Merge branch 'for-linus-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / mtd / ubi / wl.c
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19 */
20
21 /*
22 * UBI wear-leveling sub-system.
23 *
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30 *
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
33 *
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
38 *
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
42 *
43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44 * bad.
45 *
46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47 * in a physical eraseblock, it has to be moved. Technically this is the same
48 * as moving it for wear-leveling reasons.
49 *
50 * As it was said, for the UBI sub-system all physical eraseblocks are either
51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
54 *
55 * When the WL sub-system returns a physical eraseblock, the physical
56 * eraseblock is protected from being moved for some "time". For this reason,
57 * the physical eraseblock is not directly moved from the @wl->free tree to the
58 * @wl->used tree. There is a protection queue in between where this
59 * physical eraseblock is temporarily stored (@wl->pq).
60 *
61 * All this protection stuff is needed because:
62 * o we don't want to move physical eraseblocks just after we have given them
63 * to the user; instead, we first want to let users fill them up with data;
64 *
65 * o there is a chance that the user will put the physical eraseblock very
66 * soon, so it makes sense not to move it for some time, but wait.
67 *
68 * Physical eraseblocks stay protected only for limited time. But the "time" is
69 * measured in erase cycles in this case. This is implemented with help of the
70 * protection queue. Eraseblocks are put to the tail of this queue when they
71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72 * head of the queue on each erase operation (for any eraseblock). So the
73 * length of the queue defines how may (global) erase cycles PEBs are protected.
74 *
75 * To put it differently, each physical eraseblock has 2 main states: free and
76 * used. The former state corresponds to the @wl->free tree. The latter state
77 * is split up on several sub-states:
78 * o the WL movement is allowed (@wl->used tree);
79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80 * erroneous - e.g., there was a read error;
81 * o the WL movement is temporarily prohibited (@wl->pq queue);
82 * o scrubbing is needed (@wl->scrub tree).
83 *
84 * Depending on the sub-state, wear-leveling entries of the used physical
85 * eraseblocks may be kept in one of those structures.
86 *
87 * Note, in this implementation, we keep a small in-RAM object for each physical
88 * eraseblock. This is surely not a scalable solution. But it appears to be good
89 * enough for moderately large flashes and it is simple. In future, one may
90 * re-work this sub-system and make it more scalable.
91 *
92 * At the moment this sub-system does not utilize the sequence number, which
93 * was introduced relatively recently. But it would be wise to do this because
94 * the sequence number of a logical eraseblock characterizes how old is it. For
95 * example, when we move a PEB with low erase counter, and we need to pick the
96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97 * pick target PEB with an average EC if our PEB is not very "old". This is a
98 * room for future re-works of the WL sub-system.
99 */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
115 * erase counter.
116 */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
129 */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
135 */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 struct ubi_wl_entry *e);
143
144 /**
145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146 * @e: the wear-leveling entry to add
147 * @root: the root of the tree
148 *
149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150 * the @ubi->used and @ubi->free RB-trees.
151 */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154 struct rb_node **p, *parent = NULL;
155
156 p = &root->rb_node;
157 while (*p) {
158 struct ubi_wl_entry *e1;
159
160 parent = *p;
161 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162
163 if (e->ec < e1->ec)
164 p = &(*p)->rb_left;
165 else if (e->ec > e1->ec)
166 p = &(*p)->rb_right;
167 else {
168 ubi_assert(e->pnum != e1->pnum);
169 if (e->pnum < e1->pnum)
170 p = &(*p)->rb_left;
171 else
172 p = &(*p)->rb_right;
173 }
174 }
175
176 rb_link_node(&e->u.rb, parent, p);
177 rb_insert_color(&e->u.rb, root);
178 }
179
180 /**
181 * wl_tree_destroy - destroy a wear-leveling entry.
182 * @ubi: UBI device description object
183 * @e: the wear-leveling entry to add
184 *
185 * This function destroys a wear leveling entry and removes
186 * the reference from the lookup table.
187 */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190 ubi->lookuptbl[e->pnum] = NULL;
191 kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193
194 /**
195 * do_work - do one pending work.
196 * @ubi: UBI device description object
197 *
198 * This function returns zero in case of success and a negative error code in
199 * case of failure.
200 */
201 static int do_work(struct ubi_device *ubi)
202 {
203 int err;
204 struct ubi_work *wrk;
205
206 cond_resched();
207
208 /*
209 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 * it in read mode, so many of them may be doing works at a time. But
211 * the queue flush code has to be sure the whole queue of works is
212 * done, and it takes the mutex in write mode.
213 */
214 down_read(&ubi->work_sem);
215 spin_lock(&ubi->wl_lock);
216 if (list_empty(&ubi->works)) {
217 spin_unlock(&ubi->wl_lock);
218 up_read(&ubi->work_sem);
219 return 0;
220 }
221
222 wrk = list_entry(ubi->works.next, struct ubi_work, list);
223 list_del(&wrk->list);
224 ubi->works_count -= 1;
225 ubi_assert(ubi->works_count >= 0);
226 spin_unlock(&ubi->wl_lock);
227
228 /*
229 * Call the worker function. Do not touch the work structure
230 * after this call as it will have been freed or reused by that
231 * time by the worker function.
232 */
233 err = wrk->func(ubi, wrk, 0);
234 if (err)
235 ubi_err(ubi, "work failed with error code %d", err);
236 up_read(&ubi->work_sem);
237
238 return err;
239 }
240
241 /**
242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243 * @e: the wear-leveling entry to check
244 * @root: the root of the tree
245 *
246 * This function returns non-zero if @e is in the @root RB-tree and zero if it
247 * is not.
248 */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251 struct rb_node *p;
252
253 p = root->rb_node;
254 while (p) {
255 struct ubi_wl_entry *e1;
256
257 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258
259 if (e->pnum == e1->pnum) {
260 ubi_assert(e == e1);
261 return 1;
262 }
263
264 if (e->ec < e1->ec)
265 p = p->rb_left;
266 else if (e->ec > e1->ec)
267 p = p->rb_right;
268 else {
269 ubi_assert(e->pnum != e1->pnum);
270 if (e->pnum < e1->pnum)
271 p = p->rb_left;
272 else
273 p = p->rb_right;
274 }
275 }
276
277 return 0;
278 }
279
280 /**
281 * prot_queue_add - add physical eraseblock to the protection queue.
