UBI: rename IO error code
[deliverable/linux.git] / drivers / mtd / ubi / io.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * UBI input/output sub-system.
24 *
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
28 *
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
32 *
33 * Some words about how the eraseblock headers are stored.
34 *
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
44 *
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
51 *
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
58 *
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
62 *
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
65 *
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
70 *
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
76 *
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
81 *
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
87 */
88
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
92 #include "ubi.h"
93
94 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
95 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
97 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
98 const struct ubi_ec_hdr *ec_hdr);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
100 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
101 const struct ubi_vid_hdr *vid_hdr);
102 #else
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
108 #endif
109
110 /**
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
117 *
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
120 * possible:
121 *
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
131 */
132 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
133 int len)
134 {
135 int err, retries = 0;
136 size_t read;
137 loff_t addr;
138
139 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140
141 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
142 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
143 ubi_assert(len > 0);
144
145 err = paranoid_check_not_bad(ubi, pnum);
146 if (err)
147 return err;
148
149 addr = (loff_t)pnum * ubi->peb_size + offset;
150 retry:
151 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
152 if (err) {
153 const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
154
155 if (err == -EUCLEAN) {
156 /*
157 * -EUCLEAN is reported if there was a bit-flip which
158 * was corrected, so this is harmless.
159 *
160 * We do not report about it here unless debugging is
161 * enabled. A corresponding message will be printed
162 * later, when it is has been scrubbed.
163 */
164 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
165 ubi_assert(len == read);
166 return UBI_IO_BITFLIPS;
167 }
168
169 if (read != len && retries++ < UBI_IO_RETRIES) {
170 dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
171 " read only %zd bytes, retry",
172 err, errstr, len, pnum, offset, read);
173 yield();
174 goto retry;
175 }
176
177 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
178 "read %zd bytes", err, errstr, len, pnum, offset, read);
179 ubi_dbg_dump_stack();
180
181 /*
182 * The driver should never return -EBADMSG if it failed to read
183 * all the requested data. But some buggy drivers might do
184 * this, so we change it to -EIO.
185 */
186 if (read != len && err == -EBADMSG) {
187 ubi_assert(0);
188 err = -EIO;
189 }
190 } else {
191 ubi_assert(len == read);
192
193 if (ubi_dbg_is_bitflip()) {
194 dbg_gen("bit-flip (emulated)");
195 err = UBI_IO_BITFLIPS;
196 }
197 }
198
199 return err;
200 }
201
202 /**
203 * ubi_io_write - write data to a physical eraseblock.
204 * @ubi: UBI device description object
205 * @buf: buffer with the data to write
206 * @pnum: physical eraseblock number to write to
207 * @offset: offset within the physical eraseblock where to write
208 * @len: how many bytes to write
209 *
210 * This function writes @len bytes of data from buffer @buf to offset @offset
211 * of physical eraseblock @pnum. If all the data were successfully written,
212 * zero is returned. If an error occurred, this function returns a negative
213 * error code. If %-EIO is returned, the physical eraseblock most probably went
214 * bad.
215 *
216 * Note, in case of an error, it is possible that something was still written
217 * to the flash media, but may be some garbage.
218 */
219 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
220 int len)
221 {
222 int err;
223 size_t written;
224 loff_t addr;
225
226 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
227
228 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
229 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
230 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
231 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
232
233 if (ubi->ro_mode) {
234 ubi_err("read-only mode");
235 return -EROFS;
236 }
237
238 /* The below has to be compiled out if paranoid checks are disabled */
239
240 err = paranoid_check_not_bad(ubi, pnum);
241 if (err)
242 return err;
243
244 /* The area we are writing to has to contain all 0xFF bytes */
245 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
246 if (err)
247 return err;
248
249 if (offset >= ubi->leb_start) {
250 /*
251 * We write to the data area of the physical eraseblock. Make
252 * sure it has valid EC and VID headers.
253 */
254 err = paranoid_check_peb_ec_hdr(ubi, pnum);
255 if (err)
256 return err;
257 err = paranoid_check_peb_vid_hdr(ubi, pnum);
258 if (err)
259 return err;
260 }
261
262 if (ubi_dbg_is_write_failure()) {
263 dbg_err("cannot write %d bytes to PEB %d:%d "
264 "(emulated)", len, pnum, offset);
265 ubi_dbg_dump_stack();
266 return -EIO;
267 }
268
269 addr = (loff_t)pnum * ubi->peb_size + offset;
270 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
271 if (err) {
272 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
273 "%zd bytes", err, len, pnum, offset, written);
274 ubi_dbg_dump_stack();
275 ubi_dbg_dump_flash(ubi, pnum, offset, len);
276 } else
277 ubi_assert(written == len);
278
279 if (!err) {
280 err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
281 if (err)
282 return err;
283
284 /*
285 * Since we always write sequentially, the rest of the PEB has
286 * to contain only 0xFF bytes.
