Merge tag 'nfs-for-4.8-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[deliverable/linux.git] / drivers / mtd / ubi / vtbl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 */
21
22 /*
23 * This file includes volume table manipulation code. The volume table is an
24 * on-flash table containing volume meta-data like name, number of reserved
25 * physical eraseblocks, type, etc. The volume table is stored in the so-called
26 * "layout volume".
27 *
28 * The layout volume is an internal volume which is organized as follows. It
29 * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
30 * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
31 * other. This redundancy guarantees robustness to unclean reboots. The volume
32 * table is basically an array of volume table records. Each record contains
33 * full information about the volume and protected by a CRC checksum. Note,
34 * nowadays we use the atomic LEB change operation when updating the volume
35 * table, so we do not really need 2 LEBs anymore, but we preserve the older
36 * design for the backward compatibility reasons.
37 *
38 * When the volume table is changed, it is first changed in RAM. Then LEB 0 is
39 * erased, and the updated volume table is written back to LEB 0. Then same for
40 * LEB 1. This scheme guarantees recoverability from unclean reboots.
41 *
42 * In this UBI implementation the on-flash volume table does not contain any
43 * information about how much data static volumes contain.
44 *
45 * But it would still be beneficial to store this information in the volume
46 * table. For example, suppose we have a static volume X, and all its physical
47 * eraseblocks became bad for some reasons. Suppose we are attaching the
48 * corresponding MTD device, for some reason we find no logical eraseblocks
49 * corresponding to the volume X. According to the volume table volume X does
50 * exist. So we don't know whether it is just empty or all its physical
51 * eraseblocks went bad. So we cannot alarm the user properly.
52 *
53 * The volume table also stores so-called "update marker", which is used for
54 * volume updates. Before updating the volume, the update marker is set, and
55 * after the update operation is finished, the update marker is cleared. So if
56 * the update operation was interrupted (e.g. by an unclean reboot) - the
57 * update marker is still there and we know that the volume's contents is
58 * damaged.
59 */
60
61 #include <linux/crc32.h>
62 #include <linux/err.h>
63 #include <linux/slab.h>
64 #include <asm/div64.h>
65 #include "ubi.h"
66
67 static void self_vtbl_check(const struct ubi_device *ubi);
68
69 /* Empty volume table record */
70 static struct ubi_vtbl_record empty_vtbl_record;
71
72 /**
73 * ubi_update_layout_vol - helper for updatting layout volumes on flash
74 * @ubi: UBI device description object
75 */
76 static int ubi_update_layout_vol(struct ubi_device *ubi)
77 {
78 struct ubi_volume *layout_vol;
79 int i, err;
80
81 layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
82 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
83 err = ubi_eba_atomic_leb_change(ubi, layout_vol, i, ubi->vtbl,
84 ubi->vtbl_size);
85 if (err)
86 return err;
87 }
88
89 return 0;
90 }
91
92 /**
93 * ubi_change_vtbl_record - change volume table record.
94 * @ubi: UBI device description object
95 * @idx: table index to change
96 * @vtbl_rec: new volume table record
97 *
98 * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
99 * volume table record is written. The caller does not have to calculate CRC of
100 * the record as it is done by this function. Returns zero in case of success
101 * and a negative error code in case of failure.
102 */
103 int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
104 struct ubi_vtbl_record *vtbl_rec)
105 {
106 int err;
107 uint32_t crc;
108
109 ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
110
111 if (!vtbl_rec)
112 vtbl_rec = &empty_vtbl_record;
113 else {
114 crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
115 vtbl_rec->crc = cpu_to_be32(crc);
116 }
117
118 memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
119 err = ubi_update_layout_vol(ubi);
120
121 self_vtbl_check(ubi);
122 return err ? err : 0;
123 }
124
125 /**
126 * ubi_vtbl_rename_volumes - rename UBI volumes in the volume table.
