Merge tag 'mmc-fixes-for-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/cjb/mmc
[deliverable/linux.git] / drivers / mtd / ubi / wl.c
1 /*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20 */
21
22 /*
23 * UBI wear-leveling sub-system.
24 *
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 *
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 *
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
39 *
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
43 *
44 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
45 * bad.
46 *
47 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
48 * in a physical eraseblock, it has to be moved. Technically this is the same
49 * as moving it for wear-leveling reasons.
50 *
51 * As it was said, for the UBI sub-system all physical eraseblocks are either
52 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
53 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
54 * RB-trees, as well as (temporarily) in the @wl->pq queue.
55 *
56 * When the WL sub-system returns a physical eraseblock, the physical
57 * eraseblock is protected from being moved for some "time". For this reason,
58 * the physical eraseblock is not directly moved from the @wl->free tree to the
59 * @wl->used tree. There is a protection queue in between where this
60 * physical eraseblock is temporarily stored (@wl->pq).
61 *
62 * All this protection stuff is needed because:
63 * o we don't want to move physical eraseblocks just after we have given them
64 * to the user; instead, we first want to let users fill them up with data;
65 *
66 * o there is a chance that the user will put the physical eraseblock very
67 * soon, so it makes sense not to move it for some time, but wait.
68 *
69 * Physical eraseblocks stay protected only for limited time. But the "time" is
70 * measured in erase cycles in this case. This is implemented with help of the
71 * protection queue. Eraseblocks are put to the tail of this queue when they
72 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
73 * head of the queue on each erase operation (for any eraseblock). So the
74 * length of the queue defines how may (global) erase cycles PEBs are protected.
75 *
76 * To put it differently, each physical eraseblock has 2 main states: free and
77 * used. The former state corresponds to the @wl->free tree. The latter state
78 * is split up on several sub-states:
79 * o the WL movement is allowed (@wl->used tree);
80 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
81 * erroneous - e.g., there was a read error;
82 * o the WL movement is temporarily prohibited (@wl->pq queue);
83 * o scrubbing is needed (@wl->scrub tree).
84 *
85 * Depending on the sub-state, wear-leveling entries of the used physical
86 * eraseblocks may be kept in one of those structures.
87 *
88 * Note, in this implementation, we keep a small in-RAM object for each physical
89 * eraseblock. This is surely not a scalable solution. But it appears to be good
90 * enough for moderately large flashes and it is simple. In future, one may
91 * re-work this sub-system and make it more scalable.
92 *
93 * At the moment this sub-system does not utilize the sequence number, which
94 * was introduced relatively recently. But it would be wise to do this because
95 * the sequence number of a logical eraseblock characterizes how old is it. For
96 * example, when we move a PEB with low erase counter, and we need to pick the
97 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
98 * pick target PEB with an average EC if our PEB is not very "old". This is a
99 * room for future re-works of the WL sub-system.
100 */
101
102 #include <linux/slab.h>
103 #include <linux/crc32.h>
104 #include <linux/freezer.h>
105 #include <linux/kthread.h>
106 #include "ubi.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
115 * erase counter.
116 */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
129 */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
135 */
136 #define WL_MAX_FAILURES 32
137
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 struct ubi_wl_entry *e);
143
144 #ifdef CONFIG_MTD_UBI_FASTMAP
145 /**
146 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
147 * @wrk: the work description object
148 */
149 static void update_fastmap_work_fn(struct work_struct *wrk)
150 {
151 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
152 ubi_update_fastmap(ubi);
153 }
154
155 /**
156 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
157 * @ubi: UBI device description object
158 * @pnum: the to be checked PEB
159 */
160 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
161 {
162 int i;
163
164 if (!ubi->fm)
165 return 0;
166
167 for (i = 0; i < ubi->fm->used_blocks; i++)
168 if (ubi->fm->e[i]->pnum == pnum)
169 return 1;
170
171 return 0;
172 }
173 #else
174 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
175 {
176 return 0;
177 }
178 #endif
179
180 /**
181 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
182 * @e: the wear-leveling entry to add
183 * @root: the root of the tree
184 *
185 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
186 * the @ubi->used and @ubi->free RB-trees.
187 */
188 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
189 {
190 struct rb_node **p, *parent = NULL;
191
192 p = &root->rb_node;
193 while (*p) {
194 struct ubi_wl_entry *e1;
195
196 parent = *p;
197 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
198
199 if (e->ec < e1->ec)
200 p = &(*p)->rb_left;
201 else if (e->ec > e1->ec)
202 p = &(*p)->rb_right;
203 else {
204 ubi_assert(e->pnum != e1->pnum);
205 if (e->pnum < e1->pnum)
206 p = &(*p)->rb_left;
207 else
208 p = &(*p)->rb_right;
209 }
210 }
211
212 rb_link_node(&e->u.rb, parent, p);
213 rb_insert_color(&e->u.rb, root);
214 }
215
216 /**
217 * do_work - do one pending work.
218 * @ubi: UBI device description object
219 *
220 * This function returns zero in case of success and a negative error code in
221 * case of failure.
222 */
223 static int do_work(struct ubi_device *ubi)
224 {
225 int err;
226 struct ubi_work *wrk;
227
228 cond_resched();
229
230 /*
231 * @ubi->work_sem is used to synchronize with the workers. Workers take
232 * it in read mode, so many of them may be doing works at a time. But
233 * the queue flush code has to be sure the whole queue of works is
234 * done, and it takes the mutex in write mode.
235 */
236 down_read(&ubi->work_sem);
237 spin_lock(&ubi->wl_lock);
238 if (list_empty(&ubi->works)) {
239 spin_unlock(&ubi->wl_lock);
240 up_read(&ubi->work_sem);
241 return 0;
242 }
243
244 wrk = list_entry(ubi->works.next, struct ubi_work, list);
245 list_del(&wrk->list);
246 ubi->works_count -= 1;
247 ubi_assert(ubi->works_count >= 0);
248 spin_unlock(&ubi->wl_lock);
249
250 /*
251 * Call the worker function. Do not touch the work structure
252 * after this call as it will have been freed or reused by that
253 * time by the worker function.
254 */
255 err = wrk->func(ubi, wrk, 0);
256 if (err)
257 ubi_err("work failed with error code %d", err);
258 up_read(&ubi->work_sem);
259
260 return err;
261 }
262
263 /**
264 * produce_free_peb - produce a free physical eraseblock.
265 * @ubi: UBI device description object
266 *
267 * This function tries to make a free PEB by means of synchronous execution of
268 * pending works. This may be needed if, for example the background thread is
269 * disabled. Returns zero in case of success and a negative error code in case
270 * of failure.
271 */
272 static int produce_free_peb(struct ubi_device *ubi)
273 {
274 int err;
275
276 while (!ubi->free.rb_node) {
277 spin_unlock(&ubi->wl_lock);
278
279 dbg_wl("do one work synchronously");
280 err = do_work(ubi);
281
282 spin_lock(&ubi->wl_lock);
283 if (err)
284 return err;
285 }
286
287 return 0;
288 }
289
290 /**
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
294 *
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
297 */
298 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299 {
300 struct rb_node *p;
301
302 p = root->rb_node;
303 while (p) {
304 struct ubi_wl_entry *e1;
305
306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308 if (e->pnum == e1->pnum) {
309 ubi_assert(e == e1);
310 return 1;
311 }
312
313 if (e->ec < e1->ec)
314 p = p->rb_left;
315 else if (e->ec > e1->ec)
316 p = p->rb_right;
317 else {
318 ubi_assert(e->pnum != e1->pnum);
319 if (e->pnum < e1->pnum)
320 p = p->rb_left;
321 else
322 p = p->rb_right;
323 }
324 }
325
326 return 0;
327 }
328
329 /**
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
333 *
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
338 */
339 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340 {
341 int pq_tail = ubi->pq_head - 1;
342
343 if (pq_tail < 0)
344 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 }
349
350 /**
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @ubi: UBI device description object
353 * @root: the RB-tree where to look for
354 * @diff: maximum possible difference from the smallest erase counter
355 *
356 * This function looks for a wear leveling entry with erase counter closest to
357 * min + @diff, where min is the smallest erase counter.