282 * @ubi: UBI device description object
283 * @e: the physical eraseblock to add
284 *
285 * This function adds @e to the tail of the protection queue @ubi->pq, where
286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
288 * be locked.
289 */
290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
291 {
292 int pq_tail = ubi->pq_head - 1;
293
294 if (pq_tail < 0)
295 pq_tail = UBI_PROT_QUEUE_LEN - 1;
296 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
297 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
298 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
299 }
300
301 /**
302 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
303 * @ubi: UBI device description object
304 * @root: the RB-tree where to look for
305 * @diff: maximum possible difference from the smallest erase counter
306 *
307 * This function looks for a wear leveling entry with erase counter closest to
308 * min + @diff, where min is the smallest erase counter.
309 */
310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
311 struct rb_root *root, int diff)
312 {
313 struct rb_node *p;
314 struct ubi_wl_entry *e, *prev_e = NULL;
315 int max;
316
317 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
318 max = e->ec + diff;
319
320 p = root->rb_node;
321 while (p) {
322 struct ubi_wl_entry *e1;
323
324 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
325 if (e1->ec >= max)
326 p = p->rb_left;
327 else {
328 p = p->rb_right;
329 prev_e = e;
330 e = e1;
331 }
332 }
333
334 /* If no fastmap has been written and this WL entry can be used
335 * as anchor PEB, hold it back and return the second best WL entry
336 * such that fastmap can use the anchor PEB later. */
337 if (prev_e && !ubi->fm_disabled &&
338 !ubi->fm && e->pnum < UBI_FM_MAX_START)
339 return prev_e;
340
341 return e;
342 }
343
344 /**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355 {
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372 }
373
374 /**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403 }
404
405 /**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427 }
428
429 /**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440 {
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485 out_free:
486 kfree(ec_hdr);
487 return err;
488 }
489
490 /**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571 /**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 *
579 * This function returns zero in case of success and a %-ENOMEM in case of
580 * failure.
581 */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 int vol_id, int lnum, int torture)
584 {
585 struct ubi_work *wl_wrk;
586
587 ubi_assert(e);
588
589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 e->pnum, e->ec, torture);
591
592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 if (!wl_wrk)
594 return -ENOMEM;
595
596 wl_wrk->func = &erase_worker;
597 wl_wrk->e = e;
598 wl_wrk->vol_id = vol_id;
599 wl_wrk->lnum = lnum;
600 wl_wrk->torture = torture;
601
602 schedule_ubi_work(ubi, wl_wrk);
603 return 0;
604 }
605
606 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
607 /**
608 * do_sync_erase - run the erase worker synchronously.
609 * @ubi: UBI device description object
610 * @e: the WL entry of the physical eraseblock to erase
611 * @vol_id: the volume ID that last used this PEB
612 * @lnum: the last used logical eraseblock number for the PEB
613 * @torture: if the physical eraseblock has to be tortured
614 *
615 */
616 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
617 int vol_id, int lnum, int torture)
618 {
619 struct ubi_work wl_wrk;
620
621 dbg_wl("sync erase of PEB %i", e->pnum);
622
623 wl_wrk.e = e;
624 wl_wrk.vol_id = vol_id;
625 wl_wrk.lnum = lnum;
626 wl_wrk.torture = torture;
627
628 return __erase_worker(ubi, &wl_wrk);
629 }
630
631 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
632 /**
633 * wear_leveling_worker - wear-leveling worker function.
634 * @ubi: UBI device description object
635 * @wrk: the work object
636 * @shutdown: non-zero if the worker has to free memory and exit
637 * because the WL-subsystem is shutting down
638 *
639 * This function copies a more worn out physical eraseblock to a less worn out
640 * one. Returns zero in case of success and a negative error code in case of
641 * failure.
642 */
643 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
644 int shutdown)
645 {
646 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
647 int vol_id = -1, lnum = -1;
648 #ifdef CONFIG_MTD_UBI_FASTMAP
649 int anchor = wrk->anchor;
650 #endif
651 struct ubi_wl_entry *e1, *e2;
652 struct ubi_vid_hdr *vid_hdr;
653 int dst_leb_clean = 0;
654
655 kfree(wrk);
656 if (shutdown)
657 return 0;
658
659 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
660 if (!vid_hdr)
661 return -ENOMEM;
662
663 mutex_lock(&ubi->move_mutex);
664 spin_lock(&ubi->wl_lock);
665 ubi_assert(!ubi->move_from && !ubi->move_to);
666 ubi_assert(!ubi->move_to_put);
667
668 if (!ubi->free.rb_node ||
669 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
670 /*
671 * No free physical eraseblocks? Well, they must be waiting in
672 * the queue to be erased. Cancel movement - it will be
673 * triggered again when a free physical eraseblock appears.
674 *
675 * No used physical eraseblocks? They must be temporarily
676 * protected from being moved. They will be moved to the
677 * @ubi->used tree later and the wear-leveling will be
678 * triggered again.
679 */
680 dbg_wl("cancel WL, a list is empty: free %d, used %d",
681 !ubi->free.rb_node, !ubi->used.rb_node);
682 goto out_cancel;
683 }
684
685 #ifdef CONFIG_MTD_UBI_FASTMAP
686 /* Check whether we need to produce an anchor PEB */
687 if (!anchor)
688 anchor = !anchor_pebs_avalible(&ubi->free);
689
690 if (anchor) {
691 e1 = find_anchor_wl_entry(&ubi->used);
692 if (!e1)
693 goto out_cancel;
694 e2 = get_peb_for_wl(ubi);
695 if (!e2)
696 goto out_cancel;
697
698 self_check_in_wl_tree(ubi, e1, &ubi->used);
699 rb_erase(&e1->u.rb, &ubi->used);
700 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
701 } else if (!ubi->scrub.rb_node) {
702 #else
703 if (!ubi->scrub.rb_node) {
704 #endif
705 /*
706 * Now pick the least worn-out used physical eraseblock and a
707 * highly worn-out free physical eraseblock. If the erase
708 * counters differ much enough, start wear-leveling.
