UBI: add a commentary about allocating VID header buffer on stack
[deliverable/linux.git] / drivers / mtd / ubi / io.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * UBI input/output sub-system.
24 *
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
87 */
88
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93
94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109
110 /**
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
117 *
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
120 * possible:
121 *
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
131 */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 int len)
134 {
135 int err, retries = 0;
136 size_t read;
137 loff_t addr;
138
139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140
141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 ubi_assert(len > 0);
144
145 err = paranoid_check_not_bad(ubi, pnum);
146 if (err)
147 return err;
148
149 addr = (loff_t)pnum * ubi->peb_size + offset;
150 retry:
151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 if (err) {
153 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
154
155 if (err == -EUCLEAN) {
156 /*
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
159 *
160 * We do not report about it here unless debugging is
161 * enabled. A corresponding message will be printed
162 * later, when it is has been scrubbed.
163 */
164 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
165 ubi_assert(len == read);
166 return UBI_IO_BITFLIPS;
167 }
168
169 if (read != len && retries++ < UBI_IO_RETRIES) {
170 dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
171 " read only %zd bytes, retry",
172 err, errstr, len, pnum, offset, read);
173 yield();
174 goto retry;
175 }
176
177 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
178 "read %zd bytes", err, errstr, len, pnum, offset, read);
179 ubi_dbg_dump_stack();
180
181 /*
182 * The driver should never return -EBADMSG if it failed to read
183 * all the requested data. But some buggy drivers might do
184 * this, so we change it to -EIO.
185 */
186 if (read != len && err == -EBADMSG) {
187 ubi_assert(0);
188 err = -EIO;
189 }
190 } else {
191 ubi_assert(len == read);
192
193 if (ubi_dbg_is_bitflip()) {
194 dbg_gen("bit-flip (emulated)");
195 err = UBI_IO_BITFLIPS;
196 }
197 }
198
199 return err;
200 }
201
202 /**
203 * ubi_io_write - write data to a physical eraseblock.
204 * @ubi: UBI device description object
205 * @buf: buffer with the data to write
206 * @pnum: physical eraseblock number to write to
207 * @offset: offset within the physical eraseblock where to write
208 * @len: how many bytes to write
209 *
210 * This function writes @len bytes of data from buffer @buf to offset @offset
211 * of physical eraseblock @pnum. If all the data were successfully written,
212 * zero is returned. If an error occurred, this function returns a negative
213 * error code. If %-EIO is returned, the physical eraseblock most probably went
214 * bad.
215 *
216 * Note, in case of an error, it is possible that something was still written
217 * to the flash media, but may be some garbage.
218 */
219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 int len)
221 {
222 int err;
223 size_t written;
224 loff_t addr;
225
226 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227
228 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232
233 if (ubi->ro_mode) {
234 ubi_err("read-only mode");
235 return -EROFS;
236 }
237
238 /* The below has to be compiled out if paranoid checks are disabled */
239
240 err = paranoid_check_not_bad(ubi, pnum);
241 if (err)
242 return err;
243
244 /* The area we are writing to has to contain all 0xFF bytes */
245 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
246 if (err)
247 return err;
248
249 if (offset >= ubi->leb_start) {
250 /*
251 * We write to the data area of the physical eraseblock. Make
252 * sure it has valid EC and VID headers.
253 */
254 err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 if (err)
256 return err;
257 err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 if (err)
259 return err;
260 }
261
262 if (ubi_dbg_is_write_failure()) {
263 dbg_err("cannot write %d bytes to PEB %d:%d "
264 "(emulated)", len, pnum, offset);
265 ubi_dbg_dump_stack();
266 return -EIO;
267 }
268
269 addr = (loff_t)pnum * ubi->peb_size + offset;
270 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 if (err) {
272 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
273 "%zd bytes", err, len, pnum, offset, written);
274 ubi_dbg_dump_stack();
275 ubi_dbg_dump_flash(ubi, pnum, offset, len);
276 } else
277 ubi_assert(written == len);
278
279 if (!err) {
280 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
281 if (err)
282 return err;
283
284 /*
285 * Since we always write sequentially, the rest of the PEB has
286 * to contain only 0xFF bytes.
287 */
288 offset += len;
289 len = ubi->peb_size - offset;
290 if (len)
291 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
292 }
293
294 return err;
295 }
296
297 /**
298 * erase_callback - MTD erasure call-back.
299 * @ei: MTD erase information object.
300 *
301 * Note, even though MTD erase interface is asynchronous, all the current
302 * implementations are synchronous anyway.
