[media] omap3isp: Replace cpu_is_omap3630() with ISP revision check
[deliverable/linux.git] / drivers / mtd / ubi / wl.c
1 /*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20 */
21
22 /*
23 * UBI wear-leveling sub-system.
24 *
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 *
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 *
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
39 *
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
43 *
44 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
45 * bad.
46 *
47 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
48 * in a physical eraseblock, it has to be moved. Technically this is the same
49 * as moving it for wear-leveling reasons.
50 *
51 * As it was said, for the UBI sub-system all physical eraseblocks are either
52 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
53 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
54 * RB-trees, as well as (temporarily) in the @wl->pq queue.
55 *
56 * When the WL sub-system returns a physical eraseblock, the physical
57 * eraseblock is protected from being moved for some "time". For this reason,
58 * the physical eraseblock is not directly moved from the @wl->free tree to the
59 * @wl->used tree. There is a protection queue in between where this
60 * physical eraseblock is temporarily stored (@wl->pq).
61 *
62 * All this protection stuff is needed because:
63 * o we don't want to move physical eraseblocks just after we have given them
64 * to the user; instead, we first want to let users fill them up with data;
65 *
66 * o there is a chance that the user will put the physical eraseblock very
67 * soon, so it makes sense not to move it for some time, but wait.
68 *
69 * Physical eraseblocks stay protected only for limited time. But the "time" is
70 * measured in erase cycles in this case. This is implemented with help of the
71 * protection queue. Eraseblocks are put to the tail of this queue when they
72 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
73 * head of the queue on each erase operation (for any eraseblock). So the
74 * length of the queue defines how may (global) erase cycles PEBs are protected.
75 *
76 * To put it differently, each physical eraseblock has 2 main states: free and
77 * used. The former state corresponds to the @wl->free tree. The latter state
78 * is split up on several sub-states:
79 * o the WL movement is allowed (@wl->used tree);
80 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
81 * erroneous - e.g., there was a read error;
82 * o the WL movement is temporarily prohibited (@wl->pq queue);
83 * o scrubbing is needed (@wl->scrub tree).
84 *
85 * Depending on the sub-state, wear-leveling entries of the used physical
86 * eraseblocks may be kept in one of those structures.
87 *
88 * Note, in this implementation, we keep a small in-RAM object for each physical
89 * eraseblock. This is surely not a scalable solution. But it appears to be good
90 * enough for moderately large flashes and it is simple. In future, one may
91 * re-work this sub-system and make it more scalable.
92 *
93 * At the moment this sub-system does not utilize the sequence number, which
94 * was introduced relatively recently. But it would be wise to do this because
95 * the sequence number of a logical eraseblock characterizes how old is it. For
96 * example, when we move a PEB with low erase counter, and we need to pick the
97 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
98 * pick target PEB with an average EC if our PEB is not very "old". This is a
99 * room for future re-works of the WL sub-system.
100 */
101
102 #include <linux/slab.h>
103 #include <linux/crc32.h>
104 #include <linux/freezer.h>
105 #include <linux/kthread.h>
106 #include "ubi.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
115 * erase counter.
116 */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
129 */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
135 */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 struct ubi_wl_entry *e);
143
144 #ifdef CONFIG_MTD_UBI_FASTMAP
145 /**
146 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
147 * @wrk: the work description object
148 */
149 static void update_fastmap_work_fn(struct work_struct *wrk)
150 {
151 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
152 ubi_update_fastmap(ubi);
153 }
154
155 /**
156 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
157 * @ubi: UBI device description object
158 * @pnum: the to be checked PEB
159 */
160 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
161 {
162 int i;
163
164 if (!ubi->fm)
165 return 0;
166
167 for (i = 0; i < ubi->fm->used_blocks; i++)
168 if (ubi->fm->e[i]->pnum == pnum)
169 return 1;
170
171 return 0;
172 }
173 #else
174 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
175 {
176 return 0;
177 }
178 #endif
179
180 /**
181 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
182 * @e: the wear-leveling entry to add
183 * @root: the root of the tree
184 *
185 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
186 * the @ubi->used and @ubi->free RB-trees.
187 */
188 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
189 {
190 struct rb_node **p, *parent = NULL;
191
192 p = &root->rb_node;
193 while (*p) {
194 struct ubi_wl_entry *e1;
195
196 parent = *p;
197 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
198
199 if (e->ec < e1->ec)
200 p = &(*p)->rb_left;
201 else if (e->ec > e1->ec)
202 p = &(*p)->rb_right;
203 else {
204 ubi_assert(e->pnum != e1->pnum);
205 if (e->pnum < e1->pnum)
206 p = &(*p)->rb_left;
207 else
208 p = &(*p)->rb_right;
209 }
210 }
211
212 rb_link_node(&e->u.rb, parent, p);
213 rb_insert_color(&e->u.rb, root);
214 }
215
216 /**
217 * do_work - do one pending work.
218 * @ubi: UBI device description object
219 *
220 * This function returns zero in case of success and a negative error code in
221 * case of failure.
222 */
223 static int do_work(struct ubi_device *ubi)
224 {
225 int err;
226 struct ubi_work *wrk;
227
228 cond_resched();
229
230 /*
231 * @ubi->work_sem is used to synchronize with the workers. Workers take
232 * it in read mode, so many of them may be doing works at a time. But
233 * the queue flush code has to be sure the whole queue of works is
234 * done, and it takes the mutex in write mode.
235 */
236 down_read(&ubi->work_sem);
237 spin_lock(&ubi->wl_lock);
238 if (list_empty(&ubi->works)) {
239 spin_unlock(&ubi->wl_lock);
240 up_read(&ubi->work_sem);
241 return 0;
242 }
243
244 wrk = list_entry(ubi->works.next, struct ubi_work, list);
245 list_del(&wrk->list);
246 ubi->works_count -= 1;
247 ubi_assert(ubi->works_count >= 0);
248 spin_unlock(&ubi->wl_lock);
249
250 /*
251 * Call the worker function. Do not touch the work structure
252 * after this call as it will have been freed or reused by that
253 * time by the worker function.
254 */
255 err = wrk->func(ubi, wrk, 0);
256 if (err)
257 ubi_err("work failed with error code %d", err);
258 up_read(&ubi->work_sem);
259
260 return err;
261 }
262
263 /**
264 * produce_free_peb - produce a free physical eraseblock.
265 * @ubi: UBI device description object
266 *
267 * This function tries to make a free PEB by means of synchronous execution of
268 * pending works. This may be needed if, for example the background thread is
269 * disabled. Returns zero in case of success and a negative error code in case
270 * of failure.
271 */
272 static int produce_free_peb(struct ubi_device *ubi)
273 {
274 int err;
275
276 while (!ubi->free.rb_node) {
277 spin_unlock(&ubi->wl_lock);
278
279 dbg_wl("do one work synchronously");
280 err = do_work(ubi);
281
282 spin_lock(&ubi->wl_lock);
283 if (err)
284 return err;
285 }
286
287 return 0;
288 }
289
290 /**
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
294 *
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
297 */
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299 {
300 struct rb_node *p;
301
302 p = root->rb_node;
303 while (p) {
304 struct ubi_wl_entry *e1;
305
306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308 if (e->pnum == e1->pnum) {
309 ubi_assert(e == e1);
310 return 1;
311 }
312
313 if (e->ec < e1->ec)
314 p = p->rb_left;
315 else if (e->ec > e1->ec)
316 p = p->rb_right;
317 else {
318 ubi_assert(e->pnum != e1->pnum);
319 if (e->pnum < e1->pnum)
320 p = p->rb_left;
321 else
322 p = p->rb_right;
323 }
324 }
325
326 return 0;
327 }
328
329 /**
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
333 *
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
338 */
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 {
341 int pq_tail = ubi->pq_head - 1;
342
343 if (pq_tail < 0)
344 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 }
349
350 /**
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @ubi: UBI device description object
353 * @root: the RB-tree where to look for
354 * @diff: maximum possible difference from the smallest erase counter
355 *
356 * This function looks for a wear leveling entry with erase counter closest to
357 * min + @diff, where min is the smallest erase counter.