358 */
359 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
360 struct rb_root *root, int diff)
361 {
362 struct rb_node *p;
363 struct ubi_wl_entry *e, *prev_e = NULL;
364 int max;
365
366 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
367 max = e->ec + diff;
368
369 p = root->rb_node;
370 while (p) {
371 struct ubi_wl_entry *e1;
372
373 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
374 if (e1->ec >= max)
375 p = p->rb_left;
376 else {
377 p = p->rb_right;
378 prev_e = e;
379 e = e1;
380 }
381 }
382
383 /* If no fastmap has been written and this WL entry can be used
384 * as anchor PEB, hold it back and return the second best WL entry
385 * such that fastmap can use the anchor PEB later. */
386 if (prev_e && !ubi->fm_disabled &&
387 !ubi->fm && e->pnum < UBI_FM_MAX_START)
388 return prev_e;
389
390 return e;
391 }
392
393 /**
394 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
395 * @ubi: UBI device description object
396 * @root: the RB-tree where to look for
397 *
398 * This function looks for a wear leveling entry with medium erase counter,
399 * but not greater or equivalent than the lowest erase counter plus
400 * %WL_FREE_MAX_DIFF/2.
401 */
402 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
403 struct rb_root *root)
404 {
405 struct ubi_wl_entry *e, *first, *last;
406
407 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
408 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
409
410 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
411 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
412
413 #ifdef CONFIG_MTD_UBI_FASTMAP
414 /* If no fastmap has been written and this WL entry can be used
415 * as anchor PEB, hold it back and return the second best
416 * WL entry such that fastmap can use the anchor PEB later. */
417 if (e && !ubi->fm_disabled && !ubi->fm &&
418 e->pnum < UBI_FM_MAX_START)
419 e = rb_entry(rb_next(root->rb_node),
420 struct ubi_wl_entry, u.rb);
421 #endif
422 } else
423 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
424
425 return e;
426 }
427
428 #ifdef CONFIG_MTD_UBI_FASTMAP
429 /**
430 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
431 * @root: the RB-tree where to look for
432 */
433 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
434 {
435 struct rb_node *p;
436 struct ubi_wl_entry *e, *victim = NULL;
437 int max_ec = UBI_MAX_ERASECOUNTER;
438
439 ubi_rb_for_each_entry(p, e, root, u.rb) {
440 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
441 victim = e;
442 max_ec = e->ec;
443 }
444 }
445
446 return victim;
447 }
448
449 static int anchor_pebs_avalible(struct rb_root *root)
450 {
451 struct rb_node *p;
452 struct ubi_wl_entry *e;
453
454 ubi_rb_for_each_entry(p, e, root, u.rb)
455 if (e->pnum < UBI_FM_MAX_START)
456 return 1;
457
458 return 0;
459 }
460
461 /**
462 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
463 * @ubi: UBI device description object
464 * @anchor: This PEB will be used as anchor PEB by fastmap
465 *
466 * The function returns a physical erase block with a given maximal number
467 * and removes it from the wl subsystem.
468 * Must be called with wl_lock held!
469 */
470 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
471 {
472 struct ubi_wl_entry *e = NULL;
473
474 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
475 goto out;
476
477 if (anchor)
478 e = find_anchor_wl_entry(&ubi->free);
479 else
480 e = find_mean_wl_entry(ubi, &ubi->free);
481
482 if (!e)
483 goto out;
484
485 self_check_in_wl_tree(ubi, e, &ubi->free);
486
487 /* remove it from the free list,
488 * the wl subsystem does no longer know this erase block */
489 rb_erase(&e->u.rb, &ubi->free);
490 ubi->free_count--;
491 out:
492 return e;
493 }
494 #endif
495
496 /**
497 * __wl_get_peb - get a physical eraseblock.
498 * @ubi: UBI device description object
499 *
500 * This function returns a physical eraseblock in case of success and a
501 * negative error code in case of failure.
502 */
503 static int __wl_get_peb(struct ubi_device *ubi)
504 {
505 int err;
506 struct ubi_wl_entry *e;
507
508 retry:
509 if (!ubi->free.rb_node) {
510 if (ubi->works_count == 0) {
511 ubi_err("no free eraseblocks");
512 ubi_assert(list_empty(&ubi->works));
513 return -ENOSPC;
514 }
515
516 err = produce_free_peb(ubi);
517 if (err < 0)
518 return err;
519 goto retry;
520 }
521
522 e = find_mean_wl_entry(ubi, &ubi->free);
523 if (!e) {
524 ubi_err("no free eraseblocks");
525 return -ENOSPC;
526 }
527
528 self_check_in_wl_tree(ubi, e, &ubi->free);
529
530 /*
531 * Move the physical eraseblock to the protection queue where it will
532 * be protected from being moved for some time.
533 */
534 rb_erase(&e->u.rb, &ubi->free);
535 ubi->free_count--;
536 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
537 #ifndef CONFIG_MTD_UBI_FASTMAP
538 /* We have to enqueue e only if fastmap is disabled,
539 * is fastmap enabled prot_queue_add() will be called by
540 * ubi_wl_get_peb() after removing e from the pool. */
541 prot_queue_add(ubi, e);
542 #endif
543 return e->pnum;
544 }
545
546 #ifdef CONFIG_MTD_UBI_FASTMAP
547 /**
548 * return_unused_pool_pebs - returns unused PEB to the free tree.
549 * @ubi: UBI device description object
550 * @pool: fastmap pool description object
551 */
552 static void return_unused_pool_pebs(struct ubi_device *ubi,
553 struct ubi_fm_pool *pool)
554 {
555 int i;
556 struct ubi_wl_entry *e;
557
558 for (i = pool->used; i < pool->size; i++) {
559 e = ubi->lookuptbl[pool->pebs[i]];
560 wl_tree_add(e, &ubi->free);
561 ubi->free_count++;
562 }
563 }
564
565 /**
566 * refill_wl_pool - refills all the fastmap pool used by the
567 * WL sub-system.
568 * @ubi: UBI device description object
569 */
570 static void refill_wl_pool(struct ubi_device *ubi)
571 {
572 struct ubi_wl_entry *e;
573 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
574
575 return_unused_pool_pebs(ubi, pool);
576
577 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
578 if (!ubi->free.rb_node ||
579 (ubi->free_count - ubi->beb_rsvd_pebs < 5))
580 break;
581
582 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
583 self_check_in_wl_tree(ubi, e, &ubi->free);
584 rb_erase(&e->u.rb, &ubi->free);
585 ubi->free_count--;
586
587 pool->pebs[pool->size] = e->pnum;
588 }
589 pool->used = 0;
590 }
591
592 /**
593 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
594 * @ubi: UBI device description object
595 */
596 static void refill_wl_user_pool(struct ubi_device *ubi)
597 {
598 struct ubi_fm_pool *pool = &ubi->fm_pool;
599
600 return_unused_pool_pebs(ubi, pool);
601
602 for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
603 if (!ubi->free.rb_node ||
604 (ubi->free_count - ubi->beb_rsvd_pebs < 1))
605 break;
606
607 pool->pebs[pool->size] = __wl_get_peb(ubi);
608 if (pool->pebs[pool->size] < 0)
609 break;
610 }
611 pool->used = 0;
612 }
613
614 /**
615 * ubi_refill_pools - refills all fastmap PEB pools.
616 * @ubi: UBI device description object
617 */
618 void ubi_refill_pools(struct ubi_device *ubi)
619 {
620 spin_lock(&ubi->wl_lock);
621 refill_wl_pool(ubi);
622 refill_wl_user_pool(ubi);
623 spin_unlock(&ubi->wl_lock);
624 }
625
626 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
627 * the fastmap pool.