127 * @ubi: UBI device description object
128 * @rename_list: list of &struct ubi_rename_entry objects
129 *
130 * This function re-names multiple volumes specified in @req in the volume
131 * table. Returns zero in case of success and a negative error code in case of
132 * failure.
133 */
134 int ubi_vtbl_rename_volumes(struct ubi_device *ubi,
135 struct list_head *rename_list)
136 {
137 struct ubi_rename_entry *re;
138
139 list_for_each_entry(re, rename_list, list) {
140 uint32_t crc;
141 struct ubi_volume *vol = re->desc->vol;
142 struct ubi_vtbl_record *vtbl_rec = &ubi->vtbl[vol->vol_id];
143
144 if (re->remove) {
145 memcpy(vtbl_rec, &empty_vtbl_record,
146 sizeof(struct ubi_vtbl_record));
147 continue;
148 }
149
150 vtbl_rec->name_len = cpu_to_be16(re->new_name_len);
151 memcpy(vtbl_rec->name, re->new_name, re->new_name_len);
152 memset(vtbl_rec->name + re->new_name_len, 0,
153 UBI_VOL_NAME_MAX + 1 - re->new_name_len);
154 crc = crc32(UBI_CRC32_INIT, vtbl_rec,
155 UBI_VTBL_RECORD_SIZE_CRC);
156 vtbl_rec->crc = cpu_to_be32(crc);
157 }
158
159 return ubi_update_layout_vol(ubi);
160 }
161
162 /**
163 * vtbl_check - check if volume table is not corrupted and sensible.
164 * @ubi: UBI device description object
165 * @vtbl: volume table
166 *
167 * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
168 * and %-EINVAL if it contains inconsistent data.
169 */
170 static int vtbl_check(const struct ubi_device *ubi,
171 const struct ubi_vtbl_record *vtbl)
172 {
173 int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
174 int upd_marker, err;
175 uint32_t crc;
176 const char *name;
177
178 for (i = 0; i < ubi->vtbl_slots; i++) {
179 cond_resched();
180
181 reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
182 alignment = be32_to_cpu(vtbl[i].alignment);
183 data_pad = be32_to_cpu(vtbl[i].data_pad);
184 upd_marker = vtbl[i].upd_marker;
185 vol_type = vtbl[i].vol_type;
186 name_len = be16_to_cpu(vtbl[i].name_len);
187 name = &vtbl[i].name[0];
188
189 crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
190 if (be32_to_cpu(vtbl[i].crc) != crc) {
191 ubi_err(ubi, "bad CRC at record %u: %#08x, not %#08x",
192 i, crc, be32_to_cpu(vtbl[i].crc));
193 ubi_dump_vtbl_record(&vtbl[i], i);
194 return 1;
195 }
196
197 if (reserved_pebs == 0) {
198 if (memcmp(&vtbl[i], &empty_vtbl_record,
199 UBI_VTBL_RECORD_SIZE)) {
200 err = 2;
201 goto bad;
202 }
203 continue;
204 }
205
206 if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
207 name_len < 0) {
208 err = 3;
209 goto bad;
210 }
211
212 if (alignment > ubi->leb_size || alignment == 0) {
213 err = 4;
214 goto bad;
215 }
216
217 n = alignment & (ubi->min_io_size - 1);
218 if (alignment != 1 && n) {
219 err = 5;
220 goto bad;
221 }
222
223 n = ubi->leb_size % alignment;
224 if (data_pad != n) {
225 ubi_err(ubi, "bad data_pad, has to be %d", n);
226 err = 6;
227 goto bad;
228 }
229
230 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
231 err = 7;
232 goto bad;
233 }
234
235 if (upd_marker != 0 && upd_marker != 1) {
236 err = 8;
237 goto bad;
238 }
239
240 if (reserved_pebs > ubi->good_peb_count) {
241 ubi_err(ubi, "too large reserved_pebs %d, good PEBs %d",
242 reserved_pebs, ubi->good_peb_count);
243 err = 9;
244 goto bad;
