Merge branch '2.6.36-fixes' of git://github.com/schandinat/linux-2.6
[deliverable/linux.git] / drivers / mtd / ubi / io.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * UBI input/output sub-system.
24 *
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
87 */
88
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93
94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109
110 /**
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
117 *
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
120 * possible:
121 *
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
131 */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 int len)
134 {
135 int err, retries = 0;
136 size_t read;
137 loff_t addr;
138
139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140
141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 ubi_assert(len > 0);
144
145 err = paranoid_check_not_bad(ubi, pnum);
146 if (err)
147 return err;
148
149 addr = (loff_t)pnum * ubi->peb_size + offset;
150 retry:
151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 if (err) {
153 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
154
155 if (err == -EUCLEAN) {
156 /*
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
159 *
160 * We do not report about it here unless debugging is
161 * enabled. A corresponding message will be printed
162 * later, when it is has been scrubbed.
163 */
164 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
165 ubi_assert(len == read);
166 return UBI_IO_BITFLIPS;
167 }
168
169 if (read != len && retries++ < UBI_IO_RETRIES) {
170 dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
171 " read only %zd bytes, retry",
172 err, errstr, len, pnum, offset, read);
173 yield();
174 goto retry;
175 }
176
177 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
178 "read %zd bytes", err, errstr, len, pnum, offset, read);
179 ubi_dbg_dump_stack();
180
181 /*
182 * The driver should never return -EBADMSG if it failed to read
183 * all the requested data. But some buggy drivers might do
184 * this, so we change it to -EIO.
185 */
186 if (read != len && err == -EBADMSG) {
187 ubi_assert(0);
188 err = -EIO;
189 }
190 } else {
191 ubi_assert(len == read);
192
193 if (ubi_dbg_is_bitflip()) {
194 dbg_gen("bit-flip (emulated)");
195 err = UBI_IO_BITFLIPS;
196 }
197 }
198
199 return err;
200 }
201
202 /**
203 * ubi_io_write - write data to a physical eraseblock.
204 * @ubi: UBI device description object
205 * @buf: buffer with the data to write
206 * @pnum: physical eraseblock number to write to
207 * @offset: offset within the physical eraseblock where to write
208 * @len: how many bytes to write
209 *
210 * This function writes @len bytes of data from buffer @buf to offset @offset
211 * of physical eraseblock @pnum. If all the data were successfully written,
212 * zero is returned. If an error occurred, this function returns a negative
213 * error code. If %-EIO is returned, the physical eraseblock most probably went
214 * bad.
215 *
216 * Note, in case of an error, it is possible that something was still written
217 * to the flash media, but may be some garbage.
218 */
219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 int len)
221 {
222 int err;
223 size_t written;
224 loff_t addr;
225
226 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227
228 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232
233 if (ubi->ro_mode) {
234 ubi_err("read-only mode");
235 return -EROFS;
236 }
237
238 /* The below has to be compiled out if paranoid checks are disabled */
239
240 err = paranoid_check_not_bad(ubi, pnum);
241 if (err)
242 return err;
243
244 /* The area we are writing to has to contain all 0xFF bytes */
245 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
246 if (err)
247 return err;
248
249 if (offset >= ubi->leb_start) {
250 /*
251 * We write to the data area of the physical eraseblock. Make
252 * sure it has valid EC and VID headers.
253 */
254 err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 if (err)
256 return err;
257 err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 if (err)
259 return err;
260 }
261
262 if (ubi_dbg_is_write_failure()) {
263 dbg_err("cannot write %d bytes to PEB %d:%d "
264 "(emulated)", len, pnum, offset);
265 ubi_dbg_dump_stack();
266 return -EIO;
267 }
268
269 addr = (loff_t)pnum * ubi->peb_size + offset;
270 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 if (err) {
272 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
273 "%zd bytes", err, len, pnum, offset, written);
274 ubi_dbg_dump_stack();
275 ubi_dbg_dump_flash(ubi, pnum, offset, len);
276 } else
277 ubi_assert(written == len);
278
279 if (!err) {
280 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
281 if (err)
282 return err;
283
284 /*
285 * Since we always write sequentially, the rest of the PEB has
286 * to contain only 0xFF bytes.
287 */
288 offset += len;
289 len = ubi->peb_size - offset;
290 if (len)
291 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
292 }
293
294 return err;
295 }
296
297 /**
298 * erase_callback - MTD erasure call-back.
299 * @ei: MTD erase information object.
300 *
301 * Note, even though MTD erase interface is asynchronous, all the current
302 * implementations are synchronous anyway.
303 */
304 static void erase_callback(struct erase_info *ei)
305 {
306 wake_up_interruptible((wait_queue_head_t *)ei->priv);
307 }
308
309 /**
310 * do_sync_erase - synchronously erase a physical eraseblock.