628 */
629 int ubi_wl_get_peb(struct ubi_device *ubi)
630 {
631 int ret;
632 struct ubi_fm_pool *pool = &ubi->fm_pool;
633 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
634
635 if (!pool->size || !wl_pool->size || pool->used == pool->size ||
636 wl_pool->used == wl_pool->size)
637 ubi_update_fastmap(ubi);
638
639 /* we got not a single free PEB */
640 if (!pool->size)
641 ret = -ENOSPC;
642 else {
643 spin_lock(&ubi->wl_lock);
644 ret = pool->pebs[pool->used++];
645 prot_queue_add(ubi, ubi->lookuptbl[ret]);
646 spin_unlock(&ubi->wl_lock);
647 }
648
649 return ret;
650 }
651
652 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
653 *
654 * @ubi: UBI device description object
655 */
656 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
657 {
658 struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
659 int pnum;
660
661 if (pool->used == pool->size || !pool->size) {
662 /* We cannot update the fastmap here because this
663 * function is called in atomic context.
664 * Let's fail here and refill/update it as soon as possible. */
665 schedule_work(&ubi->fm_work);
666 return NULL;
667 } else {
668 pnum = pool->pebs[pool->used++];
669 return ubi->lookuptbl[pnum];
670 }
671 }
672 #else
673 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
674 {
675 struct ubi_wl_entry *e;
676
677 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
678 self_check_in_wl_tree(ubi, e, &ubi->free);
679 rb_erase(&e->u.rb, &ubi->free);
680
681 return e;
682 }
683
684 int ubi_wl_get_peb(struct ubi_device *ubi)
685 {
686 int peb, err;
687
688 spin_lock(&ubi->wl_lock);
689 peb = __wl_get_peb(ubi);
690 spin_unlock(&ubi->wl_lock);
691
692 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
693 ubi->peb_size - ubi->vid_hdr_aloffset);
694 if (err) {
695 ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
696 return err;
697 }
698
699 return peb;
700 }
701 #endif
702
703 /**
704 * prot_queue_del - remove a physical eraseblock from the protection queue.
705 * @ubi: UBI device description object
706 * @pnum: the physical eraseblock to remove
707 *
708 * This function deletes PEB @pnum from the protection queue and returns zero
709 * in case of success and %-ENODEV if the PEB was not found.
710 */
711 static int prot_queue_del(struct ubi_device *ubi, int pnum)
712 {
713 struct ubi_wl_entry *e;
714
715 e = ubi->lookuptbl[pnum];
716 if (!e)
717 return -ENODEV;
718
719 if (self_check_in_pq(ubi, e))
720 return -ENODEV;
721
722 list_del(&e->u.list);
723 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
724 return 0;
725 }
726
727 /**
728 * sync_erase - synchronously erase a physical eraseblock.
729 * @ubi: UBI device description object
730 * @e: the the physical eraseblock to erase
731 * @torture: if the physical eraseblock has to be tortured
732 *
733 * This function returns zero in case of success and a negative error code in
734 * case of failure.
735 */
736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
737 int torture)
738 {
739 int err;
740 struct ubi_ec_hdr *ec_hdr;
741 unsigned long long ec = e->ec;
742
743 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
744
745 err = self_check_ec(ubi, e->pnum, e->ec);
746 if (err)
747 return -EINVAL;
748
749 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
750 if (!ec_hdr)
751 return -ENOMEM;
752
753 err = ubi_io_sync_erase(ubi, e->pnum, torture);
754 if (err < 0)
755 goto out_free;
756
757 ec += err;
758 if (ec > UBI_MAX_ERASECOUNTER) {
759 /*
760 * Erase counter overflow. Upgrade UBI and use 64-bit
761 * erase counters internally.
762 */
763 ubi_err("erase counter overflow at PEB %d, EC %llu",
764 e->pnum, ec);
765 err = -EINVAL;
766 goto out_free;
767 }
768
769 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
770
771 ec_hdr->ec = cpu_to_be64(ec);
772
773 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
774 if (err)
775 goto out_free;
776
777 e->ec = ec;
778 spin_lock(&ubi->wl_lock);
779 if (e->ec > ubi->max_ec)
780 ubi->max_ec = e->ec;
781 spin_unlock(&ubi->wl_lock);
782
783 out_free:
784 kfree(ec_hdr);
785 return err;
786 }
787
788 /**
789 * serve_prot_queue - check if it is time to stop protecting PEBs.
790 * @ubi: UBI device description object
791 *
792 * This function is called after each erase operation and removes PEBs from the
793 * tail of the protection queue. These PEBs have been protected for long enough
794 * and should be moved to the used tree.
795 */
796 static void serve_prot_queue(struct ubi_device *ubi)
797 {
798 struct ubi_wl_entry *e, *tmp;
799 int count;
800
801 /*
802 * There may be several protected physical eraseblock to remove,
803 * process them all.
804 */
805 repeat:
806 count = 0;
807 spin_lock(&ubi->wl_lock);
808 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
809 dbg_wl("PEB %d EC %d protection over, move to used tree",
810 e->pnum, e->ec);
811
812 list_del(&e->u.list);
813 wl_tree_add(e, &ubi->used);
814 if (count++ > 32) {
815 /*
816 * Let's be nice and avoid holding the spinlock for
817 * too long.
818 */
819 spin_unlock(&ubi->wl_lock);
820 cond_resched();
821 goto repeat;
822 }
823 }
824
825 ubi->pq_head += 1;
826 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
827 ubi->pq_head = 0;
828 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
829 spin_unlock(&ubi->wl_lock);
830 }
831
832 /**
833 * __schedule_ubi_work - schedule a work.
834 * @ubi: UBI device description object
835 * @wrk: the work to schedule
836 *
837 * This function adds a work defined by @wrk to the tail of the pending works
838 * list. Can only be used of ubi->work_sem is already held in read mode!
839 */
840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
841 {
842 spin_lock(&ubi->wl_lock);
843 list_add_tail(&wrk->list, &ubi->works);
844 ubi_assert(ubi->works_count >= 0);
845 ubi->works_count += 1;
846 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
847 wake_up_process(ubi->bgt_thread);
848 spin_unlock(&ubi->wl_lock);
849 }
850
851 /**
852 * schedule_ubi_work - schedule a work.
853 * @ubi: UBI device description object
854 * @wrk: the work to schedule
855 *
856 * This function adds a work defined by @wrk to the tail of the pending works
857 * list.
858 */
859 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
860 {
861 down_read(&ubi->work_sem);
862 __schedule_ubi_work(ubi, wrk);
863 up_read(&ubi->work_sem);
864 }
865
866 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
867 int cancel);
868
869 #ifdef CONFIG_MTD_UBI_FASTMAP
870 /**
871 * ubi_is_erase_work - checks whether a work is erase work.
872 * @wrk: The work object to be checked
873 */
874 int ubi_is_erase_work(struct ubi_work *wrk)
875 {
876 return wrk->func == erase_worker;
877 }
878 #endif
879
880 /**
881 * schedule_erase - schedule an erase work.
882 * @ubi: UBI device description object
883 * @e: the WL entry of the physical eraseblock to erase
884 * @vol_id: the volume ID that last used this PEB
885 * @lnum: the last used logical eraseblock number for the PEB
886 * @torture: if the physical eraseblock has to be tortured
887 *
888 * This function returns zero in case of success and a %-ENOMEM in case of
889 * failure.
890 */
891 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
892 int vol_id, int lnum, int torture)
893 {
894 struct ubi_work *wl_wrk;
895
896 ubi_assert(e);
897 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
898
899 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
900 e->pnum, e->ec, torture);
901
902 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
903 if (!wl_wrk)
904 return -ENOMEM;
905
906 wl_wrk->func = &erase_worker;
907 wl_wrk->e = e;
908 wl_wrk->vol_id = vol_id;
909 wl_wrk->lnum = lnum;
910 wl_wrk->torture = torture;
911
912 schedule_ubi_work(ubi, wl_wrk);
913 return 0;
914 }
915
916 /**
917 * do_sync_erase - run the erase worker synchronously.