709 */
710 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
711 e2 = get_peb_for_wl(ubi);
712 if (!e2)
713 goto out_cancel;
714
715 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
716 dbg_wl("no WL needed: min used EC %d, max free EC %d",
717 e1->ec, e2->ec);
718
719 /* Give the unused PEB back */
720 wl_tree_add(e2, &ubi->free);
721 ubi->free_count++;
722 goto out_cancel;
723 }
724 self_check_in_wl_tree(ubi, e1, &ubi->used);
725 rb_erase(&e1->u.rb, &ubi->used);
726 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
727 e1->pnum, e1->ec, e2->pnum, e2->ec);
728 } else {
729 /* Perform scrubbing */
730 scrubbing = 1;
731 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
732 e2 = get_peb_for_wl(ubi);
733 if (!e2)
734 goto out_cancel;
735
736 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
737 rb_erase(&e1->u.rb, &ubi->scrub);
738 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
739 }
740
741 ubi->move_from = e1;
742 ubi->move_to = e2;
743 spin_unlock(&ubi->wl_lock);
744
745 /*
746 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
747 * We so far do not know which logical eraseblock our physical
748 * eraseblock (@e1) belongs to. We have to read the volume identifier
749 * header first.
750 *
751 * Note, we are protected from this PEB being unmapped and erased. The
752 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
753 * which is being moved was unmapped.
754 */
755
756 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
757 if (err && err != UBI_IO_BITFLIPS) {
758 dst_leb_clean = 1;
759 if (err == UBI_IO_FF) {
760 /*
761 * We are trying to move PEB without a VID header. UBI
762 * always write VID headers shortly after the PEB was
763 * given, so we have a situation when it has not yet
764 * had a chance to write it, because it was preempted.
765 * So add this PEB to the protection queue so far,
766 * because presumably more data will be written there
767 * (including the missing VID header), and then we'll
768 * move it.
769 */
770 dbg_wl("PEB %d has no VID header", e1->pnum);
771 protect = 1;
772 goto out_not_moved;
773 } else if (err == UBI_IO_FF_BITFLIPS) {
774 /*
775 * The same situation as %UBI_IO_FF, but bit-flips were
776 * detected. It is better to schedule this PEB for
777 * scrubbing.
778 */
779 dbg_wl("PEB %d has no VID header but has bit-flips",
780 e1->pnum);
781 scrubbing = 1;
782 goto out_not_moved;
783 }
784
785 ubi_err(ubi, "error %d while reading VID header from PEB %d",
786 err, e1->pnum);
787 goto out_error;
788 }
789
790 vol_id = be32_to_cpu(vid_hdr->vol_id);
791 lnum = be32_to_cpu(vid_hdr->lnum);
792
793 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
794 if (err) {
795 if (err == MOVE_CANCEL_RACE) {
796 /*
797 * The LEB has not been moved because the volume is
798 * being deleted or the PEB has been put meanwhile. We
799 * should prevent this PEB from being selected for
800 * wear-leveling movement again, so put it to the
801 * protection queue.
802 */
803 protect = 1;
804 dst_leb_clean = 1;
805 goto out_not_moved;
806 }
807 if (err == MOVE_RETRY) {
808 scrubbing = 1;
809 dst_leb_clean = 1;
810 goto out_not_moved;
811 }
812 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
813 err == MOVE_TARGET_RD_ERR) {
814 /*
815 * Target PEB had bit-flips or write error - torture it.
816 */
817 torture = 1;
818 goto out_not_moved;
819 }
820
821 if (err == MOVE_SOURCE_RD_ERR) {
822 /*
823 * An error happened while reading the source PEB. Do
824 * not switch to R/O mode in this case, and give the
825 * upper layers a possibility to recover from this,
826 * e.g. by unmapping corresponding LEB. Instead, just
827 * put this PEB to the @ubi->erroneous list to prevent
828 * UBI from trying to move it over and over again.
829 */
830 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
831 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
832 ubi->erroneous_peb_count);
833 goto out_error;
834 }
835 dst_leb_clean = 1;
836 erroneous = 1;
837 goto out_not_moved;
838 }
839
840 if (err < 0)
841 goto out_error;
842
843 ubi_assert(0);
844 }
845
846 /* The PEB has been successfully moved */
847 if (scrubbing)
848 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
849 e1->pnum, vol_id, lnum, e2->pnum);
850 ubi_free_vid_hdr(ubi, vid_hdr);
851
852 spin_lock(&ubi->wl_lock);
853 if (!ubi->move_to_put) {
854 wl_tree_add(e2, &ubi->used);
855 e2 = NULL;
856 }
857 ubi->move_from = ubi->move_to = NULL;
858 ubi->move_to_put = ubi->wl_scheduled = 0;
859 spin_unlock(&ubi->wl_lock);
860
861 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
862 if (err) {
863 if (e2)
864 wl_entry_destroy(ubi, e2);
865 goto out_ro;
866 }
867
868 if (e2) {
869 /*
870 * Well, the target PEB was put meanwhile, schedule it for
871 * erasure.
872 */
873 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
874 e2->pnum, vol_id, lnum);
875 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
876 if (err)
877 goto out_ro;
878 }
879
880 dbg_wl("done");
881 mutex_unlock(&ubi->move_mutex);
882 return 0;
883
884 /*
885 * For some reasons the LEB was not moved, might be an error, might be
886 * something else. @e1 was not changed, so return it back. @e2 might
887 * have been changed, schedule it for erasure.