358 */
359 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
360 struct rb_root *root, int diff)
361 {
362 struct rb_node *p;
363 struct ubi_wl_entry *e, *prev_e = NULL;
364 int max;
365
366 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
367 max = e->ec + diff;
368
369 p = root->rb_node;
370 while (p) {
371 struct ubi_wl_entry *e1;
372
373 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
374 if (e1->ec >= max)
375 p = p->rb_left;
376 else {
377 p = p->rb_right;
378 prev_e = e;
379 e = e1;
380 }
381 }
382
383 /* If no fastmap has been written and this WL entry can be used
384 * as anchor PEB, hold it back and return the second best WL entry
385 * such that fastmap can use the anchor PEB later. */
386 if (prev_e && !ubi->fm_disabled &&
387 !ubi->fm && e->pnum < UBI_FM_MAX_START)
388 return prev_e;
389
390 return e;
391 }
392
393 /**
394 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
395 * @ubi: UBI device description object
396 * @root: the RB-tree where to look for
397 *
398 * This function looks for a wear leveling entry with medium erase counter,
399 * but not greater or equivalent than the lowest erase counter plus
400 * %WL_FREE_MAX_DIFF/2.
401 */
402 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
403 struct rb_root *root)
404 {
405 struct ubi_wl_entry *e, *first, *last;
406
407 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
408 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
409
410 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
411 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
412
413 #ifdef CONFIG_MTD_UBI_FASTMAP
414 /* If no fastmap has been written and this WL entry can be used
415 * as anchor PEB, hold it back and return the second best
416 * WL entry such that fastmap can use the anchor PEB later. */
417 if (e && !ubi->fm_disabled && !ubi->fm &&
418 e->pnum < UBI_FM_MAX_START)
419 e = rb_entry(rb_next(root->rb_node),
420 struct ubi_wl_entry, u.rb);
421 #endif
422 } else
423 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
424
425 return e;
426 }
427
428 #ifdef CONFIG_MTD_UBI_FASTMAP
429 /**
430 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
431 * @root: the RB-tree where to look for
432 */
433 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
434 {
435 struct rb_node *p;
436 struct ubi_wl_entry *e, *victim = NULL;
437 int max_ec = UBI_MAX_ERASECOUNTER;
438
439 ubi_rb_for_each_entry(p, e, root, u.rb) {
440 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
441 victim = e;
442 max_ec = e->ec;
443 }
444 }
445
446 return victim;
447 }
448
449 static int anchor_pebs_avalible(struct rb_root *root)
450 {
451 struct rb_node *p;
452 struct ubi_wl_entry *e;
453
454 ubi_rb_for_each_entry(p, e, root, u.rb)
455 if (e->pnum < UBI_FM_MAX_START)
456 return 1;
457
458 return 0;
459 }
460
461 /**
462 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
463 * @ubi: UBI device description object
464 * @anchor: This PEB will be used as anchor PEB by fastmap
465 *
466 * The function returns a physical erase block with a given maximal number
467 * and removes it from the wl subsystem.
468 * Must be called with wl_lock held!
469 */
470 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
471 {
472 struct ubi_wl_entry *e = NULL;
473
474 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
475 goto out;
476
477 if (anchor)
478 e = find_anchor_wl_entry(&ubi->free);
479 else
480 e = find_mean_wl_entry(ubi, &ubi->free);
481
482 if (!e)
483 goto out;
484
485 self_check_in_wl_tree(ubi, e, &ubi->free);
486
487 /* remove it from the free list,
488 * the wl subsystem does no longer know this erase block */
489 rb_erase(&e->u.rb, &ubi->free);
490 ubi->free_count--;
491 out:
492 return e;
493 }
494 #endif
495
496 /**
497 * __wl_get_peb - get a physical eraseblock.
498 * @ubi: UBI device description object
499 *
500 * This function returns a physical eraseblock in case of success and a
501 * negative error code in case of failure. Might sleep.
502 */
503 static int __wl_get_peb(struct ubi_device *ubi)
504 {
505 int err;
506 struct ubi_wl_entry *e;
507
508 retry:
509 if (!ubi->free.rb_node) {
510 if (ubi->works_count == 0) {
511 ubi_err("no free eraseblocks");
512 ubi_assert(list_empty(&ubi->works));
513 return -ENOSPC;
514 }
515
516 err = produce_free_peb(ubi);
517 if (err < 0)
518 return err;
519 goto retry;
520 }
521
522 e = find_mean_wl_entry(ubi, &ubi->free);
523 if (!e) {
524 ubi_err("no free eraseblocks");
525 return -ENOSPC;
526 }
527
528 self_check_in_wl_tree(ubi, e, &ubi->free);
529
530 /*
531 * Move the physical eraseblock to the protection queue where it will
532 * be protected from being moved for some time.
533 */
534 rb_erase(&e->u.rb, &ubi->free);
535 ubi->free_count--;
536 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
537 #ifndef CONFIG_MTD_UBI_FASTMAP
538 /* We have to enqueue e only if fastmap is disabled,
539 * is fastmap enabled prot_queue_add() will be called by
540 * ubi_wl_get_peb() after removing e from the pool. */
541 prot_queue_add(ubi, e);
542 #endif
543 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
544 ubi->peb_size - ubi->vid_hdr_aloffset);
545 if (err) {
546 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
547 return err;
548 }
549
550 return e->pnum;
551 }
552
553 #ifdef CONFIG_MTD_UBI_FASTMAP
554 /**
555 * return_unused_pool_pebs - returns unused PEB to the free tree.
556 * @ubi: UBI device description object
557 * @pool: fastmap pool description object
558 */
559 static void return_unused_pool_pebs(struct ubi_device *ubi,
560 struct ubi_fm_pool *pool)
561 {
562 int i;
563 struct ubi_wl_entry *e;
564
565 for (i = pool->used; i < pool->size; i++) {
566 e = ubi->lookuptbl[pool->pebs[i]];
567 wl_tree_add(e, &ubi->free);
568 ubi->free_count++;
569 }
570 }
571
572 /**
573 * refill_wl_pool - refills all the fastmap pool used by the
574 * WL sub-system.
575 * @ubi: UBI device description object
576 */
577 static void refill_wl_pool(struct ubi_device *ubi)
578 {
579 struct ubi_wl_entry *e;
580 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
581
582 return_unused_pool_pebs(ubi, pool);
583
584 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
585 if (!ubi->free.rb_node ||
586 (ubi->free_count - ubi->beb_rsvd_pebs < 5))
587 break;
588
589 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
590 self_check_in_wl_tree(ubi, e, &ubi->free);
591 rb_erase(&e->u.rb, &ubi->free);
592 ubi->free_count--;
593
594 pool->pebs[pool->size] = e->pnum;
595 }
596 pool->used = 0;
597 }
598
599 /**
600 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
601 * @ubi: UBI device description object
602 */
603 static void refill_wl_user_pool(struct ubi_device *ubi)
604 {
605 struct ubi_fm_pool *pool = &ubi->fm_pool;
606
607 return_unused_pool_pebs(ubi, pool);
608
609 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
610 if (!ubi->free.rb_node ||
611 (ubi->free_count - ubi->beb_rsvd_pebs < 1))
612 break;
613
614 pool->pebs[pool->size] = __wl_get_peb(ubi);
615 if (pool->pebs[pool->size] < 0)
616 break;
617 }
618 pool->used = 0;
619 }
620
621 /**
622 * ubi_refill_pools - refills all fastmap PEB pools.
