23c5376234b268d5825c06a5520c5dd7cf5aa5c3
[deliverable/linux.git] / drivers / mtd / ubi / vtbl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
26 * "layout volume".
27 *
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum.
34 *
35 * The volume table is changed, it is first changed in RAM. Then LEB 0 is
36 * erased, and the updated volume table is written back to LEB 0. Then same for
37 * LEB 1. This scheme guarantees recoverability from unclean reboots.
38 *
39 * In this UBI implementation the on-flash volume table does not contain any
40 * information about how many data static volumes contain. This information may
41 * be found from the scanning data.
42 *
43 * But it would still be beneficial to store this information in the volume
44 * table. For example, suppose we have a static volume X, and all its physical
45 * eraseblocks became bad for some reasons. Suppose we are attaching the
46 * corresponding MTD device, the scanning has found no logical eraseblocks
47 * corresponding to the volume X. According to the volume table volume X does
48 * exist. So we don't know whether it is just empty or all its physical
49 * eraseblocks went bad. So we cannot alarm the user about this corruption.
50 *
51 * The volume table also stores so-called "update marker", which is used for
52 * volume updates. Before updating the volume, the update marker is set, and
53 * after the update operation is finished, the update marker is cleared. So if
54 * the update operation was interrupted (e.g. by an unclean reboot) - the
55 * update marker is still there and we know that the volume's contents is
56 * damaged.
57 */
58
59 #include <linux/crc32.h>
60 #include <linux/err.h>
61 #include <asm/div64.h>
62 #include "ubi.h"
63
64 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
65 static void paranoid_vtbl_check(const struct ubi_device *ubi);
66 #else
67 #define paranoid_vtbl_check(ubi)
68 #endif
69
70 /* Empty volume table record */
71 static struct ubi_vtbl_record empty_vtbl_record;
72
73 /**
74 * ubi_change_vtbl_record - change volume table record.
75 * @ubi: UBI device description object
76 * @idx: table index to change
77 * @vtbl_rec: new volume table record
78 *
79 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
80 * volume table record is written. The caller does not have to calculate CRC of
81 * the record as it is done by this function. Returns zero in case of success
82 * and a negative error code in case of failure.
83 */
84 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
85 struct ubi_vtbl_record *vtbl_rec)
86 {
87 int i, err;
88 uint32_t crc;
89 struct ubi_volume *layout_vol;
90
91 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
92 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
93
94 if (!vtbl_rec)
95 vtbl_rec = &empty_vtbl_record;
96 else {
97 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
98 vtbl_rec->crc = cpu_to_be32(crc);
99 }
100
101 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
102 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
103 err = ubi_eba_unmap_leb(ubi, layout_vol, i);
104 if (err)
105 return err;
106
107 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
108 ubi->vtbl_size, UBI_LONGTERM);
109 if (err)
110 return err;
111 }
112
113 paranoid_vtbl_check(ubi);
114 return 0;
115 }
116
117 /**
118 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
119 * @ubi: UBI device description object
120 * @renam_list: list of &struct ubi_rename_entry objects
121 *
122 * This function re-names multiple volumes specified in @req in the volume
123 * table. Returns zero in case of success and a negative error code in case of
124 * failure.
125 */
126 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
127 struct list_head *rename_list)
128 {
129 int i, err;
130 struct ubi_rename_entry *re;
131 struct ubi_volume *layout_vol;
132
133 list_for_each_entry(re, rename_list, list) {
134 uint32_t crc;
135 struct ubi_volume *vol = re->desc->vol;
136 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
137
138 if (re->remove) {
139 memcpy(vtbl_rec, &empty_vtbl_record,
140 sizeof(struct ubi_vtbl_record));
141 continue;
142 }
143
144 vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
145 memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
146 memset(vtbl_rec->name + re->new_name_len, 0,
147 UBI_VOL_NAME_MAX + 1 - re->new_name_len);
148 crc = crc32(UBI_CRC32_INIT, vtbl_rec,
149 UBI_VTBL_RECORD_SIZE_CRC);
150 vtbl_rec->crc = cpu_to_be32(crc);
151 }
152
153 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
154 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
155 err = ubi_eba_unmap_leb(ubi, layout_vol, i);
156 if (err)
157 return err;
158
159 err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
160 ubi->vtbl_size, UBI_LONGTERM);
161 if (err)
162 return err;
163 }
164
165 return 0;
166 }
167
168 /**
169 * vtbl_check - check if volume table is not corrupted and contains sensible
170 * data.