888 */
889 out_not_moved:
890 if (vol_id != -1)
891 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
892 e1->pnum, vol_id, lnum, e2->pnum, err);
893 else
894 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
895 e1->pnum, e2->pnum, err);
896 spin_lock(&ubi->wl_lock);
897 if (protect)
898 prot_queue_add(ubi, e1);
899 else if (erroneous) {
900 wl_tree_add(e1, &ubi->erroneous);
901 ubi->erroneous_peb_count += 1;
902 } else if (scrubbing)
903 wl_tree_add(e1, &ubi->scrub);
904 else
905 wl_tree_add(e1, &ubi->used);
906 if (dst_leb_clean) {
907 wl_tree_add(e2, &ubi->free);
908 ubi->free_count++;
909 }
910
911 ubi_assert(!ubi->move_to_put);
912 ubi->move_from = ubi->move_to = NULL;
913 ubi->wl_scheduled = 0;
914 spin_unlock(&ubi->wl_lock);
915
916 ubi_free_vid_hdr(ubi, vid_hdr);
917 if (dst_leb_clean) {
918 ensure_wear_leveling(ubi, 1);
919 } else {
920 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
921 if (err)
922 goto out_ro;
923 }
924
925 mutex_unlock(&ubi->move_mutex);
926 return 0;
927
928 out_error:
929 if (vol_id != -1)
930 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
931 err, e1->pnum, e2->pnum);
932 else
933 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
934 err, e1->pnum, vol_id, lnum, e2->pnum);
935 spin_lock(&ubi->wl_lock);
936 ubi->move_from = ubi->move_to = NULL;
937 ubi->move_to_put = ubi->wl_scheduled = 0;
938 spin_unlock(&ubi->wl_lock);
939
940 ubi_free_vid_hdr(ubi, vid_hdr);
941 wl_entry_destroy(ubi, e1);
942 wl_entry_destroy(ubi, e2);
943
944 out_ro:
945 ubi_ro_mode(ubi);
946 mutex_unlock(&ubi->move_mutex);
947 ubi_assert(err != 0);
948 return err < 0 ? err : -EIO;
949
950 out_cancel:
951 ubi->wl_scheduled = 0;
952 spin_unlock(&ubi->wl_lock);
953 mutex_unlock(&ubi->move_mutex);
954 ubi_free_vid_hdr(ubi, vid_hdr);
955 return 0;
956 }
957
958 /**
959 * ensure_wear_leveling - schedule wear-leveling if it is needed.
960 * @ubi: UBI device description object
961 * @nested: set to non-zero if this function is called from UBI worker
962 *
963 * This function checks if it is time to start wear-leveling and schedules it
964 * if yes. This function returns zero in case of success and a negative error
965 * code in case of failure.
966 */
967 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
968 {
969 int err = 0;
970 struct ubi_wl_entry *e1;
971 struct ubi_wl_entry *e2;
972 struct ubi_work *wrk;
973
974 spin_lock(&ubi->wl_lock);
975 if (ubi->wl_scheduled)
976 /* Wear-leveling is already in the work queue */
977 goto out_unlock;
978
979 /*
980 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
981 * the WL worker has to be scheduled anyway.
982 */
983 if (!ubi->scrub.rb_node) {
984 if (!ubi->used.rb_node || !ubi->free.rb_node)
985 /* No physical eraseblocks - no deal */
986 goto out_unlock;
987
988 /*
989 * We schedule wear-leveling only if the difference between the
990 * lowest erase counter of used physical eraseblocks and a high
991 * erase counter of free physical eraseblocks is greater than
992 * %UBI_WL_THRESHOLD.
993 */
994 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
995 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
996
997 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
998 goto out_unlock;
999 dbg_wl("schedule wear-leveling");
1000 } else
1001 dbg_wl("schedule scrubbing");
1002
1003 ubi->wl_scheduled = 1;
1004 spin_unlock(&ubi->wl_lock);
1005
1006 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1007 if (!wrk) {
1008 err = -ENOMEM;
1009 goto out_cancel;
1010 }
1011
1012 wrk->anchor = 0;
1013 wrk->func = &wear_leveling_worker;
1014 if (nested)
1015 __schedule_ubi_work(ubi, wrk);
1016 else
1017 schedule_ubi_work(ubi, wrk);
1018 return err;
1019
1020 out_cancel:
1021 spin_lock(&ubi->wl_lock);
1022 ubi->wl_scheduled = 0;
1023 out_unlock:
1024 spin_unlock(&ubi->wl_lock);
1025 return err;
1026 }
1027
1028 /**
1029 * __erase_worker - physical eraseblock erase worker function.
1030 * @ubi: UBI device description object
1031 * @wl_wrk: the work object
1032 * @shutdown: non-zero if the worker has to free memory and exit
1033 * because the WL sub-system is shutting down
1034 *
1035 * This function erases a physical eraseblock and perform torture testing if
1036 * needed. It also takes care about marking the physical eraseblock bad if
1037 * needed. Returns zero in case of success and a negative error code in case of
1038 * failure.
1039 */
1040 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1041 {
1042 struct ubi_wl_entry *e = wl_wrk->e;
1043 int pnum = e->pnum;
1044 int vol_id = wl_wrk->vol_id;
1045 int lnum = wl_wrk->lnum;
1046 int err, available_consumed = 0;
1047
1048 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1049 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1050
1051 err = sync_erase(ubi, e, wl_wrk->torture);
1052 if (!err) {
1053 spin_lock(&ubi->wl_lock);
1054 wl_tree_add(e, &ubi->free);
1055 ubi->free_count++;
1056 spin_unlock(&ubi->wl_lock);
1057
1058 /*
1059 * One more erase operation has happened, take care about
1060 * protected physical eraseblocks.
1061 */
1062 serve_prot_queue(ubi);
1063
1064 /* And take care about wear-leveling */
1065 err = ensure_wear_leveling(ubi, 1);
1066 return err;
1067 }
1068
1069 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1070
1071 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1072 err == -EBUSY) {
1073 int err1;
1074
1075 /* Re-schedule the LEB for erasure */
1076 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1077 if (err1) {
1078 wl_entry_destroy(ubi, e);
1079 err = err1;
1080 goto out_ro;
1081 }
1082 return err;
1083 }
1084
1085 wl_entry_destroy(ubi, e);
1086 if (err != -EIO)
1087 /*
1088 * If this is not %-EIO, we have no idea what to do. Scheduling
1089 * this physical eraseblock for erasure again would cause
1090 * errors again and again. Well, lets switch to R/O mode.