303 */
304 static void erase_callback(struct erase_info *ei)
305 {
306 wake_up_interruptible((wait_queue_head_t *)ei->priv);
307 }
308
309 /**
310 * do_sync_erase - synchronously erase a physical eraseblock.
311 * @ubi: UBI device description object
312 * @pnum: the physical eraseblock number to erase
313 *
314 * This function synchronously erases physical eraseblock @pnum and returns
315 * zero in case of success and a negative error code in case of failure. If
316 * %-EIO is returned, the physical eraseblock most probably went bad.
317 */
318 static int do_sync_erase(struct ubi_device *ubi, int pnum)
319 {
320 int err, retries = 0;
321 struct erase_info ei;
322 wait_queue_head_t wq;
323
324 dbg_io("erase PEB %d", pnum);
325
326 retry:
327 init_waitqueue_head(&wq);
328 memset(&ei, 0, sizeof(struct erase_info));
329
330 ei.mtd = ubi->mtd;
331 ei.addr = (loff_t)pnum * ubi->peb_size;
332 ei.len = ubi->peb_size;
333 ei.callback = erase_callback;
334 ei.priv = (unsigned long)&wq;
335
336 err = ubi->mtd->erase(ubi->mtd, &ei);
337 if (err) {
338 if (retries++ < UBI_IO_RETRIES) {
339 dbg_io("error %d while erasing PEB %d, retry",
340 err, pnum);
341 yield();
342 goto retry;
343 }
344 ubi_err("cannot erase PEB %d, error %d", pnum, err);
345 ubi_dbg_dump_stack();
346 return err;
347 }
348
349 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
350 ei.state == MTD_ERASE_FAILED);
351 if (err) {
352 ubi_err("interrupted PEB %d erasure", pnum);
353 return -EINTR;
354 }
355
356 if (ei.state == MTD_ERASE_FAILED) {
357 if (retries++ < UBI_IO_RETRIES) {
358 dbg_io("error while erasing PEB %d, retry", pnum);
359 yield();
360 goto retry;
361 }
362 ubi_err("cannot erase PEB %d", pnum);
363 ubi_dbg_dump_stack();
364 return -EIO;
365 }
366
367 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
368 if (err)
369 return err;
370
371 if (ubi_dbg_is_erase_failure() && !err) {
372 dbg_err("cannot erase PEB %d (emulated)", pnum);
373 return -EIO;
374 }
375
376 return 0;
377 }
378
379 /* Patterns to write to a physical eraseblock when torturing it */
380 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
381
382 /**
383 * torture_peb - test a supposedly bad physical eraseblock.
384 * @ubi: UBI device description object
385 * @pnum: the physical eraseblock number to test
386 *
387 * This function returns %-EIO if the physical eraseblock did not pass the
388 * test, a positive number of erase operations done if the test was
389 * successfully passed, and other negative error codes in case of other errors.
390 */
391 static int torture_peb(struct ubi_device *ubi, int pnum)
392 {
393 int err, i, patt_count;
394
395 ubi_msg("run torture test for PEB %d", pnum);
396 patt_count = ARRAY_SIZE(patterns);
397 ubi_assert(patt_count > 0);
398
399 mutex_lock(&ubi->buf_mutex);
400 for (i = 0; i < patt_count; i++) {
401 err = do_sync_erase(ubi, pnum);
402 if (err)
403 goto out;
404
405 /* Make sure the PEB contains only 0xFF bytes */
406 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
407 if (err)
408 goto out;
409
410 err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
411 if (err == 0) {
412 ubi_err("erased PEB %d, but a non-0xFF byte found",
413 pnum);
414 err = -EIO;
415 goto out;
416 }
417
418 /* Write a pattern and check it */
419 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
420 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
421 if (err)
422 goto out;
423
424 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
425 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
426 if (err)
427 goto out;
428
429 err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
430 ubi->peb_size);
431 if (err == 0) {
432 ubi_err("pattern %x checking failed for PEB %d",
433 patterns[i], pnum);
434 err = -EIO;
435 goto out;
436 }
437 }
438
439 err = patt_count;
440 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
441
442 out:
443 mutex_unlock(&ubi->buf_mutex);
444 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
445 /*
446 * If a bit-flip or data integrity error was detected, the test
447 * has not passed because it happened on a freshly erased
448 * physical eraseblock which means something is wrong with it.
449 */
450 ubi_err("read problems on freshly erased PEB %d, must be bad",
451 pnum);
452 err = -EIO;
453 }
454 return err;
455 }
456
457 /**
458 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
459 * @ubi: UBI device description object
460 * @pnum: physical eraseblock number to prepare
461 *
462 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
463 * algorithm: the PEB is first filled with zeroes, then it is erased. And
464 * filling with zeroes starts from the end of the PEB. This was observed with
465 * Spansion S29GL512N NOR flash.