918 * @ubi: UBI device description object
919 * @e: the WL entry of the physical eraseblock to erase
920 * @vol_id: the volume ID that last used this PEB
921 * @lnum: the last used logical eraseblock number for the PEB
922 * @torture: if the physical eraseblock has to be tortured
923 *
924 */
925 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
926 int vol_id, int lnum, int torture)
927 {
928 struct ubi_work *wl_wrk;
929
930 dbg_wl("sync erase of PEB %i", e->pnum);
931
932 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
933 if (!wl_wrk)
934 return -ENOMEM;
935
936 wl_wrk->e = e;
937 wl_wrk->vol_id = vol_id;
938 wl_wrk->lnum = lnum;
939 wl_wrk->torture = torture;
940
941 return erase_worker(ubi, wl_wrk, 0);
942 }
943
944 #ifdef CONFIG_MTD_UBI_FASTMAP
945 /**
946 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
947 * sub-system.
948 * see: ubi_wl_put_peb()
949 *
950 * @ubi: UBI device description object
951 * @fm_e: physical eraseblock to return
952 * @lnum: the last used logical eraseblock number for the PEB
953 * @torture: if this physical eraseblock has to be tortured
954 */
955 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
956 int lnum, int torture)
957 {
958 struct ubi_wl_entry *e;
959 int vol_id, pnum = fm_e->pnum;
960
961 dbg_wl("PEB %d", pnum);
962
963 ubi_assert(pnum >= 0);
964 ubi_assert(pnum < ubi->peb_count);
965
966 spin_lock(&ubi->wl_lock);
967 e = ubi->lookuptbl[pnum];
968
969 /* This can happen if we recovered from a fastmap the very
970 * first time and writing now a new one. In this case the wl system
971 * has never seen any PEB used by the original fastmap.
972 */
973 if (!e) {
974 e = fm_e;
975 ubi_assert(e->ec >= 0);
976 ubi->lookuptbl[pnum] = e;
977 } else {
978 e->ec = fm_e->ec;
979 kfree(fm_e);
980 }
981
982 spin_unlock(&ubi->wl_lock);
983
984 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
985 return schedule_erase(ubi, e, vol_id, lnum, torture);
986 }
987 #endif
988
989 /**
990 * wear_leveling_worker - wear-leveling worker function.
991 * @ubi: UBI device description object
992 * @wrk: the work object
993 * @cancel: non-zero if the worker has to free memory and exit
994 *
995 * This function copies a more worn out physical eraseblock to a less worn out
996 * one. Returns zero in case of success and a negative error code in case of
997 * failure.
998 */
999 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
1000 int cancel)
1001 {
1002 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1003 int vol_id = -1, uninitialized_var(lnum);
1004 #ifdef CONFIG_MTD_UBI_FASTMAP
1005 int anchor = wrk->anchor;
1006 #endif
1007 struct ubi_wl_entry *e1, *e2;
1008 struct ubi_vid_hdr *vid_hdr;
1009
1010 kfree(wrk);
1011 if (cancel)
1012 return 0;
1013
1014 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1015 if (!vid_hdr)
1016 return -ENOMEM;
1017
1018 mutex_lock(&ubi->move_mutex);
1019 spin_lock(&ubi->wl_lock);
1020 ubi_assert(!ubi->move_from && !ubi->move_to);
1021 ubi_assert(!ubi->move_to_put);
1022
1023 if (!ubi->free.rb_node ||
1024 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1025 /*
1026 * No free physical eraseblocks? Well, they must be waiting in
1027 * the queue to be erased. Cancel movement - it will be
1028 * triggered again when a free physical eraseblock appears.
1029 *
1030 * No used physical eraseblocks? They must be temporarily
1031 * protected from being moved. They will be moved to the
1032 * @ubi->used tree later and the wear-leveling will be
1033 * triggered again.
1034 */
1035 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1036 !ubi->free.rb_node, !ubi->used.rb_node);
1037 goto out_cancel;
1038 }
1039
1040 #ifdef CONFIG_MTD_UBI_FASTMAP
1041 /* Check whether we need to produce an anchor PEB */
1042 if (!anchor)
1043 anchor = !anchor_pebs_avalible(&ubi->free);
1044
1045 if (anchor) {
1046 e1 = find_anchor_wl_entry(&ubi->used);
1047 if (!e1)
1048 goto out_cancel;
1049 e2 = get_peb_for_wl(ubi);
1050 if (!e2)
1051 goto out_cancel;
1052
1053 self_check_in_wl_tree(ubi, e1, &ubi->used);
1054 rb_erase(&e1->u.rb, &ubi->used);
1055 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1056 } else if (!ubi->scrub.rb_node) {
1057 #else
1058 if (!ubi->scrub.rb_node) {
1059 #endif
1060 /*
1061 * Now pick the least worn-out used physical eraseblock and a
1062 * highly worn-out free physical eraseblock. If the erase
1063 * counters differ much enough, start wear-leveling.
1064 */
1065 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1066 e2 = get_peb_for_wl(ubi);
1067 if (!e2)
1068 goto out_cancel;
1069
1070 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1071 dbg_wl("no WL needed: min used EC %d, max free EC %d",
1072 e1->ec, e2->ec);
1073 goto out_cancel;
1074 }
1075 self_check_in_wl_tree(ubi, e1, &ubi->used);
1076 rb_erase(&e1->u.rb, &ubi->used);
1077 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1078 e1->pnum, e1->ec, e2->pnum, e2->ec);
1079 } else {
1080 /* Perform scrubbing */
1081 scrubbing = 1;
1082 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1083 e2 = get_peb_for_wl(ubi);
1084 if (!e2)
1085 goto out_cancel;
1086
1087 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1088 rb_erase(&e1->u.rb, &ubi->scrub);
1089 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1090 }
1091
1092 ubi->move_from = e1;
1093 ubi->move_to = e2;
1094 spin_unlock(&ubi->wl_lock);
1095
1096 /*
1097 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1098 * We so far do not know which logical eraseblock our physical
1099 * eraseblock (@e1) belongs to. We have to read the volume identifier
1100 * header first.
1101 *
1102 * Note, we are protected from this PEB being unmapped and erased. The
1103 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1104 * which is being moved was unmapped.
1105 */
1106
1107 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1108 if (err && err != UBI_IO_BITFLIPS) {
1109 if (err == UBI_IO_FF) {
1110 /*
1111 * We are trying to move PEB without a VID header. UBI
1112 * always write VID headers shortly after the PEB was
1113 * given, so we have a situation when it has not yet
1114 * had a chance to write it, because it was preempted.
1115 * So add this PEB to the protection queue so far,
1116 * because presumably more data will be written there
1117 * (including the missing VID header), and then we'll
1118 * move it.
1119 */
1120 dbg_wl("PEB %d has no VID header", e1->pnum);
1121 protect = 1;
1122 goto out_not_moved;
1123 } else if (err == UBI_IO_FF_BITFLIPS) {
1124 /*
1125 * The same situation as %UBI_IO_FF, but bit-flips were
1126 * detected. It is better to schedule this PEB for
1127 * scrubbing.
1128 */
1129 dbg_wl("PEB %d has no VID header but has bit-flips",
1130 e1->pnum);
1131 scrubbing = 1;
1132 goto out_not_moved;
1133 }
1134
1135 ubi_err("error %d while reading VID header from PEB %d",
1136 err, e1->pnum);
1137 goto out_error;
1138 }
1139
1140 vol_id = be32_to_cpu(vid_hdr->vol_id);
1141 lnum = be32_to_cpu(vid_hdr->lnum);
1142
1143 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1144 if (err) {
1145 if (err == MOVE_CANCEL_RACE) {
1146 /*
1147 * The LEB has not been moved because the volume is
1148 * being deleted or the PEB has been put meanwhile. We
1149 * should prevent this PEB from being selected for
1150 * wear-leveling movement again, so put it to the
1151 * protection queue.