1091 */
1092 goto out_ro;
1093
1094 /* It is %-EIO, the PEB went bad */
1095
1096 if (!ubi->bad_allowed) {
1097 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1098 goto out_ro;
1099 }
1100
1101 spin_lock(&ubi->volumes_lock);
1102 if (ubi->beb_rsvd_pebs == 0) {
1103 if (ubi->avail_pebs == 0) {
1104 spin_unlock(&ubi->volumes_lock);
1105 ubi_err(ubi, "no reserved/available physical eraseblocks");
1106 goto out_ro;
1107 }
1108 ubi->avail_pebs -= 1;
1109 available_consumed = 1;
1110 }
1111 spin_unlock(&ubi->volumes_lock);
1112
1113 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1114 err = ubi_io_mark_bad(ubi, pnum);
1115 if (err)
1116 goto out_ro;
1117
1118 spin_lock(&ubi->volumes_lock);
1119 if (ubi->beb_rsvd_pebs > 0) {
1120 if (available_consumed) {
1121 /*
1122 * The amount of reserved PEBs increased since we last
1123 * checked.
1124 */
1125 ubi->avail_pebs += 1;
1126 available_consumed = 0;
1127 }
1128 ubi->beb_rsvd_pebs -= 1;
1129 }
1130 ubi->bad_peb_count += 1;
1131 ubi->good_peb_count -= 1;
1132 ubi_calculate_reserved(ubi);
1133 if (available_consumed)
1134 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1135 else if (ubi->beb_rsvd_pebs)
1136 ubi_msg(ubi, "%d PEBs left in the reserve",
1137 ubi->beb_rsvd_pebs);
1138 else
1139 ubi_warn(ubi, "last PEB from the reserve was used");
1140 spin_unlock(&ubi->volumes_lock);
1141
1142 return err;
1143
1144 out_ro:
1145 if (available_consumed) {
1146 spin_lock(&ubi->volumes_lock);
1147 ubi->avail_pebs += 1;
1148 spin_unlock(&ubi->volumes_lock);
1149 }
1150 ubi_ro_mode(ubi);
1151 return err;
1152 }
1153
1154 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1155 int shutdown)
1156 {
1157 int ret;
1158
1159 if (shutdown) {
1160 struct ubi_wl_entry *e = wl_wrk->e;
1161
1162 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1163 kfree(wl_wrk);
1164 wl_entry_destroy(ubi, e);
1165 return 0;
1166 }
1167
1168 ret = __erase_worker(ubi, wl_wrk);
1169 kfree(wl_wrk);
1170 return ret;
1171 }
1172
1173 /**
1174 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1175 * @ubi: UBI device description object
1176 * @vol_id: the volume ID that last used this PEB
1177 * @lnum: the last used logical eraseblock number for the PEB
1178 * @pnum: physical eraseblock to return
1179 * @torture: if this physical eraseblock has to be tortured
1180 *
1181 * This function is called to return physical eraseblock @pnum to the pool of
1182 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1183 * occurred to this @pnum and it has to be tested. This function returns zero
1184 * in case of success, and a negative error code in case of failure.
1185 */
1186 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1187 int pnum, int torture)
1188 {
1189 int err;
1190 struct ubi_wl_entry *e;
1191
1192 dbg_wl("PEB %d", pnum);
1193 ubi_assert(pnum >= 0);
1194 ubi_assert(pnum < ubi->peb_count);
1195
1196 down_read(&ubi->fm_protect);
1197
1198 retry:
1199 spin_lock(&ubi->wl_lock);
1200 e = ubi->lookuptbl[pnum];
1201 if (e == ubi->move_from) {
1202 /*
1203 * User is putting the physical eraseblock which was selected to
1204 * be moved. It will be scheduled for erasure in the
1205 * wear-leveling worker.
1206 */
1207 dbg_wl("PEB %d is being moved, wait", pnum);
1208 spin_unlock(&ubi->wl_lock);
1209
1210 /* Wait for the WL worker by taking the @ubi->move_mutex */
1211 mutex_lock(&ubi->move_mutex);
1212 mutex_unlock(&ubi->move_mutex);
1213 goto retry;
1214 } else if (e == ubi->move_to) {
1215 /*
1216 * User is putting the physical eraseblock which was selected
1217 * as the target the data is moved to. It may happen if the EBA
1218 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1219 * but the WL sub-system has not put the PEB to the "used" tree
1220 * yet, but it is about to do this. So we just set a flag which
1221 * will tell the WL worker that the PEB is not needed anymore
1222 * and should be scheduled for erasure.
1223 */
1224 dbg_wl("PEB %d is the target of data moving", pnum);
1225 ubi_assert(!ubi->move_to_put);
1226 ubi->move_to_put = 1;
1227 spin_unlock(&ubi->wl_lock);
1228 up_read(&ubi->fm_protect);
1229 return 0;
1230 } else {
1231 if (in_wl_tree(e, &ubi->used)) {
1232 self_check_in_wl_tree(ubi, e, &ubi->used);
1233 rb_erase(&e->u.rb, &ubi->used);
1234 } else if (in_wl_tree(e, &ubi->scrub)) {
1235 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1236 rb_erase(&e->u.rb, &ubi->scrub);
1237 } else if (in_wl_tree(e, &ubi->erroneous)) {
1238 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1239 rb_erase(&e->u.rb, &ubi->erroneous);
1240 ubi->erroneous_peb_count -= 1;
1241 ubi_assert(ubi->erroneous_peb_count >= 0);
1242 /* Erroneous PEBs should be tortured */
1243 torture = 1;
1244 } else {
1245 err = prot_queue_del(ubi, e->pnum);
1246 if (err) {
1247 ubi_err(ubi, "PEB %d not found", pnum);
1248 ubi_ro_mode(ubi);
1249 spin_unlock(&ubi->wl_lock);
1250 up_read(&ubi->fm_protect);
1251 return err;
1252 }
1253 }
1254 }
1255 spin_unlock(&ubi->wl_lock);
1256
1257 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1258 if (err) {
1259 spin_lock(&ubi->wl_lock);
1260 wl_tree_add(e, &ubi->used);
1261 spin_unlock(&ubi->wl_lock);
1262 }
1263
1264 up_read(&ubi->fm_protect);
1265 return err;
1266 }
1267
1268 /**
1269 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1270 * @ubi: UBI device description object
1271 * @pnum: the physical eraseblock to schedule
1272 *
1273 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1274 * needs scrubbing. This function schedules a physical eraseblock for
1275 * scrubbing which is done in background. This function returns zero in case of
1276 * success and a negative error code in case of failure.