245 }
246
247 if (name_len > UBI_VOL_NAME_MAX) {
248 err = 10;
249 goto bad;
250 }
251
252 if (name[0] == '\0') {
253 err = 11;
254 goto bad;
255 }
256
257 if (name_len != strnlen(name, name_len + 1)) {
258 err = 12;
259 goto bad;
260 }
261 }
262
263 /* Checks that all names are unique */
264 for (i = 0; i < ubi->vtbl_slots - 1; i++) {
265 for (n = i + 1; n < ubi->vtbl_slots; n++) {
266 int len1 = be16_to_cpu(vtbl[i].name_len);
267 int len2 = be16_to_cpu(vtbl[n].name_len);
268
269 if (len1 > 0 && len1 == len2 &&
270 !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
271 ubi_err(ubi, "volumes %d and %d have the same name \"%s\"",
272 i, n, vtbl[i].name);
273 ubi_dump_vtbl_record(&vtbl[i], i);
274 ubi_dump_vtbl_record(&vtbl[n], n);
275 return -EINVAL;
276 }
277 }
278 }
279
280 return 0;
281
282 bad:
283 ubi_err(ubi, "volume table check failed: record %d, error %d", i, err);
284 ubi_dump_vtbl_record(&vtbl[i], i);
285 return -EINVAL;
286 }
287
288 /**
289 * create_vtbl - create a copy of volume table.
290 * @ubi: UBI device description object
291 * @ai: attaching information
292 * @copy: number of the volume table copy
293 * @vtbl: contents of the volume table
294 *
295 * This function returns zero in case of success and a negative error code in
296 * case of failure.
297 */
298 static int create_vtbl(struct ubi_device *ubi, struct ubi_attach_info *ai,
299 int copy, void *vtbl)
300 {
301 int err, tries = 0;
302 struct ubi_vid_hdr *vid_hdr;
303 struct ubi_ainf_peb *new_aeb;
304
305 dbg_gen("create volume table (copy #%d)", copy + 1);
306
307 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
308 if (!vid_hdr)
309 return -ENOMEM;
310
311 retry:
312 new_aeb = ubi_early_get_peb(ubi, ai);
313 if (IS_ERR(new_aeb)) {
314 err = PTR_ERR(new_aeb);
315 goto out_free;
316 }
317
318 vid_hdr->vol_type = UBI_LAYOUT_VOLUME_TYPE;
319 vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
320 vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
321 vid_hdr->data_size = vid_hdr->used_ebs =
322 vid_hdr->data_pad = cpu_to_be32(0);
323 vid_hdr->lnum = cpu_to_be32(copy);
324 vid_hdr->sqnum = cpu_to_be64(++ai->max_sqnum);
325
326 /* The EC header is already there, write the VID header */
327 err = ubi_io_write_vid_hdr(ubi, new_aeb->pnum, vid_hdr);
328 if (err)
329 goto write_error;
330
331 /* Write the layout volume contents */
332 err = ubi_io_write_data(ubi, vtbl, new_aeb->pnum, 0, ubi->vtbl_size);
333 if (err)
334 goto write_error;
335
336 /*
337 * And add it to the attaching information. Don't delete the old version
338 * of this LEB as it will be deleted and freed in 'ubi_add_to_av()'.
339 */
340 err = ubi_add_to_av(ubi, ai, new_aeb->pnum, new_aeb->ec, vid_hdr, 0);
341 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
342 ubi_free_vid_hdr(ubi, vid_hdr);
343 return err;
344
345 write_error:
346 if (err == -EIO && ++tries <= 5) {
347 /*
348 * Probably this physical eraseblock went bad, try to pick
349 * another one.
350 */
351 list_add(&new_aeb->u.list, &ai->erase);
352 goto retry;
353 }
354 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
355 out_free:
356 ubi_free_vid_hdr(ubi, vid_hdr);
357 return err;
358
359 }
360
361 /**
362 * process_lvol - process the layout volume.
