83848324daa27772907d567a4af7cc09a348d7e7
[deliverable/linux.git] / drivers / mtd / ubi / wl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21 /*
22 * UBI wear-leveling sub-system.
23 *
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
33 *
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44 * bad.
45 *
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
49 *
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
54 *
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
60 *
61 * All this protection stuff is needed because:
62 * o we don't want to move physical eraseblocks just after we have given them
63 * to the user; instead, we first want to let users fill them up with data;
64 *
65 * o there is a chance that the user will put the physical eraseblock very
66 * soon, so it makes sense not to move it for some time, but wait.
67 *
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
74 *
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80 * erroneous - e.g., there was a read error;
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
83 *
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
86 *
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
90 * re-work this sub-system and make it more scalable.
91 *
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
98 * room for future re-works of the WL sub-system.
99 */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111 * Maximum difference between two erase counters. If this threshold is
112 * exceeded, the WL sub-system starts moving data from used physical
113 * eraseblocks with low erase counter to free physical eraseblocks with high
114 * erase counter.
115 */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119 * When a physical eraseblock is moved, the WL sub-system has to pick the target
120 * physical eraseblock to move to. The simplest way would be just to pick the
121 * one with the highest erase counter. But in certain workloads this could lead
122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123 * situation when the picked physical eraseblock is constantly erased after the
124 * data is written to it. So, we have a constant which limits the highest erase
125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126 * does not pick eraseblocks with erase counter greater than the lowest erase
127 * counter plus %WL_FREE_MAX_DIFF.
128 */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132 * Maximum number of consecutive background thread failures which is enough to
133 * switch to read-only mode.
134 */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139 struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141 struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146 * @wrk: the work description object
147 */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151 ubi_update_fastmap(ubi);
152 spin_lock(&ubi->wl_lock);
153 ubi->fm_work_scheduled = 0;
154 spin_unlock(&ubi->wl_lock);
155 }
156
157 /**
158 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
159 * @ubi: UBI device description object
160 * @pnum: the to be checked PEB
161 */
162 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
163 {
164 int i;
165
166 if (!ubi->fm)
167 return 0;
168
169 for (i = 0; i < ubi->fm->used_blocks; i++)
170 if (ubi->fm->e[i]->pnum == pnum)
171 return 1;
172
173 return 0;
174 }
175 #else
176 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
177 {
178 return 0;
179 }
180 #endif
181
182 /**
183 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
184 * @e: the wear-leveling entry to add
185 * @root: the root of the tree
186 *
187 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
188 * the @ubi->used and @ubi->free RB-trees.
189 */
190 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
191 {
192 struct rb_node **p, *parent = NULL;
193
194 p = &root->rb_node;
195 while (*p) {
196 struct ubi_wl_entry *e1;
197
198 parent = *p;
199 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
200
201 if (e->ec < e1->ec)
202 p = &(*p)->rb_left;
203 else if (e->ec > e1->ec)
204 p = &(*p)->rb_right;
205 else {
206 ubi_assert(e->pnum != e1->pnum);
207 if (e->pnum < e1->pnum)
208 p = &(*p)->rb_left;
209 else
210 p = &(*p)->rb_right;
211 }
212 }
213
214 rb_link_node(&e->u.rb, parent, p);
215 rb_insert_color(&e->u.rb, root);
216 }
217
218 /**
219 * wl_tree_destroy - destroy a wear-leveling entry.
220 * @ubi: UBI device description object
221 * @e: the wear-leveling entry to add
222 *
223 * This function destroys a wear leveling entry and removes
224 * the reference from the lookup table.
225 */
226 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
227 {
228 ubi->lookuptbl[e->pnum] = NULL;
229 kmem_cache_free(ubi_wl_entry_slab, e);
230 }
231
232 /**
233 * do_work - do one pending work.
234 * @ubi: UBI device description object
235 *
236 * This function returns zero in case of success and a negative error code in
237 * case of failure.
238 */
239 static int do_work(struct ubi_device *ubi)
240 {
241 int err;
242 struct ubi_work *wrk;
243
244 cond_resched();
245
246 /*
247 * @ubi->work_sem is used to synchronize with the workers. Workers take
248 * it in read mode, so many of them may be doing works at a time. But
249 * the queue flush code has to be sure the whole queue of works is
250 * done, and it takes the mutex in write mode.
251 */
252 down_read(&ubi->work_sem);
253 spin_lock(&ubi->wl_lock);
254 if (list_empty(&ubi->works)) {
255 spin_unlock(&ubi->wl_lock);
256 up_read(&ubi->work_sem);
257 return 0;
258 }
259
260 wrk = list_entry(ubi->works.next, struct ubi_work, list);
261 list_del(&wrk->list);
262 ubi->works_count -= 1;
263 ubi_assert(ubi->works_count >= 0);
264 spin_unlock(&ubi->wl_lock);
265
266 /*
267 * Call the worker function. Do not touch the work structure
268 * after this call as it will have been freed or reused by that
269 * time by the worker function.
270 */
271 err = wrk->func(ubi, wrk, 0);
272 if (err)
273 ubi_err(ubi, "work failed with error code %d", err);
274 up_read(&ubi->work_sem);
275
276 return err;
277 }
278
279 /**
280 * produce_free_peb - produce a free physical eraseblock.
281 * @ubi: UBI device description object
282 *
283 * This function tries to make a free PEB by means of synchronous execution of
284 * pending works. This may be needed if, for example the background thread is
285 * disabled. Returns zero in case of success and a negative error code in case
286 * of failure.
287 */
288 static int produce_free_peb(struct ubi_device *ubi)
289 {
290 int err;
291
292 while (!ubi->free.rb_node && ubi->works_count) {
293 spin_unlock(&ubi->wl_lock);
294
295 dbg_wl("do one work synchronously");
296 err = do_work(ubi);
297
298 spin_lock(&ubi->wl_lock);
299 if (err)
300 return err;
301 }
302
303 return 0;
304 }
305
306 /**
307 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
308 * @e: the wear-leveling entry to check
309 * @root: the root of the tree
310 *
311 * This function returns non-zero if @e is in the @root RB-tree and zero if it
312 * is not.
313 */
314 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
315 {
316 struct rb_node *p;
317
318 p = root->rb_node;
319 while (p) {
320 struct ubi_wl_entry *e1;
321
322 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
323
324 if (e->pnum == e1->pnum) {
325 ubi_assert(e == e1);
326 return 1;
327 }
328
329 if (e->ec < e1->ec)
330 p = p->rb_left;
331 else if (e->ec > e1->ec)
332 p = p->rb_right;
333 else {
334 ubi_assert(e->pnum != e1->pnum);
335 if (e->pnum < e1->pnum)
336 p = p->rb_left;
337 else
338 p = p->rb_right;
339 }
340 }
341
342 return 0;
343 }
344
345 /**
346 * prot_queue_add - add physical eraseblock to the protection queue.
347 * @ubi: UBI device description object
348 * @e: the physical eraseblock to add
349 *
350 * This function adds @e to the tail of the protection queue @ubi->pq, where
351 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
352 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
353 * be locked.
354 */
355 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
356 {
357 int pq_tail = ubi->pq_head - 1;
358
359 if (pq_tail < 0)
360 pq_tail = UBI_PROT_QUEUE_LEN - 1;
361 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
362 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
363 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
364 }
365
366 /**
367 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
368 * @ubi: UBI device description object
369 * @root: the RB-tree where to look for
370 * @diff: maximum possible difference from the smallest erase counter
371 *
372 * This function looks for a wear leveling entry with erase counter closest to
373 * min + @diff, where min is the smallest erase counter.
