Merge tag 'for_3.7-fixes-pm' of git://git.kernel.org/pub/scm/linux/kernel/git/khilman...
[deliverable/linux.git] / drivers / mtd / ubi / wl.c
1 /*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20 */
21
22 /*
23 * UBI wear-leveling sub-system.
24 *
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 *
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 *
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
39 *
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
43 *
44 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
45 * bad.
46 *
47 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
48 * in a physical eraseblock, it has to be moved. Technically this is the same
49 * as moving it for wear-leveling reasons.
50 *
51 * As it was said, for the UBI sub-system all physical eraseblocks are either
52 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
53 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
54 * RB-trees, as well as (temporarily) in the @wl->pq queue.
55 *
56 * When the WL sub-system returns a physical eraseblock, the physical
57 * eraseblock is protected from being moved for some "time". For this reason,
58 * the physical eraseblock is not directly moved from the @wl->free tree to the
59 * @wl->used tree. There is a protection queue in between where this
60 * physical eraseblock is temporarily stored (@wl->pq).
61 *
62 * All this protection stuff is needed because:
63 * o we don't want to move physical eraseblocks just after we have given them
64 * to the user; instead, we first want to let users fill them up with data;
65 *
66 * o there is a chance that the user will put the physical eraseblock very
67 * soon, so it makes sense not to move it for some time, but wait.
68 *
69 * Physical eraseblocks stay protected only for limited time. But the "time" is
70 * measured in erase cycles in this case. This is implemented with help of the
71 * protection queue. Eraseblocks are put to the tail of this queue when they
72 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
73 * head of the queue on each erase operation (for any eraseblock). So the
74 * length of the queue defines how may (global) erase cycles PEBs are protected.
75 *
76 * To put it differently, each physical eraseblock has 2 main states: free and
77 * used. The former state corresponds to the @wl->free tree. The latter state
78 * is split up on several sub-states:
79 * o the WL movement is allowed (@wl->used tree);
80 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
81 * erroneous - e.g., there was a read error;
82 * o the WL movement is temporarily prohibited (@wl->pq queue);
83 * o scrubbing is needed (@wl->scrub tree).
84 *
85 * Depending on the sub-state, wear-leveling entries of the used physical
86 * eraseblocks may be kept in one of those structures.
87 *
88 * Note, in this implementation, we keep a small in-RAM object for each physical
89 * eraseblock. This is surely not a scalable solution. But it appears to be good
90 * enough for moderately large flashes and it is simple. In future, one may
91 * re-work this sub-system and make it more scalable.
92 *
93 * At the moment this sub-system does not utilize the sequence number, which
94 * was introduced relatively recently. But it would be wise to do this because
95 * the sequence number of a logical eraseblock characterizes how old is it. For
96 * example, when we move a PEB with low erase counter, and we need to pick the
97 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
98 * pick target PEB with an average EC if our PEB is not very "old". This is a
99 * room for future re-works of the WL sub-system.
100 */
101
102 #include <linux/slab.h>
103 #include <linux/crc32.h>
104 #include <linux/freezer.h>
105 #include <linux/kthread.h>
106 #include "ubi.h"
107
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110
111 /*
112 * Maximum difference between two erase counters. If this threshold is
113 * exceeded, the WL sub-system starts moving data from used physical
114 * eraseblocks with low erase counter to free physical eraseblocks with high
115 * erase counter.
116 */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118
119 /*
120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
121 * physical eraseblock to move to. The simplest way would be just to pick the
122 * one with the highest erase counter. But in certain workloads this could lead
123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124 * situation when the picked physical eraseblock is constantly erased after the
125 * data is written to it. So, we have a constant which limits the highest erase
126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127 * does not pick eraseblocks with erase counter greater than the lowest erase
128 * counter plus %WL_FREE_MAX_DIFF.
129 */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131
132 /*
133 * Maximum number of consecutive background thread failures which is enough to
134 * switch to read-only mode.
135 */
136 #define WL_MAX_FAILURES 32
137
138 /**
139 * struct ubi_work - UBI work description data structure.
140 * @list: a link in the list of pending works
141 * @func: worker function
142 * @e: physical eraseblock to erase
143 * @vol_id: the volume ID on which this erasure is being performed
144 * @lnum: the logical eraseblock number
145 * @torture: if the physical eraseblock has to be tortured
146 *
147 * The @func pointer points to the worker function. If the @cancel argument is
148 * not zero, the worker has to free the resources and exit immediately. The
149 * worker has to return zero in case of success and a negative error code in
150 * case of failure.
151 */
152 struct ubi_work {
153 struct list_head list;
154 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
155 /* The below fields are only relevant to erasure works */
156 struct ubi_wl_entry *e;
157 int vol_id;
158 int lnum;
159 int torture;
160 };
161
162 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
163 static int self_check_in_wl_tree(const struct ubi_device *ubi,
164 struct ubi_wl_entry *e, struct rb_root *root);
165 static int self_check_in_pq(const struct ubi_device *ubi,
166 struct ubi_wl_entry *e);
167
168 /**
169 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
170 * @e: the wear-leveling entry to add
171 * @root: the root of the tree
172 *
173 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
174 * the @ubi->used and @ubi->free RB-trees.