363 * @ubi: UBI device description object
364 * @ai: attaching information
365 * @av: layout volume attaching information
366 *
367 * This function is responsible for reading the layout volume, ensuring it is
368 * not corrupted, and recovering from corruptions if needed. Returns volume
369 * table in case of success and a negative error code in case of failure.
370 */
371 static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
372 struct ubi_attach_info *ai,
373 struct ubi_ainf_volume *av)
374 {
375 int err;
376 struct rb_node *rb;
377 struct ubi_ainf_peb *aeb;
378 struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
379 int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
380
381 /*
382 * UBI goes through the following steps when it changes the layout
383 * volume:
384 * a. erase LEB 0;
385 * b. write new data to LEB 0;
386 * c. erase LEB 1;
387 * d. write new data to LEB 1.
388 *
389 * Before the change, both LEBs contain the same data.
390 *
391 * Due to unclean reboots, the contents of LEB 0 may be lost, but there
392 * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
393 * Similarly, LEB 1 may be lost, but there should be LEB 0. And
394 * finally, unclean reboots may result in a situation when neither LEB
395 * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
396 * 0 contains more recent information.
397 *
398 * So the plan is to first check LEB 0. Then
399 * a. if LEB 0 is OK, it must be containing the most recent data; then
400 * we compare it with LEB 1, and if they are different, we copy LEB
401 * 0 to LEB 1;
402 * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
403 * to LEB 0.
404 */
405
406 dbg_gen("check layout volume");
407
408 /* Read both LEB 0 and LEB 1 into memory */
409 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
410 leb[aeb->lnum] = vzalloc(ubi->vtbl_size);
411 if (!leb[aeb->lnum]) {
412 err = -ENOMEM;
413 goto out_free;
414 }
415
416 err = ubi_io_read_data(ubi, leb[aeb->lnum], aeb->pnum, 0,
417 ubi->vtbl_size);
418 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err))
419 /*
420 * Scrub the PEB later. Note, -EBADMSG indicates an
421 * uncorrectable ECC error, but we have our own CRC and
422 * the data will be checked later. If the data is OK,
423 * the PEB will be scrubbed (because we set
424 * aeb->scrub). If the data is not OK, the contents of
425 * the PEB will be recovered from the second copy, and
426 * aeb->scrub will be cleared in
427 * 'ubi_add_to_av()'.
428 */
429 aeb->scrub = 1;
430 else if (err)
431 goto out_free;
432 }
433
434 err = -EINVAL;
435 if (leb[0]) {
436 leb_corrupted[0] = vtbl_check(ubi, leb[0]);
437 if (leb_corrupted[0] < 0)
438 goto out_free;
439 }
440
441 if (!leb_corrupted[0]) {
442 /* LEB 0 is OK */
443 if (leb[1])
444 leb_corrupted[1] = memcmp(leb[0], leb[1],
445 ubi->vtbl_size);
446 if (leb_corrupted[1]) {
447 ubi_warn(ubi, "volume table copy #2 is corrupted");
448 err = create_vtbl(ubi, ai, 1, leb[0]);
449 if (err)
450 goto out_free;
451 ubi_msg(ubi, "volume table was restored");
452 }
453
454 /* Both LEB 1 and LEB 2 are OK and consistent */
455 vfree(leb[1]);
456 return leb[0];
457 } else {
458 /* LEB 0 is corrupted or does not exist */
459 if (leb[1]) {
460 leb_corrupted[1] = vtbl_check(ubi, leb[1]);
461 if (leb_corrupted[1] < 0)
462 goto out_free;
463 }
464 if (leb_corrupted[1]) {
465 /* Both LEB 0 and LEB 1 are corrupted */
466 ubi_err(ubi, "both volume tables are corrupted");
467 goto out_free;
468 }
469
470 ubi_warn(ubi, "volume table copy #1 is corrupted");
471 err = create_vtbl(ubi, ai, 0, leb[1]);
472 if (err)
473 goto out_free;
474 ubi_msg(ubi, "volume table was restored");
475
476 vfree(leb[0]);
477 return leb[1];
478 }
479
480 out_free:
481 vfree(leb[0]);
482 vfree(leb[1]);
483 return ERR_PTR(err);
484 }
485
486 /**
487 * create_empty_lvol - create empty layout volume.