374 */
375 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
376 struct rb_root *root, int diff)
377 {
378 struct rb_node *p;
379 struct ubi_wl_entry *e, *prev_e = NULL;
380 int max;
381
382 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
383 max = e->ec + diff;
384
385 p = root->rb_node;
386 while (p) {
387 struct ubi_wl_entry *e1;
388
389 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
390 if (e1->ec >= max)
391 p = p->rb_left;
392 else {
393 p = p->rb_right;
394 prev_e = e;
395 e = e1;
396 }
397 }
398
399 /* If no fastmap has been written and this WL entry can be used
400 * as anchor PEB, hold it back and return the second best WL entry
401 * such that fastmap can use the anchor PEB later. */
402 if (prev_e && !ubi->fm_disabled &&
403 !ubi->fm && e->pnum < UBI_FM_MAX_START)
404 return prev_e;
405
406 return e;
407 }
408
409 /**
410 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
411 * @ubi: UBI device description object
412 * @root: the RB-tree where to look for
413 *
414 * This function looks for a wear leveling entry with medium erase counter,
415 * but not greater or equivalent than the lowest erase counter plus
416 * %WL_FREE_MAX_DIFF/2.
417 */
418 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
419 struct rb_root *root)
420 {
421 struct ubi_wl_entry *e, *first, *last;
422
423 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
424 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
425
426 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
427 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
428
429 #ifdef CONFIG_MTD_UBI_FASTMAP
430 /* If no fastmap has been written and this WL entry can be used
431 * as anchor PEB, hold it back and return the second best
432 * WL entry such that fastmap can use the anchor PEB later. */
433 if (e && !ubi->fm_disabled && !ubi->fm &&
434 e->pnum < UBI_FM_MAX_START)
435 e = rb_entry(rb_next(root->rb_node),
436 struct ubi_wl_entry, u.rb);
437 #endif
438 } else
439 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
440
441 return e;
442 }
443
444 #ifdef CONFIG_MTD_UBI_FASTMAP
445 /**
446 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
447 * @root: the RB-tree where to look for
448 */
449 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
450 {
451 struct rb_node *p;
452 struct ubi_wl_entry *e, *victim = NULL;
453 int max_ec = UBI_MAX_ERASECOUNTER;
454
455 ubi_rb_for_each_entry(p, e, root, u.rb) {
456 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
457 victim = e;
458 max_ec = e->ec;
459 }
460 }
461
462 return victim;
463 }
464
465 static int anchor_pebs_avalible(struct rb_root *root)
466 {
467 struct rb_node *p;
468 struct ubi_wl_entry *e;
469
470 ubi_rb_for_each_entry(p, e, root, u.rb)
471 if (e->pnum < UBI_FM_MAX_START)
472 return 1;
473
474 return 0;
475 }
476
477 /**
478 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
479 * @ubi: UBI device description object
480 * @anchor: This PEB will be used as anchor PEB by fastmap
481 *
482 * The function returns a physical erase block with a given maximal number
483 * and removes it from the wl subsystem.
484 * Must be called with wl_lock held!
485 */
486 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
487 {
488 struct ubi_wl_entry *e = NULL;
489
490 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
491 goto out;
492
493 if (anchor)
494 e = find_anchor_wl_entry(&ubi->free);
495 else
496 e = find_mean_wl_entry(ubi, &ubi->free);
497
498 if (!e)
499 goto out;
500
501 self_check_in_wl_tree(ubi, e, &ubi->free);
502
503 /* remove it from the free list,
504 * the wl subsystem does no longer know this erase block */
505 rb_erase(&e->u.rb, &ubi->free);
506 ubi->free_count--;
507 out:
508 return e;
509 }
510 #endif
511
512 /**
513 * wl_get_wle - get a mean wl entry to be used by wl_get_peb() or
514 * refill_wl_user_pool().
515 * @ubi: UBI device description object
516 *
517 * This function returns a a wear leveling entry in case of success and
518 * NULL in case of failure.
519 */
520 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
521 {
522 struct ubi_wl_entry *e;
523
524 e = find_mean_wl_entry(ubi, &ubi->free);
525 if (!e) {
526 ubi_err(ubi, "no free eraseblocks");
527 return NULL;
528 }
529
530 self_check_in_wl_tree(ubi, e, &ubi->free);
531
532 /*
533 * Move the physical eraseblock to the protection queue where it will
534 * be protected from being moved for some time.
535 */
536 rb_erase(&e->u.rb, &ubi->free);
537 ubi->free_count--;
538 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
539
540 return e;
541 }
542
543 /**
544 * wl_get_peb - get a physical eraseblock.
545 * @ubi: UBI device description object
546 *
547 * This function returns a physical eraseblock in case of success and a
548 * negative error code in case of failure.
549 * It is the low level component of ubi_wl_get_peb() in the non-fastmap
550 * case.
551 */
552 static int wl_get_peb(struct ubi_device *ubi)
553 {
554 int err;
555 struct ubi_wl_entry *e;
556
557 retry:
558 if (!ubi->free.rb_node) {
559 if (ubi->works_count == 0) {
560 ubi_err(ubi, "no free eraseblocks");
561 ubi_assert(list_empty(&ubi->works));
562 return -ENOSPC;
563 }
564
565 err = produce_free_peb(ubi);
566 if (err < 0)
567 return err;
568 goto retry;
569 }
570
571 e = wl_get_wle(ubi);
572 prot_queue_add(ubi, e);
573
574 return e->pnum;
575 }
576
577 #ifdef CONFIG_MTD_UBI_FASTMAP
578 /**
579 * return_unused_pool_pebs - returns unused PEB to the free tree.
580 * @ubi: UBI device description object
581 * @pool: fastmap pool description object
582 */
583 static void return_unused_pool_pebs(struct ubi_device *ubi,
584 struct ubi_fm_pool *pool)
585 {
586 int i;
587 struct ubi_wl_entry *e;
588
589 for (i = pool->used; i < pool->size; i++) {
590 e = ubi->lookuptbl[pool->pebs[i]];
591 wl_tree_add(e, &ubi->free);
592 ubi->free_count++;
593 }
594 }
595
596 /**
597 * ubi_refill_pools - refills all fastmap PEB pools.
598 * @ubi: UBI device description object
599 */
600 void ubi_refill_pools(struct ubi_device *ubi)
601 {
602 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
603 struct ubi_fm_pool *pool = &ubi->fm_pool;
604 struct ubi_wl_entry *e;
605 int enough;
606
607 spin_lock(&ubi->wl_lock);
608
609 return_unused_pool_pebs(ubi, wl_pool);
610 return_unused_pool_pebs(ubi, pool);
611
612 wl_pool->size = 0;
613 pool->size = 0;
614
615 for (;;) {
616 enough = 0;
617 if (pool->size < pool->max_size) {
618 if (!ubi->free.rb_node ||
619 (ubi->free_count - ubi->beb_rsvd_pebs < 5))
620 break;
621
622 e = wl_get_wle(ubi);
623 if (!e)
624 break;
625
626 pool->pebs[pool->size] = e->pnum;
627 pool->size++;
628 } else
629 enough++;
630
631 if (wl_pool->size < wl_pool->max_size) {
632 if (!ubi->free.rb_node ||
633 (ubi->free_count - ubi->beb_rsvd_pebs < 5))
634 break;
635
636 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
637 self_check_in_wl_tree(ubi, e, &ubi->free);
638 rb_erase(&e->u.rb, &ubi->free);
639 ubi->free_count--;
640
641 wl_pool->pebs[wl_pool->size] = e->pnum;
642 wl_pool->size++;
643 } else
644 enough++;
645
646 if (enough == 2)
647 break;
648 }
649
650 wl_pool->used = 0;
651 pool->used = 0;
652
653 spin_unlock(&ubi->wl_lock);
654 }
655
656 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
657 * the fastmap pool.
658 * Returns with ubi->fm_eba_sem held in read mode!