311 * @ubi: UBI device description object
312 * @pnum: the physical eraseblock number to erase
313 *
314 * This function synchronously erases physical eraseblock @pnum and returns
315 * zero in case of success and a negative error code in case of failure. If
316 * %-EIO is returned, the physical eraseblock most probably went bad.
317 */
318 static int do_sync_erase(struct ubi_device *ubi, int pnum)
319 {
320 int err, retries = 0;
321 struct erase_info ei;
322 wait_queue_head_t wq;
323
324 dbg_io("erase PEB %d", pnum);
325
326 retry:
327 init_waitqueue_head(&wq);
328 memset(&ei, 0, sizeof(struct erase_info));
329
330 ei.mtd = ubi->mtd;
331 ei.addr = (loff_t)pnum * ubi->peb_size;
332 ei.len = ubi->peb_size;
333 ei.callback = erase_callback;
334 ei.priv = (unsigned long)&wq;
335
336 err = ubi->mtd->erase(ubi->mtd, &ei);
337 if (err) {
338 if (retries++ < UBI_IO_RETRIES) {
339 dbg_io("error %d while erasing PEB %d, retry",
340 err, pnum);
341 yield();
342 goto retry;
343 }
344 ubi_err("cannot erase PEB %d, error %d", pnum, err);
345 ubi_dbg_dump_stack();
346 return err;
347 }
348
349 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
350 ei.state == MTD_ERASE_FAILED);
351 if (err) {
352 ubi_err("interrupted PEB %d erasure", pnum);
353 return -EINTR;
354 }
355
356 if (ei.state == MTD_ERASE_FAILED) {
357 if (retries++ < UBI_IO_RETRIES) {
358 dbg_io("error while erasing PEB %d, retry", pnum);
359 yield();
360 goto retry;
361 }
362 ubi_err("cannot erase PEB %d", pnum);
363 ubi_dbg_dump_stack();
364 return -EIO;
365 }
366
367 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
368 if (err)
369 return err;
370
371 if (ubi_dbg_is_erase_failure() && !err) {
372 dbg_err("cannot erase PEB %d (emulated)", pnum);
373 return -EIO;
374 }
375
376 return 0;
377 }
378
379 /**
380 * check_pattern - check if buffer contains only a certain byte pattern.
381 * @buf: buffer to check
382 * @patt: the pattern to check
383 * @size: buffer size in bytes
384 *
385 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
386 * something else was also found.
387 */
388 static int check_pattern(const void *buf, uint8_t patt, int size)
389 {
390 int i;
391
392 for (i = 0; i < size; i++)
393 if (((const uint8_t *)buf)[i] != patt)
394 return 0;
395 return 1;
396 }
397
398 /* Patterns to write to a physical eraseblock when torturing it */
399 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
400
401 /**
402 * torture_peb - test a supposedly bad physical eraseblock.
403 * @ubi: UBI device description object
404 * @pnum: the physical eraseblock number to test
405 *
406 * This function returns %-EIO if the physical eraseblock did not pass the
407 * test, a positive number of erase operations done if the test was
408 * successfully passed, and other negative error codes in case of other errors.
409 */
410 static int torture_peb(struct ubi_device *ubi, int pnum)
411 {
412 int err, i, patt_count;
413
414 ubi_msg("run torture test for PEB %d", pnum);
415 patt_count = ARRAY_SIZE(patterns);
416 ubi_assert(patt_count > 0);
417
418 mutex_lock(&ubi->buf_mutex);
419 for (i = 0; i < patt_count; i++) {
420 err = do_sync_erase(ubi, pnum);
421 if (err)
422 goto out;
423
424 /* Make sure the PEB contains only 0xFF bytes */
425 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
426 if (err)
427 goto out;
428
429 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
430 if (err == 0) {
431 ubi_err("erased PEB %d, but a non-0xFF byte found",
432 pnum);
433 err = -EIO;
434 goto out;
435 }
436
437 /* Write a pattern and check it */
438 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
439 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
440 if (err)
441 goto out;
442
443 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
444 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
445 if (err)
446 goto out;
447
448 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
449 if (err == 0) {
450 ubi_err("pattern %x checking failed for PEB %d",
451 patterns[i], pnum);
452 err = -EIO;
453 goto out;
454 }
455 }
456
457 err = patt_count;
458 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
459
460 out:
461 mutex_unlock(&ubi->buf_mutex);
462 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
463 /*
464 * If a bit-flip or data integrity error was detected, the test
465 * has not passed because it happened on a freshly erased
466 * physical eraseblock which means something is wrong with it.