466 *
467 * This means that in case of a power cut we may end up with intact data at the
468 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
469 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
470 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
471 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
472 *
473 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
474 * magic numbers in order to invalidate them and prevent the failures. Returns
475 * zero in case of success and a negative error code in case of failure.
476 */
477 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
478 {
479 int err, err1;
480 size_t written;
481 loff_t addr;
482 uint32_t data = 0;
483 /*
484 * Note, we cannot generally define VID header buffers on stack,
485 * because of the way we deal with these buffers (see the header
486 * comment in this file). But we know this is a NOR-specific piece of
487 * code, so we can do this. But yes, this is error-prone and we should
488 * (pre-)allocate VID header buffer instead.
489 */
490 struct ubi_vid_hdr vid_hdr;
491
492 /*
493 * It is important to first invalidate the EC header, and then the VID
494 * header. Otherwise a power cut may lead to valid EC header and
495 * invalid VID header, in which case UBI will treat this PEB as
496 * corrupted and will try to preserve it, and print scary warnings (see
497 * the header comment in scan.c for more information).
498 */
499 addr = (loff_t)pnum * ubi->peb_size;
500 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
501 if (!err) {
502 addr += ubi->vid_hdr_aloffset;
503 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
504 (void *)&data);
505 if (!err)
506 return 0;
507 }
508
509 /*
510 * We failed to write to the media. This was observed with Spansion
511 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
512 * was interrupted at a very inappropriate moment, so it became
513 * unwritable. In this case we probably anyway have garbage in this
514 * PEB.
515 */
516 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
517 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
518 err1 == UBI_IO_FF) {
519 struct ubi_ec_hdr ec_hdr;
520
521 err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
522 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
523 err1 == UBI_IO_FF)
524 /*
525 * Both VID and EC headers are corrupted, so we can
526 * safely erase this PEB and not afraid that it will be
527 * treated as a valid PEB in case of an unclean reboot.
528 */
529 return 0;
530 }
531
532 /*
533 * The PEB contains a valid VID header, but we cannot invalidate it.
534 * Supposedly the flash media or the driver is screwed up, so return an
535 * error.
536 */
537 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
538 pnum, err, err1);
539 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
540 return -EIO;
541 }
542
543 /**
544 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
545 * @ubi: UBI device description object
546 * @pnum: physical eraseblock number to erase
547 * @torture: if this physical eraseblock has to be tortured
548 *
549 * This function synchronously erases physical eraseblock @pnum. If @torture
550 * flag is not zero, the physical eraseblock is checked by means of writing
551 * different patterns to it and reading them back. If the torturing is enabled,
552 * the physical eraseblock is erased more than once.
553 *
554 * This function returns the number of erasures made in case of success, %-EIO
555 * if the erasure failed or the torturing test failed, and other negative error
556 * codes in case of other errors. Note, %-EIO means that the physical
557 * eraseblock is bad.
558 */
559 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
560 {
561 int err, ret = 0;
562
563 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
564
565 err = paranoid_check_not_bad(ubi, pnum);
566 if (err != 0)
567 return err;
568
569 if (ubi->ro_mode) {
570 ubi_err("read-only mode");
571 return -EROFS;
572 }
573
574 if (ubi->nor_flash) {
575 err = nor_erase_prepare(ubi, pnum);
576 if (err)
577 return err;
578 }
579
580 if (torture) {
581 ret = torture_peb(ubi, pnum);
582 if (ret < 0)
583 return ret;
584 }
585
586 err = do_sync_erase(ubi, pnum);
587 if (err)
588 return err;
589
590 return ret + 1;
591 }
592
593 /**
594 * ubi_io_is_bad - check if a physical eraseblock is bad.
595 * @ubi: UBI device description object
596 * @pnum: the physical eraseblock number to check
597 *
598 * This function returns a positive number if the physical eraseblock is bad,
599 * zero if not, and a negative error code if an error occurred.
600 */
601 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
602 {
603 struct mtd_info *mtd = ubi->mtd;
604
605 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
606
607 if (ubi->bad_allowed) {
608 int ret;
609
610 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
611 if (ret < 0)
612 ubi_err("error %d while checking if PEB %d is bad",
613 ret, pnum);
614 else if (ret)
615 dbg_io("PEB %d is bad", pnum);
616 return ret;
617 }
618
619 return 0;
620 }
621
622 /**
623 * ubi_io_mark_bad - mark a physical eraseblock as bad.