623 * @ubi: UBI device description object
624 */
625 void ubi_refill_pools(struct ubi_device *ubi)
626 {
627 spin_lock(&ubi->wl_lock);
628 refill_wl_pool(ubi);
629 refill_wl_user_pool(ubi);
630 spin_unlock(&ubi->wl_lock);
631 }
632
633 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
634 * the fastmap pool.
635 */
636 int ubi_wl_get_peb(struct ubi_device *ubi)
637 {
638 int ret;
639 struct ubi_fm_pool *pool = &ubi->fm_pool;
640 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
641
642 if (!pool->size || !wl_pool->size || pool->used == pool->size ||
643 wl_pool->used == wl_pool->size)
644 ubi_update_fastmap(ubi);
645
646 /* we got not a single free PEB */
647 if (!pool->size)
648 ret = -ENOSPC;
649 else {
650 spin_lock(&ubi->wl_lock);
651 ret = pool->pebs[pool->used++];
652 prot_queue_add(ubi, ubi->lookuptbl[ret]);
653 spin_unlock(&ubi->wl_lock);
654 }
655
656 return ret;
657 }
658
659 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
660 *
661 * @ubi: UBI device description object
662 */
663 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
664 {
665 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
666 int pnum;
667
668 if (pool->used == pool->size || !pool->size) {
669 /* We cannot update the fastmap here because this
670 * function is called in atomic context.
671 * Let's fail here and refill/update it as soon as possible. */
672 schedule_work(&ubi->fm_work);
673 return NULL;
674 } else {
675 pnum = pool->pebs[pool->used++];
676 return ubi->lookuptbl[pnum];
677 }
678 }
679 #else
680 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
681 {
682 return find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
683 }
684
685 int ubi_wl_get_peb(struct ubi_device *ubi)
686 {
687 int peb;
688
689 spin_lock(&ubi->wl_lock);
690 peb = __wl_get_peb(ubi);
691 spin_unlock(&ubi->wl_lock);
692
693 return peb;
694 }
695 #endif
696
697 /**
698 * prot_queue_del - remove a physical eraseblock from the protection queue.
699 * @ubi: UBI device description object
700 * @pnum: the physical eraseblock to remove
701 *
702 * This function deletes PEB @pnum from the protection queue and returns zero
703 * in case of success and %-ENODEV if the PEB was not found.
704 */
705 static int prot_queue_del(struct ubi_device *ubi, int pnum)
706 {
707 struct ubi_wl_entry *e;
708
709 e = ubi->lookuptbl[pnum];
710 if (!e)
711 return -ENODEV;
712
713 if (self_check_in_pq(ubi, e))
714 return -ENODEV;
715
716 list_del(&e->u.list);
717 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
718 return 0;
719 }
720
721 /**
722 * sync_erase - synchronously erase a physical eraseblock.
723 * @ubi: UBI device description object
724 * @e: the the physical eraseblock to erase
725 * @torture: if the physical eraseblock has to be tortured
726 *
727 * This function returns zero in case of success and a negative error code in
728 * case of failure.
729 */
730 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
731 int torture)
732 {
733 int err;
734 struct ubi_ec_hdr *ec_hdr;
735 unsigned long long ec = e->ec;
736
737 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
738
739 err = self_check_ec(ubi, e->pnum, e->ec);
740 if (err)
741 return -EINVAL;
742
743 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
744 if (!ec_hdr)
745 return -ENOMEM;
746
747 err = ubi_io_sync_erase(ubi, e->pnum, torture);
748 if (err < 0)
749 goto out_free;
750
751 ec += err;
752 if (ec > UBI_MAX_ERASECOUNTER) {
753 /*
754 * Erase counter overflow. Upgrade UBI and use 64-bit
755 * erase counters internally.
756 */
757 ubi_err("erase counter overflow at PEB %d, EC %llu",
758 e->pnum, ec);
759 err = -EINVAL;
760 goto out_free;
761 }
762
763 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
764
765 ec_hdr->ec = cpu_to_be64(ec);
766
767 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
768 if (err)
769 goto out_free;
770
771 e->ec = ec;
772 spin_lock(&ubi->wl_lock);
773 if (e->ec > ubi->max_ec)
774 ubi->max_ec = e->ec;
775 spin_unlock(&ubi->wl_lock);
776
777 out_free:
778 kfree(ec_hdr);
779 return err;
780 }
781
782 /**
783 * serve_prot_queue - check if it is time to stop protecting PEBs.
784 * @ubi: UBI device description object
785 *
786 * This function is called after each erase operation and removes PEBs from the
787 * tail of the protection queue. These PEBs have been protected for long enough
788 * and should be moved to the used tree.
789 */
790 static void serve_prot_queue(struct ubi_device *ubi)
791 {
792 struct ubi_wl_entry *e, *tmp;
793 int count;
794
795 /*
796 * There may be several protected physical eraseblock to remove,
797 * process them all.
798 */
799 repeat:
800 count = 0;
801 spin_lock(&ubi->wl_lock);
802 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
803 dbg_wl("PEB %d EC %d protection over, move to used tree",
804 e->pnum, e->ec);
805
806 list_del(&e->u.list);
807 wl_tree_add(e, &ubi->used);
808 if (count++ > 32) {
809 /*
810 * Let's be nice and avoid holding the spinlock for
811 * too long.
812 */
813 spin_unlock(&ubi->wl_lock);
814 cond_resched();
815 goto repeat;
816 }
817 }
818
819 ubi->pq_head += 1;
820 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
821 ubi->pq_head = 0;
822 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
823 spin_unlock(&ubi->wl_lock);
824 }
825
826 /**
827 * __schedule_ubi_work - schedule a work.
828 * @ubi: UBI device description object
829 * @wrk: the work to schedule
830 *
831 * This function adds a work defined by @wrk to the tail of the pending works
832 * list. Can only be used of ubi->work_sem is already held in read mode!
833 */
834 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
835 {
836 spin_lock(&ubi->wl_lock);
837 list_add_tail(&wrk->list, &ubi->works);
838 ubi_assert(ubi->works_count >= 0);
839 ubi->works_count += 1;
840 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
841 wake_up_process(ubi->bgt_thread);
842 spin_unlock(&ubi->wl_lock);
843 }
844
845 /**
846 * schedule_ubi_work - schedule a work.
847 * @ubi: UBI device description object
848 * @wrk: the work to schedule
849 *
850 * This function adds a work defined by @wrk to the tail of the pending works
851 * list.
852 */
853 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
854 {
855 down_read(&ubi->work_sem);
856 __schedule_ubi_work(ubi, wrk);
857 up_read(&ubi->work_sem);
858 }
859
860 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
861 int cancel);
862
863 #ifdef CONFIG_MTD_UBI_FASTMAP
864 /**
865 * ubi_is_erase_work - checks whether a work is erase work.
866 * @wrk: The work object to be checked
867 */
868 int ubi_is_erase_work(struct ubi_work *wrk)
869 {
870 return wrk->func == erase_worker;
871 }
872 #endif
873
874 /**
875 * schedule_erase - schedule an erase work.
876 * @ubi: UBI device description object
877 * @e: the WL entry of the physical eraseblock to erase
878 * @vol_id: the volume ID that last used this PEB
879 * @lnum: the last used logical eraseblock number for the PEB
880 * @torture: if the physical eraseblock has to be tortured
881 *
882 * This function returns zero in case of success and a %-ENOMEM in case of
883 * failure.
884 */
885 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
886 int vol_id, int lnum, int torture)
887 {
888 struct ubi_work *wl_wrk;
889
890 ubi_assert(e);
891 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
892
893 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
894 e->pnum, e->ec, torture);
895
896 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
897 if (!wl_wrk)
898 return -ENOMEM;
899
900 wl_wrk->func = &erase_worker;
901 wl_wrk->e = e;
902 wl_wrk->vol_id = vol_id;
903 wl_wrk->lnum = lnum;
904 wl_wrk->torture = torture;
905
906 schedule_ubi_work(ubi, wl_wrk);
907 return 0;
908 }
909
910 /**
911 * do_sync_erase - run the erase worker synchronously.