467 */
468 ubi_err("read problems on freshly erased PEB %d, must be bad",
469 pnum);
470 err = -EIO;
471 }
472 return err;
473 }
474
475 /**
476 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
477 * @ubi: UBI device description object
478 * @pnum: physical eraseblock number to prepare
479 *
480 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
481 * algorithm: the PEB is first filled with zeroes, then it is erased. And
482 * filling with zeroes starts from the end of the PEB. This was observed with
483 * Spansion S29GL512N NOR flash.
484 *
485 * This means that in case of a power cut we may end up with intact data at the
486 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
487 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
488 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
489 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
490 *
491 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
492 * magic numbers in order to invalidate them and prevent the failures. Returns
493 * zero in case of success and a negative error code in case of failure.
494 */
495 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
496 {
497 int err, err1;
498 size_t written;
499 loff_t addr;
500 uint32_t data = 0;
501 struct ubi_vid_hdr vid_hdr;
502
503 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
504 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
505 if (!err) {
506 addr -= ubi->vid_hdr_aloffset;
507 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
508 (void *)&data);
509 if (!err)
510 return 0;
511 }
512
513 /*
514 * We failed to write to the media. This was observed with Spansion
515 * S29GL512N NOR flash. Most probably the eraseblock erasure was
516 * interrupted at a very inappropriate moment, so it became unwritable.
517 * In this case we probably anyway have garbage in this PEB.
518 */
519 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
520 if (err1 == UBI_IO_BAD_HDR_READ || err1 == UBI_IO_BAD_HDR)
521 /*
522 * The VID header is corrupted, so we can safely erase this
523 * PEB and not afraid that it will be treated as a valid PEB in
524 * case of an unclean reboot.
525 */
526 return 0;
527
528 /*
529 * The PEB contains a valid VID header, but we cannot invalidate it.
530 * Supposedly the flash media or the driver is screwed up, so return an
531 * error.
532 */
533 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
534 pnum, err, err1);
535 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
536 return -EIO;
537 }
538
539 /**
540 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
541 * @ubi: UBI device description object
542 * @pnum: physical eraseblock number to erase
543 * @torture: if this physical eraseblock has to be tortured
544 *
545 * This function synchronously erases physical eraseblock @pnum. If @torture
546 * flag is not zero, the physical eraseblock is checked by means of writing
547 * different patterns to it and reading them back. If the torturing is enabled,
548 * the physical eraseblock is erased more than once.
549 *
550 * This function returns the number of erasures made in case of success, %-EIO
551 * if the erasure failed or the torturing test failed, and other negative error
552 * codes in case of other errors. Note, %-EIO means that the physical
553 * eraseblock is bad.
554 */
555 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
556 {
557 int err, ret = 0;
558
559 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
560
561 err = paranoid_check_not_bad(ubi, pnum);
562 if (err != 0)
563 return err;
564
565 if (ubi->ro_mode) {
566 ubi_err("read-only mode");
567 return -EROFS;
568 }
569
570 if (ubi->nor_flash) {
571 err = nor_erase_prepare(ubi, pnum);
572 if (err)
573 return err;
574 }
575
576 if (torture) {
577 ret = torture_peb(ubi, pnum);
578 if (ret < 0)
579 return ret;
580 }
581
582 err = do_sync_erase(ubi, pnum);
583 if (err)
584 return err;
585
586 return ret + 1;
587 }
588
589 /**
590 * ubi_io_is_bad - check if a physical eraseblock is bad.
591 * @ubi: UBI device description object
592 * @pnum: the physical eraseblock number to check
593 *
594 * This function returns a positive number if the physical eraseblock is bad,
595 * zero if not, and a negative error code if an error occurred.
596 */
597 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
598 {
599 struct mtd_info *mtd = ubi->mtd;
600
601 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
602
603 if (ubi->bad_allowed) {
604 int ret;
605
606 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
607 if (ret < 0)
608 ubi_err("error %d while checking if PEB %d is bad",
609 ret, pnum);
610 else if (ret)
611 dbg_io("PEB %d is bad", pnum);
612 return ret;
613 }
614
615 return 0;
616 }
617
618 /**
619 * ubi_io_mark_bad - mark a physical eraseblock as bad.
620 * @ubi: UBI device description object
621 * @pnum: the physical eraseblock number to mark
622 *
623 * This function returns zero in case of success and a negative error code in
624 * case of failure.
625 */
626 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
627 {
628 int err;
629 struct mtd_info *mtd = ubi->mtd;
630
631 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
632
633 if (ubi->ro_mode) {
634 ubi_err("read-only mode");
635 return -EROFS;
636 }
637
638 if (!ubi->bad_allowed)
639 return 0;
640
641 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
642 if (err)
643 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
644 return err;
645 }
646
647 /**
648 * validate_ec_hdr - validate an erase counter header.