488 * @ubi: UBI device description object
489 * @ai: attaching information
490 *
491 * This function returns volume table contents in case of success and a
492 * negative error code in case of failure.
493 */
494 static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
495 struct ubi_attach_info *ai)
496 {
497 int i;
498 struct ubi_vtbl_record *vtbl;
499
500 vtbl = vzalloc(ubi->vtbl_size);
501 if (!vtbl)
502 return ERR_PTR(-ENOMEM);
503
504 for (i = 0; i < ubi->vtbl_slots; i++)
505 memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
506
507 for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
508 int err;
509
510 err = create_vtbl(ubi, ai, i, vtbl);
511 if (err) {
512 vfree(vtbl);
513 return ERR_PTR(err);
514 }
515 }
516
517 return vtbl;
518 }
519
520 /**
521 * init_volumes - initialize volume information for existing volumes.
522 * @ubi: UBI device description object
523 * @ai: scanning information
524 * @vtbl: volume table
525 *
526 * This function allocates volume description objects for existing volumes.
527 * Returns zero in case of success and a negative error code in case of
528 * failure.
529 */
530 static int init_volumes(struct ubi_device *ubi,
531 const struct ubi_attach_info *ai,
532 const struct ubi_vtbl_record *vtbl)
533 {
534 int i, reserved_pebs = 0;
535 struct ubi_ainf_volume *av;
536 struct ubi_volume *vol;
537
538 for (i = 0; i < ubi->vtbl_slots; i++) {
539 cond_resched();
540
541 if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
542 continue; /* Empty record */
543
544 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
545 if (!vol)
546 return -ENOMEM;
547
548 vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
549 vol->alignment = be32_to_cpu(vtbl[i].alignment);
550 vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
551 vol->upd_marker = vtbl[i].upd_marker;
552 vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
553 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
554 vol->name_len = be16_to_cpu(vtbl[i].name_len);
555 vol->usable_leb_size = ubi->leb_size - vol->data_pad;
556 memcpy(vol->name, vtbl[i].name, vol->name_len);
557 vol->name[vol->name_len] = '\0';
558 vol->vol_id = i;
559
560 if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
561 /* Auto re-size flag may be set only for one volume */
562 if (ubi->autoresize_vol_id != -1) {
563 ubi_err(ubi, "more than one auto-resize volume (%d and %d)",
564 ubi->autoresize_vol_id, i);
565 kfree(vol);
566 return -EINVAL;
567 }
568
569 ubi->autoresize_vol_id = i;
570 }
571
572 ubi_assert(!ubi->volumes[i]);
573 ubi->volumes[i] = vol;
574 ubi->vol_count += 1;
575 vol->ubi = ubi;
576 reserved_pebs += vol->reserved_pebs;
577
578 /*
579 * In case of dynamic volume UBI knows nothing about how many
580 * data is stored there. So assume the whole volume is used.
581 */
582 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
583 vol->used_ebs = vol->reserved_pebs;
584 vol->last_eb_bytes = vol->usable_leb_size;
585 vol->used_bytes =
586 (long long)vol->used_ebs * vol->usable_leb_size;
587 continue;
588 }
589
590 /* Static volumes only */
591 av = ubi_find_av(ai, i);
592 if (!av || !av->leb_count) {
593 /*
594 * No eraseblocks belonging to this volume found. We
595 * don't actually know whether this static volume is
596 * completely corrupted or just contains no data. And
597 * we cannot know this as long as data size is not
598 * stored on flash. So we just assume the volume is
599 * empty. FIXME: this should be handled.
600 */
601 continue;
602 }
603
604 if (av->leb_count != av->used_ebs) {
605 /*
606 * We found a static volume which misses several
607 * eraseblocks. Treat it as corrupted.