912 * @ubi: UBI device description object
913 * @e: the WL entry of the physical eraseblock to erase
914 * @vol_id: the volume ID that last used this PEB
915 * @lnum: the last used logical eraseblock number for the PEB
916 * @torture: if the physical eraseblock has to be tortured
917 *
918 */
919 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
920 int vol_id, int lnum, int torture)
921 {
922 struct ubi_work *wl_wrk;
923
924 dbg_wl("sync erase of PEB %i", e->pnum);
925
926 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
927 if (!wl_wrk)
928 return -ENOMEM;
929
930 wl_wrk->e = e;
931 wl_wrk->vol_id = vol_id;
932 wl_wrk->lnum = lnum;
933 wl_wrk->torture = torture;
934
935 return erase_worker(ubi, wl_wrk, 0);
936 }
937
938 #ifdef CONFIG_MTD_UBI_FASTMAP
939 /**
940 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
941 * sub-system.
942 * see: ubi_wl_put_peb()
943 *
944 * @ubi: UBI device description object
945 * @fm_e: physical eraseblock to return
946 * @lnum: the last used logical eraseblock number for the PEB
947 * @torture: if this physical eraseblock has to be tortured
948 */
949 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
950 int lnum, int torture)
951 {
952 struct ubi_wl_entry *e;
953 int vol_id, pnum = fm_e->pnum;
954
955 dbg_wl("PEB %d", pnum);
956
957 ubi_assert(pnum >= 0);
958 ubi_assert(pnum < ubi->peb_count);
959
960 spin_lock(&ubi->wl_lock);
961 e = ubi->lookuptbl[pnum];
962
963 /* This can happen if we recovered from a fastmap the very
964 * first time and writing now a new one. In this case the wl system
965 * has never seen any PEB used by the original fastmap.
966 */
967 if (!e) {
968 e = fm_e;
969 ubi_assert(e->ec >= 0);
970 ubi->lookuptbl[pnum] = e;
971 } else {
972 e->ec = fm_e->ec;
973 kfree(fm_e);
974 }
975
976 spin_unlock(&ubi->wl_lock);
977
978 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
979 return schedule_erase(ubi, e, vol_id, lnum, torture);
980 }
981 #endif
982
983 /**
984 * wear_leveling_worker - wear-leveling worker function.
985 * @ubi: UBI device description object
986 * @wrk: the work object
987 * @cancel: non-zero if the worker has to free memory and exit
988 *
989 * This function copies a more worn out physical eraseblock to a less worn out
990 * one. Returns zero in case of success and a negative error code in case of
991 * failure.
992 */
993 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
994 int cancel)
995 {
996 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
997 int vol_id = -1, uninitialized_var(lnum);
998 #ifdef CONFIG_MTD_UBI_FASTMAP
999 int anchor = wrk->anchor;
1000 #endif
1001 struct ubi_wl_entry *e1, *e2;
1002 struct ubi_vid_hdr *vid_hdr;
1003
1004 kfree(wrk);
1005 if (cancel)
1006 return 0;
1007
1008 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1009 if (!vid_hdr)
1010 return -ENOMEM;
1011
1012 mutex_lock(&ubi->move_mutex);
1013 spin_lock(&ubi->wl_lock);
1014 ubi_assert(!ubi->move_from && !ubi->move_to);
1015 ubi_assert(!ubi->move_to_put);
1016
1017 if (!ubi->free.rb_node ||
1018 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1019 /*
1020 * No free physical eraseblocks? Well, they must be waiting in
1021 * the queue to be erased. Cancel movement - it will be
1022 * triggered again when a free physical eraseblock appears.
1023 *
1024 * No used physical eraseblocks? They must be temporarily
1025 * protected from being moved. They will be moved to the
1026 * @ubi->used tree later and the wear-leveling will be
1027 * triggered again.
1028 */
1029 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1030 !ubi->free.rb_node, !ubi->used.rb_node);
1031 goto out_cancel;
1032 }
1033
1034 #ifdef CONFIG_MTD_UBI_FASTMAP
1035 /* Check whether we need to produce an anchor PEB */
1036 if (!anchor)
1037 anchor = !anchor_pebs_avalible(&ubi->free);
1038
1039 if (anchor) {
1040 e1 = find_anchor_wl_entry(&ubi->used);
1041 if (!e1)
1042 goto out_cancel;
1043 e2 = get_peb_for_wl(ubi);
1044 if (!e2)
1045 goto out_cancel;
1046
1047 self_check_in_wl_tree(ubi, e1, &ubi->used);
1048 rb_erase(&e1->u.rb, &ubi->used);
1049 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1050 } else if (!ubi->scrub.rb_node) {
1051 #else
1052 if (!ubi->scrub.rb_node) {
1053 #endif
1054 /*
1055 * Now pick the least worn-out used physical eraseblock and a
1056 * highly worn-out free physical eraseblock. If the erase
1057 * counters differ much enough, start wear-leveling.
1058 */
1059 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1060 e2 = get_peb_for_wl(ubi);
1061 if (!e2)
1062 goto out_cancel;
1063
1064 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1065 dbg_wl("no WL needed: min used EC %d, max free EC %d",
1066 e1->ec, e2->ec);
1067 goto out_cancel;
1068 }
1069 self_check_in_wl_tree(ubi, e1, &ubi->used);
1070 rb_erase(&e1->u.rb, &ubi->used);
1071 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1072 e1->pnum, e1->ec, e2->pnum, e2->ec);
1073 } else {
1074 /* Perform scrubbing */
1075 scrubbing = 1;
1076 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1077 e2 = get_peb_for_wl(ubi);
1078 if (!e2)
1079 goto out_cancel;
1080
1081 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1082 rb_erase(&e1->u.rb, &ubi->scrub);
1083 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1084 }
1085
1086 ubi->move_from = e1;
1087 ubi->move_to = e2;
1088 spin_unlock(&ubi->wl_lock);
1089
1090 /*
1091 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1092 * We so far do not know which logical eraseblock our physical
1093 * eraseblock (@e1) belongs to. We have to read the volume identifier
1094 * header first.
1095 *
1096 * Note, we are protected from this PEB being unmapped and erased. The
1097 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1098 * which is being moved was unmapped.
1099 */
1100
1101 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1102 if (err && err != UBI_IO_BITFLIPS) {
1103 if (err == UBI_IO_FF) {
1104 /*
1105 * We are trying to move PEB without a VID header. UBI
1106 * always write VID headers shortly after the PEB was
1107 * given, so we have a situation when it has not yet
1108 * had a chance to write it, because it was preempted.
1109 * So add this PEB to the protection queue so far,
1110 * because presumably more data will be written there
1111 * (including the missing VID header), and then we'll
1112 * move it.
1113 */
1114 dbg_wl("PEB %d has no VID header", e1->pnum);
1115 protect = 1;
1116 goto out_not_moved;
1117 } else if (err == UBI_IO_FF_BITFLIPS) {
1118 /*
1119 * The same situation as %UBI_IO_FF, but bit-flips were
1120 * detected. It is better to schedule this PEB for
1121 * scrubbing.
1122 */
1123 dbg_wl("PEB %d has no VID header but has bit-flips",
1124 e1->pnum);
1125 scrubbing = 1;
1126 goto out_not_moved;
1127 }
1128
1129 ubi_err("error %d while reading VID header from PEB %d",
1130 err, e1->pnum);
1131 goto out_error;
1132 }
1133
1134 vol_id = be32_to_cpu(vid_hdr->vol_id);
1135 lnum = be32_to_cpu(vid_hdr->lnum);
1136
1137 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1138 if (err) {
1139 if (err == MOVE_CANCEL_RACE) {
1140 /*
1141 * The LEB has not been moved because the volume is
1142 * being deleted or the PEB has been put meanwhile. We
1143 * should prevent this PEB from being selected for
1144 * wear-leveling movement again, so put it to the
1145 * protection queue.