287 */
288 offset += len;
289 len = ubi->peb_size - offset;
290 if (len)
291 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
292 }
293
294 return err;
295 }
296
297 /**
298 * erase_callback - MTD erasure call-back.
299 * @ei: MTD erase information object.
300 *
301 * Note, even though MTD erase interface is asynchronous, all the current
302 * implementations are synchronous anyway.
303 */
304 static void erase_callback(struct erase_info *ei)
305 {
306 wake_up_interruptible((wait_queue_head_t *)ei->priv);
307 }
308
309 /**
310 * do_sync_erase - synchronously erase a physical eraseblock.
311 * @ubi: UBI device description object
312 * @pnum: the physical eraseblock number to erase
313 *
314 * This function synchronously erases physical eraseblock @pnum and returns
315 * zero in case of success and a negative error code in case of failure. If
316 * %-EIO is returned, the physical eraseblock most probably went bad.
317 */
318 static int do_sync_erase(struct ubi_device *ubi, int pnum)
319 {
320 int err, retries = 0;
321 struct erase_info ei;
322 wait_queue_head_t wq;
323
324 dbg_io("erase PEB %d", pnum);
325
326 retry:
327 init_waitqueue_head(&wq);
328 memset(&ei, 0, sizeof(struct erase_info));
329
330 ei.mtd = ubi->mtd;
331 ei.addr = (loff_t)pnum * ubi->peb_size;
332 ei.len = ubi->peb_size;
333 ei.callback = erase_callback;
334 ei.priv = (unsigned long)&wq;
335
336 err = ubi->mtd->erase(ubi->mtd, &ei);
337 if (err) {
338 if (retries++ < UBI_IO_RETRIES) {
339 dbg_io("error %d while erasing PEB %d, retry",
340 err, pnum);
341 yield();
342 goto retry;
343 }
344 ubi_err("cannot erase PEB %d, error %d", pnum, err);
345 ubi_dbg_dump_stack();
346 return err;
347 }
348
349 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
350 ei.state == MTD_ERASE_FAILED);
351 if (err) {
352 ubi_err("interrupted PEB %d erasure", pnum);
353 return -EINTR;
354 }
355
356 if (ei.state == MTD_ERASE_FAILED) {
357 if (retries++ < UBI_IO_RETRIES) {
358 dbg_io("error while erasing PEB %d, retry", pnum);
359 yield();
360 goto retry;
361 }
362 ubi_err("cannot erase PEB %d", pnum);
363 ubi_dbg_dump_stack();
364 return -EIO;
365 }
366
367 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
368 if (err)
369 return err;
370
371 if (ubi_dbg_is_erase_failure() && !err) {
372 dbg_err("cannot erase PEB %d (emulated)", pnum);
373 return -EIO;
374 }
375
376 return 0;
377 }
378
379 /**
380 * check_pattern - check if buffer contains only a certain byte pattern.
381 * @buf: buffer to check
382 * @patt: the pattern to check
383 * @size: buffer size in bytes
384 *
385 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
386 * something else was also found.
387 */
388 static int check_pattern(const void *buf, uint8_t patt, int size)
389 {
390 int i;
391
392 for (i = 0; i < size; i++)
393 if (((const uint8_t *)buf)[i] != patt)
394 return 0;
395 return 1;
396 }
397
398 /* Patterns to write to a physical eraseblock when torturing it */
399 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
400
401 /**
402 * torture_peb - test a supposedly bad physical eraseblock.
403 * @ubi: UBI device description object
404 * @pnum: the physical eraseblock number to test
405 *
406 * This function returns %-EIO if the physical eraseblock did not pass the
407 * test, a positive number of erase operations done if the test was
408 * successfully passed, and other negative error codes in case of other errors.
409 */
410 static int torture_peb(struct ubi_device *ubi, int pnum)
411 {
412 int err, i, patt_count;
413
414 ubi_msg("run torture test for PEB %d", pnum);
415 patt_count = ARRAY_SIZE(patterns);
416 ubi_assert(patt_count > 0);
417
418 mutex_lock(&ubi->buf_mutex);
419 for (i = 0; i < patt_count; i++) {
420 err = do_sync_erase(ubi, pnum);
421 if (err)
422 goto out;
423
424 /* Make sure the PEB contains only 0xFF bytes */
425 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
426 if (err)
427 goto out;
428
429 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
430 if (err == 0) {
431 ubi_err("erased PEB %d, but a non-0xFF byte found",
432 pnum);
433 err = -EIO;
434 goto out;
435 }
436
437 /* Write a pattern and check it */
438 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
439 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
440 if (err)
441 goto out;
442
443 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
444 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
445 if (err)
446 goto out;
447
448 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
449 if (err == 0) {
450 ubi_err("pattern %x checking failed for PEB %d",
451 patterns[i], pnum);
452 err = -EIO;
453 goto out;
454 }
455 }
456
457 err = patt_count;
458 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
459
460 out:
461 mutex_unlock(&ubi->buf_mutex);
462 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
463 /*
464 * If a bit-flip or data integrity error was detected, the test
465 * has not passed because it happened on a freshly erased
466 * physical eraseblock which means something is wrong with it.