659 */
660 int ubi_wl_get_peb(struct ubi_device *ubi)
661 {
662 int ret, retried = 0;
663 struct ubi_fm_pool *pool = &ubi->fm_pool;
664 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
665
666 again:
667 down_read(&ubi->fm_eba_sem);
668 spin_lock(&ubi->wl_lock);
669 /* We check here also for the WL pool because at this point we can
670 * refill the WL pool synchronous. */
671 if (pool->used == pool->size || wl_pool->used == wl_pool->size) {
672 spin_unlock(&ubi->wl_lock);
673 up_read(&ubi->fm_eba_sem);
674 ret = ubi_update_fastmap(ubi);
675 if (ret) {
676 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
677 down_read(&ubi->fm_eba_sem);
678 return -ENOSPC;
679 }
680 down_read(&ubi->fm_eba_sem);
681 spin_lock(&ubi->wl_lock);
682 }
683
684 if (pool->used == pool->size) {
685 spin_unlock(&ubi->wl_lock);
686 if (retried) {
687 ubi_err(ubi, "Unable to get a free PEB from user WL pool");
688 ret = -ENOSPC;
689 goto out;
690 }
691 retried = 1;
692 up_read(&ubi->fm_eba_sem);
693 goto again;
694 }
695
696 ubi_assert(pool->used < pool->size);
697 ret = pool->pebs[pool->used++];
698 prot_queue_add(ubi, ubi->lookuptbl[ret]);
699 spin_unlock(&ubi->wl_lock);
700 out:
701 return ret;
702 }
703
704 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
705 *
706 * @ubi: UBI device description object
707 */
708 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
709 {
710 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
711 int pnum;
712
713 if (pool->used == pool->size) {
714 /* We cannot update the fastmap here because this
715 * function is called in atomic context.
716 * Let's fail here and refill/update it as soon as possible. */
717 if (!ubi->fm_work_scheduled) {
718 ubi->fm_work_scheduled = 1;
719 schedule_work(&ubi->fm_work);
720 }
721 return NULL;
722 } else {
723 pnum = pool->pebs[pool->used++];
724 return ubi->lookuptbl[pnum];
725 }
726 }
727 #else
728 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
729 {
730 struct ubi_wl_entry *e;
731
732 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
733 self_check_in_wl_tree(ubi, e, &ubi->free);
734 ubi->free_count--;
735 ubi_assert(ubi->free_count >= 0);
736 rb_erase(&e->u.rb, &ubi->free);
737
738 return e;
739 }
740
741 int ubi_wl_get_peb(struct ubi_device *ubi)
742 {
743 int peb, err;
744
745 spin_lock(&ubi->wl_lock);
746 peb = wl_get_peb(ubi);
747 spin_unlock(&ubi->wl_lock);
748 down_read(&ubi->fm_eba_sem);
749
750 if (peb < 0)
751 return peb;
752
753 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
754 ubi->peb_size - ubi->vid_hdr_aloffset);
755 if (err) {
756 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes",
757 peb);
758 return err;
759 }
760
761 return peb;
762 }
763 #endif
764
765 /**
766 * prot_queue_del - remove a physical eraseblock from the protection queue.
767 * @ubi: UBI device description object
768 * @pnum: the physical eraseblock to remove
769 *
770 * This function deletes PEB @pnum from the protection queue and returns zero
771 * in case of success and %-ENODEV if the PEB was not found.
772 */
773 static int prot_queue_del(struct ubi_device *ubi, int pnum)
774 {
775 struct ubi_wl_entry *e;
776
777 e = ubi->lookuptbl[pnum];
778 if (!e)
779 return -ENODEV;
780
781 if (self_check_in_pq(ubi, e))
782 return -ENODEV;
783
784 list_del(&e->u.list);
785 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
786 return 0;
787 }
788
789 /**
790 * sync_erase - synchronously erase a physical eraseblock.
791 * @ubi: UBI device description object
792 * @e: the the physical eraseblock to erase
793 * @torture: if the physical eraseblock has to be tortured
794 *
795 * This function returns zero in case of success and a negative error code in
796 * case of failure.
797 */
798 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
799 int torture)
800 {
801 int err;
802 struct ubi_ec_hdr *ec_hdr;
803 unsigned long long ec = e->ec;
804
805 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
806
807 err = self_check_ec(ubi, e->pnum, e->ec);
808 if (err)
809 return -EINVAL;
810
811 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
812 if (!ec_hdr)
813 return -ENOMEM;
814
815 err = ubi_io_sync_erase(ubi, e->pnum, torture);
816 if (err < 0)
817 goto out_free;
818
819 ec += err;
820 if (ec > UBI_MAX_ERASECOUNTER) {
821 /*
822 * Erase counter overflow. Upgrade UBI and use 64-bit
823 * erase counters internally.
824 */
825 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
826 e->pnum, ec);
827 err = -EINVAL;
828 goto out_free;
829 }
830
831 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
832
833 ec_hdr->ec = cpu_to_be64(ec);
834
835 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
836 if (err)
837 goto out_free;
838
839 e->ec = ec;
840 spin_lock(&ubi->wl_lock);
841 if (e->ec > ubi->max_ec)
842 ubi->max_ec = e->ec;
843 spin_unlock(&ubi->wl_lock);
844
845 out_free:
846 kfree(ec_hdr);
847 return err;
848 }
849
850 /**
851 * serve_prot_queue - check if it is time to stop protecting PEBs.
852 * @ubi: UBI device description object
853 *
854 * This function is called after each erase operation and removes PEBs from the
855 * tail of the protection queue. These PEBs have been protected for long enough
856 * and should be moved to the used tree.
857 */
858 static void serve_prot_queue(struct ubi_device *ubi)
859 {
860 struct ubi_wl_entry *e, *tmp;
861 int count;
862
863 /*
864 * There may be several protected physical eraseblock to remove,
865 * process them all.
866 */
867 repeat:
868 count = 0;
869 spin_lock(&ubi->wl_lock);
870 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
871 dbg_wl("PEB %d EC %d protection over, move to used tree",
872 e->pnum, e->ec);
873
874 list_del(&e->u.list);
875 wl_tree_add(e, &ubi->used);
876 if (count++ > 32) {
877 /*
878 * Let's be nice and avoid holding the spinlock for
879 * too long.
880 */
881 spin_unlock(&ubi->wl_lock);
882 cond_resched();
883 goto repeat;
884 }
885 }
886
887 ubi->pq_head += 1;
888 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
889 ubi->pq_head = 0;
890 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
891 spin_unlock(&ubi->wl_lock);
892 }
893
894 /**
895 * __schedule_ubi_work - schedule a work.
896 * @ubi: UBI device description object
897 * @wrk: the work to schedule
898 *
899 * This function adds a work defined by @wrk to the tail of the pending works
900 * list. Can only be used if ubi->work_sem is already held in read mode!
901 */
902 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
903 {
904 spin_lock(&ubi->wl_lock);
905 list_add_tail(&wrk->list, &ubi->works);
906 ubi_assert(ubi->works_count >= 0);
907 ubi->works_count += 1;
908 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
909 wake_up_process(ubi->bgt_thread);
910 spin_unlock(&ubi->wl_lock);
911 }
912
913 /**
914 * schedule_ubi_work - schedule a work.
915 * @ubi: UBI device description object
916 * @wrk: the work to schedule
917 *
918 * This function adds a work defined by @wrk to the tail of the pending works
919 * list.
920 */
921 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
922 {
923 down_read(&ubi->work_sem);
924 __schedule_ubi_work(ubi, wrk);
925 up_read(&ubi->work_sem);
926 }
927
928 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
929 int shutdown);
930
931 #ifdef CONFIG_MTD_UBI_FASTMAP
932 /**
933 * ubi_is_erase_work - checks whether a work is erase work.
934 * @wrk: The work object to be checked
935 */
936 int ubi_is_erase_work(struct ubi_work *wrk)
937 {
938 return wrk->func == erase_worker;
939 }
940 #endif
941
942 /**
943 * schedule_erase - schedule an erase work.
944 * @ubi: UBI device description object
945 * @e: the WL entry of the physical eraseblock to erase
946 * @vol_id: the volume ID that last used this PEB
947 * @lnum: the last used logical eraseblock number for the PEB
948 * @torture: if the physical eraseblock has to be tortured
949 *
950 * This function returns zero in case of success and a %-ENOMEM in case of
951 * failure.