1146 */
1147 protect = 1;
1148 goto out_not_moved;
1149 }
1150 if (err == MOVE_RETRY) {
1151 scrubbing = 1;
1152 goto out_not_moved;
1153 }
1154 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1155 err == MOVE_TARGET_RD_ERR) {
1156 /*
1157 * Target PEB had bit-flips or write error - torture it.
1158 */
1159 torture = 1;
1160 goto out_not_moved;
1161 }
1162
1163 if (err == MOVE_SOURCE_RD_ERR) {
1164 /*
1165 * An error happened while reading the source PEB. Do
1166 * not switch to R/O mode in this case, and give the
1167 * upper layers a possibility to recover from this,
1168 * e.g. by unmapping corresponding LEB. Instead, just
1169 * put this PEB to the @ubi->erroneous list to prevent
1170 * UBI from trying to move it over and over again.
1171 */
1172 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1173 ubi_err("too many erroneous eraseblocks (%d)",
1174 ubi->erroneous_peb_count);
1175 goto out_error;
1176 }
1177 erroneous = 1;
1178 goto out_not_moved;
1179 }
1180
1181 if (err < 0)
1182 goto out_error;
1183
1184 ubi_assert(0);
1185 }
1186
1187 /* The PEB has been successfully moved */
1188 if (scrubbing)
1189 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1190 e1->pnum, vol_id, lnum, e2->pnum);
1191 ubi_free_vid_hdr(ubi, vid_hdr);
1192
1193 spin_lock(&ubi->wl_lock);
1194 if (!ubi->move_to_put) {
1195 wl_tree_add(e2, &ubi->used);
1196 e2 = NULL;
1197 }
1198 ubi->move_from = ubi->move_to = NULL;
1199 ubi->move_to_put = ubi->wl_scheduled = 0;
1200 spin_unlock(&ubi->wl_lock);
1201
1202 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1203 if (err) {
1204 kmem_cache_free(ubi_wl_entry_slab, e1);
1205 if (e2)
1206 kmem_cache_free(ubi_wl_entry_slab, e2);
1207 goto out_ro;
1208 }
1209
1210 if (e2) {
1211 /*
1212 * Well, the target PEB was put meanwhile, schedule it for
1213 * erasure.
1214 */
1215 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1216 e2->pnum, vol_id, lnum);
1217 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1218 if (err) {
1219 kmem_cache_free(ubi_wl_entry_slab, e2);
1220 goto out_ro;
1221 }
1222 }
1223
1224 dbg_wl("done");
1225 mutex_unlock(&ubi->move_mutex);
1226 return 0;
1227
1228 /*
1229 * For some reasons the LEB was not moved, might be an error, might be
1230 * something else. @e1 was not changed, so return it back. @e2 might
1231 * have been changed, schedule it for erasure.
1232 */
1233 out_not_moved:
1234 if (vol_id != -1)
1235 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1236 e1->pnum, vol_id, lnum, e2->pnum, err);
1237 else
1238 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1239 e1->pnum, e2->pnum, err);
1240 spin_lock(&ubi->wl_lock);
1241 if (protect)
1242 prot_queue_add(ubi, e1);
1243 else if (erroneous) {
1244 wl_tree_add(e1, &ubi->erroneous);
1245 ubi->erroneous_peb_count += 1;
1246 } else if (scrubbing)
1247 wl_tree_add(e1, &ubi->scrub);
1248 else
1249 wl_tree_add(e1, &ubi->used);
1250 ubi_assert(!ubi->move_to_put);
1251 ubi->move_from = ubi->move_to = NULL;
1252 ubi->wl_scheduled = 0;
1253 spin_unlock(&ubi->wl_lock);
1254
1255 ubi_free_vid_hdr(ubi, vid_hdr);
1256 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1257 if (err) {
1258 kmem_cache_free(ubi_wl_entry_slab, e2);
1259 goto out_ro;
1260 }
1261 mutex_unlock(&ubi->move_mutex);
1262 return 0;
1263
1264 out_error:
1265 if (vol_id != -1)
1266 ubi_err("error %d while moving PEB %d to PEB %d",
1267 err, e1->pnum, e2->pnum);
1268 else
1269 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1270 err, e1->pnum, vol_id, lnum, e2->pnum);
1271 spin_lock(&ubi->wl_lock);
1272 ubi->move_from = ubi->move_to = NULL;
1273 ubi->move_to_put = ubi->wl_scheduled = 0;
1274 spin_unlock(&ubi->wl_lock);
1275
1276 ubi_free_vid_hdr(ubi, vid_hdr);
1277 kmem_cache_free(ubi_wl_entry_slab, e1);
1278 kmem_cache_free(ubi_wl_entry_slab, e2);
1279
1280 out_ro:
1281 ubi_ro_mode(ubi);
1282 mutex_unlock(&ubi->move_mutex);
1283 ubi_assert(err != 0);
1284 return err < 0 ? err : -EIO;
1285
1286 out_cancel:
1287 ubi->wl_scheduled = 0;
1288 spin_unlock(&ubi->wl_lock);
1289 mutex_unlock(&ubi->move_mutex);
1290 ubi_free_vid_hdr(ubi, vid_hdr);
1291 return 0;
1292 }
1293
1294 /**
1295 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1296 * @ubi: UBI device description object
1297 * @nested: set to non-zero if this function is called from UBI worker
1298 *
1299 * This function checks if it is time to start wear-leveling and schedules it
1300 * if yes. This function returns zero in case of success and a negative error
1301 * code in case of failure.
1302 */
1303 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1304 {
1305 int err = 0;
1306 struct ubi_wl_entry *e1;
1307 struct ubi_wl_entry *e2;
1308 struct ubi_work *wrk;
1309
1310 spin_lock(&ubi->wl_lock);
1311 if (ubi->wl_scheduled)
1312 /* Wear-leveling is already in the work queue */
1313 goto out_unlock;
1314
1315 /*
1316 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1317 * the WL worker has to be scheduled anyway.
1318 */
1319 if (!ubi->scrub.rb_node) {
1320 if (!ubi->used.rb_node || !ubi->free.rb_node)
1321 /* No physical eraseblocks - no deal */
1322 goto out_unlock;
1323
1324 /*
1325 * We schedule wear-leveling only if the difference between the
1326 * lowest erase counter of used physical eraseblocks and a high
1327 * erase counter of free physical eraseblocks is greater than
1328 * %UBI_WL_THRESHOLD.
1329 */
1330 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1331 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1332
1333 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1334 goto out_unlock;
1335 dbg_wl("schedule wear-leveling");
1336 } else
1337 dbg_wl("schedule scrubbing");
1338
1339 ubi->wl_scheduled = 1;
1340 spin_unlock(&ubi->wl_lock);
1341
1342 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1343 if (!wrk) {
1344 err = -ENOMEM;
1345 goto out_cancel;
1346 }
1347
1348 wrk->anchor = 0;
1349 wrk->func = &wear_leveling_worker;
1350 if (nested)
1351 __schedule_ubi_work(ubi, wrk);
1352 else
1353 schedule_ubi_work(ubi, wrk);
1354 return err;
1355
1356 out_cancel:
1357 spin_lock(&ubi->wl_lock);
1358 ubi->wl_scheduled = 0;
1359 out_unlock:
1360 spin_unlock(&ubi->wl_lock);
1361 return err;
1362 }
1363
1364 #ifdef CONFIG_MTD_UBI_FASTMAP
1365 /**
1366 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1367 * @ubi: UBI device description object
1368 */
1369 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1370 {
1371 struct ubi_work *wrk;
1372
1373 spin_lock(&ubi->wl_lock);
1374 if (ubi->wl_scheduled) {
1375 spin_unlock(&ubi->wl_lock);
1376 return 0;
1377 }
1378 ubi->wl_scheduled = 1;
1379 spin_unlock(&ubi->wl_lock);
1380
1381 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1382 if (!wrk) {
1383 spin_lock(&ubi->wl_lock);
1384 ubi->wl_scheduled = 0;
1385 spin_unlock(&ubi->wl_lock);
1386 return -ENOMEM;
1387 }
1388
1389 wrk->anchor = 1;
1390 wrk->func = &wear_leveling_worker;
1391 schedule_ubi_work(ubi, wrk);
1392 return 0;
1393 }
1394 #endif
1395
1396 /**
1397 * erase_worker - physical eraseblock erase worker function.