649 * @ubi: UBI device description object
650 * @ec_hdr: the erase counter header to check
651 *
652 * This function returns zero if the erase counter header is OK, and %1 if
653 * not.
654 */
655 static int validate_ec_hdr(const struct ubi_device *ubi,
656 const struct ubi_ec_hdr *ec_hdr)
657 {
658 long long ec;
659 int vid_hdr_offset, leb_start;
660
661 ec = be64_to_cpu(ec_hdr->ec);
662 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
663 leb_start = be32_to_cpu(ec_hdr->data_offset);
664
665 if (ec_hdr->version != UBI_VERSION) {
666 ubi_err("node with incompatible UBI version found: "
667 "this UBI version is %d, image version is %d",
668 UBI_VERSION, (int)ec_hdr->version);
669 goto bad;
670 }
671
672 if (vid_hdr_offset != ubi->vid_hdr_offset) {
673 ubi_err("bad VID header offset %d, expected %d",
674 vid_hdr_offset, ubi->vid_hdr_offset);
675 goto bad;
676 }
677
678 if (leb_start != ubi->leb_start) {
679 ubi_err("bad data offset %d, expected %d",
680 leb_start, ubi->leb_start);
681 goto bad;
682 }
683
684 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
685 ubi_err("bad erase counter %lld", ec);
686 goto bad;
687 }
688
689 return 0;
690
691 bad:
692 ubi_err("bad EC header");
693 ubi_dbg_dump_ec_hdr(ec_hdr);
694 ubi_dbg_dump_stack();
695 return 1;
696 }
697
698 /**
699 * ubi_io_read_ec_hdr - read and check an erase counter header.
700 * @ubi: UBI device description object
701 * @pnum: physical eraseblock to read from
702 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
703 * header
704 * @verbose: be verbose if the header is corrupted or was not found
705 *
706 * This function reads erase counter header from physical eraseblock @pnum and
707 * stores it in @ec_hdr. This function also checks CRC checksum of the read
708 * erase counter header. The following codes may be returned:
709 *
710 * o %0 if the CRC checksum is correct and the header was successfully read;
711 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
712 * and corrected by the flash driver; this is harmless but may indicate that
713 * this eraseblock may become bad soon (but may be not);
714 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
715 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
716 * o a negative error code in case of failure.
717 */
718 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
719 struct ubi_ec_hdr *ec_hdr, int verbose)
720 {
721 int err, read_err = 0;
722 uint32_t crc, magic, hdr_crc;
723
724 dbg_io("read EC header from PEB %d", pnum);
725 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
726
727 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
728 if (err) {
729 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
730 return err;
731
732 /*
733 * We read all the data, but either a correctable bit-flip
734 * occurred, or MTD reported about some data integrity error,
735 * like an ECC error in case of NAND. The former is harmless,
736 * the later may mean that the read data is corrupted. But we
737 * have a CRC check-sum and we will detect this. If the EC
738 * header is still OK, we just report this as there was a
739 * bit-flip.
740 */
741 if (err == -EBADMSG)
742 read_err = UBI_IO_BAD_HDR_READ;
743 }
744
745 magic = be32_to_cpu(ec_hdr->magic);
746 if (magic != UBI_EC_HDR_MAGIC) {
747 if (read_err)
748 return read_err;
749
750 /*
751 * The magic field is wrong. Let's check if we have read all
752 * 0xFF. If yes, this physical eraseblock is assumed to be
753 * empty.
754 */
755 if (check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
756 /* The physical eraseblock is supposedly empty */
757 if (verbose)
758 ubi_warn("no EC header found at PEB %d, "
759 "only 0xFF bytes", pnum);
760 else if (UBI_IO_DEBUG)
761 dbg_msg("no EC header found at PEB %d, "
762 "only 0xFF bytes", pnum);
763 return UBI_IO_PEB_EMPTY;
764 }
765
766 /*
767 * This is not a valid erase counter header, and these are not
768 * 0xFF bytes. Report that the header is corrupted.