624 * @ubi: UBI device description object
625 * @pnum: the physical eraseblock number to mark
626 *
627 * This function returns zero in case of success and a negative error code in
628 * case of failure.
629 */
630 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
631 {
632 int err;
633 struct mtd_info *mtd = ubi->mtd;
634
635 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
636
637 if (ubi->ro_mode) {
638 ubi_err("read-only mode");
639 return -EROFS;
640 }
641
642 if (!ubi->bad_allowed)
643 return 0;
644
645 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
646 if (err)
647 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
648 return err;
649 }
650
651 /**
652 * validate_ec_hdr - validate an erase counter header.
653 * @ubi: UBI device description object
654 * @ec_hdr: the erase counter header to check
655 *
656 * This function returns zero if the erase counter header is OK, and %1 if
657 * not.
658 */
659 static int validate_ec_hdr(const struct ubi_device *ubi,
660 const struct ubi_ec_hdr *ec_hdr)
661 {
662 long long ec;
663 int vid_hdr_offset, leb_start;
664
665 ec = be64_to_cpu(ec_hdr->ec);
666 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
667 leb_start = be32_to_cpu(ec_hdr->data_offset);
668
669 if (ec_hdr->version != UBI_VERSION) {
670 ubi_err("node with incompatible UBI version found: "
671 "this UBI version is %d, image version is %d",
672 UBI_VERSION, (int)ec_hdr->version);
673 goto bad;
674 }
675
676 if (vid_hdr_offset != ubi->vid_hdr_offset) {
677 ubi_err("bad VID header offset %d, expected %d",
678 vid_hdr_offset, ubi->vid_hdr_offset);
679 goto bad;
680 }
681
682 if (leb_start != ubi->leb_start) {
683 ubi_err("bad data offset %d, expected %d",
684 leb_start, ubi->leb_start);
685 goto bad;
686 }
687
688 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
689 ubi_err("bad erase counter %lld", ec);
690 goto bad;
691 }
692
693 return 0;
694
695 bad:
696 ubi_err("bad EC header");
697 ubi_dbg_dump_ec_hdr(ec_hdr);
698 ubi_dbg_dump_stack();
699 return 1;
700 }
701
702 /**
703 * ubi_io_read_ec_hdr - read and check an erase counter header.
704 * @ubi: UBI device description object
705 * @pnum: physical eraseblock to read from
706 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
707 * header
708 * @verbose: be verbose if the header is corrupted or was not found
709 *
710 * This function reads erase counter header from physical eraseblock @pnum and
711 * stores it in @ec_hdr. This function also checks CRC checksum of the read
712 * erase counter header. The following codes may be returned:
713 *
714 * o %0 if the CRC checksum is correct and the header was successfully read;
715 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
716 * and corrected by the flash driver; this is harmless but may indicate that
717 * this eraseblock may become bad soon (but may be not);
718 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
719 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
720 * a data integrity error (uncorrectable ECC error in case of NAND);
721 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
722 * o a negative error code in case of failure.
723 */
724 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
725 struct ubi_ec_hdr *ec_hdr, int verbose)
726 {
727 int err, read_err;
728 uint32_t crc, magic, hdr_crc;
729
730 dbg_io("read EC header from PEB %d", pnum);
731 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
732
733 read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
734 if (read_err) {
735 if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
736 return read_err;
737
738 /*
739 * We read all the data, but either a correctable bit-flip
740 * occurred, or MTD reported a data integrity error
741 * (uncorrectable ECC error in case of NAND). The former is
742 * harmless, the later may mean that the read data is
743 * corrupted. But we have a CRC check-sum and we will detect
744 * this. If the EC header is still OK, we just report this as
745 * there was a bit-flip, to force scrubbing.
746 */
747 }
748
749 magic = be32_to_cpu(ec_hdr->magic);
750 if (magic != UBI_EC_HDR_MAGIC) {
751 if (read_err == -EBADMSG)
752 return UBI_IO_BAD_HDR_EBADMSG;
753
754 /*
755 * The magic field is wrong. Let's check if we have read all
756 * 0xFF. If yes, this physical eraseblock is assumed to be
757 * empty.
758 */
759 if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
760 /* The physical eraseblock is supposedly empty */
761 if (verbose)
762 ubi_warn("no EC header found at PEB %d, "
763 "only 0xFF bytes", pnum);
764 else if (UBI_IO_DEBUG)
765 dbg_msg("no EC header found at PEB %d, "
766 "only 0xFF bytes", pnum);
767 if (!read_err)
768 return UBI_IO_FF;
769 else
770 return UBI_IO_FF_BITFLIPS;
771 }
772
773 /*
774 * This is not a valid erase counter header, and these are not
775 * 0xFF bytes. Report that the header is corrupted.