1277 */
1278 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1279 {
1280 struct ubi_wl_entry *e;
1281
1282 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1283
1284 retry:
1285 spin_lock(&ubi->wl_lock);
1286 e = ubi->lookuptbl[pnum];
1287 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1288 in_wl_tree(e, &ubi->erroneous)) {
1289 spin_unlock(&ubi->wl_lock);
1290 return 0;
1291 }
1292
1293 if (e == ubi->move_to) {
1294 /*
1295 * This physical eraseblock was used to move data to. The data
1296 * was moved but the PEB was not yet inserted to the proper
1297 * tree. We should just wait a little and let the WL worker
1298 * proceed.
1299 */
1300 spin_unlock(&ubi->wl_lock);
1301 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1302 yield();
1303 goto retry;
1304 }
1305
1306 if (in_wl_tree(e, &ubi->used)) {
1307 self_check_in_wl_tree(ubi, e, &ubi->used);
1308 rb_erase(&e->u.rb, &ubi->used);
1309 } else {
1310 int err;
1311
1312 err = prot_queue_del(ubi, e->pnum);
1313 if (err) {
1314 ubi_err(ubi, "PEB %d not found", pnum);
1315 ubi_ro_mode(ubi);
1316 spin_unlock(&ubi->wl_lock);
1317 return err;
1318 }
1319 }
1320
1321 wl_tree_add(e, &ubi->scrub);
1322 spin_unlock(&ubi->wl_lock);
1323
1324 /*
1325 * Technically scrubbing is the same as wear-leveling, so it is done
1326 * by the WL worker.
1327 */
1328 return ensure_wear_leveling(ubi, 0);
1329 }
1330
1331 /**
1332 * ubi_wl_flush - flush all pending works.
1333 * @ubi: UBI device description object
1334 * @vol_id: the volume id to flush for
1335 * @lnum: the logical eraseblock number to flush for
1336 *
1337 * This function executes all pending works for a particular volume id /
1338 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1339 * acts as a wildcard for all of the corresponding volume numbers or logical
1340 * eraseblock numbers. It returns zero in case of success and a negative error
1341 * code in case of failure.
1342 */
1343 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1344 {
1345 int err = 0;
1346 int found = 1;
1347
1348 /*
1349 * Erase while the pending works queue is not empty, but not more than
1350 * the number of currently pending works.
1351 */
1352 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1353 vol_id, lnum, ubi->works_count);
1354
1355 while (found) {
1356 struct ubi_work *wrk, *tmp;
1357 found = 0;
1358
1359 down_read(&ubi->work_sem);
1360 spin_lock(&ubi->wl_lock);
1361 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1362 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1363 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1364 list_del(&wrk->list);
1365 ubi->works_count -= 1;
1366 ubi_assert(ubi->works_count >= 0);
1367 spin_unlock(&ubi->wl_lock);
1368
1369 err = wrk->func(ubi, wrk, 0);
1370 if (err) {
1371 up_read(&ubi->work_sem);
1372 return err;
1373 }
1374
1375 spin_lock(&ubi->wl_lock);
1376 found = 1;
1377 break;
1378 }
1379 }
1380 spin_unlock(&ubi->wl_lock);
1381 up_read(&ubi->work_sem);
1382 }
1383
1384 /*
1385 * Make sure all the works which have been done in parallel are
1386 * finished.
1387 */
1388 down_write(&ubi->work_sem);
1389 up_write(&ubi->work_sem);
1390
1391 return err;
1392 }
1393
1394 /**
1395 * tree_destroy - destroy an RB-tree.
1396 * @ubi: UBI device description object
1397 * @root: the root of the tree to destroy
1398 */
1399 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1400 {
1401 struct rb_node *rb;
1402 struct ubi_wl_entry *e;
1403
1404 rb = root->rb_node;
1405 while (rb) {
1406 if (rb->rb_left)
1407 rb = rb->rb_left;
1408 else if (rb->rb_right)
1409 rb = rb->rb_right;
1410 else {
1411 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1412
1413 rb = rb_parent(rb);
1414 if (rb) {
1415 if (rb->rb_left == &e->u.rb)
1416 rb->rb_left = NULL;
1417 else
1418 rb->rb_right = NULL;
1419 }
1420
1421 wl_entry_destroy(ubi, e);
1422 }
1423 }
1424 }
1425
1426 /**
1427 * ubi_thread - UBI background thread.
1428 * @u: the UBI device description object pointer
1429 */
1430 int ubi_thread(void *u)
1431 {
1432 int failures = 0;
1433 struct ubi_device *ubi = u;
1434
1435 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1436 ubi->bgt_name, task_pid_nr(current));
1437
1438 set_freezable();
1439 for (;;) {
1440 int err;
1441
1442 if (kthread_should_stop())
1443 break;
1444
1445 if (try_to_freeze())
1446 continue;
1447
1448 spin_lock(&ubi->wl_lock);
1449 if (list_empty(&ubi->works) || ubi->ro_mode ||
1450 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1451 set_current_state(TASK_INTERRUPTIBLE);
1452 spin_unlock(&ubi->wl_lock);
1453 schedule();
1454 continue;
1455 }
1456 spin_unlock(&ubi->wl_lock);
1457
1458 err = do_work(ubi);
1459 if (err) {
1460 ubi_err(ubi, "%s: work failed with error code %d",
1461 ubi->bgt_name, err);
1462 if (failures++ > WL_MAX_FAILURES) {
1463 /*
1464 * Too many failures, disable the thread and
1465 * switch to read-only mode.