171 * @ubi: UBI device description object
172 * @vtbl: volume table
173 *
174 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
175 * and %-EINVAL if it contains inconsistent data.
176 */
177 static int vtbl_check(const struct ubi_device *ubi,
178 const struct ubi_vtbl_record *vtbl)
179 {
180 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
181 int upd_marker, err;
182 uint32_t crc;
183 const char *name;
184
185 for (i = 0; i < ubi->vtbl_slots; i++) {
186 cond_resched();
187
188 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
189 alignment = be32_to_cpu(vtbl[i].alignment);
190 data_pad = be32_to_cpu(vtbl[i].data_pad);
191 upd_marker = vtbl[i].upd_marker;
192 vol_type = vtbl[i].vol_type;
193 name_len = be16_to_cpu(vtbl[i].name_len);
194 name = &vtbl[i].name[0];
195
196 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
197 if (be32_to_cpu(vtbl[i].crc) != crc) {
198 ubi_err("bad CRC at record %u: %#08x, not %#08x",
199 i, crc, be32_to_cpu(vtbl[i].crc));
200 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
201 return 1;
202 }
203
204 if (reserved_pebs == 0) {
205 if (memcmp(&vtbl[i], &empty_vtbl_record,
206 UBI_VTBL_RECORD_SIZE)) {
207 err = 2;
208 goto bad;
209 }
210 continue;
211 }
212
213 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
214 name_len < 0) {
215 err = 3;
216 goto bad;
217 }
218
219 if (alignment > ubi->leb_size || alignment == 0) {
220 err = 4;
221 goto bad;
222 }
223
224 n = alignment & (ubi->min_io_size - 1);
225 if (alignment != 1 && n) {
226 err = 5;
227 goto bad;
228 }
229
230 n = ubi->leb_size % alignment;
231 if (data_pad != n) {
232 dbg_err("bad data_pad, has to be %d", n);
233 err = 6;
234 goto bad;
235 }
236
237 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
238 err = 7;
239 goto bad;
240 }
241
242 if (upd_marker != 0 && upd_marker != 1) {
243 err = 8;
244 goto bad;
245 }
246
247 if (reserved_pebs > ubi->good_peb_count) {
248 dbg_err("too large reserved_pebs, good PEBs %d",
249 ubi->good_peb_count);
250 err = 9;
251 goto bad;
252 }
253
254 if (name_len > UBI_VOL_NAME_MAX) {
255 err = 10;
256 goto bad;
257 }
258
259 if (name[0] == '\0') {
260 err = 11;
261 goto bad;
262 }
263
264 if (name_len != strnlen(name, name_len + 1)) {
265 err = 12;
266 goto bad;
267 }
268 }
269
270 /* Checks that all names are unique */
271 for (i = 0; i < ubi->vtbl_slots - 1; i++) {
272 for (n = i + 1; n < ubi->vtbl_slots; n++) {
273 int len1 = be16_to_cpu(vtbl[i].name_len);
274 int len2 = be16_to_cpu(vtbl[n].name_len);
275
276 if (len1 > 0 && len1 == len2 &&
277 !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
278 ubi_err("volumes %d and %d have the same name"
279 " \"%s\"", i, n, vtbl[i].name);
280 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
281 ubi_dbg_dump_vtbl_record(&vtbl[n], n);
282 return -EINVAL;
283 }
284 }
285 }
286
287 return 0;
288
289 bad:
290 ubi_err("volume table check failed: record %d, error %d", i, err);
291 ubi_dbg_dump_vtbl_record(&vtbl[i], i);
292 return -EINVAL;
293 }
294
295 /**
296 * create_vtbl - create a copy of volume table.
297 * @ubi: UBI device description object
298 * @si: scanning information
299 * @copy: number of the volume table copy
300 * @vtbl: contents of the volume table
301 *
302 * This function returns zero in case of success and a negative error code in
303 * case of failure.