467 */
468 ubi_err("read problems on freshly erased PEB %d, must be bad",
469 pnum);
470 err = -EIO;
471 }
472 return err;
473 }
474
475 /**
476 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
477 * @ubi: UBI device description object
478 * @pnum: physical eraseblock number to prepare
479 *
480 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
481 * algorithm: the PEB is first filled with zeroes, then it is erased. And
482 * filling with zeroes starts from the end of the PEB. This was observed with
483 * Spansion S29GL512N NOR flash.
484 *
485 * This means that in case of a power cut we may end up with intact data at the
486 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
487 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
488 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
489 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
490 *
491 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
492 * magic numbers in order to invalidate them and prevent the failures. Returns
493 * zero in case of success and a negative error code in case of failure.
494 */
495 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
496 {
497 int err, err1;
498 size_t written;
499 loff_t addr;
500 uint32_t data = 0;
501 struct ubi_vid_hdr vid_hdr;
502
503 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
504 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
505 if (!err) {
506 addr -= ubi->vid_hdr_aloffset;
507 err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
508 (void *)&data);
509 if (!err)
510 return 0;
511 }
512
513 /*
514 * We failed to write to the media. This was observed with Spansion
515 * S29GL512N NOR flash. Most probably the eraseblock erasure was
516 * interrupted at a very inappropriate moment, so it became unwritable.
517 * In this case we probably anyway have garbage in this PEB.
518 */
519 err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
520 if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR)
521 /*
522 * The VID header is corrupted, so we can safely erase this
523 * PEB and not afraid that it will be treated as a valid PEB in
524 * case of an unclean reboot.
525 */
526 return 0;
527
528 /*
529 * The PEB contains a valid VID header, but we cannot invalidate it.
530 * Supposedly the flash media or the driver is screwed up, so return an
531 * error.
532 */
533 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
534 pnum, err, err1);
535 ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
536 return -EIO;
537 }
538
539 /**
540 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
541 * @ubi: UBI device description object
542 * @pnum: physical eraseblock number to erase
543 * @torture: if this physical eraseblock has to be tortured
544 *
545 * This function synchronously erases physical eraseblock @pnum. If @torture
546 * flag is not zero, the physical eraseblock is checked by means of writing
547 * different patterns to it and reading them back. If the torturing is enabled,
548 * the physical eraseblock is erased more than once.
549 *
550 * This function returns the number of erasures made in case of success, %-EIO
551 * if the erasure failed or the torturing test failed, and other negative error
552 * codes in case of other errors. Note, %-EIO means that the physical
553 * eraseblock is bad.
554 */
555 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
556 {
557 int err, ret = 0;
558
559 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
560
561 err = paranoid_check_not_bad(ubi, pnum);
562 if (err != 0)
563 return err;
564
565 if (ubi->ro_mode) {
566 ubi_err("read-only mode");
567 return -EROFS;
568 }
569
570 if (ubi->nor_flash) {
571 err = nor_erase_prepare(ubi, pnum);
572 if (err)
573 return err;
574 }
575
576 if (torture) {
577 ret = torture_peb(ubi, pnum);
578 if (ret < 0)
579 return ret;
580 }
581
582 err = do_sync_erase(ubi, pnum);
583 if (err)
584 return err;
585
586 return ret + 1;
587 }
588
589 /**
590 * ubi_io_is_bad - check if a physical eraseblock is bad.
591 * @ubi: UBI device description object
592 * @pnum: the physical eraseblock number to check
593 *
594 * This function returns a positive number if the physical eraseblock is bad,
595 * zero if not, and a negative error code if an error occurred.
596 */
597 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
598 {
599 struct mtd_info *mtd = ubi->mtd;
600
601 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
602
603 if (ubi->bad_allowed) {
604 int ret;
605
606 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
607 if (ret < 0)
608 ubi_err("error %d while checking if PEB %d is bad",
609 ret, pnum);
610 else if (ret)
611 dbg_io("PEB %d is bad", pnum);
612 return ret;
613 }
614
615 return 0;
616 }
617
618 /**
619 * ubi_io_mark_bad - mark a physical eraseblock as bad.
620 * @ubi: UBI device description object
621 * @pnum: the physical eraseblock number to mark
622 *
623 * This function returns zero in case of success and a negative error code in
624 * case of failure.