1398 * @ubi: UBI device description object
1399 * @wl_wrk: the work object
1400 * @cancel: non-zero if the worker has to free memory and exit
1401 *
1402 * This function erases a physical eraseblock and perform torture testing if
1403 * needed. It also takes care about marking the physical eraseblock bad if
1404 * needed. Returns zero in case of success and a negative error code in case of
1405 * failure.
1406 */
1407 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1408 int cancel)
1409 {
1410 struct ubi_wl_entry *e = wl_wrk->e;
1411 int pnum = e->pnum;
1412 int vol_id = wl_wrk->vol_id;
1413 int lnum = wl_wrk->lnum;
1414 int err, available_consumed = 0;
1415
1416 if (cancel) {
1417 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1418 kfree(wl_wrk);
1419 kmem_cache_free(ubi_wl_entry_slab, e);
1420 return 0;
1421 }
1422
1423 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1424 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1425
1426 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1427
1428 err = sync_erase(ubi, e, wl_wrk->torture);
1429 if (!err) {
1430 /* Fine, we've erased it successfully */
1431 kfree(wl_wrk);
1432
1433 spin_lock(&ubi->wl_lock);
1434 wl_tree_add(e, &ubi->free);
1435 ubi->free_count++;
1436 spin_unlock(&ubi->wl_lock);
1437
1438 /*
1439 * One more erase operation has happened, take care about
1440 * protected physical eraseblocks.
1441 */
1442 serve_prot_queue(ubi);
1443
1444 /* And take care about wear-leveling */
1445 err = ensure_wear_leveling(ubi, 1);
1446 return err;
1447 }
1448
1449 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1450 kfree(wl_wrk);
1451
1452 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1453 err == -EBUSY) {
1454 int err1;
1455
1456 /* Re-schedule the LEB for erasure */
1457 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1458 if (err1) {
1459 err = err1;
1460 goto out_ro;
1461 }
1462 return err;
1463 }
1464
1465 kmem_cache_free(ubi_wl_entry_slab, e);
1466 if (err != -EIO)
1467 /*
1468 * If this is not %-EIO, we have no idea what to do. Scheduling
1469 * this physical eraseblock for erasure again would cause
1470 * errors again and again. Well, lets switch to R/O mode.
1471 */
1472 goto out_ro;
1473
1474 /* It is %-EIO, the PEB went bad */
1475
1476 if (!ubi->bad_allowed) {
1477 ubi_err("bad physical eraseblock %d detected", pnum);
1478 goto out_ro;
1479 }
1480
1481 spin_lock(&ubi->volumes_lock);
1482 if (ubi->beb_rsvd_pebs == 0) {
1483 if (ubi->avail_pebs == 0) {
1484 spin_unlock(&ubi->volumes_lock);
1485 ubi_err("no reserved/available physical eraseblocks");
1486 goto out_ro;
1487 }
1488 ubi->avail_pebs -= 1;
1489 available_consumed = 1;
1490 }
1491 spin_unlock(&ubi->volumes_lock);
1492
1493 ubi_msg("mark PEB %d as bad", pnum);
1494 err = ubi_io_mark_bad(ubi, pnum);
1495 if (err)
1496 goto out_ro;
1497
1498 spin_lock(&ubi->volumes_lock);
1499 if (ubi->beb_rsvd_pebs > 0) {
1500 if (available_consumed) {
1501 /*
1502 * The amount of reserved PEBs increased since we last
1503 * checked.
1504 */
1505 ubi->avail_pebs += 1;
1506 available_consumed = 0;
1507 }
1508 ubi->beb_rsvd_pebs -= 1;
1509 }
1510 ubi->bad_peb_count += 1;
1511 ubi->good_peb_count -= 1;
1512 ubi_calculate_reserved(ubi);
1513 if (available_consumed)
1514 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1515 else if (ubi->beb_rsvd_pebs)
1516 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1517 else
1518 ubi_warn("last PEB from the reserve was used");
1519 spin_unlock(&ubi->volumes_lock);
1520
1521 return err;
1522
1523 out_ro:
1524 if (available_consumed) {
1525 spin_lock(&ubi->volumes_lock);
1526 ubi->avail_pebs += 1;
1527 spin_unlock(&ubi->volumes_lock);
1528 }
1529 ubi_ro_mode(ubi);
1530 return err;
1531 }
1532
1533 /**
1534 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1535 * @ubi: UBI device description object
1536 * @vol_id: the volume ID that last used this PEB
1537 * @lnum: the last used logical eraseblock number for the PEB
1538 * @pnum: physical eraseblock to return
1539 * @torture: if this physical eraseblock has to be tortured
1540 *
1541 * This function is called to return physical eraseblock @pnum to the pool of
1542 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1543 * occurred to this @pnum and it has to be tested. This function returns zero
1544 * in case of success, and a negative error code in case of failure.
1545 */
1546 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1547 int pnum, int torture)
1548 {
1549 int err;
1550 struct ubi_wl_entry *e;
1551
1552 dbg_wl("PEB %d", pnum);
1553 ubi_assert(pnum >= 0);
1554 ubi_assert(pnum < ubi->peb_count);
1555
1556 retry:
1557 spin_lock(&ubi->wl_lock);
1558 e = ubi->lookuptbl[pnum];
1559 if (e == ubi->move_from) {
1560 /*
1561 * User is putting the physical eraseblock which was selected to
1562 * be moved. It will be scheduled for erasure in the
1563 * wear-leveling worker.
1564 */
1565 dbg_wl("PEB %d is being moved, wait", pnum);
1566 spin_unlock(&ubi->wl_lock);
1567
1568 /* Wait for the WL worker by taking the @ubi->move_mutex */
1569 mutex_lock(&ubi->move_mutex);
1570 mutex_unlock(&ubi->move_mutex);
1571 goto retry;
1572 } else if (e == ubi->move_to) {
1573 /*
1574 * User is putting the physical eraseblock which was selected
1575 * as the target the data is moved to. It may happen if the EBA
1576 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1577 * but the WL sub-system has not put the PEB to the "used" tree
1578 * yet, but it is about to do this. So we just set a flag which
1579 * will tell the WL worker that the PEB is not needed anymore
1580 * and should be scheduled for erasure.