304 */
305 static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
306 int copy, void *vtbl)
307 {
308 int err, tries = 0;
309 static struct ubi_vid_hdr *vid_hdr;
310 struct ubi_scan_volume *sv;
311 struct ubi_scan_leb *new_seb, *old_seb = NULL;
312
313 ubi_msg("create volume table (copy #%d)", copy + 1);
314
315 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
316 if (!vid_hdr)
317 return -ENOMEM;
318
319 /*
320 * Check if there is a logical eraseblock which would have to contain
321 * this volume table copy was found during scanning. It has to be wiped
322 * out.
323 */
324 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
325 if (sv)
326 old_seb = ubi_scan_find_seb(sv, copy);
327
328 retry:
329 new_seb = ubi_scan_get_free_peb(ubi, si);
330 if (IS_ERR(new_seb)) {
331 err = PTR_ERR(new_seb);
332 goto out_free;
333 }
334
335 vid_hdr->vol_type = UBI_VID_DYNAMIC;
336 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
337 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
338 vid_hdr->data_size = vid_hdr->used_ebs =
339 vid_hdr->data_pad = cpu_to_be32(0);
340 vid_hdr->lnum = cpu_to_be32(copy);
341 vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
342 vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
343
344 /* The EC header is already there, write the VID header */
345 err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
346 if (err)
347 goto write_error;
348
349 /* Write the layout volume contents */
350 err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
351 if (err)
352 goto write_error;
353
354 /*
355 * And add it to the scanning information. Don't delete the old
356 * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
357 */
358 err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
359 vid_hdr, 0);
360 kfree(new_seb);
361 ubi_free_vid_hdr(ubi, vid_hdr);
362 return err;
363
364 write_error:
365 if (err == -EIO && ++tries <= 5) {
366 /*
367 * Probably this physical eraseblock went bad, try to pick
368 * another one.
369 */
370 list_add_tail(&new_seb->u.list, &si->corr);
371 goto retry;
372 }
373 kfree(new_seb);
374 out_free:
375 ubi_free_vid_hdr(ubi, vid_hdr);
376 return err;
377
378 }
379
380 /**
381 * process_lvol - process the layout volume.
382 * @ubi: UBI device description object
383 * @si: scanning information
384 * @sv: layout volume scanning information
385 *
386 * This function is responsible for reading the layout volume, ensuring it is
387 * not corrupted, and recovering from corruptions if needed. Returns volume
388 * table in case of success and a negative error code in case of failure.
389 */
390 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
391 struct ubi_scan_info *si,
392 struct ubi_scan_volume *sv)
393 {
394 int err;
395 struct rb_node *rb;
396 struct ubi_scan_leb *seb;
397 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
398 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
399
400 /*
401 * UBI goes through the following steps when it changes the layout
402 * volume:
403 * a. erase LEB 0;
404 * b. write new data to LEB 0;
405 * c. erase LEB 1;
406 * d. write new data to LEB 1.
407 *
408 * Before the change, both LEBs contain the same data.
409 *
410 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
411 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
412 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
413 * finally, unclean reboots may result in a situation when neither LEB
414 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
415 * 0 contains more recent information.
416 *
417 * So the plan is to first check LEB 0. Then
418 * a. if LEB 0 is OK, it must be containing the most resent data; then
419 * we compare it with LEB 1, and if they are different, we copy LEB
420 * 0 to LEB 1;
421 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
422 * to LEB 0.
423 */
424
425 dbg_gen("check layout volume");
426
427 /* Read both LEB 0 and LEB 1 into memory */
428 ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
429 leb[seb->lnum] = vmalloc(ubi->vtbl_size);
430 if (!leb[seb->lnum]) {
431 err = -ENOMEM;
432 goto out_free;
433 }
434 memset(leb[seb->lnum], 0, ubi->vtbl_size);
435
436 err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
437 ubi->vtbl_size);
438 if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
439 /*
440 * Scrub the PEB later. Note, -EBADMSG indicates an
441 * uncorrectable ECC error, but we have our own CRC and
442 * the data will be checked later. If the data is OK,
443 * the PEB will be scrubbed (because we set
444 * seb->scrub). If the data is not OK, the contents of
445 * the PEB will be recovered from the second copy, and
446 * seb->scrub will be cleared in
447 * 'ubi_scan_add_used()'.