1152 */
1153 protect = 1;
1154 goto out_not_moved;
1155 }
1156 if (err == MOVE_RETRY) {
1157 scrubbing = 1;
1158 goto out_not_moved;
1159 }
1160 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1161 err == MOVE_TARGET_RD_ERR) {
1162 /*
1163 * Target PEB had bit-flips or write error - torture it.
1164 */
1165 torture = 1;
1166 goto out_not_moved;
1167 }
1168
1169 if (err == MOVE_SOURCE_RD_ERR) {
1170 /*
1171 * An error happened while reading the source PEB. Do
1172 * not switch to R/O mode in this case, and give the
1173 * upper layers a possibility to recover from this,
1174 * e.g. by unmapping corresponding LEB. Instead, just
1175 * put this PEB to the @ubi->erroneous list to prevent
1176 * UBI from trying to move it over and over again.
1177 */
1178 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1179 ubi_err("too many erroneous eraseblocks (%d)",
1180 ubi->erroneous_peb_count);
1181 goto out_error;
1182 }
1183 erroneous = 1;
1184 goto out_not_moved;
1185 }
1186
1187 if (err < 0)
1188 goto out_error;
1189
1190 ubi_assert(0);
1191 }
1192
1193 /* The PEB has been successfully moved */
1194 if (scrubbing)
1195 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1196 e1->pnum, vol_id, lnum, e2->pnum);
1197 ubi_free_vid_hdr(ubi, vid_hdr);
1198
1199 spin_lock(&ubi->wl_lock);
1200 if (!ubi->move_to_put) {
1201 wl_tree_add(e2, &ubi->used);
1202 e2 = NULL;
1203 }
1204 ubi->move_from = ubi->move_to = NULL;
1205 ubi->move_to_put = ubi->wl_scheduled = 0;
1206 spin_unlock(&ubi->wl_lock);
1207
1208 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1209 if (err) {
1210 kmem_cache_free(ubi_wl_entry_slab, e1);
1211 if (e2)
1212 kmem_cache_free(ubi_wl_entry_slab, e2);
1213 goto out_ro;
1214 }
1215
1216 if (e2) {
1217 /*
1218 * Well, the target PEB was put meanwhile, schedule it for
1219 * erasure.
1220 */
1221 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1222 e2->pnum, vol_id, lnum);
1223 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1224 if (err) {
1225 kmem_cache_free(ubi_wl_entry_slab, e2);
1226 goto out_ro;
1227 }
1228 }
1229
1230 dbg_wl("done");
1231 mutex_unlock(&ubi->move_mutex);
1232 return 0;
1233
1234 /*
1235 * For some reasons the LEB was not moved, might be an error, might be
1236 * something else. @e1 was not changed, so return it back. @e2 might
1237 * have been changed, schedule it for erasure.
1238 */
1239 out_not_moved:
1240 if (vol_id != -1)
1241 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1242 e1->pnum, vol_id, lnum, e2->pnum, err);
1243 else
1244 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1245 e1->pnum, e2->pnum, err);
1246 spin_lock(&ubi->wl_lock);
1247 if (protect)
1248 prot_queue_add(ubi, e1);
1249 else if (erroneous) {
1250 wl_tree_add(e1, &ubi->erroneous);
1251 ubi->erroneous_peb_count += 1;
1252 } else if (scrubbing)
1253 wl_tree_add(e1, &ubi->scrub);
1254 else
1255 wl_tree_add(e1, &ubi->used);
1256 ubi_assert(!ubi->move_to_put);
1257 ubi->move_from = ubi->move_to = NULL;
1258 ubi->wl_scheduled = 0;
1259 spin_unlock(&ubi->wl_lock);
1260
1261 ubi_free_vid_hdr(ubi, vid_hdr);
1262 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1263 if (err) {
1264 kmem_cache_free(ubi_wl_entry_slab, e2);
1265 goto out_ro;
1266 }
1267 mutex_unlock(&ubi->move_mutex);
1268 return 0;
1269
1270 out_error:
1271 if (vol_id != -1)
1272 ubi_err("error %d while moving PEB %d to PEB %d",
1273 err, e1->pnum, e2->pnum);
1274 else
1275 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1276 err, e1->pnum, vol_id, lnum, e2->pnum);
1277 spin_lock(&ubi->wl_lock);
1278 ubi->move_from = ubi->move_to = NULL;
1279 ubi->move_to_put = ubi->wl_scheduled = 0;
1280 spin_unlock(&ubi->wl_lock);
1281
1282 ubi_free_vid_hdr(ubi, vid_hdr);
1283 kmem_cache_free(ubi_wl_entry_slab, e1);
1284 kmem_cache_free(ubi_wl_entry_slab, e2);
1285
1286 out_ro:
1287 ubi_ro_mode(ubi);
1288 mutex_unlock(&ubi->move_mutex);
1289 ubi_assert(err != 0);
1290 return err < 0 ? err : -EIO;
1291
1292 out_cancel:
1293 ubi->wl_scheduled = 0;
1294 spin_unlock(&ubi->wl_lock);
1295 mutex_unlock(&ubi->move_mutex);
1296 ubi_free_vid_hdr(ubi, vid_hdr);
1297 return 0;
1298 }
1299
1300 /**
1301 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1302 * @ubi: UBI device description object
1303 * @nested: set to non-zero if this function is called from UBI worker
1304 *
1305 * This function checks if it is time to start wear-leveling and schedules it
1306 * if yes. This function returns zero in case of success and a negative error
1307 * code in case of failure.
1308 */
1309 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1310 {
1311 int err = 0;
1312 struct ubi_wl_entry *e1;
1313 struct ubi_wl_entry *e2;
1314 struct ubi_work *wrk;
1315
1316 spin_lock(&ubi->wl_lock);
1317 if (ubi->wl_scheduled)
1318 /* Wear-leveling is already in the work queue */
1319 goto out_unlock;
1320
1321 /*
1322 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1323 * the WL worker has to be scheduled anyway.
1324 */
1325 if (!ubi->scrub.rb_node) {
1326 if (!ubi->used.rb_node || !ubi->free.rb_node)
1327 /* No physical eraseblocks - no deal */
1328 goto out_unlock;
1329
1330 /*
1331 * We schedule wear-leveling only if the difference between the
1332 * lowest erase counter of used physical eraseblocks and a high
1333 * erase counter of free physical eraseblocks is greater than
1334 * %UBI_WL_THRESHOLD.
1335 */
1336 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1337 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1338
1339 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1340 goto out_unlock;
1341 dbg_wl("schedule wear-leveling");
1342 } else
1343 dbg_wl("schedule scrubbing");
1344
1345 ubi->wl_scheduled = 1;
1346 spin_unlock(&ubi->wl_lock);
1347
1348 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1349 if (!wrk) {
1350 err = -ENOMEM;
1351 goto out_cancel;
1352 }
1353
1354 wrk->anchor = 0;
1355 wrk->func = &wear_leveling_worker;
1356 if (nested)
1357 __schedule_ubi_work(ubi, wrk);
1358 else
1359 schedule_ubi_work(ubi, wrk);
1360 return err;
1361
1362 out_cancel:
1363 spin_lock(&ubi->wl_lock);
1364 ubi->wl_scheduled = 0;
1365 out_unlock:
1366 spin_unlock(&ubi->wl_lock);
1367 return err;
1368 }
1369
1370 #ifdef CONFIG_MTD_UBI_FASTMAP
1371 /**
1372 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1373 * @ubi: UBI device description object
1374 */
1375 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1376 {
1377 struct ubi_work *wrk;
1378
1379 spin_lock(&ubi->wl_lock);
1380 if (ubi->wl_scheduled) {
1381 spin_unlock(&ubi->wl_lock);
1382 return 0;
1383 }
1384 ubi->wl_scheduled = 1;
1385 spin_unlock(&ubi->wl_lock);
1386
1387 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1388 if (!wrk) {
1389 spin_lock(&ubi->wl_lock);
1390 ubi->wl_scheduled = 0;
1391 spin_unlock(&ubi->wl_lock);
1392 return -ENOMEM;
1393 }
1394
1395 wrk->anchor = 1;
1396 wrk->func = &wear_leveling_worker;
1397 schedule_ubi_work(ubi, wrk);
1398 return 0;
1399 }
1400 #endif
1401
1402 /**
1403 * erase_worker - physical eraseblock erase worker function.