952 */
953 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
954 int vol_id, int lnum, int torture)
955 {
956 struct ubi_work *wl_wrk;
957
958 ubi_assert(e);
959 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
960
961 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
962 e->pnum, e->ec, torture);
963
964 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
965 if (!wl_wrk)
966 return -ENOMEM;
967
968 wl_wrk->func = &erase_worker;
969 wl_wrk->e = e;
970 wl_wrk->vol_id = vol_id;
971 wl_wrk->lnum = lnum;
972 wl_wrk->torture = torture;
973
974 schedule_ubi_work(ubi, wl_wrk);
975 return 0;
976 }
977
978 /**
979 * do_sync_erase - run the erase worker synchronously.
980 * @ubi: UBI device description object
981 * @e: the WL entry of the physical eraseblock to erase
982 * @vol_id: the volume ID that last used this PEB
983 * @lnum: the last used logical eraseblock number for the PEB
984 * @torture: if the physical eraseblock has to be tortured
985 *
986 */
987 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
988 int vol_id, int lnum, int torture)
989 {
990 struct ubi_work *wl_wrk;
991
992 dbg_wl("sync erase of PEB %i", e->pnum);
993
994 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
995 if (!wl_wrk)
996 return -ENOMEM;
997
998 wl_wrk->e = e;
999 wl_wrk->vol_id = vol_id;
1000 wl_wrk->lnum = lnum;
1001 wl_wrk->torture = torture;
1002
1003 return erase_worker(ubi, wl_wrk, 0);
1004 }
1005
1006 #ifdef CONFIG_MTD_UBI_FASTMAP
1007 /**
1008 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
1009 * sub-system.
1010 * see: ubi_wl_put_peb()
1011 *
1012 * @ubi: UBI device description object
1013 * @fm_e: physical eraseblock to return
1014 * @lnum: the last used logical eraseblock number for the PEB
1015 * @torture: if this physical eraseblock has to be tortured
1016 */
1017 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
1018 int lnum, int torture)
1019 {
1020 struct ubi_wl_entry *e;
1021 int vol_id, pnum = fm_e->pnum;
1022
1023 dbg_wl("PEB %d", pnum);
1024
1025 ubi_assert(pnum >= 0);
1026 ubi_assert(pnum < ubi->peb_count);
1027
1028 spin_lock(&ubi->wl_lock);
1029 e = ubi->lookuptbl[pnum];
1030
1031 /* This can happen if we recovered from a fastmap the very
1032 * first time and writing now a new one. In this case the wl system
1033 * has never seen any PEB used by the original fastmap.
1034 */
1035 if (!e) {
1036 e = fm_e;
1037 ubi_assert(e->ec >= 0);
1038 ubi->lookuptbl[pnum] = e;
1039 }
1040
1041 spin_unlock(&ubi->wl_lock);
1042
1043 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
1044 return schedule_erase(ubi, e, vol_id, lnum, torture);
1045 }
1046 #endif
1047
1048 /**
1049 * wear_leveling_worker - wear-leveling worker function.
1050 * @ubi: UBI device description object
1051 * @wrk: the work object
1052 * @shutdown: non-zero if the worker has to free memory and exit
1053 * because the WL-subsystem is shutting down
1054 *
1055 * This function copies a more worn out physical eraseblock to a less worn out
1056 * one. Returns zero in case of success and a negative error code in case of
1057 * failure.
1058 */
1059 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1060 int shutdown)
1061 {
1062 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1063 int vol_id = -1, lnum = -1;
1064 #ifdef CONFIG_MTD_UBI_FASTMAP
1065 int anchor = wrk->anchor;
1066 #endif
1067 struct ubi_wl_entry *e1, *e2;
1068 struct ubi_vid_hdr *vid_hdr;
1069
1070 kfree(wrk);
1071 if (shutdown)
1072 return 0;
1073
1074 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1075 if (!vid_hdr)
1076 return -ENOMEM;
1077
1078 mutex_lock(&ubi->move_mutex);
1079 spin_lock(&ubi->wl_lock);
1080 ubi_assert(!ubi->move_from && !ubi->move_to);
1081 ubi_assert(!ubi->move_to_put);
1082
1083 if (!ubi->free.rb_node ||
1084 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1085 /*
1086 * No free physical eraseblocks? Well, they must be waiting in
1087 * the queue to be erased. Cancel movement - it will be
1088 * triggered again when a free physical eraseblock appears.
1089 *
1090 * No used physical eraseblocks? They must be temporarily
1091 * protected from being moved. They will be moved to the
1092 * @ubi->used tree later and the wear-leveling will be
1093 * triggered again.
1094 */
1095 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1096 !ubi->free.rb_node, !ubi->used.rb_node);
1097 goto out_cancel;
1098 }
1099
1100 #ifdef CONFIG_MTD_UBI_FASTMAP
1101 /* Check whether we need to produce an anchor PEB */
1102 if (!anchor)
1103 anchor = !anchor_pebs_avalible(&ubi->free);
1104
1105 if (anchor) {
1106 e1 = find_anchor_wl_entry(&ubi->used);
1107 if (!e1)
1108 goto out_cancel;
1109 e2 = get_peb_for_wl(ubi);
1110 if (!e2)
1111 goto out_cancel;
1112
1113 self_check_in_wl_tree(ubi, e1, &ubi->used);
1114 rb_erase(&e1->u.rb, &ubi->used);
1115 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1116 } else if (!ubi->scrub.rb_node) {
1117 #else
1118 if (!ubi->scrub.rb_node) {
1119 #endif
1120 /*
1121 * Now pick the least worn-out used physical eraseblock and a
1122 * highly worn-out free physical eraseblock. If the erase
1123 * counters differ much enough, start wear-leveling.
1124 */
1125 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1126 e2 = get_peb_for_wl(ubi);
1127 if (!e2)
1128 goto out_cancel;
1129
1130 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1131 dbg_wl("no WL needed: min used EC %d, max free EC %d",
1132 e1->ec, e2->ec);
1133
1134 /* Give the unused PEB back */
1135 wl_tree_add(e2, &ubi->free);
1136 ubi->free_count++;
1137 goto out_cancel;
1138 }
1139 self_check_in_wl_tree(ubi, e1, &ubi->used);
1140 rb_erase(&e1->u.rb, &ubi->used);
1141 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1142 e1->pnum, e1->ec, e2->pnum, e2->ec);
1143 } else {
1144 /* Perform scrubbing */
1145 scrubbing = 1;
1146 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1147 e2 = get_peb_for_wl(ubi);
1148 if (!e2)
1149 goto out_cancel;
1150
1151 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1152 rb_erase(&e1->u.rb, &ubi->scrub);
1153 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1154 }
1155
1156 ubi->move_from = e1;
1157 ubi->move_to = e2;
1158 spin_unlock(&ubi->wl_lock);
1159
1160 /*
1161 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1162 * We so far do not know which logical eraseblock our physical
1163 * eraseblock (@e1) belongs to. We have to read the volume identifier
1164 * header first.
1165 *
1166 * Note, we are protected from this PEB being unmapped and erased. The
1167 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1168 * which is being moved was unmapped.
1169 */
1170
1171 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1172 if (err && err != UBI_IO_BITFLIPS) {
1173 if (err == UBI_IO_FF) {
1174 /*
1175 * We are trying to move PEB without a VID header. UBI
1176 * always write VID headers shortly after the PEB was
1177 * given, so we have a situation when it has not yet
1178 * had a chance to write it, because it was preempted.
1179 * So add this PEB to the protection queue so far,
1180 * because presumably more data will be written there
1181 * (including the missing VID header), and then we'll
1182 * move it.
1183 */
1184 dbg_wl("PEB %d has no VID header", e1->pnum);
1185 protect = 1;
1186 goto out_not_moved;
1187 } else if (err == UBI_IO_FF_BITFLIPS) {
1188 /*
1189 * The same situation as %UBI_IO_FF, but bit-flips were
1190 * detected. It is better to schedule this PEB for
1191 * scrubbing.