1466 */
1467 ubi_msg(ubi, "%s: %d consecutive failures",
1468 ubi->bgt_name, WL_MAX_FAILURES);
1469 ubi_ro_mode(ubi);
1470 ubi->thread_enabled = 0;
1471 continue;
1472 }
1473 } else
1474 failures = 0;
1475
1476 cond_resched();
1477 }
1478
1479 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1480 return 0;
1481 }
1482
1483 /**
1484 * shutdown_work - shutdown all pending works.
1485 * @ubi: UBI device description object
1486 */
1487 static void shutdown_work(struct ubi_device *ubi)
1488 {
1489 #ifdef CONFIG_MTD_UBI_FASTMAP
1490 flush_work(&ubi->fm_work);
1491 #endif
1492 while (!list_empty(&ubi->works)) {
1493 struct ubi_work *wrk;
1494
1495 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1496 list_del(&wrk->list);
1497 wrk->func(ubi, wrk, 1);
1498 ubi->works_count -= 1;
1499 ubi_assert(ubi->works_count >= 0);
1500 }
1501 }
1502
1503 /**
1504 * ubi_wl_init - initialize the WL sub-system using attaching information.
1505 * @ubi: UBI device description object
1506 * @ai: attaching information
1507 *
1508 * This function returns zero in case of success, and a negative error code in
1509 * case of failure.
1510 */
1511 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1512 {
1513 int err, i, reserved_pebs, found_pebs = 0;
1514 struct rb_node *rb1, *rb2;
1515 struct ubi_ainf_volume *av;
1516 struct ubi_ainf_peb *aeb, *tmp;
1517 struct ubi_wl_entry *e;
1518
1519 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1520 spin_lock_init(&ubi->wl_lock);
1521 mutex_init(&ubi->move_mutex);
1522 init_rwsem(&ubi->work_sem);
1523 ubi->max_ec = ai->max_ec;
1524 INIT_LIST_HEAD(&ubi->works);
1525
1526 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1527
1528 err = -ENOMEM;
1529 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1530 if (!ubi->lookuptbl)
1531 return err;
1532
1533 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1534 INIT_LIST_HEAD(&ubi->pq[i]);
1535 ubi->pq_head = 0;
1536
1537 ubi->free_count = 0;
1538 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1539 cond_resched();
1540
1541 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1542 if (!e)
1543 goto out_free;
1544
1545 e->pnum = aeb->pnum;
1546 e->ec = aeb->ec;
1547 ubi->lookuptbl[e->pnum] = e;
1548 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1549 wl_entry_destroy(ubi, e);
1550 goto out_free;
1551 }
1552
1553 found_pebs++;
1554 }
1555
1556 list_for_each_entry(aeb, &ai->free, u.list) {
1557 cond_resched();
1558
1559 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1560 if (!e)
1561 goto out_free;
1562
1563 e->pnum = aeb->pnum;
1564 e->ec = aeb->ec;
1565 ubi_assert(e->ec >= 0);
1566
1567 wl_tree_add(e, &ubi->free);
1568 ubi->free_count++;
1569
1570 ubi->lookuptbl[e->pnum] = e;
1571
1572 found_pebs++;
1573 }
1574
1575 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1576 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1577 cond_resched();
1578
1579 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1580 if (!e)
1581 goto out_free;
1582
1583 e->pnum = aeb->pnum;
1584 e->ec = aeb->ec;
1585 ubi->lookuptbl[e->pnum] = e;
1586
1587 if (!aeb->scrub) {
1588 dbg_wl("add PEB %d EC %d to the used tree",
1589 e->pnum, e->ec);
1590 wl_tree_add(e, &ubi->used);
1591 } else {
1592 dbg_wl("add PEB %d EC %d to the scrub tree",
1593 e->pnum, e->ec);
1594 wl_tree_add(e, &ubi->scrub);
1595 }
1596
1597 found_pebs++;
1598 }
1599 }
1600
1601 dbg_wl("found %i PEBs", found_pebs);
1602
1603 if (ubi->fm) {
1604 ubi_assert(ubi->good_peb_count ==
1605 found_pebs + ubi->fm->used_blocks);
1606
1607 for (i = 0; i < ubi->fm->used_blocks; i++) {
1608 e = ubi->fm->e[i];
1609 ubi->lookuptbl[e->pnum] = e;
1610 }
1611 }
1612 else
1613 ubi_assert(ubi->good_peb_count == found_pebs);
1614
1615 reserved_pebs = WL_RESERVED_PEBS;
1616 ubi_fastmap_init(ubi, &reserved_pebs);
1617
1618 if (ubi->avail_pebs < reserved_pebs) {
1619 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1620 ubi->avail_pebs, reserved_pebs);
1621 if (ubi->corr_peb_count)
1622 ubi_err(ubi, "%d PEBs are corrupted and not used",
1623 ubi->corr_peb_count);
1624 err = -ENOSPC;
1625 goto out_free;
1626 }
1627 ubi->avail_pebs -= reserved_pebs;
1628 ubi->rsvd_pebs += reserved_pebs;
1629
1630 /* Schedule wear-leveling if needed */
1631 err = ensure_wear_leveling(ubi, 0);
1632 if (err)
1633 goto out_free;
1634
1635 return 0;
1636
1637 out_free:
1638 shutdown_work(ubi);
1639 tree_destroy(ubi, &ubi->used);
1640 tree_destroy(ubi, &ubi->free);
1641 tree_destroy(ubi, &ubi->scrub);
1642 kfree(ubi->lookuptbl);
1643 return err;
1644 }
1645
1646 /**
1647 * protection_queue_destroy - destroy the protection queue.
1648 * @ubi: UBI device description object
1649 */
1650 static void protection_queue_destroy(struct ubi_device *ubi)
1651 {
1652 int i;
1653 struct ubi_wl_entry *e, *tmp;
1654
1655 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1656 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1657 list_del(&e->u.list);
1658 wl_entry_destroy(ubi, e);
1659 }
1660 }
1661 }
1662
1663 /**
1664 * ubi_wl_close - close the wear-leveling sub-system.