625 */
626 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
627 {
628 int err;
629 struct mtd_info *mtd = ubi->mtd;
630
631 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
632
633 if (ubi->ro_mode) {
634 ubi_err("read-only mode");
635 return -EROFS;
636 }
637
638 if (!ubi->bad_allowed)
639 return 0;
640
641 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
642 if (err)
643 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
644 return err;
645 }
646
647 /**
648 * validate_ec_hdr - validate an erase counter header.
649 * @ubi: UBI device description object
650 * @ec_hdr: the erase counter header to check
651 *
652 * This function returns zero if the erase counter header is OK, and %1 if
653 * not.
654 */
655 static int validate_ec_hdr(const struct ubi_device *ubi,
656 const struct ubi_ec_hdr *ec_hdr)
657 {
658 long long ec;
659 int vid_hdr_offset, leb_start;
660
661 ec = be64_to_cpu(ec_hdr->ec);
662 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
663 leb_start = be32_to_cpu(ec_hdr->data_offset);
664
665 if (ec_hdr->version != UBI_VERSION) {
666 ubi_err("node with incompatible UBI version found: "
667 "this UBI version is %d, image version is %d",
668 UBI_VERSION, (int)ec_hdr->version);
669 goto bad;
670 }
671
672 if (vid_hdr_offset != ubi->vid_hdr_offset) {
673 ubi_err("bad VID header offset %d, expected %d",
674 vid_hdr_offset, ubi->vid_hdr_offset);
675 goto bad;
676 }
677
678 if (leb_start != ubi->leb_start) {
679 ubi_err("bad data offset %d, expected %d",
680 leb_start, ubi->leb_start);
681 goto bad;
682 }
683
684 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
685 ubi_err("bad erase counter %lld", ec);
686 goto bad;
687 }
688
689 return 0;
690
691 bad:
692 ubi_err("bad EC header");
693 ubi_dbg_dump_ec_hdr(ec_hdr);
694 ubi_dbg_dump_stack();
695 return 1;
696 }
697
698 /**
699 * ubi_io_read_ec_hdr - read and check an erase counter header.
700 * @ubi: UBI device description object
701 * @pnum: physical eraseblock to read from
702 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
703 * header
704 * @verbose: be verbose if the header is corrupted or was not found
705 *
706 * This function reads erase counter header from physical eraseblock @pnum and
707 * stores it in @ec_hdr. This function also checks CRC checksum of the read
708 * erase counter header. The following codes may be returned:
709 *
710 * o %0 if the CRC checksum is correct and the header was successfully read;
711 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
712 * and corrected by the flash driver; this is harmless but may indicate that
713 * this eraseblock may become bad soon (but may be not);
714 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
715 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
716 * a data integrity error (uncorrectable ECC error in case of NAND);
717 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
718 * o a negative error code in case of failure.
719 */
720 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
721 struct ubi_ec_hdr *ec_hdr, int verbose)
722 {
723 int err, read_err = 0;
724 uint32_t crc, magic, hdr_crc;
725
726 dbg_io("read EC header from PEB %d", pnum);
727 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
728
729 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
730 if (err) {
731 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
732 return err;
733
734 /*
735 * We read all the data, but either a correctable bit-flip
736 * occurred, or MTD reported a data integrity error
737 * (uncorrectable ECC error in case of NAND). The former is
738 * harmless, the later may mean that the read data is
739 * corrupted. But we have a CRC check-sum and we will detect
740 * this. If the EC header is still OK, we just report this as
741 * there was a bit-flip, to force scrubbing.
742 */
743 if (err == -EBADMSG)
744 read_err = UBI_IO_BAD_HDR_EBADMSG;
745 }
746
747 magic = be32_to_cpu(ec_hdr->magic);
748 if (magic != UBI_EC_HDR_MAGIC) {
749 if (read_err)
750 return read_err;
751
752 /*
753 * The magic field is wrong. Let's check if we have read all
754 * 0xFF. If yes, this physical eraseblock is assumed to be
755 * empty.
756 */
757 if (check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
758 /* The physical eraseblock is supposedly empty */
759 if (verbose)
760 ubi_warn("no EC header found at PEB %d, "
761 "only 0xFF bytes", pnum);
762 else if (UBI_IO_DEBUG)
763 dbg_msg("no EC header found at PEB %d, "
764 "only 0xFF bytes", pnum);
765 return UBI_IO_PEB_EMPTY;
766 }
767
768 /*
769 * This is not a valid erase counter header, and these are not
770 * 0xFF bytes. Report that the header is corrupted.