1192 */
1193 dbg_wl("PEB %d has no VID header but has bit-flips",
1194 e1->pnum);
1195 scrubbing = 1;
1196 goto out_not_moved;
1197 }
1198
1199 ubi_err(ubi, "error %d while reading VID header from PEB %d",
1200 err, e1->pnum);
1201 goto out_error;
1202 }
1203
1204 vol_id = be32_to_cpu(vid_hdr->vol_id);
1205 lnum = be32_to_cpu(vid_hdr->lnum);
1206
1207 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1208 if (err) {
1209 if (err == MOVE_CANCEL_RACE) {
1210 /*
1211 * The LEB has not been moved because the volume is
1212 * being deleted or the PEB has been put meanwhile. We
1213 * should prevent this PEB from being selected for
1214 * wear-leveling movement again, so put it to the
1215 * protection queue.
1216 */
1217 protect = 1;
1218 goto out_not_moved;
1219 }
1220 if (err == MOVE_RETRY) {
1221 scrubbing = 1;
1222 goto out_not_moved;
1223 }
1224 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1225 err == MOVE_TARGET_RD_ERR) {
1226 /*
1227 * Target PEB had bit-flips or write error - torture it.
1228 */
1229 torture = 1;
1230 goto out_not_moved;
1231 }
1232
1233 if (err == MOVE_SOURCE_RD_ERR) {
1234 /*
1235 * An error happened while reading the source PEB. Do
1236 * not switch to R/O mode in this case, and give the
1237 * upper layers a possibility to recover from this,
1238 * e.g. by unmapping corresponding LEB. Instead, just
1239 * put this PEB to the @ubi->erroneous list to prevent
1240 * UBI from trying to move it over and over again.
1241 */
1242 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1243 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
1244 ubi->erroneous_peb_count);
1245 goto out_error;
1246 }
1247 erroneous = 1;
1248 goto out_not_moved;
1249 }
1250
1251 if (err < 0)
1252 goto out_error;
1253
1254 ubi_assert(0);
1255 }
1256
1257 /* The PEB has been successfully moved */
1258 if (scrubbing)
1259 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1260 e1->pnum, vol_id, lnum, e2->pnum);
1261 ubi_free_vid_hdr(ubi, vid_hdr);
1262
1263 spin_lock(&ubi->wl_lock);
1264 if (!ubi->move_to_put) {
1265 wl_tree_add(e2, &ubi->used);
1266 e2 = NULL;
1267 }
1268 ubi->move_from = ubi->move_to = NULL;
1269 ubi->move_to_put = ubi->wl_scheduled = 0;
1270 spin_unlock(&ubi->wl_lock);
1271
1272 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1273 if (err) {
1274 if (e2)
1275 wl_entry_destroy(ubi, e2);
1276 goto out_ro;
1277 }
1278
1279 if (e2) {
1280 /*
1281 * Well, the target PEB was put meanwhile, schedule it for
1282 * erasure.
1283 */
1284 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1285 e2->pnum, vol_id, lnum);
1286 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1287 if (err)
1288 goto out_ro;
1289 }
1290
1291 dbg_wl("done");
1292 mutex_unlock(&ubi->move_mutex);
1293 return 0;
1294
1295 /*
1296 * For some reasons the LEB was not moved, might be an error, might be
1297 * something else. @e1 was not changed, so return it back. @e2 might
1298 * have been changed, schedule it for erasure.
1299 */
1300 out_not_moved:
1301 if (vol_id != -1)
1302 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1303 e1->pnum, vol_id, lnum, e2->pnum, err);
1304 else
1305 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1306 e1->pnum, e2->pnum, err);
1307 spin_lock(&ubi->wl_lock);
1308 if (protect)
1309 prot_queue_add(ubi, e1);
1310 else if (erroneous) {
1311 wl_tree_add(e1, &ubi->erroneous);
1312 ubi->erroneous_peb_count += 1;
1313 } else if (scrubbing)
1314 wl_tree_add(e1, &ubi->scrub);
1315 else
1316 wl_tree_add(e1, &ubi->used);
1317 ubi_assert(!ubi->move_to_put);
1318 ubi->move_from = ubi->move_to = NULL;
1319 ubi->wl_scheduled = 0;
1320 spin_unlock(&ubi->wl_lock);
1321
1322 ubi_free_vid_hdr(ubi, vid_hdr);
1323 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1324 if (err)
1325 goto out_ro;
1326
1327 mutex_unlock(&ubi->move_mutex);
1328 return 0;
1329
1330 out_error:
1331 if (vol_id != -1)
1332 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
1333 err, e1->pnum, e2->pnum);
1334 else
1335 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1336 err, e1->pnum, vol_id, lnum, e2->pnum);
1337 spin_lock(&ubi->wl_lock);
1338 ubi->move_from = ubi->move_to = NULL;
1339 ubi->move_to_put = ubi->wl_scheduled = 0;
1340 spin_unlock(&ubi->wl_lock);
1341
1342 ubi_free_vid_hdr(ubi, vid_hdr);
1343 wl_entry_destroy(ubi, e1);
1344 wl_entry_destroy(ubi, e2);
1345
1346 out_ro:
1347 ubi_ro_mode(ubi);
1348 mutex_unlock(&ubi->move_mutex);
1349 ubi_assert(err != 0);
1350 return err < 0 ? err : -EIO;
1351
1352 out_cancel:
1353 ubi->wl_scheduled = 0;
1354 spin_unlock(&ubi->wl_lock);
1355 mutex_unlock(&ubi->move_mutex);
1356 ubi_free_vid_hdr(ubi, vid_hdr);
1357 return 0;
1358 }
1359
1360 /**
1361 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1362 * @ubi: UBI device description object
1363 * @nested: set to non-zero if this function is called from UBI worker
1364 *
1365 * This function checks if it is time to start wear-leveling and schedules it
1366 * if yes. This function returns zero in case of success and a negative error
1367 * code in case of failure.
1368 */
1369 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1370 {
1371 int err = 0;
1372 struct ubi_wl_entry *e1;
1373 struct ubi_wl_entry *e2;
1374 struct ubi_work *wrk;
1375
1376 spin_lock(&ubi->wl_lock);
1377 if (ubi->wl_scheduled)
1378 /* Wear-leveling is already in the work queue */
1379 goto out_unlock;
1380
1381 /*
1382 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1383 * the WL worker has to be scheduled anyway.
1384 */
1385 if (!ubi->scrub.rb_node) {
1386 if (!ubi->used.rb_node || !ubi->free.rb_node)
1387 /* No physical eraseblocks - no deal */
1388 goto out_unlock;
1389
1390 /*
1391 * We schedule wear-leveling only if the difference between the
1392 * lowest erase counter of used physical eraseblocks and a high
1393 * erase counter of free physical eraseblocks is greater than
1394 * %UBI_WL_THRESHOLD.
1395 */
1396 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1397 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1398
1399 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1400 goto out_unlock;
1401 dbg_wl("schedule wear-leveling");
1402 } else
1403 dbg_wl("schedule scrubbing");
1404
1405 ubi->wl_scheduled = 1;
1406 spin_unlock(&ubi->wl_lock);
1407
1408 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1409 if (!wrk) {
1410 err = -ENOMEM;
1411 goto out_cancel;
1412 }
1413
1414 wrk->anchor = 0;
1415 wrk->func = &wear_leveling_worker;
1416 if (nested)
1417 __schedule_ubi_work(ubi, wrk);
1418 else
1419 schedule_ubi_work(ubi, wrk);
1420 return err;
1421
1422 out_cancel:
1423 spin_lock(&ubi->wl_lock);
1424 ubi->wl_scheduled = 0;
1425 out_unlock:
1426 spin_unlock(&ubi->wl_lock);
1427 return err;
1428 }
1429
1430 #ifdef CONFIG_MTD_UBI_FASTMAP
1431 /**
1432 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1433 * @ubi: UBI device description object
1434 */
1435 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1436 {
1437 struct ubi_work *wrk;
1438
1439 spin_lock(&ubi->wl_lock);
1440 if (ubi->wl_scheduled) {
1441 spin_unlock(&ubi->wl_lock);
1442 return 0;
1443 }
1444 ubi->wl_scheduled = 1;
1445 spin_unlock(&ubi->wl_lock);
1446
1447 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1448 if (!wrk) {
1449 spin_lock(&ubi->wl_lock);
1450 ubi->wl_scheduled = 0;
1451 spin_unlock(&ubi->wl_lock);
1452 return -ENOMEM;
1453 }
1454
1455 wrk->anchor = 1;
1456 wrk->func = &wear_leveling_worker;
1457 schedule_ubi_work(ubi, wrk);
1458 return 0;
1459 }
1460 #endif
1461
1462 /**
1463 * erase_worker - physical eraseblock erase worker function.