769 */
770 if (verbose) {
771 ubi_warn("bad magic number at PEB %d: %08x instead of "
772 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
773 ubi_dbg_dump_ec_hdr(ec_hdr);
774 } else if (UBI_IO_DEBUG)
775 dbg_msg("bad magic number at PEB %d: %08x instead of "
776 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
777 return UBI_IO_BAD_HDR;
778 }
779
780 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
781 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
782
783 if (hdr_crc != crc) {
784 if (verbose) {
785 ubi_warn("bad EC header CRC at PEB %d, calculated "
786 "%#08x, read %#08x", pnum, crc, hdr_crc);
787 ubi_dbg_dump_ec_hdr(ec_hdr);
788 } else if (UBI_IO_DEBUG)
789 dbg_msg("bad EC header CRC at PEB %d, calculated "
790 "%#08x, read %#08x", pnum, crc, hdr_crc);
791 return read_err ?: UBI_IO_BAD_HDR;
792 }
793
794 /* And of course validate what has just been read from the media */
795 err = validate_ec_hdr(ubi, ec_hdr);
796 if (err) {
797 ubi_err("validation failed for PEB %d", pnum);
798 return -EINVAL;
799 }
800
801 /*
802 * If there was %-EBADMSG, but the header CRC is still OK, report about
803 * a bit-flip to force scrubbing on this PEB.
804 */
805 return read_err ? UBI_IO_BITFLIPS : 0;
806 }
807
808 /**
809 * ubi_io_write_ec_hdr - write an erase counter header.
810 * @ubi: UBI device description object
811 * @pnum: physical eraseblock to write to
812 * @ec_hdr: the erase counter header to write
813 *
814 * This function writes erase counter header described by @ec_hdr to physical
815 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
816 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
817 * field.
818 *
819 * This function returns zero in case of success and a negative error code in
820 * case of failure. If %-EIO is returned, the physical eraseblock most probably
821 * went bad.
822 */
823 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
824 struct ubi_ec_hdr *ec_hdr)
825 {
826 int err;
827 uint32_t crc;
828
829 dbg_io("write EC header to PEB %d", pnum);
830 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
831
832 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
833 ec_hdr->version = UBI_VERSION;
834 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
835 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
836 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
837 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
838 ec_hdr->hdr_crc = cpu_to_be32(crc);
839
840 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
841 if (err)
842 return err;
843
844 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
845 return err;
846 }
847
848 /**
849 * validate_vid_hdr - validate a volume identifier header.
850 * @ubi: UBI device description object
851 * @vid_hdr: the volume identifier header to check
852 *
853 * This function checks that data stored in the volume identifier header
854 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
855 */
856 static int validate_vid_hdr(const struct ubi_device *ubi,
857 const struct ubi_vid_hdr *vid_hdr)
858 {
859 int vol_type = vid_hdr->vol_type;
860 int copy_flag = vid_hdr->copy_flag;
861 int vol_id = be32_to_cpu(vid_hdr->vol_id);
862 int lnum = be32_to_cpu(vid_hdr->lnum);
863 int compat = vid_hdr->compat;
864 int data_size = be32_to_cpu(vid_hdr->data_size);
865 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
866 int data_pad = be32_to_cpu(vid_hdr->data_pad);
867 int data_crc = be32_to_cpu(vid_hdr->data_crc);
868 int usable_leb_size = ubi->leb_size - data_pad;
869
870 if (copy_flag != 0 && copy_flag != 1) {
871 dbg_err("bad copy_flag");
872 goto bad;
873 }
874
875 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
876 data_pad < 0) {
877 dbg_err("negative values");
878 goto bad;
879 }
880
881 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
882 dbg_err("bad vol_id");
883 goto bad;
884 }
885
886 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
887 dbg_err("bad compat");
888 goto bad;
889 }
890
891 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
892 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
893 compat != UBI_COMPAT_REJECT) {
894 dbg_err("bad compat");
895 goto bad;
896 }
897
898 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
899 dbg_err("bad vol_type");
900 goto bad;
901 }
902
903 if (data_pad >= ubi->leb_size / 2) {
904 dbg_err("bad data_pad");
905 goto bad;
906 }
907
908 if (vol_type == UBI_VID_STATIC) {
909 /*
910 * Although from high-level point of view static volumes may
911 * contain zero bytes of data, but no VID headers can contain
912 * zero at these fields, because they empty volumes do not have
913 * mapped logical eraseblocks.
914 */
915 if (used_ebs == 0) {
916 dbg_err("zero used_ebs");
917 goto bad;
918 }
919 if (data_size == 0) {
920 dbg_err("zero data_size");
921 goto bad;
922 }
923 if (lnum < used_ebs - 1) {
924 if (data_size != usable_leb_size) {
925 dbg_err("bad data_size");
926 goto bad;
927 }
928 } else if (lnum == used_ebs - 1) {
929 if (data_size == 0) {
930 dbg_err("bad data_size at last LEB");
931 goto bad;
932 }
933 } else {
934 dbg_err("too high lnum");
935 goto bad;
936 }
937 } else {
938 if (copy_flag == 0) {
939 if (data_crc != 0) {
940 dbg_err("non-zero data CRC");
941 goto bad;
942 }
943 if (data_size != 0) {
944 dbg_err("non-zero data_size");
945 goto bad;
946 }
947 } else {
948 if (data_size == 0) {
949 dbg_err("zero data_size of copy");
950 goto bad;
951 }
952 }
953 if (used_ebs != 0) {
954 dbg_err("bad used_ebs");
955 goto bad;
956 }
957 }
958
959 return 0;
960
961 bad:
962 ubi_err("bad VID header");
963 ubi_dbg_dump_vid_hdr(vid_hdr);
964 ubi_dbg_dump_stack();
965 return 1;
966 }
967
968 /**
969 * ubi_io_read_vid_hdr - read and check a volume identifier header.