1665 * @ubi: UBI device description object
1666 */
1667 void ubi_wl_close(struct ubi_device *ubi)
1668 {
1669 dbg_wl("close the WL sub-system");
1670 ubi_fastmap_close(ubi);
1671 shutdown_work(ubi);
1672 protection_queue_destroy(ubi);
1673 tree_destroy(ubi, &ubi->used);
1674 tree_destroy(ubi, &ubi->erroneous);
1675 tree_destroy(ubi, &ubi->free);
1676 tree_destroy(ubi, &ubi->scrub);
1677 kfree(ubi->lookuptbl);
1678 }
1679
1680 /**
1681 * self_check_ec - make sure that the erase counter of a PEB is correct.
1682 * @ubi: UBI device description object
1683 * @pnum: the physical eraseblock number to check
1684 * @ec: the erase counter to check
1685 *
1686 * This function returns zero if the erase counter of physical eraseblock @pnum
1687 * is equivalent to @ec, and a negative error code if not or if an error
1688 * occurred.
1689 */
1690 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1691 {
1692 int err;
1693 long long read_ec;
1694 struct ubi_ec_hdr *ec_hdr;
1695
1696 if (!ubi_dbg_chk_gen(ubi))
1697 return 0;
1698
1699 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1700 if (!ec_hdr)
1701 return -ENOMEM;
1702
1703 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1704 if (err && err != UBI_IO_BITFLIPS) {
1705 /* The header does not have to exist */
1706 err = 0;
1707 goto out_free;
1708 }
1709
1710 read_ec = be64_to_cpu(ec_hdr->ec);
1711 if (ec != read_ec && read_ec - ec > 1) {
1712 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1713 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1714 dump_stack();
1715 err = 1;
1716 } else
1717 err = 0;
1718
1719 out_free:
1720 kfree(ec_hdr);
1721 return err;
1722 }
1723
1724 /**
1725 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1726 * @ubi: UBI device description object
1727 * @e: the wear-leveling entry to check
1728 * @root: the root of the tree
1729 *
1730 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1731 * is not.
1732 */
1733 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1734 struct ubi_wl_entry *e, struct rb_root *root)
1735 {
1736 if (!ubi_dbg_chk_gen(ubi))
1737 return 0;
1738
1739 if (in_wl_tree(e, root))
1740 return 0;
1741
1742 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1743 e->pnum, e->ec, root);
1744 dump_stack();
1745 return -EINVAL;
1746 }
1747
1748 /**
1749 * self_check_in_pq - check if wear-leveling entry is in the protection
1750 * queue.
1751 * @ubi: UBI device description object
1752 * @e: the wear-leveling entry to check
1753 *
1754 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1755 */
1756 static int self_check_in_pq(const struct ubi_device *ubi,
1757 struct ubi_wl_entry *e)
1758 {
1759 struct ubi_wl_entry *p;
1760 int i;
1761
1762 if (!ubi_dbg_chk_gen(ubi))
1763 return 0;
1764
1765 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1766 list_for_each_entry(p, &ubi->pq[i], u.list)
1767 if (p == e)
1768 return 0;
1769
1770 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1771 e->pnum, e->ec);
1772 dump_stack();
1773 return -EINVAL;
1774 }
1775 #ifndef CONFIG_MTD_UBI_FASTMAP
1776 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1777 {
1778 struct ubi_wl_entry *e;
1779
1780 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1781 self_check_in_wl_tree(ubi, e, &ubi->free);
1782 ubi->free_count--;
1783 ubi_assert(ubi->free_count >= 0);
1784 rb_erase(&e->u.rb, &ubi->free);
1785
1786 return e;
1787 }
1788
1789 /**
1790 * produce_free_peb - produce a free physical eraseblock.
1791 * @ubi: UBI device description object
1792 *
1793 * This function tries to make a free PEB by means of synchronous execution of
1794 * pending works. This may be needed if, for example the background thread is
1795 * disabled. Returns zero in case of success and a negative error code in case
1796 * of failure.
1797 */
1798 static int produce_free_peb(struct ubi_device *ubi)
1799 {
1800 int err;
1801
1802 while (!ubi->free.rb_node && ubi->works_count) {
1803 spin_unlock(&ubi->wl_lock);
1804
1805 dbg_wl("do one work synchronously");
1806 err = do_work(ubi);
1807
1808 spin_lock(&ubi->wl_lock);
1809 if (err)
1810 return err;
1811 }
1812
1813 return 0;
1814 }
1815
1816 /**
1817 * ubi_wl_get_peb - get a physical eraseblock.
1818 * @ubi: UBI device description object
1819 *
1820 * This function returns a physical eraseblock in case of success and a
1821 * negative error code in case of failure.
1822 * Returns with ubi->fm_eba_sem held in read mode!
1823 */
1824 int ubi_wl_get_peb(struct ubi_device *ubi)
1825 {
1826 int err;
1827 struct ubi_wl_entry *e;
1828
1829 retry:
1830 down_read(&ubi->fm_eba_sem);
1831 spin_lock(&ubi->wl_lock);
1832 if (!ubi->free.rb_node) {
1833 if (ubi->works_count == 0) {
1834 ubi_err(ubi, "no free eraseblocks");
1835 ubi_assert(list_empty(&ubi->works));
1836 spin_unlock(&ubi->wl_lock);
1837 return -ENOSPC;
1838 }
1839
1840 err = produce_free_peb(ubi);
1841 if (err < 0) {
1842 spin_unlock(&ubi->wl_lock);
1843 return err;
1844 }
1845 spin_unlock(&ubi->wl_lock);
1846 up_read(&ubi->fm_eba_sem);
1847 goto retry;
1848
1849 }
1850 e = wl_get_wle(ubi);
1851 prot_queue_add(ubi, e);
1852 spin_unlock(&ubi->wl_lock);
1853
1854 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1855 ubi->peb_size - ubi->vid_hdr_aloffset);
1856 if (err) {
1857 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1858 return err;
1859 }
1860
1861 return e->pnum;
1862 }
1863 #else
1864 #include "fastmap-wl.c"
1865 #endif
This page took 0.129515 seconds and 5 git commands to generate.