771 */
772 if (verbose) {
773 ubi_warn("bad magic number at PEB %d: %08x instead of "
774 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
775 ubi_dbg_dump_ec_hdr(ec_hdr);
776 } else if (UBI_IO_DEBUG)
777 dbg_msg("bad magic number at PEB %d: %08x instead of "
778 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
779 return UBI_IO_BAD_HDR;
780 }
781
782 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
783 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
784
785 if (hdr_crc != crc) {
786 if (verbose) {
787 ubi_warn("bad EC header CRC at PEB %d, calculated "
788 "%#08x, read %#08x", pnum, crc, hdr_crc);
789 ubi_dbg_dump_ec_hdr(ec_hdr);
790 } else if (UBI_IO_DEBUG)
791 dbg_msg("bad EC header CRC at PEB %d, calculated "
792 "%#08x, read %#08x", pnum, crc, hdr_crc);
793 return read_err ?: UBI_IO_BAD_HDR;
794 }
795
796 /* And of course validate what has just been read from the media */
797 err = validate_ec_hdr(ubi, ec_hdr);
798 if (err) {
799 ubi_err("validation failed for PEB %d", pnum);
800 return -EINVAL;
801 }
802
803 /*
804 * If there was %-EBADMSG, but the header CRC is still OK, report about
805 * a bit-flip to force scrubbing on this PEB.
806 */
807 return read_err ? UBI_IO_BITFLIPS : 0;
808 }
809
810 /**
811 * ubi_io_write_ec_hdr - write an erase counter header.
812 * @ubi: UBI device description object
813 * @pnum: physical eraseblock to write to
814 * @ec_hdr: the erase counter header to write
815 *
816 * This function writes erase counter header described by @ec_hdr to physical
817 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
818 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
819 * field.
820 *
821 * This function returns zero in case of success and a negative error code in
822 * case of failure. If %-EIO is returned, the physical eraseblock most probably
823 * went bad.
824 */
825 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
826 struct ubi_ec_hdr *ec_hdr)
827 {
828 int err;
829 uint32_t crc;
830
831 dbg_io("write EC header to PEB %d", pnum);
832 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
833
834 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
835 ec_hdr->version = UBI_VERSION;
836 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
837 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
838 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
839 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
840 ec_hdr->hdr_crc = cpu_to_be32(crc);
841
842 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
843 if (err)
844 return err;
845
846 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
847 return err;
848 }
849
850 /**
851 * validate_vid_hdr - validate a volume identifier header.
852 * @ubi: UBI device description object
853 * @vid_hdr: the volume identifier header to check
854 *
855 * This function checks that data stored in the volume identifier header
856 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
857 */
858 static int validate_vid_hdr(const struct ubi_device *ubi,
859 const struct ubi_vid_hdr *vid_hdr)
860 {
861 int vol_type = vid_hdr->vol_type;
862 int copy_flag = vid_hdr->copy_flag;
863 int vol_id = be32_to_cpu(vid_hdr->vol_id);
864 int lnum = be32_to_cpu(vid_hdr->lnum);
865 int compat = vid_hdr->compat;
866 int data_size = be32_to_cpu(vid_hdr->data_size);
867 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
868 int data_pad = be32_to_cpu(vid_hdr->data_pad);
869 int data_crc = be32_to_cpu(vid_hdr->data_crc);
870 int usable_leb_size = ubi->leb_size - data_pad;
871
872 if (copy_flag != 0 && copy_flag != 1) {
873 dbg_err("bad copy_flag");
874 goto bad;
875 }
876
877 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
878 data_pad < 0) {
879 dbg_err("negative values");
880 goto bad;
881 }
882
883 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
884 dbg_err("bad vol_id");
885 goto bad;
886 }
887
888 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
889 dbg_err("bad compat");
890 goto bad;
891 }
892
893 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
894 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
895 compat != UBI_COMPAT_REJECT) {
896 dbg_err("bad compat");
897 goto bad;
898 }
899
900 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
901 dbg_err("bad vol_type");
902 goto bad;
903 }
904
905 if (data_pad >= ubi->leb_size / 2) {
906 dbg_err("bad data_pad");
907 goto bad;
908 }
909
910 if (vol_type == UBI_VID_STATIC) {
911 /*
912 * Although from high-level point of view static volumes may
913 * contain zero bytes of data, but no VID headers can contain
914 * zero at these fields, because they empty volumes do not have
915 * mapped logical eraseblocks.