776 */
777 if (verbose) {
778 ubi_warn("bad magic number at PEB %d: %08x instead of "
779 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
780 ubi_dbg_dump_ec_hdr(ec_hdr);
781 } else if (UBI_IO_DEBUG)
782 dbg_msg("bad magic number at PEB %d: %08x instead of "
783 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
784 return UBI_IO_BAD_HDR;
785 }
786
787 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
788 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
789
790 if (hdr_crc != crc) {
791 if (verbose) {
792 ubi_warn("bad EC header CRC at PEB %d, calculated "
793 "%#08x, read %#08x", pnum, crc, hdr_crc);
794 ubi_dbg_dump_ec_hdr(ec_hdr);
795 } else if (UBI_IO_DEBUG)
796 dbg_msg("bad EC header CRC at PEB %d, calculated "
797 "%#08x, read %#08x", pnum, crc, hdr_crc);
798
799 if (!read_err)
800 return UBI_IO_BAD_HDR;
801 else
802 return UBI_IO_BAD_HDR_EBADMSG;
803 }
804
805 /* And of course validate what has just been read from the media */
806 err = validate_ec_hdr(ubi, ec_hdr);
807 if (err) {
808 ubi_err("validation failed for PEB %d", pnum);
809 return -EINVAL;
810 }
811
812 /*
813 * If there was %-EBADMSG, but the header CRC is still OK, report about
814 * a bit-flip to force scrubbing on this PEB.
815 */
816 return read_err ? UBI_IO_BITFLIPS : 0;
817 }
818
819 /**
820 * ubi_io_write_ec_hdr - write an erase counter header.
821 * @ubi: UBI device description object
822 * @pnum: physical eraseblock to write to
823 * @ec_hdr: the erase counter header to write
824 *
825 * This function writes erase counter header described by @ec_hdr to physical
826 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
827 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
828 * field.
829 *
830 * This function returns zero in case of success and a negative error code in
831 * case of failure. If %-EIO is returned, the physical eraseblock most probably
832 * went bad.
833 */
834 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
835 struct ubi_ec_hdr *ec_hdr)
836 {
837 int err;
838 uint32_t crc;
839
840 dbg_io("write EC header to PEB %d", pnum);
841 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
842
843 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
844 ec_hdr->version = UBI_VERSION;
845 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
846 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
847 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
848 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
849 ec_hdr->hdr_crc = cpu_to_be32(crc);
850
851 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
852 if (err)
853 return err;
854
855 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
856 return err;
857 }
858
859 /**
860 * validate_vid_hdr - validate a volume identifier header.
861 * @ubi: UBI device description object
862 * @vid_hdr: the volume identifier header to check
863 *
864 * This function checks that data stored in the volume identifier header
865 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
866 */
867 static int validate_vid_hdr(const struct ubi_device *ubi,
868 const struct ubi_vid_hdr *vid_hdr)
869 {
870 int vol_type = vid_hdr->vol_type;
871 int copy_flag = vid_hdr->copy_flag;
872 int vol_id = be32_to_cpu(vid_hdr->vol_id);
873 int lnum = be32_to_cpu(vid_hdr->lnum);
874 int compat = vid_hdr->compat;
875 int data_size = be32_to_cpu(vid_hdr->data_size);
876 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
877 int data_pad = be32_to_cpu(vid_hdr->data_pad);
878 int data_crc = be32_to_cpu(vid_hdr->data_crc);
879 int usable_leb_size = ubi->leb_size - data_pad;
880
881 if (copy_flag != 0 && copy_flag != 1) {
882 dbg_err("bad copy_flag");
883 goto bad;
884 }
885
886 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
887 data_pad < 0) {
888 dbg_err("negative values");
889 goto bad;
890 }
891
892 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
893 dbg_err("bad vol_id");
894 goto bad;
895 }
896
897 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
898 dbg_err("bad compat");
899 goto bad;
900 }
901
902 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
903 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
904 compat != UBI_COMPAT_REJECT) {
905 dbg_err("bad compat");
906 goto bad;
907 }
908
909 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
910 dbg_err("bad vol_type");
911 goto bad;
912 }
913
914 if (data_pad >= ubi->leb_size / 2) {
915 dbg_err("bad data_pad");
916 goto bad;
917 }
918
919 if (vol_type == UBI_VID_STATIC) {
920 /*
921 * Although from high-level point of view static volumes may
922 * contain zero bytes of data, but no VID headers can contain
923 * zero at these fields, because they empty volumes do not have
924 * mapped logical eraseblocks.