448 */
449 seb->scrub = 1;
450 else if (err)
451 goto out_free;
452 }
453
454 err = -EINVAL;
455 if (leb[0]) {
456 leb_corrupted[0] = vtbl_check(ubi, leb[0]);
457 if (leb_corrupted[0] < 0)
458 goto out_free;
459 }
460
461 if (!leb_corrupted[0]) {
462 /* LEB 0 is OK */
463 if (leb[1])
464 leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
465 if (leb_corrupted[1]) {
466 ubi_warn("volume table copy #2 is corrupted");
467 err = create_vtbl(ubi, si, 1, leb[0]);
468 if (err)
469 goto out_free;
470 ubi_msg("volume table was restored");
471 }
472
473 /* Both LEB 1 and LEB 2 are OK and consistent */
474 vfree(leb[1]);
475 return leb[0];
476 } else {
477 /* LEB 0 is corrupted or does not exist */
478 if (leb[1]) {
479 leb_corrupted[1] = vtbl_check(ubi, leb[1]);
480 if (leb_corrupted[1] < 0)
481 goto out_free;
482 }
483 if (leb_corrupted[1]) {
484 /* Both LEB 0 and LEB 1 are corrupted */
485 ubi_err("both volume tables are corrupted");
486 goto out_free;
487 }
488
489 ubi_warn("volume table copy #1 is corrupted");
490 err = create_vtbl(ubi, si, 0, leb[1]);
491 if (err)
492 goto out_free;
493 ubi_msg("volume table was restored");
494
495 vfree(leb[0]);
496 return leb[1];
497 }
498
499 out_free:
500 vfree(leb[0]);
501 vfree(leb[1]);
502 return ERR_PTR(err);
503 }
504
505 /**
506 * create_empty_lvol - create empty layout volume.
507 * @ubi: UBI device description object
508 * @si: scanning information
509 *
510 * This function returns volume table contents in case of success and a
511 * negative error code in case of failure.
512 */
513 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
514 struct ubi_scan_info *si)
515 {
516 int i;
517 struct ubi_vtbl_record *vtbl;
518
519 vtbl = vmalloc(ubi->vtbl_size);
520 if (!vtbl)
521 return ERR_PTR(-ENOMEM);
522 memset(vtbl, 0, ubi->vtbl_size);
523
524 for (i = 0; i < ubi->vtbl_slots; i++)
525 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
526
527 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
528 int err;
529
530 err = create_vtbl(ubi, si, i, vtbl);
531 if (err) {
532 vfree(vtbl);
533 return ERR_PTR(err);
534 }
535 }
536
537 return vtbl;
538 }
539
540 /**
541 * init_volumes - initialize volume information for existing volumes.
542 * @ubi: UBI device description object
543 * @si: scanning information
544 * @vtbl: volume table
545 *
546 * This function allocates volume description objects for existing volumes.
547 * Returns zero in case of success and a negative error code in case of
548 * failure.
549 */
550 static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
551 const struct ubi_vtbl_record *vtbl)
552 {
553 int i, reserved_pebs = 0;
554 struct ubi_scan_volume *sv;
555 struct ubi_volume *vol;
556
557 for (i = 0; i < ubi->vtbl_slots; i++) {
558 cond_resched();
559
560 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
561 continue; /* Empty record */
562
563 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
564 if (!vol)
565 return -ENOMEM;
566
567 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
568 vol->alignment = be32_to_cpu(vtbl[i].alignment);
569 vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
570 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
571 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
572 vol->name_len = be16_to_cpu(vtbl[i].name_len);
573 vol->usable_leb_size = ubi->leb_size - vol->data_pad;
574 memcpy(vol->name, vtbl[i].name, vol->name_len);
575 vol->name[vol->name_len] = '\0';
576 vol->vol_id = i;
577
578 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
579 /* Auto re-size flag may be set only for one volume */
580 if (ubi->autoresize_vol_id != -1) {
581 ubi_err("more then one auto-resize volume (%d "
582 "and %d)", ubi->autoresize_vol_id, i);
583 kfree(vol);
584 return -EINVAL;
585 }
586
587 ubi->autoresize_vol_id = i;
588 }
589
590 ubi_assert(!ubi->volumes[i]);
591 ubi->volumes[i] = vol;
592 ubi->vol_count += 1;
593 vol->ubi = ubi;
594 reserved_pebs += vol->reserved_pebs;
595
596 /*
597 * In case of dynamic volume UBI knows nothing about how many
598 * data is stored there. So assume the whole volume is used.