1404 * @ubi: UBI device description object
1405 * @wl_wrk: the work object
1406 * @cancel: non-zero if the worker has to free memory and exit
1407 *
1408 * This function erases a physical eraseblock and perform torture testing if
1409 * needed. It also takes care about marking the physical eraseblock bad if
1410 * needed. Returns zero in case of success and a negative error code in case of
1411 * failure.
1412 */
1413 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1414 int cancel)
1415 {
1416 struct ubi_wl_entry *e = wl_wrk->e;
1417 int pnum = e->pnum;
1418 int vol_id = wl_wrk->vol_id;
1419 int lnum = wl_wrk->lnum;
1420 int err, available_consumed = 0;
1421
1422 if (cancel) {
1423 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1424 kfree(wl_wrk);
1425 kmem_cache_free(ubi_wl_entry_slab, e);
1426 return 0;
1427 }
1428
1429 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1430 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1431
1432 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1433
1434 err = sync_erase(ubi, e, wl_wrk->torture);
1435 if (!err) {
1436 /* Fine, we've erased it successfully */
1437 kfree(wl_wrk);
1438
1439 spin_lock(&ubi->wl_lock);
1440 wl_tree_add(e, &ubi->free);
1441 ubi->free_count++;
1442 spin_unlock(&ubi->wl_lock);
1443
1444 /*
1445 * One more erase operation has happened, take care about
1446 * protected physical eraseblocks.
1447 */
1448 serve_prot_queue(ubi);
1449
1450 /* And take care about wear-leveling */
1451 err = ensure_wear_leveling(ubi, 1);
1452 return err;
1453 }
1454
1455 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1456 kfree(wl_wrk);
1457
1458 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1459 err == -EBUSY) {
1460 int err1;
1461
1462 /* Re-schedule the LEB for erasure */
1463 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1464 if (err1) {
1465 err = err1;
1466 goto out_ro;
1467 }
1468 return err;
1469 }
1470
1471 kmem_cache_free(ubi_wl_entry_slab, e);
1472 if (err != -EIO)
1473 /*
1474 * If this is not %-EIO, we have no idea what to do. Scheduling
1475 * this physical eraseblock for erasure again would cause
1476 * errors again and again. Well, lets switch to R/O mode.
1477 */
1478 goto out_ro;
1479
1480 /* It is %-EIO, the PEB went bad */
1481
1482 if (!ubi->bad_allowed) {
1483 ubi_err("bad physical eraseblock %d detected", pnum);
1484 goto out_ro;
1485 }
1486
1487 spin_lock(&ubi->volumes_lock);
1488 if (ubi->beb_rsvd_pebs == 0) {
1489 if (ubi->avail_pebs == 0) {
1490 spin_unlock(&ubi->volumes_lock);
1491 ubi_err("no reserved/available physical eraseblocks");
1492 goto out_ro;
1493 }
1494 ubi->avail_pebs -= 1;
1495 available_consumed = 1;
1496 }
1497 spin_unlock(&ubi->volumes_lock);
1498
1499 ubi_msg("mark PEB %d as bad", pnum);
1500 err = ubi_io_mark_bad(ubi, pnum);
1501 if (err)
1502 goto out_ro;
1503
1504 spin_lock(&ubi->volumes_lock);
1505 if (ubi->beb_rsvd_pebs > 0) {
1506 if (available_consumed) {
1507 /*
1508 * The amount of reserved PEBs increased since we last
1509 * checked.
1510 */
1511 ubi->avail_pebs += 1;
1512 available_consumed = 0;
1513 }
1514 ubi->beb_rsvd_pebs -= 1;
1515 }
1516 ubi->bad_peb_count += 1;
1517 ubi->good_peb_count -= 1;
1518 ubi_calculate_reserved(ubi);
1519 if (available_consumed)
1520 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1521 else if (ubi->beb_rsvd_pebs)
1522 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1523 else
1524 ubi_warn("last PEB from the reserve was used");
1525 spin_unlock(&ubi->volumes_lock);
1526
1527 return err;
1528
1529 out_ro:
1530 if (available_consumed) {
1531 spin_lock(&ubi->volumes_lock);
1532 ubi->avail_pebs += 1;
1533 spin_unlock(&ubi->volumes_lock);
1534 }
1535 ubi_ro_mode(ubi);
1536 return err;
1537 }
1538
1539 /**
1540 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1541 * @ubi: UBI device description object
1542 * @vol_id: the volume ID that last used this PEB
1543 * @lnum: the last used logical eraseblock number for the PEB
1544 * @pnum: physical eraseblock to return
1545 * @torture: if this physical eraseblock has to be tortured
1546 *
1547 * This function is called to return physical eraseblock @pnum to the pool of
1548 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1549 * occurred to this @pnum and it has to be tested. This function returns zero
1550 * in case of success, and a negative error code in case of failure.
1551 */
1552 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1553 int pnum, int torture)
1554 {
1555 int err;
1556 struct ubi_wl_entry *e;
1557
1558 dbg_wl("PEB %d", pnum);
1559 ubi_assert(pnum >= 0);
1560 ubi_assert(pnum < ubi->peb_count);
1561
1562 retry:
1563 spin_lock(&ubi->wl_lock);
1564 e = ubi->lookuptbl[pnum];
1565 if (e == ubi->move_from) {
1566 /*
1567 * User is putting the physical eraseblock which was selected to
1568 * be moved. It will be scheduled for erasure in the
1569 * wear-leveling worker.
1570 */
1571 dbg_wl("PEB %d is being moved, wait", pnum);
1572 spin_unlock(&ubi->wl_lock);
1573
1574 /* Wait for the WL worker by taking the @ubi->move_mutex */
1575 mutex_lock(&ubi->move_mutex);
1576 mutex_unlock(&ubi->move_mutex);
1577 goto retry;
1578 } else if (e == ubi->move_to) {
1579 /*
1580 * User is putting the physical eraseblock which was selected
1581 * as the target the data is moved to. It may happen if the EBA
1582 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1583 * but the WL sub-system has not put the PEB to the "used" tree
1584 * yet, but it is about to do this. So we just set a flag which
1585 * will tell the WL worker that the PEB is not needed anymore
1586 * and should be scheduled for erasure.