970 * @ubi: UBI device description object
971 * @pnum: physical eraseblock number to read from
972 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
973 * identifier header
974 * @verbose: be verbose if the header is corrupted or wasn't found
975 *
976 * This function reads the volume identifier header from physical eraseblock
977 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
978 * volume identifier header. The following codes may be returned:
979 *
980 * o %0 if the CRC checksum is correct and the header was successfully read;
981 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
982 * and corrected by the flash driver; this is harmless but may indicate that
983 * this eraseblock may become bad soon;
984 * o %UBI_IO_BAD_HDR if the volume identifier header is corrupted (a CRC
985 * error detected);
986 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
987 * header there);
988 * o a negative error code in case of failure.
989 */
990 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
991 struct ubi_vid_hdr *vid_hdr, int verbose)
992 {
993 int err, read_err = 0;
994 uint32_t crc, magic, hdr_crc;
995 void *p;
996
997 dbg_io("read VID header from PEB %d", pnum);
998 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
999
1000 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1001 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1002 ubi->vid_hdr_alsize);
1003 if (err) {
1004 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
1005 return err;
1006
1007 /*
1008 * We read all the data, but either a correctable bit-flip
1009 * occurred, or MTD reported about some data integrity error,
1010 * like an ECC error in case of NAND. The former is harmless,
1011 * the later may mean the read data is corrupted. But we have a
1012 * CRC check-sum and we will identify this. If the VID header is
1013 * still OK, we just report this as there was a bit-flip.
1014 */
1015 if (err == -EBADMSG)
1016 read_err = UBI_IO_BAD_HDR_READ;
1017 }
1018
1019 magic = be32_to_cpu(vid_hdr->magic);
1020 if (magic != UBI_VID_HDR_MAGIC) {
1021 if (read_err)
1022 return read_err;
1023
1024 /*
1025 * If we have read all 0xFF bytes, the VID header probably does
1026 * not exist and the physical eraseblock is assumed to be free.
1027 */
1028 if (check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1029 /* The physical eraseblock is supposedly free */
1030 if (verbose)
1031 ubi_warn("no VID header found at PEB %d, "
1032 "only 0xFF bytes", pnum);
1033 else if (UBI_IO_DEBUG)
1034 dbg_msg("no VID header found at PEB %d, "
1035 "only 0xFF bytes", pnum);
1036 return UBI_IO_PEB_FREE;
1037 }
1038
1039 /*
1040 * This is not a valid VID header, and these are not 0xFF
1041 * bytes. Report that the header is corrupted.
1042 */
1043 if (verbose) {
1044 ubi_warn("bad magic number at PEB %d: %08x instead of "
1045 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1046 ubi_dbg_dump_vid_hdr(vid_hdr);
1047 } else if (UBI_IO_DEBUG)
1048 dbg_msg("bad magic number at PEB %d: %08x instead of "
1049 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1050 return UBI_IO_BAD_HDR;
1051 }
1052
1053 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1054 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1055
1056 if (hdr_crc != crc) {
1057 if (verbose) {
1058 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1059 "read %#08x", pnum, crc, hdr_crc);
1060 ubi_dbg_dump_vid_hdr(vid_hdr);
1061 } else if (UBI_IO_DEBUG)
1062 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1063 "read %#08x", pnum, crc, hdr_crc);
1064 return read_err ?: UBI_IO_BAD_HDR;
1065 }
1066
1067 /* Validate the VID header that we have just read */
1068 err = validate_vid_hdr(ubi, vid_hdr);
1069 if (err) {
1070 ubi_err("validation failed for PEB %d", pnum);
1071 return -EINVAL;
1072 }
1073
1074 /*
1075 * If there was a read error (%-EBADMSG), but the header CRC is still
1076 * OK, report about a bit-flip to force scrubbing on this PEB.
1077 */
1078 return read_err ? UBI_IO_BITFLIPS : 0;
1079 }
1080
1081 /**
1082 * ubi_io_write_vid_hdr - write a volume identifier header.