1581 */
1582 dbg_wl("PEB %d is the target of data moving", pnum);
1583 ubi_assert(!ubi->move_to_put);
1584 ubi->move_to_put = 1;
1585 spin_unlock(&ubi->wl_lock);
1586 return 0;
1587 } else {
1588 if (in_wl_tree(e, &ubi->used)) {
1589 self_check_in_wl_tree(ubi, e, &ubi->used);
1590 rb_erase(&e->u.rb, &ubi->used);
1591 } else if (in_wl_tree(e, &ubi->scrub)) {
1592 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1593 rb_erase(&e->u.rb, &ubi->scrub);
1594 } else if (in_wl_tree(e, &ubi->erroneous)) {
1595 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1596 rb_erase(&e->u.rb, &ubi->erroneous);
1597 ubi->erroneous_peb_count -= 1;
1598 ubi_assert(ubi->erroneous_peb_count >= 0);
1599 /* Erroneous PEBs should be tortured */
1600 torture = 1;
1601 } else {
1602 err = prot_queue_del(ubi, e->pnum);
1603 if (err) {
1604 ubi_err("PEB %d not found", pnum);
1605 ubi_ro_mode(ubi);
1606 spin_unlock(&ubi->wl_lock);
1607 return err;
1608 }
1609 }
1610 }
1611 spin_unlock(&ubi->wl_lock);
1612
1613 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1614 if (err) {
1615 spin_lock(&ubi->wl_lock);
1616 wl_tree_add(e, &ubi->used);
1617 spin_unlock(&ubi->wl_lock);
1618 }
1619
1620 return err;
1621 }
1622
1623 /**
1624 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1625 * @ubi: UBI device description object
1626 * @pnum: the physical eraseblock to schedule
1627 *
1628 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1629 * needs scrubbing. This function schedules a physical eraseblock for
1630 * scrubbing which is done in background. This function returns zero in case of
1631 * success and a negative error code in case of failure.
1632 */
1633 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1634 {
1635 struct ubi_wl_entry *e;
1636
1637 ubi_msg("schedule PEB %d for scrubbing", pnum);
1638
1639 retry:
1640 spin_lock(&ubi->wl_lock);
1641 e = ubi->lookuptbl[pnum];
1642 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1643 in_wl_tree(e, &ubi->erroneous)) {
1644 spin_unlock(&ubi->wl_lock);
1645 return 0;
1646 }
1647
1648 if (e == ubi->move_to) {
1649 /*
1650 * This physical eraseblock was used to move data to. The data
1651 * was moved but the PEB was not yet inserted to the proper
1652 * tree. We should just wait a little and let the WL worker
1653 * proceed.
1654 */
1655 spin_unlock(&ubi->wl_lock);
1656 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1657 yield();
1658 goto retry;
1659 }
1660
1661 if (in_wl_tree(e, &ubi->used)) {
1662 self_check_in_wl_tree(ubi, e, &ubi->used);
1663 rb_erase(&e->u.rb, &ubi->used);
1664 } else {
1665 int err;
1666
1667 err = prot_queue_del(ubi, e->pnum);
1668 if (err) {
1669 ubi_err("PEB %d not found", pnum);
1670 ubi_ro_mode(ubi);
1671 spin_unlock(&ubi->wl_lock);
1672 return err;
1673 }
1674 }
1675
1676 wl_tree_add(e, &ubi->scrub);
1677 spin_unlock(&ubi->wl_lock);
1678
1679 /*
1680 * Technically scrubbing is the same as wear-leveling, so it is done
1681 * by the WL worker.
1682 */
1683 return ensure_wear_leveling(ubi, 0);
1684 }
1685
1686 /**
1687 * ubi_wl_flush - flush all pending works.
1688 * @ubi: UBI device description object
1689 * @vol_id: the volume id to flush for
1690 * @lnum: the logical eraseblock number to flush for
1691 *
1692 * This function executes all pending works for a particular volume id /
1693 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1694 * acts as a wildcard for all of the corresponding volume numbers or logical
1695 * eraseblock numbers. It returns zero in case of success and a negative error
1696 * code in case of failure.
1697 */
1698 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1699 {
1700 int err = 0;
1701 int found = 1;
1702
1703 /*
1704 * Erase while the pending works queue is not empty, but not more than
1705 * the number of currently pending works.
1706 */
1707 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1708 vol_id, lnum, ubi->works_count);
1709
1710 while (found) {
1711 struct ubi_work *wrk;
1712 found = 0;
1713
1714 down_read(&ubi->work_sem);
1715 spin_lock(&ubi->wl_lock);
1716 list_for_each_entry(wrk, &ubi->works, list) {
1717 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1718 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1719 list_del(&wrk->list);
1720 ubi->works_count -= 1;
1721 ubi_assert(ubi->works_count >= 0);
1722 spin_unlock(&ubi->wl_lock);
1723
1724 err = wrk->func(ubi, wrk, 0);
1725 if (err) {
1726 up_read(&ubi->work_sem);
1727 return err;
1728 }
1729
1730 spin_lock(&ubi->wl_lock);
1731 found = 1;
1732 break;
1733 }
1734 }
1735 spin_unlock(&ubi->wl_lock);
1736 up_read(&ubi->work_sem);
1737 }
1738
1739 /*
1740 * Make sure all the works which have been done in parallel are
1741 * finished.
1742 */
1743 down_write(&ubi->work_sem);
1744 up_write(&ubi->work_sem);
1745
1746 return err;
1747 }
1748
1749 /**
1750 * tree_destroy - destroy an RB-tree.
1751 * @root: the root of the tree to destroy
1752 */
1753 static void tree_destroy(struct rb_root *root)
1754 {
1755 struct rb_node *rb;
1756 struct ubi_wl_entry *e;
1757
1758 rb = root->rb_node;
1759 while (rb) {
1760 if (rb->rb_left)
1761 rb = rb->rb_left;
1762 else if (rb->rb_right)
1763 rb = rb->rb_right;
1764 else {
1765 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1766
1767 rb = rb_parent(rb);
1768 if (rb) {
1769 if (rb->rb_left == &e->u.rb)
1770 rb->rb_left = NULL;
1771 else
1772 rb->rb_right = NULL;
1773 }
1774
1775 kmem_cache_free(ubi_wl_entry_slab, e);
1776 }
1777 }
1778 }
1779
1780 /**
1781 * ubi_thread - UBI background thread.
1782 * @u: the UBI device description object pointer
1783 */
1784 int ubi_thread(void *u)
1785 {
1786 int failures = 0;
1787 struct ubi_device *ubi = u;
1788
1789 ubi_msg("background thread \"%s\" started, PID %d",
1790 ubi->bgt_name, task_pid_nr(current));
1791
1792 set_freezable();
1793 for (;;) {
1794 int err;
1795
1796 if (kthread_should_stop())
1797 break;
1798
1799 if (try_to_freeze())
1800 continue;
1801
1802 spin_lock(&ubi->wl_lock);
1803 if (list_empty(&ubi->works) || ubi->ro_mode ||
1804 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1805 set_current_state(TASK_INTERRUPTIBLE);
1806 spin_unlock(&ubi->wl_lock);
1807 schedule();
1808 continue;
1809 }
1810 spin_unlock(&ubi->wl_lock);
1811
1812 err = do_work(ubi);
1813 if (err) {
1814 ubi_err("%s: work failed with error code %d",
1815 ubi->bgt_name, err);
1816 if (failures++ > WL_MAX_FAILURES) {
1817 /*
1818 * Too many failures, disable the thread and
1819 * switch to read-only mode.
1820 */
1821 ubi_msg("%s: %d consecutive failures",
1822 ubi->bgt_name, WL_MAX_FAILURES);
1823 ubi_ro_mode(ubi);
1824 ubi->thread_enabled = 0;
1825 continue;
1826 }
1827 } else
1828 failures = 0;
1829
1830 cond_resched();
1831 }
1832
1833 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1834 return 0;
1835 }
1836
1837 /**
1838 * cancel_pending - cancel all pending works.
1839 * @ubi: UBI device description object
1840 */
1841 static void cancel_pending(struct ubi_device *ubi)
1842 {
1843 while (!list_empty(&ubi->works)) {
1844 struct ubi_work *wrk;
1845
1846 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1847 list_del(&wrk->list);
1848 wrk->func(ubi, wrk, 1);
1849 ubi->works_count -= 1;
1850 ubi_assert(ubi->works_count >= 0);
1851 }
1852 }
1853
1854 /**
1855 * ubi_wl_init - initialize the WL sub-system using attaching information.
1856 * @ubi: UBI device description object
1857 * @ai: attaching information
1858 *
1859 * This function returns zero in case of success, and a negative error code in
1860 * case of failure.