1587 */
1588 dbg_wl("PEB %d is the target of data moving", pnum);
1589 ubi_assert(!ubi->move_to_put);
1590 ubi->move_to_put = 1;
1591 spin_unlock(&ubi->wl_lock);
1592 return 0;
1593 } else {
1594 if (in_wl_tree(e, &ubi->used)) {
1595 self_check_in_wl_tree(ubi, e, &ubi->used);
1596 rb_erase(&e->u.rb, &ubi->used);
1597 } else if (in_wl_tree(e, &ubi->scrub)) {
1598 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1599 rb_erase(&e->u.rb, &ubi->scrub);
1600 } else if (in_wl_tree(e, &ubi->erroneous)) {
1601 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1602 rb_erase(&e->u.rb, &ubi->erroneous);
1603 ubi->erroneous_peb_count -= 1;
1604 ubi_assert(ubi->erroneous_peb_count >= 0);
1605 /* Erroneous PEBs should be tortured */
1606 torture = 1;
1607 } else {
1608 err = prot_queue_del(ubi, e->pnum);
1609 if (err) {
1610 ubi_err("PEB %d not found", pnum);
1611 ubi_ro_mode(ubi);
1612 spin_unlock(&ubi->wl_lock);
1613 return err;
1614 }
1615 }
1616 }
1617 spin_unlock(&ubi->wl_lock);
1618
1619 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1620 if (err) {
1621 spin_lock(&ubi->wl_lock);
1622 wl_tree_add(e, &ubi->used);
1623 spin_unlock(&ubi->wl_lock);
1624 }
1625
1626 return err;
1627 }
1628
1629 /**
1630 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1631 * @ubi: UBI device description object
1632 * @pnum: the physical eraseblock to schedule
1633 *
1634 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1635 * needs scrubbing. This function schedules a physical eraseblock for
1636 * scrubbing which is done in background. This function returns zero in case of
1637 * success and a negative error code in case of failure.
1638 */
1639 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1640 {
1641 struct ubi_wl_entry *e;
1642
1643 ubi_msg("schedule PEB %d for scrubbing", pnum);
1644
1645 retry:
1646 spin_lock(&ubi->wl_lock);
1647 e = ubi->lookuptbl[pnum];
1648 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1649 in_wl_tree(e, &ubi->erroneous)) {
1650 spin_unlock(&ubi->wl_lock);
1651 return 0;
1652 }
1653
1654 if (e == ubi->move_to) {
1655 /*
1656 * This physical eraseblock was used to move data to. The data
1657 * was moved but the PEB was not yet inserted to the proper
1658 * tree. We should just wait a little and let the WL worker
1659 * proceed.
1660 */
1661 spin_unlock(&ubi->wl_lock);
1662 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1663 yield();
1664 goto retry;
1665 }
1666
1667 if (in_wl_tree(e, &ubi->used)) {
1668 self_check_in_wl_tree(ubi, e, &ubi->used);
1669 rb_erase(&e->u.rb, &ubi->used);
1670 } else {
1671 int err;
1672
1673 err = prot_queue_del(ubi, e->pnum);
1674 if (err) {
1675 ubi_err("PEB %d not found", pnum);
1676 ubi_ro_mode(ubi);
1677 spin_unlock(&ubi->wl_lock);
1678 return err;
1679 }
1680 }
1681
1682 wl_tree_add(e, &ubi->scrub);
1683 spin_unlock(&ubi->wl_lock);
1684
1685 /*
1686 * Technically scrubbing is the same as wear-leveling, so it is done
1687 * by the WL worker.
1688 */
1689 return ensure_wear_leveling(ubi, 0);
1690 }
1691
1692 /**
1693 * ubi_wl_flush - flush all pending works.
1694 * @ubi: UBI device description object
1695 * @vol_id: the volume id to flush for
1696 * @lnum: the logical eraseblock number to flush for
1697 *
1698 * This function executes all pending works for a particular volume id /
1699 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1700 * acts as a wildcard for all of the corresponding volume numbers or logical
1701 * eraseblock numbers. It returns zero in case of success and a negative error
1702 * code in case of failure.
1703 */
1704 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1705 {
1706 int err = 0;
1707 int found = 1;
1708
1709 /*
1710 * Erase while the pending works queue is not empty, but not more than
1711 * the number of currently pending works.
1712 */
1713 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1714 vol_id, lnum, ubi->works_count);
1715
1716 while (found) {
1717 struct ubi_work *wrk;
1718 found = 0;
1719
1720 down_read(&ubi->work_sem);
1721 spin_lock(&ubi->wl_lock);
1722 list_for_each_entry(wrk, &ubi->works, list) {
1723 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1724 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1725 list_del(&wrk->list);
1726 ubi->works_count -= 1;
1727 ubi_assert(ubi->works_count >= 0);
1728 spin_unlock(&ubi->wl_lock);
1729
1730 err = wrk->func(ubi, wrk, 0);
1731 if (err) {
1732 up_read(&ubi->work_sem);
1733 return err;
1734 }
1735
1736 spin_lock(&ubi->wl_lock);
1737 found = 1;
1738 break;
1739 }
1740 }
1741 spin_unlock(&ubi->wl_lock);
1742 up_read(&ubi->work_sem);
1743 }
1744
1745 /*
1746 * Make sure all the works which have been done in parallel are
1747 * finished.
1748 */
1749 down_write(&ubi->work_sem);
1750 up_write(&ubi->work_sem);
1751
1752 return err;
1753 }
1754
1755 /**
1756 * tree_destroy - destroy an RB-tree.
1757 * @root: the root of the tree to destroy
1758 */
1759 static void tree_destroy(struct rb_root *root)
1760 {
1761 struct rb_node *rb;
1762 struct ubi_wl_entry *e;
1763
1764 rb = root->rb_node;
1765 while (rb) {
1766 if (rb->rb_left)
1767 rb = rb->rb_left;
1768 else if (rb->rb_right)
1769 rb = rb->rb_right;
1770 else {
1771 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1772
1773 rb = rb_parent(rb);
1774 if (rb) {
1775 if (rb->rb_left == &e->u.rb)
1776 rb->rb_left = NULL;
1777 else
1778 rb->rb_right = NULL;
1779 }
1780
1781 kmem_cache_free(ubi_wl_entry_slab, e);
1782 }
1783 }
1784 }
1785
1786 /**
1787 * ubi_thread - UBI background thread.
1788 * @u: the UBI device description object pointer
1789 */
1790 int ubi_thread(void *u)
1791 {
1792 int failures = 0;
1793 struct ubi_device *ubi = u;
1794
1795 ubi_msg("background thread \"%s\" started, PID %d",
1796 ubi->bgt_name, task_pid_nr(current));
1797
1798 set_freezable();
1799 for (;;) {
1800 int err;
1801
1802 if (kthread_should_stop())
1803 break;
1804
1805 if (try_to_freeze())
1806 continue;
1807
1808 spin_lock(&ubi->wl_lock);
1809 if (list_empty(&ubi->works) || ubi->ro_mode ||
1810 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1811 set_current_state(TASK_INTERRUPTIBLE);
1812 spin_unlock(&ubi->wl_lock);
1813 schedule();
1814 continue;
1815 }
1816 spin_unlock(&ubi->wl_lock);
1817
1818 err = do_work(ubi);
1819 if (err) {
1820 ubi_err("%s: work failed with error code %d",
1821 ubi->bgt_name, err);
1822 if (failures++ > WL_MAX_FAILURES) {
1823 /*
1824 * Too many failures, disable the thread and
1825 * switch to read-only mode.
1826 */
1827 ubi_msg("%s: %d consecutive failures",
1828 ubi->bgt_name, WL_MAX_FAILURES);
1829 ubi_ro_mode(ubi);
1830 ubi->thread_enabled = 0;
1831 continue;
1832 }
1833 } else
1834 failures = 0;
1835
1836 cond_resched();
1837 }
1838
1839 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1840 return 0;
1841 }
1842
1843 /**
1844 * cancel_pending - cancel all pending works.
1845 * @ubi: UBI device description object
1846 */
1847 static void cancel_pending(struct ubi_device *ubi)
1848 {
1849 while (!list_empty(&ubi->works)) {
1850 struct ubi_work *wrk;
1851
1852 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1853 list_del(&wrk->list);
1854 wrk->func(ubi, wrk, 1);
1855 ubi->works_count -= 1;
1856 ubi_assert(ubi->works_count >= 0);
1857 }
1858 }
1859
1860 /**
1861 * ubi_wl_init - initialize the WL sub-system using attaching information.
1862 * @ubi: UBI device description object
1863 * @ai: attaching information
1864 *
1865 * This function returns zero in case of success, and a negative error code in
1866 * case of failure.