925 */
926 if (used_ebs == 0) {
927 dbg_err("zero used_ebs");
928 goto bad;
929 }
930 if (data_size == 0) {
931 dbg_err("zero data_size");
932 goto bad;
933 }
934 if (lnum < used_ebs - 1) {
935 if (data_size != usable_leb_size) {
936 dbg_err("bad data_size");
937 goto bad;
938 }
939 } else if (lnum == used_ebs - 1) {
940 if (data_size == 0) {
941 dbg_err("bad data_size at last LEB");
942 goto bad;
943 }
944 } else {
945 dbg_err("too high lnum");
946 goto bad;
947 }
948 } else {
949 if (copy_flag == 0) {
950 if (data_crc != 0) {
951 dbg_err("non-zero data CRC");
952 goto bad;
953 }
954 if (data_size != 0) {
955 dbg_err("non-zero data_size");
956 goto bad;
957 }
958 } else {
959 if (data_size == 0) {
960 dbg_err("zero data_size of copy");
961 goto bad;
962 }
963 }
964 if (used_ebs != 0) {
965 dbg_err("bad used_ebs");
966 goto bad;
967 }
968 }
969
970 return 0;
971
972 bad:
973 ubi_err("bad VID header");
974 ubi_dbg_dump_vid_hdr(vid_hdr);
975 ubi_dbg_dump_stack();
976 return 1;
977 }
978
979 /**
980 * ubi_io_read_vid_hdr - read and check a volume identifier header.
981 * @ubi: UBI device description object
982 * @pnum: physical eraseblock number to read from
983 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
984 * identifier header
985 * @verbose: be verbose if the header is corrupted or wasn't found
986 *
987 * This function reads the volume identifier header from physical eraseblock
988 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
989 * volume identifier header. The error codes are the same as in
990 * 'ubi_io_read_ec_hdr()'.
991 *
992 * Note, the implementation of this function is also very similar to
993 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
994 */
995 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
996 struct ubi_vid_hdr *vid_hdr, int verbose)
997 {
998 int err, read_err;
999 uint32_t crc, magic, hdr_crc;
1000 void *p;
1001
1002 dbg_io("read VID header from PEB %d", pnum);
1003 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1004
1005 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1006 read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1007 ubi->vid_hdr_alsize);
1008 if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
1009 return read_err;
1010
1011 magic = be32_to_cpu(vid_hdr->magic);
1012 if (magic != UBI_VID_HDR_MAGIC) {
1013 if (read_err == -EBADMSG)
1014 return UBI_IO_BAD_HDR_EBADMSG;
1015
1016 if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1017 if (verbose)
1018 ubi_warn("no VID header found at PEB %d, "
1019 "only 0xFF bytes", pnum);
1020 else if (UBI_IO_DEBUG)
1021 dbg_msg("no VID header found at PEB %d, "
1022 "only 0xFF bytes", pnum);
1023 if (!read_err)
1024 return UBI_IO_FF;
1025 else
1026 return UBI_IO_FF_BITFLIPS;
1027 }
1028
1029 if (verbose) {
1030 ubi_warn("bad magic number at PEB %d: %08x instead of "
1031 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1032 ubi_dbg_dump_vid_hdr(vid_hdr);
1033 } else if (UBI_IO_DEBUG)
1034 dbg_msg("bad magic number at PEB %d: %08x instead of "
1035 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1036 return UBI_IO_BAD_HDR;
1037 }
1038
1039 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1040 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1041
1042 if (hdr_crc != crc) {
1043 if (verbose) {
1044 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1045 "read %#08x", pnum, crc, hdr_crc);
1046 ubi_dbg_dump_vid_hdr(vid_hdr);
1047 } else if (UBI_IO_DEBUG)
1048 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1049 "read %#08x", pnum, crc, hdr_crc);
1050 if (!read_err)
1051 return UBI_IO_BAD_HDR;
1052 else
1053 return UBI_IO_BAD_HDR_EBADMSG;
1054 }
1055
1056 err = validate_vid_hdr(ubi, vid_hdr);
1057 if (err) {
1058 ubi_err("validation failed for PEB %d", pnum);
1059 return -EINVAL;
1060 }
1061
1062 return read_err ? UBI_IO_BITFLIPS : 0;
1063 }
1064
1065 /**
1066 * ubi_io_write_vid_hdr - write a volume identifier header.
1067 * @ubi: UBI device description object
1068 * @pnum: the physical eraseblock number to write to
1069 * @vid_hdr: the volume identifier header to write
1070 *
1071 * This function writes the volume identifier header described by @vid_hdr to
1072 * physical eraseblock @pnum. This function automatically fills the
1073 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1074 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1075 *
1076 * This function returns zero in case of success and a negative error code in
1077 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1078 * bad.