1083 * @ubi: UBI device description object
1084 * @pnum: the physical eraseblock number to write to
1085 * @vid_hdr: the volume identifier header to write
1086 *
1087 * This function writes the volume identifier header described by @vid_hdr to
1088 * physical eraseblock @pnum. This function automatically fills the
1089 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1090 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1091 *
1092 * This function returns zero in case of success and a negative error code in
1093 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1094 * bad.
1095 */
1096 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1097 struct ubi_vid_hdr *vid_hdr)
1098 {
1099 int err;
1100 uint32_t crc;
1101 void *p;
1102
1103 dbg_io("write VID header to PEB %d", pnum);
1104 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1105
1106 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1107 if (err)
1108 return err;
1109
1110 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1111 vid_hdr->version = UBI_VERSION;
1112 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1113 vid_hdr->hdr_crc = cpu_to_be32(crc);
1114
1115 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1116 if (err)
1117 return err;
1118
1119 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1120 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1121 ubi->vid_hdr_alsize);
1122 return err;
1123 }
1124
1125 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1126
1127 /**
1128 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1129 * @ubi: UBI device description object
1130 * @pnum: physical eraseblock number to check
1131 *
1132 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1133 * it is bad and a negative error code if an error occurred.
1134 */
1135 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1136 {
1137 int err;
1138
1139 err = ubi_io_is_bad(ubi, pnum);
1140 if (!err)
1141 return err;
1142
1143 ubi_err("paranoid check failed for PEB %d", pnum);
1144 ubi_dbg_dump_stack();
1145 return err > 0 ? -EINVAL : err;
1146 }
1147
1148 /**
1149 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1150 * @ubi: UBI device description object
1151 * @pnum: physical eraseblock number the erase counter header belongs to
1152 * @ec_hdr: the erase counter header to check
1153 *
1154 * This function returns zero if the erase counter header contains valid
1155 * values, and %-EINVAL if not.
1156 */
1157 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1158 const struct ubi_ec_hdr *ec_hdr)
1159 {
1160 int err;
1161 uint32_t magic;
1162
1163 magic = be32_to_cpu(ec_hdr->magic);
1164 if (magic != UBI_EC_HDR_MAGIC) {
1165 ubi_err("bad magic %#08x, must be %#08x",
1166 magic, UBI_EC_HDR_MAGIC);
1167 goto fail;
1168 }
1169
1170 err = validate_ec_hdr(ubi, ec_hdr);
1171 if (err) {
1172 ubi_err("paranoid check failed for PEB %d", pnum);
1173 goto fail;
1174 }
1175
1176 return 0;
1177
1178 fail:
1179 ubi_dbg_dump_ec_hdr(ec_hdr);
1180 ubi_dbg_dump_stack();
1181 return -EINVAL;
1182 }
1183
1184 /**
1185 * paranoid_check_peb_ec_hdr - check erase counter header.
1186 * @ubi: UBI device description object
1187 * @pnum: the physical eraseblock number to check
1188 *
1189 * This function returns zero if the erase counter header is all right and and
1190 * a negative error code if not or if an error occurred.
1191 */
1192 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1193 {
1194 int err;
1195 uint32_t crc, hdr_crc;
1196 struct ubi_ec_hdr *ec_hdr;
1197
1198 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1199 if (!ec_hdr)
1200 return -ENOMEM;
1201
1202 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1203 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1204 goto exit;
1205
1206 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1207 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1208 if (hdr_crc != crc) {
1209 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1210 ubi_err("paranoid check failed for PEB %d", pnum);
1211 ubi_dbg_dump_ec_hdr(ec_hdr);
1212 ubi_dbg_dump_stack();
1213 err = -EINVAL;
1214 goto exit;
1215 }
1216
1217 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1218
1219 exit:
1220 kfree(ec_hdr);
1221 return err;
1222 }
1223
1224 /**
1225 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1226 * @ubi: UBI device description object
1227 * @pnum: physical eraseblock number the volume identifier header belongs to
1228 * @vid_hdr: the volume identifier header to check
1229 *
1230 * This function returns zero if the volume identifier header is all right, and
1231 * %-EINVAL if not.
1232 */
1233 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1234 const struct ubi_vid_hdr *vid_hdr)
1235 {
1236 int err;
1237 uint32_t magic;
1238
1239 magic = be32_to_cpu(vid_hdr->magic);
1240 if (magic != UBI_VID_HDR_MAGIC) {
1241 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1242 magic, pnum, UBI_VID_HDR_MAGIC);
1243 goto fail;
1244 }
1245
1246 err = validate_vid_hdr(ubi, vid_hdr);
1247 if (err) {
1248 ubi_err("paranoid check failed for PEB %d", pnum);
1249 goto fail;
1250 }
1251
1252 return err;
1253
1254 fail:
1255 ubi_err("paranoid check failed for PEB %d", pnum);
1256 ubi_dbg_dump_vid_hdr(vid_hdr);
1257 ubi_dbg_dump_stack();
1258 return -EINVAL;
1259
1260 }
1261
1262 /**
1263 * paranoid_check_peb_vid_hdr - check volume identifier header.