916 */
917 if (used_ebs == 0) {
918 dbg_err("zero used_ebs");
919 goto bad;
920 }
921 if (data_size == 0) {
922 dbg_err("zero data_size");
923 goto bad;
924 }
925 if (lnum < used_ebs - 1) {
926 if (data_size != usable_leb_size) {
927 dbg_err("bad data_size");
928 goto bad;
929 }
930 } else if (lnum == used_ebs - 1) {
931 if (data_size == 0) {
932 dbg_err("bad data_size at last LEB");
933 goto bad;
934 }
935 } else {
936 dbg_err("too high lnum");
937 goto bad;
938 }
939 } else {
940 if (copy_flag == 0) {
941 if (data_crc != 0) {
942 dbg_err("non-zero data CRC");
943 goto bad;
944 }
945 if (data_size != 0) {
946 dbg_err("non-zero data_size");
947 goto bad;
948 }
949 } else {
950 if (data_size == 0) {
951 dbg_err("zero data_size of copy");
952 goto bad;
953 }
954 }
955 if (used_ebs != 0) {
956 dbg_err("bad used_ebs");
957 goto bad;
958 }
959 }
960
961 return 0;
962
963 bad:
964 ubi_err("bad VID header");
965 ubi_dbg_dump_vid_hdr(vid_hdr);
966 ubi_dbg_dump_stack();
967 return 1;
968 }
969
970 /**
971 * ubi_io_read_vid_hdr - read and check a volume identifier header.
972 * @ubi: UBI device description object
973 * @pnum: physical eraseblock number to read from
974 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
975 * identifier header
976 * @verbose: be verbose if the header is corrupted or wasn't found
977 *
978 * This function reads the volume identifier header from physical eraseblock
979 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
980 * volume identifier header. The following codes may be returned:
981 *
982 * o %0 if the CRC checksum is correct and the header was successfully read;
983 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
984 * and corrected by the flash driver; this is harmless but may indicate that
985 * this eraseblock may become bad soon;
986 * o %UBI_IO_BAD_HDR if the volume identifier header is corrupted (a CRC
987 * error detected);
988 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
989 * a data integrity error (uncorrectable ECC error in case of NAND);
990 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
991 * header there);
992 * o a negative error code in case of failure.
993 */
994 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
995 struct ubi_vid_hdr *vid_hdr, int verbose)
996 {
997 int err, read_err = 0;
998 uint32_t crc, magic, hdr_crc;
999 void *p;
1000
1001 dbg_io("read VID header from PEB %d", pnum);
1002 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1003
1004 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1005 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1006 ubi->vid_hdr_alsize);
1007 if (err) {
1008 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
1009 return err;
1010
1011 /*
1012 * We read all the data, but either a correctable bit-flip
1013 * occurred, or MTD reported a data integrity error
1014 * (uncorrectable ECC error in case of NAND). The former is
1015 * harmless, the later may mean that the read data is
1016 * corrupted. But we have a CRC check-sum and we will detect
1017 * this. If the VID header is still OK, we just report this as
1018 * there was a bit-flip, to force scrubbing.
1019 */
1020 if (err == -EBADMSG)
1021 read_err = UBI_IO_BAD_HDR_EBADMSG;
1022 }
1023
1024 magic = be32_to_cpu(vid_hdr->magic);
1025 if (magic != UBI_VID_HDR_MAGIC) {
1026 if (read_err)
1027 return read_err;
1028
1029 /*
1030 * If we have read all 0xFF bytes, the VID header probably does
1031 * not exist and the physical eraseblock is assumed to be free.
1032 */
1033 if (check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
1034 /* The physical eraseblock is supposedly free */
1035 if (verbose)
1036 ubi_warn("no VID header found at PEB %d, "
1037 "only 0xFF bytes", pnum);
1038 else if (UBI_IO_DEBUG)
1039 dbg_msg("no VID header found at PEB %d, "
1040 "only 0xFF bytes", pnum);
1041 return UBI_IO_PEB_FREE;
1042 }
1043
1044 /*
1045 * This is not a valid VID header, and these are not 0xFF
1046 * bytes. Report that the header is corrupted.
1047 */
1048 if (verbose) {
1049 ubi_warn("bad magic number at PEB %d: %08x instead of "
1050 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1051 ubi_dbg_dump_vid_hdr(vid_hdr);
1052 } else if (UBI_IO_DEBUG)
1053 dbg_msg("bad magic number at PEB %d: %08x instead of "
1054 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1055 return UBI_IO_BAD_HDR;
1056 }
1057
1058 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1059 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1060
1061 if (hdr_crc != crc) {
1062 if (verbose) {
1063 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1064 "read %#08x", pnum, crc, hdr_crc);
1065 ubi_dbg_dump_vid_hdr(vid_hdr);
1066 } else if (UBI_IO_DEBUG)
1067 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1068 "read %#08x", pnum, crc, hdr_crc);
1069 return read_err ?: UBI_IO_BAD_HDR;
1070 }
1071
1072 /* Validate the VID header that we have just read */
1073 err = validate_vid_hdr(ubi, vid_hdr);
1074 if (err) {
1075 ubi_err("validation failed for PEB %d", pnum);
1076 return -EINVAL;
1077 }
1078
1079 /*
1080 * If there was a read error (%-EBADMSG), but the header CRC is still
1081 * OK, report about a bit-flip to force scrubbing on this PEB.
1082 */
1083 return read_err ? UBI_IO_BITFLIPS : 0;
1084 }
1085
1086 /**
1087 * ubi_io_write_vid_hdr - write a volume identifier header.