599 */
600 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
601 vol->used_ebs = vol->reserved_pebs;
602 vol->last_eb_bytes = vol->usable_leb_size;
603 vol->used_bytes =
604 (long long)vol->used_ebs * vol->usable_leb_size;
605 continue;
606 }
607
608 /* Static volumes only */
609 sv = ubi_scan_find_sv(si, i);
610 if (!sv) {
611 /*
612 * No eraseblocks belonging to this volume found. We
613 * don't actually know whether this static volume is
614 * completely corrupted or just contains no data. And
615 * we cannot know this as long as data size is not
616 * stored on flash. So we just assume the volume is
617 * empty. FIXME: this should be handled.
618 */
619 continue;
620 }
621
622 if (sv->leb_count != sv->used_ebs) {
623 /*
624 * We found a static volume which misses several
625 * eraseblocks. Treat it as corrupted.
626 */
627 ubi_warn("static volume %d misses %d LEBs - corrupted",
628 sv->vol_id, sv->used_ebs - sv->leb_count);
629 vol->corrupted = 1;
630 continue;
631 }
632
633 vol->used_ebs = sv->used_ebs;
634 vol->used_bytes =
635 (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
636 vol->used_bytes += sv->last_data_size;
637 vol->last_eb_bytes = sv->last_data_size;
638 }
639
640 /* And add the layout volume */
641 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
642 if (!vol)
643 return -ENOMEM;
644
645 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
646 vol->alignment = 1;
647 vol->vol_type = UBI_DYNAMIC_VOLUME;
648 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
649 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
650 vol->usable_leb_size = ubi->leb_size;
651 vol->used_ebs = vol->reserved_pebs;
652 vol->last_eb_bytes = vol->reserved_pebs;
653 vol->used_bytes =
654 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
655 vol->vol_id = UBI_LAYOUT_VOLUME_ID;
656 vol->ref_count = 1;
657
658 ubi_assert(!ubi->volumes[i]);
659 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
660 reserved_pebs += vol->reserved_pebs;
661 ubi->vol_count += 1;
662 vol->ubi = ubi;
663
664 if (reserved_pebs > ubi->avail_pebs)
665 ubi_err("not enough PEBs, required %d, available %d",
666 reserved_pebs, ubi->avail_pebs);
667 ubi->rsvd_pebs += reserved_pebs;
668 ubi->avail_pebs -= reserved_pebs;
669
670 return 0;
671 }
672
673 /**
674 * check_sv - check volume scanning information.
675 * @vol: UBI volume description object
676 * @sv: volume scanning information
677 *
678 * This function returns zero if the volume scanning information is consistent
679 * to the data read from the volume tabla, and %-EINVAL if not.
680 */
681 static int check_sv(const struct ubi_volume *vol,
682 const struct ubi_scan_volume *sv)
683 {
684 int err;
685
686 if (sv->highest_lnum >= vol->reserved_pebs) {
687 err = 1;
688 goto bad;
689 }
690 if (sv->leb_count > vol->reserved_pebs) {
691 err = 2;
692 goto bad;
693 }
694 if (sv->vol_type != vol->vol_type) {
695 err = 3;
696 goto bad;
697 }
698 if (sv->used_ebs > vol->reserved_pebs) {
699 err = 4;
700 goto bad;
701 }
702 if (sv->data_pad != vol->data_pad) {
703 err = 5;
704 goto bad;
705 }
706 return 0;
707
708 bad:
709 ubi_err("bad scanning information, error %d", err);
710 ubi_dbg_dump_sv(sv);
711 ubi_dbg_dump_vol_info(vol);
712 return -EINVAL;
713 }
714
715 /**
716 * check_scanning_info - check that scanning information.
717 * @ubi: UBI device description object
718 * @si: scanning information
719 *
720 * Even though we protect on-flash data by CRC checksums, we still don't trust
721 * the media. This function ensures that scanning information is consistent to
722 * the information read from the volume table. Returns zero if the scanning
723 * information is OK and %-EINVAL if it is not.