608 */
609 ubi_warn(ubi, "static volume %d misses %d LEBs - corrupted",
610 av->vol_id, av->used_ebs - av->leb_count);
611 vol->corrupted = 1;
612 continue;
613 }
614
615 vol->used_ebs = av->used_ebs;
616 vol->used_bytes =
617 (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
618 vol->used_bytes += av->last_data_size;
619 vol->last_eb_bytes = av->last_data_size;
620 }
621
622 /* And add the layout volume */
623 vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
624 if (!vol)
625 return -ENOMEM;
626
627 vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
628 vol->alignment = UBI_LAYOUT_VOLUME_ALIGN;
629 vol->vol_type = UBI_DYNAMIC_VOLUME;
630 vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
631 memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
632 vol->usable_leb_size = ubi->leb_size;
633 vol->used_ebs = vol->reserved_pebs;
634 vol->last_eb_bytes = vol->reserved_pebs;
635 vol->used_bytes =
636 (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
637 vol->vol_id = UBI_LAYOUT_VOLUME_ID;
638 vol->ref_count = 1;
639
640 ubi_assert(!ubi->volumes[i]);
641 ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
642 reserved_pebs += vol->reserved_pebs;
643 ubi->vol_count += 1;
644 vol->ubi = ubi;
645
646 if (reserved_pebs > ubi->avail_pebs) {
647 ubi_err(ubi, "not enough PEBs, required %d, available %d",
648 reserved_pebs, ubi->avail_pebs);
649 if (ubi->corr_peb_count)
650 ubi_err(ubi, "%d PEBs are corrupted and not used",
651 ubi->corr_peb_count);
652 return -ENOSPC;
653 }
654 ubi->rsvd_pebs += reserved_pebs;
655 ubi->avail_pebs -= reserved_pebs;
656
657 return 0;
658 }
659
660 /**
661 * check_av - check volume attaching information.
662 * @vol: UBI volume description object
663 * @av: volume attaching information
664 *
665 * This function returns zero if the volume attaching information is consistent
666 * to the data read from the volume tabla, and %-EINVAL if not.
667 */
668 static int check_av(const struct ubi_volume *vol,
669 const struct ubi_ainf_volume *av)
670 {
671 int err;
672
673 if (av->highest_lnum >= vol->reserved_pebs) {
674 err = 1;
675 goto bad;
676 }
677 if (av->leb_count > vol->reserved_pebs) {
678 err = 2;
679 goto bad;
680 }
681 if (av->vol_type != vol->vol_type) {
682 err = 3;
683 goto bad;
684 }
685 if (av->used_ebs > vol->reserved_pebs) {
686 err = 4;
687 goto bad;
688 }
689 if (av->data_pad != vol->data_pad) {
690 err = 5;
691 goto bad;
692 }
693 return 0;
694
695 bad:
696 ubi_err(vol->ubi, "bad attaching information, error %d", err);
697 ubi_dump_av(av);
698 ubi_dump_vol_info(vol);
699 return -EINVAL;
700 }
701
702 /**
703 * check_attaching_info - check that attaching information.
704 * @ubi: UBI device description object
705 * @ai: attaching information
706 *
707 * Even though we protect on-flash data by CRC checksums, we still don't trust
708 * the media. This function ensures that attaching information is consistent to
709 * the information read from the volume table. Returns zero if the attaching
710 * information is OK and %-EINVAL if it is not.
711 */
712 static int check_attaching_info(const struct ubi_device *ubi,
713 struct ubi_attach_info *ai)
714 {
715 int err, i;
716 struct ubi_ainf_volume *av;
717 struct ubi_volume *vol;
718
719 if (ai->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
720 ubi_err(ubi, "found %d volumes while attaching, maximum is %d + %d",
721 ai->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
722 return -EINVAL;
723 }
724
725 if (ai->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT &&
726 ai->highest_vol_id < UBI_INTERNAL_VOL_START) {
727 ubi_err(ubi, "too large volume ID %d found",
728 ai->highest_vol_id);
729 return -EINVAL;
730 }
731
732 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
733 cond_resched();
734
735 av = ubi_find_av(ai, i);
736 vol = ubi->volumes[i];
737 if (!vol) {
738 if (av)
739 ubi_remove_av(ai, av);
740 continue;
741 }
742
743 if (vol->reserved_pebs == 0) {
744 ubi_assert(i < ubi->vtbl_slots);
745
746 if (!av)
747 continue;
748
749 /*
750 * During attaching we found a volume which does not
751 * exist according to the information in the volume
752 * table. This must have happened due to an unclean
753 * reboot while the volume was being removed. Discard
754 * these eraseblocks.