1464 * @ubi: UBI device description object
1465 * @wl_wrk: the work object
1466 * @shutdown: non-zero if the worker has to free memory and exit
1467 * because the WL sub-system is shutting down
1468 *
1469 * This function erases a physical eraseblock and perform torture testing if
1470 * needed. It also takes care about marking the physical eraseblock bad if
1471 * needed. Returns zero in case of success and a negative error code in case of
1472 * failure.
1473 */
1474 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1475 int shutdown)
1476 {
1477 struct ubi_wl_entry *e = wl_wrk->e;
1478 int pnum = e->pnum;
1479 int vol_id = wl_wrk->vol_id;
1480 int lnum = wl_wrk->lnum;
1481 int err, available_consumed = 0;
1482
1483 if (shutdown) {
1484 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1485 kfree(wl_wrk);
1486 wl_entry_destroy(ubi, e);
1487 return 0;
1488 }
1489
1490 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1491 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1492
1493 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1494
1495 err = sync_erase(ubi, e, wl_wrk->torture);
1496 if (!err) {
1497 /* Fine, we've erased it successfully */
1498 kfree(wl_wrk);
1499
1500 spin_lock(&ubi->wl_lock);
1501 wl_tree_add(e, &ubi->free);
1502 ubi->free_count++;
1503 spin_unlock(&ubi->wl_lock);
1504
1505 /*
1506 * One more erase operation has happened, take care about
1507 * protected physical eraseblocks.
1508 */
1509 serve_prot_queue(ubi);
1510
1511 /* And take care about wear-leveling */
1512 err = ensure_wear_leveling(ubi, 1);
1513 return err;
1514 }
1515
1516 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1517 kfree(wl_wrk);
1518
1519 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1520 err == -EBUSY) {
1521 int err1;
1522
1523 /* Re-schedule the LEB for erasure */
1524 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1525 if (err1) {
1526 err = err1;
1527 goto out_ro;
1528 }
1529 return err;
1530 }
1531
1532 wl_entry_destroy(ubi, e);
1533 if (err != -EIO)
1534 /*
1535 * If this is not %-EIO, we have no idea what to do. Scheduling
1536 * this physical eraseblock for erasure again would cause
1537 * errors again and again. Well, lets switch to R/O mode.
1538 */
1539 goto out_ro;
1540
1541 /* It is %-EIO, the PEB went bad */
1542
1543 if (!ubi->bad_allowed) {
1544 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1545 goto out_ro;
1546 }
1547
1548 spin_lock(&ubi->volumes_lock);
1549 if (ubi->beb_rsvd_pebs == 0) {
1550 if (ubi->avail_pebs == 0) {
1551 spin_unlock(&ubi->volumes_lock);
1552 ubi_err(ubi, "no reserved/available physical eraseblocks");
1553 goto out_ro;
1554 }
1555 ubi->avail_pebs -= 1;
1556 available_consumed = 1;
1557 }
1558 spin_unlock(&ubi->volumes_lock);
1559
1560 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1561 err = ubi_io_mark_bad(ubi, pnum);
1562 if (err)
1563 goto out_ro;
1564
1565 spin_lock(&ubi->volumes_lock);
1566 if (ubi->beb_rsvd_pebs > 0) {
1567 if (available_consumed) {
1568 /*
1569 * The amount of reserved PEBs increased since we last
1570 * checked.
1571 */
1572 ubi->avail_pebs += 1;
1573 available_consumed = 0;
1574 }
1575 ubi->beb_rsvd_pebs -= 1;
1576 }
1577 ubi->bad_peb_count += 1;
1578 ubi->good_peb_count -= 1;
1579 ubi_calculate_reserved(ubi);
1580 if (available_consumed)
1581 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1582 else if (ubi->beb_rsvd_pebs)
1583 ubi_msg(ubi, "%d PEBs left in the reserve",
1584 ubi->beb_rsvd_pebs);
1585 else
1586 ubi_warn(ubi, "last PEB from the reserve was used");
1587 spin_unlock(&ubi->volumes_lock);
1588
1589 return err;
1590
1591 out_ro:
1592 if (available_consumed) {
1593 spin_lock(&ubi->volumes_lock);
1594 ubi->avail_pebs += 1;
1595 spin_unlock(&ubi->volumes_lock);
1596 }
1597 ubi_ro_mode(ubi);
1598 return err;
1599 }
1600
1601 /**
1602 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1603 * @ubi: UBI device description object
1604 * @vol_id: the volume ID that last used this PEB
1605 * @lnum: the last used logical eraseblock number for the PEB
1606 * @pnum: physical eraseblock to return
1607 * @torture: if this physical eraseblock has to be tortured
1608 *
1609 * This function is called to return physical eraseblock @pnum to the pool of
1610 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1611 * occurred to this @pnum and it has to be tested. This function returns zero
1612 * in case of success, and a negative error code in case of failure.
1613 */
1614 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1615 int pnum, int torture)
1616 {
1617 int err;
1618 struct ubi_wl_entry *e;
1619
1620 dbg_wl("PEB %d", pnum);
1621 ubi_assert(pnum >= 0);
1622 ubi_assert(pnum < ubi->peb_count);
1623
1624 down_read(&ubi->fm_protect);
1625
1626 retry:
1627 spin_lock(&ubi->wl_lock);
1628 e = ubi->lookuptbl[pnum];
1629 if (e == ubi->move_from) {
1630 /*
1631 * User is putting the physical eraseblock which was selected to
1632 * be moved. It will be scheduled for erasure in the
1633 * wear-leveling worker.
1634 */
1635 dbg_wl("PEB %d is being moved, wait", pnum);
1636 spin_unlock(&ubi->wl_lock);
1637
1638 /* Wait for the WL worker by taking the @ubi->move_mutex */
1639 mutex_lock(&ubi->move_mutex);
1640 mutex_unlock(&ubi->move_mutex);
1641 goto retry;
1642 } else if (e == ubi->move_to) {
1643 /*
1644 * User is putting the physical eraseblock which was selected
1645 * as the target the data is moved to. It may happen if the EBA
1646 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1647 * but the WL sub-system has not put the PEB to the "used" tree
1648 * yet, but it is about to do this. So we just set a flag which
1649 * will tell the WL worker that the PEB is not needed anymore
1650 * and should be scheduled for erasure.
1651 */
1652 dbg_wl("PEB %d is the target of data moving", pnum);
1653 ubi_assert(!ubi->move_to_put);
1654 ubi->move_to_put = 1;
1655 spin_unlock(&ubi->wl_lock);
1656 up_read(&ubi->fm_protect);
1657 return 0;
1658 } else {
1659 if (in_wl_tree(e, &ubi->used)) {
1660 self_check_in_wl_tree(ubi, e, &ubi->used);
1661 rb_erase(&e->u.rb, &ubi->used);
1662 } else if (in_wl_tree(e, &ubi->scrub)) {
1663 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1664 rb_erase(&e->u.rb, &ubi->scrub);
1665 } else if (in_wl_tree(e, &ubi->erroneous)) {
1666 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1667 rb_erase(&e->u.rb, &ubi->erroneous);
1668 ubi->erroneous_peb_count -= 1;
1669 ubi_assert(ubi->erroneous_peb_count >= 0);
1670 /* Erroneous PEBs should be tortured */
1671 torture = 1;
1672 } else {
1673 err = prot_queue_del(ubi, e->pnum);
1674 if (err) {
1675 ubi_err(ubi, "PEB %d not found", pnum);
1676 ubi_ro_mode(ubi);
1677 spin_unlock(&ubi->wl_lock);
1678 up_read(&ubi->fm_protect);
1679 return err;
1680 }
1681 }
1682 }
1683 spin_unlock(&ubi->wl_lock);
1684
1685 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1686 if (err) {
1687 spin_lock(&ubi->wl_lock);
1688 wl_tree_add(e, &ubi->used);
1689 spin_unlock(&ubi->wl_lock);
1690 }
1691
1692 up_read(&ubi->fm_protect);
1693 return err;
1694 }
1695
1696 /**
1697 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1698 * @ubi: UBI device description object
1699 * @pnum: the physical eraseblock to schedule
1700 *
1701 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1702 * needs scrubbing. This function schedules a physical eraseblock for
1703 * scrubbing which is done in background. This function returns zero in case of
1704 * success and a negative error code in case of failure.