724 */
725 static int check_scanning_info(const struct ubi_device *ubi,
726 struct ubi_scan_info *si)
727 {
728 int err, i;
729 struct ubi_scan_volume *sv;
730 struct ubi_volume *vol;
731
732 if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
733 ubi_err("scanning found %d volumes, maximum is %d + %d",
734 si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
735 return -EINVAL;
736 }
737
738 if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
739 si->highest_vol_id < UBI_INTERNAL_VOL_START) {
740 ubi_err("too large volume ID %d found by scanning",
741 si->highest_vol_id);
742 return -EINVAL;
743 }
744
745 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
746 cond_resched();
747
748 sv = ubi_scan_find_sv(si, i);
749 vol = ubi->volumes[i];
750 if (!vol) {
751 if (sv)
752 ubi_scan_rm_volume(si, sv);
753 continue;
754 }
755
756 if (vol->reserved_pebs == 0) {
757 ubi_assert(i < ubi->vtbl_slots);
758
759 if (!sv)
760 continue;
761
762 /*
763 * During scanning we found a volume which does not
764 * exist according to the information in the volume
765 * table. This must have happened due to an unclean
766 * reboot while the volume was being removed. Discard
767 * these eraseblocks.
768 */
769 ubi_msg("finish volume %d removal", sv->vol_id);
770 ubi_scan_rm_volume(si, sv);
771 } else if (sv) {
772 err = check_sv(vol, sv);
773 if (err)
774 return err;
775 }
776 }
777
778 return 0;
779 }
780
781 /**
782 * ubi_read_volume_table - read volume table.
783 * information.
784 * @ubi: UBI device description object
785 * @si: scanning information
786 *
787 * This function reads volume table, checks it, recover from errors if needed,
788 * or creates it if needed. Returns zero in case of success and a negative
789 * error code in case of failure.
790 */
791 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
792 {
793 int i, err;
794 struct ubi_scan_volume *sv;
795
796 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
797
798 /*
799 * The number of supported volumes is limited by the eraseblock size
800 * and by the UBI_MAX_VOLUMES constant.
801 */
802 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
803 if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
804 ubi->vtbl_slots = UBI_MAX_VOLUMES;
805
806 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
807 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
808
809 sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
810 if (!sv) {
811 /*
812 * No logical eraseblocks belonging to the layout volume were
813 * found. This could mean that the flash is just empty. In
814 * this case we create empty layout volume.
815 *
816 * But if flash is not empty this must be a corruption or the
817 * MTD device just contains garbage.
818 */
819 if (si->is_empty) {
820 ubi->vtbl = create_empty_lvol(ubi, si);
821 if (IS_ERR(ubi->vtbl))
822 return PTR_ERR(ubi->vtbl);
823 } else {
824 ubi_err("the layout volume was not found");
825 return -EINVAL;
826 }
827 } else {
828 if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
829 /* This must not happen with proper UBI images */
830 dbg_err("too many LEBs (%d) in layout volume",
831 sv->leb_count);
832 return -EINVAL;
833 }
834
835 ubi->vtbl = process_lvol(ubi, si, sv);
836 if (IS_ERR(ubi->vtbl))
837 return PTR_ERR(ubi->vtbl);
838 }
839
840 ubi->avail_pebs = ubi->good_peb_count;
841
842 /*
843 * The layout volume is OK, initialize the corresponding in-RAM data
844 * structures.
845 */
846 err = init_volumes(ubi, si, ubi->vtbl);
847 if (err)
848 goto out_free;
849
850 /*
851 * Get sure that the scanning information is consistent to the
852 * information stored in the volume table.
853 */
854 err = check_scanning_info(ubi, si);
855 if (err)
856 goto out_free;
857
858 return 0;
859
860 out_free:
861 vfree(ubi->vtbl);
862 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
863 if (ubi->volumes[i]) {
864 kfree(ubi->volumes[i]);
865 ubi->volumes[i] = NULL;
866 }
867 return err;
868 }
869
870 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
871
872 /**
873 * paranoid_vtbl_check - check volume table.
874 * @ubi: UBI device description object
875 */
876 static void paranoid_vtbl_check(const struct ubi_device *ubi)
877 {
878 if (vtbl_check(ubi, ubi->vtbl)) {
879 ubi_err("paranoid check failed");
880 BUG();
881 }
882 }
883
884 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */
This page took 0.062743 seconds and 4 git commands to generate.