1867 */
1868 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1869 {
1870 int err, i, reserved_pebs, found_pebs = 0;
1871 struct rb_node *rb1, *rb2;
1872 struct ubi_ainf_volume *av;
1873 struct ubi_ainf_peb *aeb, *tmp;
1874 struct ubi_wl_entry *e;
1875
1876 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1877 spin_lock_init(&ubi->wl_lock);
1878 mutex_init(&ubi->move_mutex);
1879 init_rwsem(&ubi->work_sem);
1880 ubi->max_ec = ai->max_ec;
1881 INIT_LIST_HEAD(&ubi->works);
1882 #ifdef CONFIG_MTD_UBI_FASTMAP
1883 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1884 #endif
1885
1886 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1887
1888 err = -ENOMEM;
1889 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1890 if (!ubi->lookuptbl)
1891 return err;
1892
1893 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1894 INIT_LIST_HEAD(&ubi->pq[i]);
1895 ubi->pq_head = 0;
1896
1897 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1898 cond_resched();
1899
1900 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1901 if (!e)
1902 goto out_free;
1903
1904 e->pnum = aeb->pnum;
1905 e->ec = aeb->ec;
1906 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1907 ubi->lookuptbl[e->pnum] = e;
1908 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1909 kmem_cache_free(ubi_wl_entry_slab, e);
1910 goto out_free;
1911 }
1912
1913 found_pebs++;
1914 }
1915
1916 ubi->free_count = 0;
1917 list_for_each_entry(aeb, &ai->free, u.list) {
1918 cond_resched();
1919
1920 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1921 if (!e)
1922 goto out_free;
1923
1924 e->pnum = aeb->pnum;
1925 e->ec = aeb->ec;
1926 ubi_assert(e->ec >= 0);
1927 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1928
1929 wl_tree_add(e, &ubi->free);
1930 ubi->free_count++;
1931
1932 ubi->lookuptbl[e->pnum] = e;
1933
1934 found_pebs++;
1935 }
1936
1937 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1938 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1939 cond_resched();
1940
1941 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1942 if (!e)
1943 goto out_free;
1944
1945 e->pnum = aeb->pnum;
1946 e->ec = aeb->ec;
1947 ubi->lookuptbl[e->pnum] = e;
1948
1949 if (!aeb->scrub) {
1950 dbg_wl("add PEB %d EC %d to the used tree",
1951 e->pnum, e->ec);
1952 wl_tree_add(e, &ubi->used);
1953 } else {
1954 dbg_wl("add PEB %d EC %d to the scrub tree",
1955 e->pnum, e->ec);
1956 wl_tree_add(e, &ubi->scrub);
1957 }
1958
1959 found_pebs++;
1960 }
1961 }
1962
1963 dbg_wl("found %i PEBs", found_pebs);
1964
1965 if (ubi->fm)
1966 ubi_assert(ubi->good_peb_count == \
1967 found_pebs + ubi->fm->used_blocks);
1968 else
1969 ubi_assert(ubi->good_peb_count == found_pebs);
1970
1971 reserved_pebs = WL_RESERVED_PEBS;
1972 #ifdef CONFIG_MTD_UBI_FASTMAP
1973 /* Reserve enough LEBs to store two fastmaps. */
1974 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1975 #endif
1976
1977 if (ubi->avail_pebs < reserved_pebs) {
1978 ubi_err("no enough physical eraseblocks (%d, need %d)",
1979 ubi->avail_pebs, reserved_pebs);
1980 if (ubi->corr_peb_count)
1981 ubi_err("%d PEBs are corrupted and not used",
1982 ubi->corr_peb_count);
1983 goto out_free;
1984 }
1985 ubi->avail_pebs -= reserved_pebs;
1986 ubi->rsvd_pebs += reserved_pebs;
1987
1988 /* Schedule wear-leveling if needed */
1989 err = ensure_wear_leveling(ubi, 0);
1990 if (err)
1991 goto out_free;
1992
1993 return 0;
1994
1995 out_free:
1996 cancel_pending(ubi);
1997 tree_destroy(&ubi->used);
1998 tree_destroy(&ubi->free);
1999 tree_destroy(&ubi->scrub);
2000 kfree(ubi->lookuptbl);
2001 return err;
2002 }
2003
2004 /**
2005 * protection_queue_destroy - destroy the protection queue.
2006 * @ubi: UBI device description object
2007 */
2008 static void protection_queue_destroy(struct ubi_device *ubi)
2009 {
2010 int i;
2011 struct ubi_wl_entry *e, *tmp;
2012
2013 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2014 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2015 list_del(&e->u.list);
2016 kmem_cache_free(ubi_wl_entry_slab, e);
2017 }
2018 }
2019 }
2020
2021 /**
2022 * ubi_wl_close - close the wear-leveling sub-system.
2023 * @ubi: UBI device description object
2024 */
2025 void ubi_wl_close(struct ubi_device *ubi)
2026 {
2027 dbg_wl("close the WL sub-system");
2028 cancel_pending(ubi);
2029 protection_queue_destroy(ubi);
2030 tree_destroy(&ubi->used);
2031 tree_destroy(&ubi->erroneous);
2032 tree_destroy(&ubi->free);
2033 tree_destroy(&ubi->scrub);
2034 kfree(ubi->lookuptbl);
2035 }
2036
2037 /**
2038 * self_check_ec - make sure that the erase counter of a PEB is correct.
2039 * @ubi: UBI device description object
2040 * @pnum: the physical eraseblock number to check
2041 * @ec: the erase counter to check
2042 *
2043 * This function returns zero if the erase counter of physical eraseblock @pnum
2044 * is equivalent to @ec, and a negative error code if not or if an error
2045 * occurred.
2046 */
2047 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2048 {
2049 int err;
2050 long long read_ec;
2051 struct ubi_ec_hdr *ec_hdr;
2052
2053 if (!ubi->dbg->chk_gen)
2054 return 0;
2055
2056 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2057 if (!ec_hdr)
2058 return -ENOMEM;
2059
2060 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2061 if (err && err != UBI_IO_BITFLIPS) {
2062 /* The header does not have to exist */
2063 err = 0;
2064 goto out_free;
2065 }
2066
2067 read_ec = be64_to_cpu(ec_hdr->ec);
2068 if (ec != read_ec && read_ec - ec > 1) {
2069 ubi_err("self-check failed for PEB %d", pnum);
2070 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2071 dump_stack();
2072 err = 1;
2073 } else
2074 err = 0;
2075
2076 out_free:
2077 kfree(ec_hdr);
2078 return err;
2079 }
2080
2081 /**
2082 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2083 * @ubi: UBI device description object
2084 * @e: the wear-leveling entry to check
2085 * @root: the root of the tree
2086 *
2087 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2088 * is not.
2089 */
2090 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2091 struct ubi_wl_entry *e, struct rb_root *root)
2092 {
2093 if (!ubi->dbg->chk_gen)
2094 return 0;
2095
2096 if (in_wl_tree(e, root))
2097 return 0;
2098
2099 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2100 e->pnum, e->ec, root);
2101 dump_stack();
2102 return -EINVAL;
2103 }
2104
2105 /**
2106 * self_check_in_pq - check if wear-leveling entry is in the protection
2107 * queue.
2108 * @ubi: UBI device description object
2109 * @e: the wear-leveling entry to check
2110 *
2111 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2112 */
2113 static int self_check_in_pq(const struct ubi_device *ubi,
2114 struct ubi_wl_entry *e)
2115 {
2116 struct ubi_wl_entry *p;
2117 int i;
2118
2119 if (!ubi->dbg->chk_gen)
2120 return 0;
2121
2122 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2123 list_for_each_entry(p, &ubi->pq[i], u.list)
2124 if (p == e)
2125 return 0;
2126
2127 ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2128 e->pnum, e->ec);
2129 dump_stack();
2130 return -EINVAL;
2131 }
This page took 0.073787 seconds and 6 git commands to generate.