1705 */
1706 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1707 {
1708 struct ubi_wl_entry *e;
1709
1710 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1711
1712 retry:
1713 spin_lock(&ubi->wl_lock);
1714 e = ubi->lookuptbl[pnum];
1715 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1716 in_wl_tree(e, &ubi->erroneous)) {
1717 spin_unlock(&ubi->wl_lock);
1718 return 0;
1719 }
1720
1721 if (e == ubi->move_to) {
1722 /*
1723 * This physical eraseblock was used to move data to. The data
1724 * was moved but the PEB was not yet inserted to the proper
1725 * tree. We should just wait a little and let the WL worker
1726 * proceed.
1727 */
1728 spin_unlock(&ubi->wl_lock);
1729 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1730 yield();
1731 goto retry;
1732 }
1733
1734 if (in_wl_tree(e, &ubi->used)) {
1735 self_check_in_wl_tree(ubi, e, &ubi->used);
1736 rb_erase(&e->u.rb, &ubi->used);
1737 } else {
1738 int err;
1739
1740 err = prot_queue_del(ubi, e->pnum);
1741 if (err) {
1742 ubi_err(ubi, "PEB %d not found", pnum);
1743 ubi_ro_mode(ubi);
1744 spin_unlock(&ubi->wl_lock);
1745 return err;
1746 }
1747 }
1748
1749 wl_tree_add(e, &ubi->scrub);
1750 spin_unlock(&ubi->wl_lock);
1751
1752 /*
1753 * Technically scrubbing is the same as wear-leveling, so it is done
1754 * by the WL worker.
1755 */
1756 return ensure_wear_leveling(ubi, 0);
1757 }
1758
1759 /**
1760 * ubi_wl_flush - flush all pending works.
1761 * @ubi: UBI device description object
1762 * @vol_id: the volume id to flush for
1763 * @lnum: the logical eraseblock number to flush for
1764 *
1765 * This function executes all pending works for a particular volume id /
1766 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1767 * acts as a wildcard for all of the corresponding volume numbers or logical
1768 * eraseblock numbers. It returns zero in case of success and a negative error
1769 * code in case of failure.
1770 */
1771 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1772 {
1773 int err = 0;
1774 int found = 1;
1775
1776 /*
1777 * Erase while the pending works queue is not empty, but not more than
1778 * the number of currently pending works.
1779 */
1780 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1781 vol_id, lnum, ubi->works_count);
1782
1783 while (found) {
1784 struct ubi_work *wrk, *tmp;
1785 found = 0;
1786
1787 down_read(&ubi->work_sem);
1788 spin_lock(&ubi->wl_lock);
1789 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1790 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1791 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1792 list_del(&wrk->list);
1793 ubi->works_count -= 1;
1794 ubi_assert(ubi->works_count >= 0);
1795 spin_unlock(&ubi->wl_lock);
1796
1797 err = wrk->func(ubi, wrk, 0);
1798 if (err) {
1799 up_read(&ubi->work_sem);
1800 return err;
1801 }
1802
1803 spin_lock(&ubi->wl_lock);
1804 found = 1;
1805 break;
1806 }
1807 }
1808 spin_unlock(&ubi->wl_lock);
1809 up_read(&ubi->work_sem);
1810 }
1811
1812 /*
1813 * Make sure all the works which have been done in parallel are
1814 * finished.
1815 */
1816 down_write(&ubi->work_sem);
1817 up_write(&ubi->work_sem);
1818
1819 return err;
1820 }
1821
1822 /**
1823 * tree_destroy - destroy an RB-tree.
1824 * @ubi: UBI device description object
1825 * @root: the root of the tree to destroy
1826 */
1827 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1828 {
1829 struct rb_node *rb;
1830 struct ubi_wl_entry *e;
1831
1832 rb = root->rb_node;
1833 while (rb) {
1834 if (rb->rb_left)
1835 rb = rb->rb_left;
1836 else if (rb->rb_right)
1837 rb = rb->rb_right;
1838 else {
1839 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1840
1841 rb = rb_parent(rb);
1842 if (rb) {
1843 if (rb->rb_left == &e->u.rb)
1844 rb->rb_left = NULL;
1845 else
1846 rb->rb_right = NULL;
1847 }
1848
1849 wl_entry_destroy(ubi, e);
1850 }
1851 }
1852 }
1853
1854 /**
1855 * ubi_thread - UBI background thread.
1856 * @u: the UBI device description object pointer
1857 */
1858 int ubi_thread(void *u)
1859 {
1860 int failures = 0;
1861 struct ubi_device *ubi = u;
1862
1863 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1864 ubi->bgt_name, task_pid_nr(current));
1865
1866 set_freezable();
1867 for (;;) {
1868 int err;
1869
1870 if (kthread_should_stop())
1871 break;
1872
1873 if (try_to_freeze())
1874 continue;
1875
1876 spin_lock(&ubi->wl_lock);
1877 if (list_empty(&ubi->works) || ubi->ro_mode ||
1878 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1879 set_current_state(TASK_INTERRUPTIBLE);
1880 spin_unlock(&ubi->wl_lock);
1881 schedule();
1882 continue;
1883 }
1884 spin_unlock(&ubi->wl_lock);
1885
1886 err = do_work(ubi);
1887 if (err) {
1888 ubi_err(ubi, "%s: work failed with error code %d",
1889 ubi->bgt_name, err);
1890 if (failures++ > WL_MAX_FAILURES) {
1891 /*
1892 * Too many failures, disable the thread and
1893 * switch to read-only mode.
1894 */
1895 ubi_msg(ubi, "%s: %d consecutive failures",
1896 ubi->bgt_name, WL_MAX_FAILURES);
1897 ubi_ro_mode(ubi);
1898 ubi->thread_enabled = 0;
1899 continue;
1900 }
1901 } else
1902 failures = 0;
1903
1904 cond_resched();
1905 }
1906
1907 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1908 return 0;
1909 }
1910
1911 /**
1912 * shutdown_work - shutdown all pending works.
1913 * @ubi: UBI device description object
1914 */
1915 static void shutdown_work(struct ubi_device *ubi)
1916 {
1917 #ifdef CONFIG_MTD_UBI_FASTMAP
1918 flush_work(&ubi->fm_work);
1919 #endif
1920 while (!list_empty(&ubi->works)) {
1921 struct ubi_work *wrk;
1922
1923 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1924 list_del(&wrk->list);
1925 wrk->func(ubi, wrk, 1);
1926 ubi->works_count -= 1;
1927 ubi_assert(ubi->works_count >= 0);
1928 }
1929 }
1930
1931 /**
1932 * ubi_wl_init - initialize the WL sub-system using attaching information.
1933 * @ubi: UBI device description object
1934 * @ai: attaching information
1935 *
1936 * This function returns zero in case of success, and a negative error code in
1937 * case of failure.