1861 */
1862 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1863 {
1864 int err, i, reserved_pebs, found_pebs = 0;
1865 struct rb_node *rb1, *rb2;
1866 struct ubi_ainf_volume *av;
1867 struct ubi_ainf_peb *aeb, *tmp;
1868 struct ubi_wl_entry *e;
1869
1870 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1871 spin_lock_init(&ubi->wl_lock);
1872 mutex_init(&ubi->move_mutex);
1873 init_rwsem(&ubi->work_sem);
1874 ubi->max_ec = ai->max_ec;
1875 INIT_LIST_HEAD(&ubi->works);
1876 #ifdef CONFIG_MTD_UBI_FASTMAP
1877 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1878 #endif
1879
1880 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1881
1882 err = -ENOMEM;
1883 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1884 if (!ubi->lookuptbl)
1885 return err;
1886
1887 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1888 INIT_LIST_HEAD(&ubi->pq[i]);
1889 ubi->pq_head = 0;
1890
1891 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1892 cond_resched();
1893
1894 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1895 if (!e)
1896 goto out_free;
1897
1898 e->pnum = aeb->pnum;
1899 e->ec = aeb->ec;
1900 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1901 ubi->lookuptbl[e->pnum] = e;
1902 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1903 kmem_cache_free(ubi_wl_entry_slab, e);
1904 goto out_free;
1905 }
1906
1907 found_pebs++;
1908 }
1909
1910 ubi->free_count = 0;
1911 list_for_each_entry(aeb, &ai->free, u.list) {
1912 cond_resched();
1913
1914 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1915 if (!e)
1916 goto out_free;
1917
1918 e->pnum = aeb->pnum;
1919 e->ec = aeb->ec;
1920 ubi_assert(e->ec >= 0);
1921 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1922
1923 wl_tree_add(e, &ubi->free);
1924 ubi->free_count++;
1925
1926 ubi->lookuptbl[e->pnum] = e;
1927
1928 found_pebs++;
1929 }
1930
1931 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1932 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1933 cond_resched();
1934
1935 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1936 if (!e)
1937 goto out_free;
1938
1939 e->pnum = aeb->pnum;
1940 e->ec = aeb->ec;
1941 ubi->lookuptbl[e->pnum] = e;
1942
1943 if (!aeb->scrub) {
1944 dbg_wl("add PEB %d EC %d to the used tree",
1945 e->pnum, e->ec);
1946 wl_tree_add(e, &ubi->used);
1947 } else {
1948 dbg_wl("add PEB %d EC %d to the scrub tree",
1949 e->pnum, e->ec);
1950 wl_tree_add(e, &ubi->scrub);
1951 }
1952
1953 found_pebs++;
1954 }
1955 }
1956
1957 dbg_wl("found %i PEBs", found_pebs);
1958
1959 if (ubi->fm)
1960 ubi_assert(ubi->good_peb_count == \
1961 found_pebs + ubi->fm->used_blocks);
1962 else
1963 ubi_assert(ubi->good_peb_count == found_pebs);
1964
1965 reserved_pebs = WL_RESERVED_PEBS;
1966 #ifdef CONFIG_MTD_UBI_FASTMAP
1967 /* Reserve enough LEBs to store two fastmaps. */
1968 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1969 #endif
1970
1971 if (ubi->avail_pebs < reserved_pebs) {
1972 ubi_err("no enough physical eraseblocks (%d, need %d)",
1973 ubi->avail_pebs, reserved_pebs);
1974 if (ubi->corr_peb_count)
1975 ubi_err("%d PEBs are corrupted and not used",
1976 ubi->corr_peb_count);
1977 goto out_free;
1978 }
1979 ubi->avail_pebs -= reserved_pebs;
1980 ubi->rsvd_pebs += reserved_pebs;
1981
1982 /* Schedule wear-leveling if needed */
1983 err = ensure_wear_leveling(ubi, 0);
1984 if (err)
1985 goto out_free;
1986
1987 return 0;
1988
1989 out_free:
1990 cancel_pending(ubi);
1991 tree_destroy(&ubi->used);
1992 tree_destroy(&ubi->free);
1993 tree_destroy(&ubi->scrub);
1994 kfree(ubi->lookuptbl);
1995 return err;
1996 }
1997
1998 /**
1999 * protection_queue_destroy - destroy the protection queue.
2000 * @ubi: UBI device description object
2001 */
2002 static void protection_queue_destroy(struct ubi_device *ubi)
2003 {
2004 int i;
2005 struct ubi_wl_entry *e, *tmp;
2006
2007 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2008 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2009 list_del(&e->u.list);
2010 kmem_cache_free(ubi_wl_entry_slab, e);
2011 }
2012 }
2013 }
2014
2015 /**
2016 * ubi_wl_close - close the wear-leveling sub-system.
2017 * @ubi: UBI device description object
2018 */
2019 void ubi_wl_close(struct ubi_device *ubi)
2020 {
2021 dbg_wl("close the WL sub-system");
2022 cancel_pending(ubi);
2023 protection_queue_destroy(ubi);
2024 tree_destroy(&ubi->used);
2025 tree_destroy(&ubi->erroneous);
2026 tree_destroy(&ubi->free);
2027 tree_destroy(&ubi->scrub);
2028 kfree(ubi->lookuptbl);
2029 }
2030
2031 /**
2032 * self_check_ec - make sure that the erase counter of a PEB is correct.
2033 * @ubi: UBI device description object
2034 * @pnum: the physical eraseblock number to check
2035 * @ec: the erase counter to check
2036 *
2037 * This function returns zero if the erase counter of physical eraseblock @pnum
2038 * is equivalent to @ec, and a negative error code if not or if an error
2039 * occurred.
2040 */
2041 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2042 {
2043 int err;
2044 long long read_ec;
2045 struct ubi_ec_hdr *ec_hdr;
2046
2047 if (!ubi->dbg->chk_gen)
2048 return 0;
2049
2050 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2051 if (!ec_hdr)
2052 return -ENOMEM;
2053
2054 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2055 if (err && err != UBI_IO_BITFLIPS) {
2056 /* The header does not have to exist */
2057 err = 0;
2058 goto out_free;
2059 }
2060
2061 read_ec = be64_to_cpu(ec_hdr->ec);
2062 if (ec != read_ec && read_ec - ec > 1) {
2063 ubi_err("self-check failed for PEB %d", pnum);
2064 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2065 dump_stack();
2066 err = 1;
2067 } else
2068 err = 0;
2069
2070 out_free:
2071 kfree(ec_hdr);
2072 return err;
2073 }
2074
2075 /**
2076 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2077 * @ubi: UBI device description object
2078 * @e: the wear-leveling entry to check
2079 * @root: the root of the tree
2080 *
2081 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2082 * is not.
2083 */
2084 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2085 struct ubi_wl_entry *e, struct rb_root *root)
2086 {
2087 if (!ubi->dbg->chk_gen)
2088 return 0;
2089
2090 if (in_wl_tree(e, root))
2091 return 0;
2092
2093 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2094 e->pnum, e->ec, root);
2095 dump_stack();
2096 return -EINVAL;
2097 }
2098
2099 /**
2100 * self_check_in_pq - check if wear-leveling entry is in the protection
2101 * queue.
2102 * @ubi: UBI device description object
2103 * @e: the wear-leveling entry to check
2104 *
2105 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2106 */
2107 static int self_check_in_pq(const struct ubi_device *ubi,
2108 struct ubi_wl_entry *e)
2109 {
2110 struct ubi_wl_entry *p;
2111 int i;
2112
2113 if (!ubi->dbg->chk_gen)
2114 return 0;
2115
2116 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2117 list_for_each_entry(p, &ubi->pq[i], u.list)
2118 if (p == e)
2119 return 0;
2120
2121 ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2122 e->pnum, e->ec);
2123 dump_stack();
2124 return -EINVAL;
2125 }
This page took 0.141006 seconds and 5 git commands to generate.