1264 * @ubi: UBI device description object
1265 * @pnum: the physical eraseblock number to check
1266 *
1267 * This function returns zero if the volume identifier header is all right,
1268 * and a negative error code if not or if an error occurred.
1269 */
1270 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1271 {
1272 int err;
1273 uint32_t crc, hdr_crc;
1274 struct ubi_vid_hdr *vid_hdr;
1275 void *p;
1276
1277 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1278 if (!vid_hdr)
1279 return -ENOMEM;
1280
1281 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1282 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1283 ubi->vid_hdr_alsize);
1284 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1285 goto exit;
1286
1287 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1288 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1289 if (hdr_crc != crc) {
1290 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1291 "read %#08x", pnum, crc, hdr_crc);
1292 ubi_err("paranoid check failed for PEB %d", pnum);
1293 ubi_dbg_dump_vid_hdr(vid_hdr);
1294 ubi_dbg_dump_stack();
1295 err = -EINVAL;
1296 goto exit;
1297 }
1298
1299 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1300
1301 exit:
1302 ubi_free_vid_hdr(ubi, vid_hdr);
1303 return err;
1304 }
1305
1306 /**
1307 * ubi_dbg_check_write - make sure write succeeded.
1308 * @ubi: UBI device description object
1309 * @buf: buffer with data which were written
1310 * @pnum: physical eraseblock number the data were written to
1311 * @offset: offset within the physical eraseblock the data were written to
1312 * @len: how many bytes were written
1313 *
1314 * This functions reads data which were recently written and compares it with
1315 * the original data buffer - the data have to match. Returns zero if the data
1316 * match and a negative error code if not or in case of failure.
1317 */
1318 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1319 int offset, int len)
1320 {
1321 int err, i;
1322
1323 mutex_lock(&ubi->dbg_buf_mutex);
1324 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1325 if (err)
1326 goto out_unlock;
1327
1328 for (i = 0; i < len; i++) {
1329 uint8_t c = ((uint8_t *)buf)[i];
1330 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1331 int dump_len;
1332
1333 if (c == c1)
1334 continue;
1335
1336 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1337 pnum, offset, len);
1338 ubi_msg("data differ at position %d", i);
1339 dump_len = max_t(int, 128, len - i);
1340 ubi_msg("hex dump of the original buffer from %d to %d",
1341 i, i + dump_len);
1342 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1343 buf + i, dump_len, 1);
1344 ubi_msg("hex dump of the read buffer from %d to %d",
1345 i, i + dump_len);
1346 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1347 ubi->dbg_peb_buf + i, dump_len, 1);
1348 ubi_dbg_dump_stack();
1349 err = -EINVAL;
1350 goto out_unlock;
1351 }
1352 mutex_unlock(&ubi->dbg_buf_mutex);
1353
1354 return 0;
1355
1356 out_unlock:
1357 mutex_unlock(&ubi->dbg_buf_mutex);
1358 return err;
1359 }
1360
1361 /**
1362 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1363 * @ubi: UBI device description object
1364 * @pnum: the physical eraseblock number to check
1365 * @offset: the starting offset within the physical eraseblock to check
1366 * @len: the length of the region to check
1367 *
1368 * This function returns zero if only 0xFF bytes are present at offset
1369 * @offset of the physical eraseblock @pnum, and a negative error code if not
1370 * or if an error occurred.
1371 */
1372 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1373 {
1374 size_t read;
1375 int err;
1376 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1377
1378 mutex_lock(&ubi->dbg_buf_mutex);
1379 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1380 if (err && err != -EUCLEAN) {
1381 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1382 "read %zd bytes", err, len, pnum, offset, read);
1383 goto error;
1384 }
1385
1386 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1387 if (err == 0) {
1388 ubi_err("flash region at PEB %d:%d, length %d does not "
1389 "contain all 0xFF bytes", pnum, offset, len);
1390 goto fail;
1391 }
1392 mutex_unlock(&ubi->dbg_buf_mutex);
1393
1394 return 0;
1395
1396 fail:
1397 ubi_err("paranoid check failed for PEB %d", pnum);
1398 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1399 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1400 ubi->dbg_peb_buf, len, 1);
1401 err = -EINVAL;
1402 error:
1403 ubi_dbg_dump_stack();
1404 mutex_unlock(&ubi->dbg_buf_mutex);
1405 return err;
1406 }
1407
1408 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
This page took 0.08848 seconds and 6 git commands to generate.