @ubi: UBI device description object
1379 * @pnum: the physical eraseblock number to check
1380 * @offset: the starting offset within the physical eraseblock to check
1381 * @len: the length of the region to check
1382 *
1383 * This function returns zero if only 0xFF bytes are present at offset
1384 * @offset of the physical eraseblock @pnum, and a negative error code if not
1385 * or if an error occurred.
1386 */
1387 int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1388 {
1389 size_t read;
1390 int err;
1391 void *buf;
1392 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1393
1394 if (!ubi_dbg_chk_io(ubi))
1395 return 0;
1396
1397 buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1398 if (!buf) {
1399 ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1400 return 0;
1401 }
1402
1403 err = mtd_read(ubi->mtd, addr, len, &read, buf);
1404 if (err && !mtd_is_bitflip(err)) {
1405 ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1406 err, len, pnum, offset, read);
1407 goto error;
1408 }
1409
1410 err = ubi_check_pattern(buf, 0xFF, len);
1411 if (err == 0) {
1412 ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1413 pnum, offset, len);
1414 goto fail;
1415 }
1416
1417 vfree(buf);
1418 return 0;
1419
1420 fail:
1421 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1422 ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1423 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1424 err = -EINVAL;
1425 error:
1426 dump_stack();
1427 vfree(buf);
1428 return err;
1429 }
This page took 0.077951 seconds and 4 git commands to generate.