1088 * @ubi: UBI device description object
1089 * @pnum: the physical eraseblock number to write to
1090 * @vid_hdr: the volume identifier header to write
1091 *
1092 * This function writes the volume identifier header described by @vid_hdr to
1093 * physical eraseblock @pnum. This function automatically fills the
1094 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1095 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1096 *
1097 * This function returns zero in case of success and a negative error code in
1098 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1099 * bad.
1100 */
1101 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1102 struct ubi_vid_hdr *vid_hdr)
1103 {
1104 int err;
1105 uint32_t crc;
1106 void *p;
1107
1108 dbg_io("write VID header to PEB %d", pnum);
1109 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1110
1111 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1112 if (err)
1113 return err;
1114
1115 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1116 vid_hdr->version = UBI_VERSION;
1117 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1118 vid_hdr->hdr_crc = cpu_to_be32(crc);
1119
1120 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1121 if (err)
1122 return err;
1123
1124 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1125 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1126 ubi->vid_hdr_alsize);
1127 return err;
1128 }
1129
1130 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1131
1132 /**
1133 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1134 * @ubi: UBI device description object
1135 * @pnum: physical eraseblock number to check
1136 *
1137 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1138 * it is bad and a negative error code if an error occurred.
1139 */
1140 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1141 {
1142 int err;
1143
1144 err = ubi_io_is_bad(ubi, pnum);
1145 if (!err)
1146 return err;
1147
1148 ubi_err("paranoid check failed for PEB %d", pnum);
1149 ubi_dbg_dump_stack();
1150 return err > 0 ? -EINVAL : err;
1151 }
1152
1153 /**
1154 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1155 * @ubi: UBI device description object
1156 * @pnum: physical eraseblock number the erase counter header belongs to
1157 * @ec_hdr: the erase counter header to check
1158 *
1159 * This function returns zero if the erase counter header contains valid
1160 * values, and %-EINVAL if not.
1161 */
1162 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1163 const struct ubi_ec_hdr *ec_hdr)
1164 {
1165 int err;
1166 uint32_t magic;
1167
1168 magic = be32_to_cpu(ec_hdr->magic);
1169 if (magic != UBI_EC_HDR_MAGIC) {
1170 ubi_err("bad magic %#08x, must be %#08x",
1171 magic, UBI_EC_HDR_MAGIC);
1172 goto fail;
1173 }
1174
1175 err = validate_ec_hdr(ubi, ec_hdr);
1176 if (err) {
1177 ubi_err("paranoid check failed for PEB %d", pnum);
1178 goto fail;
1179 }
1180
1181 return 0;
1182
1183 fail:
1184 ubi_dbg_dump_ec_hdr(ec_hdr);
1185 ubi_dbg_dump_stack();
1186 return -EINVAL;
1187 }
1188
1189 /**
1190 * paranoid_check_peb_ec_hdr - check erase counter header.
1191 * @ubi: UBI device description object
1192 * @pnum: the physical eraseblock number to check
1193 *
1194 * This function returns zero if the erase counter header is all right and and
1195 * a negative error code if not or if an error occurred.
1196 */
1197 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1198 {
1199 int err;
1200 uint32_t crc, hdr_crc;
1201 struct ubi_ec_hdr *ec_hdr;
1202
1203 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1204 if (!ec_hdr)
1205 return -ENOMEM;
1206
1207 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1208 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1209 goto exit;
1210
1211 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1212 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1213 if (hdr_crc != crc) {
1214 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1215 ubi_err("paranoid check failed for PEB %d", pnum);
1216 ubi_dbg_dump_ec_hdr(ec_hdr);
1217 ubi_dbg_dump_stack();
1218 err = -EINVAL;
1219 goto exit;
1220 }
1221
1222 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1223
1224 exit:
1225 kfree(ec_hdr);
1226 return err;
1227 }
1228
1229 /**
1230 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1231 * @ubi: UBI device description object
1232 * @pnum: physical eraseblock number the volume identifier header belongs to
1233 * @vid_hdr: the volume identifier header to check
1234 *
1235 * This function returns zero if the volume identifier header is all right, and
1236 * %-EINVAL if not.
1237 */
1238 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1239 const struct ubi_vid_hdr *vid_hdr)
1240 {
1241 int err;
1242 uint32_t magic;
1243
1244 magic = be32_to_cpu(vid_hdr->magic);
1245 if (magic != UBI_VID_HDR_MAGIC) {
1246 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1247 magic, pnum, UBI_VID_HDR_MAGIC);
1248 goto fail;
1249 }
1250
1251 err = validate_vid_hdr(ubi, vid_hdr);
1252 if (err) {
1253 ubi_err("paranoid check failed for PEB %d", pnum);
1254 goto fail;
1255 }
1256
1257 return err;
1258
1259 fail:
1260 ubi_err("paranoid check failed for PEB %d", pnum);
1261 ubi_dbg_dump_vid_hdr(vid_hdr);
1262 ubi_dbg_dump_stack();
1263 return -EINVAL;
1264
1265 }
1266
1267 /**
1268 * paranoid_check_peb_vid_hdr - check volume identifier header.