1938 */
1939 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1940 {
1941 int err, i, reserved_pebs, found_pebs = 0;
1942 struct rb_node *rb1, *rb2;
1943 struct ubi_ainf_volume *av;
1944 struct ubi_ainf_peb *aeb, *tmp;
1945 struct ubi_wl_entry *e;
1946
1947 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1948 spin_lock_init(&ubi->wl_lock);
1949 mutex_init(&ubi->move_mutex);
1950 init_rwsem(&ubi->work_sem);
1951 ubi->max_ec = ai->max_ec;
1952 INIT_LIST_HEAD(&ubi->works);
1953 #ifdef CONFIG_MTD_UBI_FASTMAP
1954 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1955 #endif
1956
1957 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1958
1959 err = -ENOMEM;
1960 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1961 if (!ubi->lookuptbl)
1962 return err;
1963
1964 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1965 INIT_LIST_HEAD(&ubi->pq[i]);
1966 ubi->pq_head = 0;
1967
1968 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1969 cond_resched();
1970
1971 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1972 if (!e)
1973 goto out_free;
1974
1975 e->pnum = aeb->pnum;
1976 e->ec = aeb->ec;
1977 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1978 ubi->lookuptbl[e->pnum] = e;
1979 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1980 wl_entry_destroy(ubi, e);
1981 goto out_free;
1982 }
1983
1984 found_pebs++;
1985 }
1986
1987 ubi->free_count = 0;
1988 list_for_each_entry(aeb, &ai->free, u.list) {
1989 cond_resched();
1990
1991 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1992 if (!e)
1993 goto out_free;
1994
1995 e->pnum = aeb->pnum;
1996 e->ec = aeb->ec;
1997 ubi_assert(e->ec >= 0);
1998 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1999
2000 wl_tree_add(e, &ubi->free);
2001 ubi->free_count++;
2002
2003 ubi->lookuptbl[e->pnum] = e;
2004
2005 found_pebs++;
2006 }
2007
2008 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
2009 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
2010 cond_resched();
2011
2012 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
2013 if (!e)
2014 goto out_free;
2015
2016 e->pnum = aeb->pnum;
2017 e->ec = aeb->ec;
2018 ubi->lookuptbl[e->pnum] = e;
2019
2020 if (!aeb->scrub) {
2021 dbg_wl("add PEB %d EC %d to the used tree",
2022 e->pnum, e->ec);
2023 wl_tree_add(e, &ubi->used);
2024 } else {
2025 dbg_wl("add PEB %d EC %d to the scrub tree",
2026 e->pnum, e->ec);
2027 wl_tree_add(e, &ubi->scrub);
2028 }
2029
2030 found_pebs++;
2031 }
2032 }
2033
2034 dbg_wl("found %i PEBs", found_pebs);
2035
2036 if (ubi->fm) {
2037 ubi_assert(ubi->good_peb_count == \
2038 found_pebs + ubi->fm->used_blocks);
2039
2040 for (i = 0; i < ubi->fm->used_blocks; i++) {
2041 e = ubi->fm->e[i];
2042 ubi->lookuptbl[e->pnum] = e;
2043 }
2044 }
2045 else
2046 ubi_assert(ubi->good_peb_count == found_pebs);
2047
2048 reserved_pebs = WL_RESERVED_PEBS;
2049 #ifdef CONFIG_MTD_UBI_FASTMAP
2050 /* Reserve enough LEBs to store two fastmaps. */
2051 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
2052 #endif
2053
2054 if (ubi->avail_pebs < reserved_pebs) {
2055 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
2056 ubi->avail_pebs, reserved_pebs);
2057 if (ubi->corr_peb_count)
2058 ubi_err(ubi, "%d PEBs are corrupted and not used",
2059 ubi->corr_peb_count);
2060 goto out_free;
2061 }
2062 ubi->avail_pebs -= reserved_pebs;
2063 ubi->rsvd_pebs += reserved_pebs;
2064
2065 /* Schedule wear-leveling if needed */
2066 err = ensure_wear_leveling(ubi, 0);
2067 if (err)
2068 goto out_free;
2069
2070 return 0;
2071
2072 out_free:
2073 shutdown_work(ubi);
2074 tree_destroy(ubi, &ubi->used);
2075 tree_destroy(ubi, &ubi->free);
2076 tree_destroy(ubi, &ubi->scrub);
2077 kfree(ubi->lookuptbl);
2078 return err;
2079 }
2080
2081 /**
2082 * protection_queue_destroy - destroy the protection queue.
2083 * @ubi: UBI device description object
2084 */
2085 static void protection_queue_destroy(struct ubi_device *ubi)
2086 {
2087 int i;
2088 struct ubi_wl_entry *e, *tmp;
2089
2090 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2091 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2092 list_del(&e->u.list);
2093 wl_entry_destroy(ubi, e);
2094 }
2095 }
2096 }
2097
2098 static void ubi_fastmap_close(struct ubi_device *ubi)
2099 {
2100 #ifdef CONFIG_MTD_UBI_FASTMAP
2101 int i;
2102
2103 flush_work(&ubi->fm_work);
2104 return_unused_pool_pebs(ubi, &ubi->fm_pool);
2105 return_unused_pool_pebs(ubi, &ubi->fm_wl_pool);
2106
2107 if (ubi->fm) {
2108 for (i = 0; i < ubi->fm->used_blocks; i++)
2109 kfree(ubi->fm->e[i]);
2110 }
2111 kfree(ubi->fm);
2112 #endif
2113 }
2114
2115 /**
2116 * ubi_wl_close - close the wear-leveling sub-system.
2117 * @ubi: UBI device description object
2118 */
2119 void ubi_wl_close(struct ubi_device *ubi)
2120 {
2121 dbg_wl("close the WL sub-system");
2122 ubi_fastmap_close(ubi);
2123 shutdown_work(ubi);
2124 protection_queue_destroy(ubi);
2125 tree_destroy(ubi, &ubi->used);
2126 tree_destroy(ubi, &ubi->erroneous);
2127 tree_destroy(ubi, &ubi->free);
2128 tree_destroy(ubi, &ubi->scrub);
2129 kfree(ubi->lookuptbl);
2130 }
2131
2132 /**
2133 * self_check_ec - make sure that the erase counter of a PEB is correct.
2134 * @ubi: UBI device description object
2135 * @pnum: the physical eraseblock number to check
2136 * @ec: the erase counter to check
2137 *
2138 * This function returns zero if the erase counter of physical eraseblock @pnum
2139 * is equivalent to @ec, and a negative error code if not or if an error
2140 * occurred.
2141 */
2142 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2143 {
2144 int err;
2145 long long read_ec;
2146 struct ubi_ec_hdr *ec_hdr;
2147
2148 if (!ubi_dbg_chk_gen(ubi))
2149 return 0;
2150
2151 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2152 if (!ec_hdr)
2153 return -ENOMEM;
2154
2155 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2156 if (err && err != UBI_IO_BITFLIPS) {
2157 /* The header does not have to exist */
2158 err = 0;
2159 goto out_free;
2160 }
2161
2162 read_ec = be64_to_cpu(ec_hdr->ec);
2163 if (ec != read_ec && read_ec - ec > 1) {
2164 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2165 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2166 dump_stack();
2167 err = 1;
2168 } else
2169 err = 0;
2170
2171 out_free:
2172 kfree(ec_hdr);
2173 return err;
2174 }
2175
2176 /**
2177 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2178 * @ubi: UBI device description object
2179 * @e: the wear-leveling entry to check
2180 * @root: the root of the tree
2181 *
2182 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2183 * is not.
2184 */
2185 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2186 struct ubi_wl_entry *e, struct rb_root *root)
2187 {
2188 if (!ubi_dbg_chk_gen(ubi))
2189 return 0;
2190
2191 if (in_wl_tree(e, root))
2192 return 0;
2193
2194 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2195 e->pnum, e->ec, root);
2196 dump_stack();
2197 return -EINVAL;
2198 }
2199
2200 /**
2201 * self_check_in_pq - check if wear-leveling entry is in the protection
2202 * queue.
2203 * @ubi: UBI device description object
2204 * @e: the wear-leveling entry to check
2205 *
2206 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2207 */
2208 static int self_check_in_pq(const struct ubi_device *ubi,
2209 struct ubi_wl_entry *e)
2210 {
2211 struct ubi_wl_entry *p;
2212 int i;
2213
2214 if (!ubi_dbg_chk_gen(ubi))
2215 return 0;
2216
2217 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2218 list_for_each_entry(p, &ubi->pq[i], u.list)
2219 if (p == e)
2220 return 0;
2221
2222 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2223 e->pnum, e->ec);
2224 dump_stack();
2225 return -EINVAL;
2226 }
This page took 0.072333 seconds and 4 git commands to generate.