1079 */
1080 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1081 struct ubi_vid_hdr *vid_hdr)
1082 {
1083 int err;
1084 uint32_t crc;
1085 void *p;
1086
1087 dbg_io("write VID header to PEB %d", pnum);
1088 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1089
1090 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1091 if (err)
1092 return err;
1093
1094 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1095 vid_hdr->version = UBI_VERSION;
1096 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1097 vid_hdr->hdr_crc = cpu_to_be32(crc);
1098
1099 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1100 if (err)
1101 return err;
1102
1103 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1104 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1105 ubi->vid_hdr_alsize);
1106 return err;
1107 }
1108
1109 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1110
1111 /**
1112 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1113 * @ubi: UBI device description object
1114 * @pnum: physical eraseblock number to check
1115 *
1116 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1117 * it is bad and a negative error code if an error occurred.
1118 */
1119 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1120 {
1121 int err;
1122
1123 err = ubi_io_is_bad(ubi, pnum);
1124 if (!err)
1125 return err;
1126
1127 ubi_err("paranoid check failed for PEB %d", pnum);
1128 ubi_dbg_dump_stack();
1129 return err > 0 ? -EINVAL : err;
1130 }
1131
1132 /**
1133 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1134 * @ubi: UBI device description object
1135 * @pnum: physical eraseblock number the erase counter header belongs to
1136 * @ec_hdr: the erase counter header to check
1137 *
1138 * This function returns zero if the erase counter header contains valid
1139 * values, and %-EINVAL if not.
1140 */
1141 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1142 const struct ubi_ec_hdr *ec_hdr)
1143 {
1144 int err;
1145 uint32_t magic;
1146
1147 magic = be32_to_cpu(ec_hdr->magic);
1148 if (magic != UBI_EC_HDR_MAGIC) {
1149 ubi_err("bad magic %#08x, must be %#08x",
1150 magic, UBI_EC_HDR_MAGIC);
1151 goto fail;
1152 }
1153
1154 err = validate_ec_hdr(ubi, ec_hdr);
1155 if (err) {
1156 ubi_err("paranoid check failed for PEB %d", pnum);
1157 goto fail;
1158 }
1159
1160 return 0;
1161
1162 fail:
1163 ubi_dbg_dump_ec_hdr(ec_hdr);
1164 ubi_dbg_dump_stack();
1165 return -EINVAL;
1166 }
1167
1168 /**
1169 * paranoid_check_peb_ec_hdr - check erase counter header.
1170 * @ubi: UBI device description object
1171 * @pnum: the physical eraseblock number to check
1172 *
1173 * This function returns zero if the erase counter header is all right and and
1174 * a negative error code if not or if an error occurred.
1175 */
1176 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1177 {
1178 int err;
1179 uint32_t crc, hdr_crc;
1180 struct ubi_ec_hdr *ec_hdr;
1181
1182 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1183 if (!ec_hdr)
1184 return -ENOMEM;
1185
1186 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1187 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1188 goto exit;
1189
1190 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1191 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1192 if (hdr_crc != crc) {
1193 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1194 ubi_err("paranoid check failed for PEB %d", pnum);
1195 ubi_dbg_dump_ec_hdr(ec_hdr);
1196 ubi_dbg_dump_stack();
1197 err = -EINVAL;
1198 goto exit;
1199 }
1200
1201 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1202
1203 exit:
1204 kfree(ec_hdr);
1205 return err;
1206 }
1207
1208 /**
1209 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1210 * @ubi: UBI device description object
1211 * @pnum: physical eraseblock number the volume identifier header belongs to
1212 * @vid_hdr: the volume identifier header to check
1213 *
1214 * This function returns zero if the volume identifier header is all right, and
1215 * %-EINVAL if not.
1216 */
1217 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1218 const struct ubi_vid_hdr *vid_hdr)
1219 {
1220 int err;
1221 uint32_t magic;
1222
1223 magic = be32_to_cpu(vid_hdr->magic);
1224 if (magic != UBI_VID_HDR_MAGIC) {
1225 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1226 magic, pnum, UBI_VID_HDR_MAGIC);
1227 goto fail;
1228 }
1229
1230 err = validate_vid_hdr(ubi, vid_hdr);
1231 if (err) {
1232 ubi_err("paranoid check failed for PEB %d", pnum);
1233 goto fail;
1234 }
1235
1236 return err;
1237
1238 fail:
1239 ubi_err("paranoid check failed for PEB %d", pnum);
1240 ubi_dbg_dump_vid_hdr(vid_hdr);
1241 ubi_dbg_dump_stack();
1242 return -EINVAL;
1243
1244 }
1245
1246 /**
1247 * paranoid_check_peb_vid_hdr - check volume identifier header.