755 */
756 ubi_msg(ubi, "finish volume %d removal", av->vol_id);
757 ubi_remove_av(ai, av);
758 } else if (av) {
759 err = check_av(vol, av);
760 if (err)
761 return err;
762 }
763 }
764
765 return 0;
766 }
767
768 /**
769 * ubi_read_volume_table - read the volume table.
770 * @ubi: UBI device description object
771 * @ai: attaching information
772 *
773 * This function reads volume table, checks it, recover from errors if needed,
774 * or creates it if needed. Returns zero in case of success and a negative
775 * error code in case of failure.
776 */
777 int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_attach_info *ai)
778 {
779 int i, err;
780 struct ubi_ainf_volume *av;
781
782 empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
783
784 /*
785 * The number of supported volumes is limited by the eraseblock size
786 * and by the UBI_MAX_VOLUMES constant.
787 */
788 ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
789 if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
790 ubi->vtbl_slots = UBI_MAX_VOLUMES;
791
792 ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
793 ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
794
795 av = ubi_find_av(ai, UBI_LAYOUT_VOLUME_ID);
796 if (!av) {
797 /*
798 * No logical eraseblocks belonging to the layout volume were
799 * found. This could mean that the flash is just empty. In
800 * this case we create empty layout volume.
801 *
802 * But if flash is not empty this must be a corruption or the
803 * MTD device just contains garbage.
804 */
805 if (ai->is_empty) {
806 ubi->vtbl = create_empty_lvol(ubi, ai);
807 if (IS_ERR(ubi->vtbl))
808 return PTR_ERR(ubi->vtbl);
809 } else {
810 ubi_err(ubi, "the layout volume was not found");
811 return -EINVAL;
812 }
813 } else {
814 if (av->leb_count > UBI_LAYOUT_VOLUME_EBS) {
815 /* This must not happen with proper UBI images */
816 ubi_err(ubi, "too many LEBs (%d) in layout volume",
817 av->leb_count);
818 return -EINVAL;
819 }
820
821 ubi->vtbl = process_lvol(ubi, ai, av);
822 if (IS_ERR(ubi->vtbl))
823 return PTR_ERR(ubi->vtbl);
824 }
825
826 ubi->avail_pebs = ubi->good_peb_count - ubi->corr_peb_count;
827
828 /*
829 * The layout volume is OK, initialize the corresponding in-RAM data
830 * structures.
831 */
832 err = init_volumes(ubi, ai, ubi->vtbl);
833 if (err)
834 goto out_free;
835
836 /*
837 * Make sure that the attaching information is consistent to the
838 * information stored in the volume table.
839 */
840 err = check_attaching_info(ubi, ai);
841 if (err)
842 goto out_free;
843
844 return 0;
845
846 out_free:
847 vfree(ubi->vtbl);
848 for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
849 kfree(ubi->volumes[i]);
850 ubi->volumes[i] = NULL;
851 }
852 return err;
853 }
854
855 /**
856 * self_vtbl_check - check volume table.
857 * @ubi: UBI device description object
858 */
859 static void self_vtbl_check(const struct ubi_device *ubi)
860 {
861 if (!ubi_dbg_chk_gen(ubi))
862 return;
863
864 if (vtbl_check(ubi, ubi->vtbl)) {
865 ubi_err(ubi, "self-check failed");
866 BUG();
867 }
868 }
This page took 0.049887 seconds and 5 git commands to generate.