1269 * @ubi: UBI device description object
1270 * @pnum: the physical eraseblock number to check
1271 *
1272 * This function returns zero if the volume identifier header is all right,
1273 * and a negative error code if not or if an error occurred.
1274 */
1275 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1276 {
1277 int err;
1278 uint32_t crc, hdr_crc;
1279 struct ubi_vid_hdr *vid_hdr;
1280 void *p;
1281
1282 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1283 if (!vid_hdr)
1284 return -ENOMEM;
1285
1286 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1287 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1288 ubi->vid_hdr_alsize);
1289 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1290 goto exit;
1291
1292 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1293 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1294 if (hdr_crc != crc) {
1295 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1296 "read %#08x", pnum, crc, hdr_crc);
1297 ubi_err("paranoid check failed for PEB %d", pnum);
1298 ubi_dbg_dump_vid_hdr(vid_hdr);
1299 ubi_dbg_dump_stack();
1300 err = -EINVAL;
1301 goto exit;
1302 }
1303
1304 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1305
1306 exit:
1307 ubi_free_vid_hdr(ubi, vid_hdr);
1308 return err;
1309 }
1310
1311 /**
1312 * ubi_dbg_check_write - make sure write succeeded.
1313 * @ubi: UBI device description object
1314 * @buf: buffer with data which were written
1315 * @pnum: physical eraseblock number the data were written to
1316 * @offset: offset within the physical eraseblock the data were written to
1317 * @len: how many bytes were written
1318 *
1319 * This functions reads data which were recently written and compares it with
1320 * the original data buffer - the data have to match. Returns zero if the data
1321 * match and a negative error code if not or in case of failure.
1322 */
1323 int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1324 int offset, int len)
1325 {
1326 int err, i;
1327
1328 mutex_lock(&ubi->dbg_buf_mutex);
1329 err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
1330 if (err)
1331 goto out_unlock;
1332
1333 for (i = 0; i < len; i++) {
1334 uint8_t c = ((uint8_t *)buf)[i];
1335 uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
1336 int dump_len;
1337
1338 if (c == c1)
1339 continue;
1340
1341 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1342 pnum, offset, len);
1343 ubi_msg("data differ at position %d", i);
1344 dump_len = max_t(int, 128, len - i);
1345 ubi_msg("hex dump of the original buffer from %d to %d",
1346 i, i + dump_len);
1347 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1348 buf + i, dump_len, 1);
1349 ubi_msg("hex dump of the read buffer from %d to %d",
1350 i, i + dump_len);
1351 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1352 ubi->dbg_peb_buf + i, dump_len, 1);
1353 ubi_dbg_dump_stack();
1354 err = -EINVAL;
1355 goto out_unlock;
1356 }
1357 mutex_unlock(&ubi->dbg_buf_mutex);
1358
1359 return 0;
1360
1361 out_unlock:
1362 mutex_unlock(&ubi->dbg_buf_mutex);
1363 return err;
1364 }
1365
1366 /**
1367 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1368 * @ubi: UBI device description object
1369 * @pnum: the physical eraseblock number to check
1370 * @offset: the starting offset within the physical eraseblock to check
1371 * @len: the length of the region to check
1372 *
1373 * This function returns zero if only 0xFF bytes are present at offset
1374 * @offset of the physical eraseblock @pnum, and a negative error code if not
1375 * or if an error occurred.
1376 */
1377 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1378 {
1379 size_t read;
1380 int err;
1381 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1382
1383 mutex_lock(&ubi->dbg_buf_mutex);
1384 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1385 if (err && err != -EUCLEAN) {
1386 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1387 "read %zd bytes", err, len, pnum, offset, read);
1388 goto error;
1389 }
1390
1391 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1392 if (err == 0) {
1393 ubi_err("flash region at PEB %d:%d, length %d does not "
1394 "contain all 0xFF bytes", pnum, offset, len);
1395 goto fail;
1396 }
1397 mutex_unlock(&ubi->dbg_buf_mutex);
1398
1399 return 0;
1400
1401 fail:
1402 ubi_err("paranoid check failed for PEB %d", pnum);
1403 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1404 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1405 ubi->dbg_peb_buf, len, 1);
1406 err = -EINVAL;
1407 error:
1408 ubi_dbg_dump_stack();
1409 mutex_unlock(&ubi->dbg_buf_mutex);
1410 return err;
1411 }
1412
1413 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
This page took 0.06312 seconds and 6 git commands to generate.