1248 * @ubi: UBI device description object
1249 * @pnum: the physical eraseblock number to check
1250 *
1251 * This function returns zero if the volume identifier header is all right,
1252 * and a negative error code if not or if an error occurred.
1253 */
1254 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1255 {
1256 int err;
1257 uint32_t crc, hdr_crc;
1258 struct ubi_vid_hdr *vid_hdr;
1259 void *p;
1260
1261 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1262 if (!vid_hdr)
1263 return -ENOMEM;
1264
1265 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1266 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1267 ubi->vid_hdr_alsize);
1268 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1269 goto exit;
1270
1271 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1272 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1273 if (hdr_crc != crc) {
1274 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1275 "read %#08x", pnum, crc, hdr_crc);
1276 ubi_err("paranoid check failed for PEB %d", pnum);
1277 ubi_dbg_dump_vid_hdr(vid_hdr);
1278 ubi_dbg_dump_stack();
1279 err = -EINVAL;
1280 goto exit;
1281 }
1282
1283 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1284
1285 exit:
1286 ubi_free_vid_hdr(ubi, vid_hdr);
1287 return err;
1288 }
1289
1290 /**
1291 * ubi_dbg_check_write - make sure write succeeded.
1292 * @ubi: UBI device description object
1293 * @buf: buffer with data which were written
1294 * @pnum: physical eraseblock number the data were written to
1295 * @offset: offset within the physical eraseblock the data were written to
1296 * @len: how many bytes were written
1297 *
1298 * This functions reads data which were recently written and compares it with
1299 * the original data buffer - the data have to match. Returns zero if the data
1300 * match and a negative error code if not or in case of failure.
1301 */
1302 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1303 int offset, int len)
1304 {
1305 int err, i;
1306
1307 mutex_lock(&ubi->dbg_buf_mutex);
1308 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1309 if (err)
1310 goto out_unlock;
1311
1312 for (i = 0; i < len; i++) {
1313 uint8_t c = ((uint8_t *)buf)[i];
1314 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1315 int dump_len;
1316
1317 if (c == c1)
1318 continue;
1319
1320 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1321 pnum, offset, len);
1322 ubi_msg("data differ at position %d", i);
1323 dump_len = max_t(int, 128, len - i);
1324 ubi_msg("hex dump of the original buffer from %d to %d",
1325 i, i + dump_len);
1326 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1327 buf + i, dump_len, 1);
1328 ubi_msg("hex dump of the read buffer from %d to %d",
1329 i, i + dump_len);
1330 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1331 ubi->dbg_peb_buf + i, dump_len, 1);
1332 ubi_dbg_dump_stack();
1333 err = -EINVAL;
1334 goto out_unlock;
1335 }
1336 mutex_unlock(&ubi->dbg_buf_mutex);
1337
1338 return 0;
1339
1340 out_unlock:
1341 mutex_unlock(&ubi->dbg_buf_mutex);
1342 return err;
1343 }
1344
1345 /**
1346 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1347 * @ubi: UBI device description object
1348 * @pnum: the physical eraseblock number to check
1349 * @offset: the starting offset within the physical eraseblock to check
1350 * @len: the length of the region to check
1351 *
1352 * This function returns zero if only 0xFF bytes are present at offset
1353 * @offset of the physical eraseblock @pnum, and a negative error code if not
1354 * or if an error occurred.
1355 */
1356 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1357 {
1358 size_t read;
1359 int err;
1360 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1361
1362 mutex_lock(&ubi->dbg_buf_mutex);
1363 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1364 if (err && err != -EUCLEAN) {
1365 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1366 "read %zd bytes", err, len, pnum, offset, read);
1367 goto error;
1368 }
1369
1370 err = ubi_check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1371 if (err == 0) {
1372 ubi_err("flash region at PEB %d:%d, length %d does not "
1373 "contain all 0xFF bytes", pnum, offset, len);
1374 goto fail;
1375 }
1376 mutex_unlock(&ubi->dbg_buf_mutex);
1377
1378 return 0;
1379
1380 fail:
1381 ubi_err("paranoid check failed for PEB %d", pnum);
1382 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1383 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1384 ubi->dbg_peb_buf, len, 1);
1385 err = -EINVAL;
1386 error:
1387 ubi_dbg_dump_stack();
1388 mutex_unlock(&ubi->dbg_buf_mutex);
1389 return err;
1390 }
1391
1392 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
This page took 0.058663 seconds and 6 git commands to generate.