175 */
176 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
177 {
178 struct rb_node **p, *parent = NULL;
179
180 p = &root->rb_node;
181 while (*p) {
182 struct ubi_wl_entry *e1;
183
184 parent = *p;
185 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
186
187 if (e->ec < e1->ec)
188 p = &(*p)->rb_left;
189 else if (e->ec > e1->ec)
190 p = &(*p)->rb_right;
191 else {
192 ubi_assert(e->pnum != e1->pnum);
193 if (e->pnum < e1->pnum)
194 p = &(*p)->rb_left;
195 else
196 p = &(*p)->rb_right;
197 }
198 }
199
200 rb_link_node(&e->u.rb, parent, p);
201 rb_insert_color(&e->u.rb, root);
202 }
203
204 /**
205 * do_work - do one pending work.
206 * @ubi: UBI device description object
207 *
208 * This function returns zero in case of success and a negative error code in
209 * case of failure.
210 */
211 static int do_work(struct ubi_device *ubi)
212 {
213 int err;
214 struct ubi_work *wrk;
215
216 cond_resched();
217
218 /*
219 * @ubi->work_sem is used to synchronize with the workers. Workers take
220 * it in read mode, so many of them may be doing works at a time. But
221 * the queue flush code has to be sure the whole queue of works is
222 * done, and it takes the mutex in write mode.
223 */
224 down_read(&ubi->work_sem);
225 spin_lock(&ubi->wl_lock);
226 if (list_empty(&ubi->works)) {
227 spin_unlock(&ubi->wl_lock);
228 up_read(&ubi->work_sem);
229 return 0;
230 }
231
232 wrk = list_entry(ubi->works.next, struct ubi_work, list);
233 list_del(&wrk->list);
234 ubi->works_count -= 1;
235 ubi_assert(ubi->works_count >= 0);
236 spin_unlock(&ubi->wl_lock);
237
238 /*
239 * Call the worker function. Do not touch the work structure
240 * after this call as it will have been freed or reused by that
241 * time by the worker function.
242 */
243 err = wrk->func(ubi, wrk, 0);
244 if (err)
245 ubi_err("work failed with error code %d", err);
246 up_read(&ubi->work_sem);
247
248 return err;
249 }
250
251 /**
252 * produce_free_peb - produce a free physical eraseblock.
253 * @ubi: UBI device description object
254 *
255 * This function tries to make a free PEB by means of synchronous execution of
256 * pending works. This may be needed if, for example the background thread is
257 * disabled. Returns zero in case of success and a negative error code in case
258 * of failure.
259 */
260 static int produce_free_peb(struct ubi_device *ubi)
261 {
262 int err;
263
264 spin_lock(&ubi->wl_lock);
265 while (!ubi->free.rb_node) {
266 spin_unlock(&ubi->wl_lock);
267
268 dbg_wl("do one work synchronously");
269 err = do_work(ubi);
270 if (err)
271 return err;
272
273 spin_lock(&ubi->wl_lock);
274 }
275 spin_unlock(&ubi->wl_lock);
276
277 return 0;
278 }
279
280 /**
281 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
282 * @e: the wear-leveling entry to check
283 * @root: the root of the tree
284 *
285 * This function returns non-zero if @e is in the @root RB-tree and zero if it
286 * is not.
287 */
288 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
289 {
290 struct rb_node *p;
291
292 p = root->rb_node;
293 while (p) {
294 struct ubi_wl_entry *e1;
295
296 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
297
298 if (e->pnum == e1->pnum) {
299 ubi_assert(e == e1);
300 return 1;
301 }
302
303 if (e->ec < e1->ec)
304 p = p->rb_left;
305 else if (e->ec > e1->ec)
306 p = p->rb_right;
307 else {
308 ubi_assert(e->pnum != e1->pnum);
309 if (e->pnum < e1->pnum)
310 p = p->rb_left;
311 else
312 p = p->rb_right;
313 }
314 }
315
316 return 0;
317 }
318
319 /**
320 * prot_queue_add - add physical eraseblock to the protection queue.
321 * @ubi: UBI device description object
322 * @e: the physical eraseblock to add
323 *
324 * This function adds @e to the tail of the protection queue @ubi->pq, where
325 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
326 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
327 * be locked.
328 */
329 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
330 {
331 int pq_tail = ubi->pq_head - 1;
332
333 if (pq_tail < 0)
334 pq_tail = UBI_PROT_QUEUE_LEN - 1;
335 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
336 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
337 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
338 }
339
340 /**
341 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
342 * @root: the RB-tree where to look for
343 * @diff: maximum possible difference from the smallest erase counter
344 *
345 * This function looks for a wear leveling entry with erase counter closest to
346 * min + @diff, where min is the smallest erase counter.
347 */
348 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff)
349 {
350 struct rb_node *p;
351 struct ubi_wl_entry *e;
352 int max;
353
354 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
355 max = e->ec + diff;
356
357 p = root->rb_node;
358 while (p) {
359 struct ubi_wl_entry *e1;
360
361 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
362 if (e1->ec >= max)
363 p = p->rb_left;
364 else {
365 p = p->rb_right;
366 e = e1;
367 }
368 }
369
370 return e;
371 }
372
373 /**
374 * ubi_wl_get_peb - get a physical eraseblock.
375 * @ubi: UBI device description object
376 *
377 * This function returns a physical eraseblock in case of success and a
378 * negative error code in case of failure. Might sleep.
379 */
380 int ubi_wl_get_peb(struct ubi_device *ubi)
381 {
382 int err;
383 struct ubi_wl_entry *e, *first, *last;
384
385 retry:
386 spin_lock(&ubi->wl_lock);
387 if (!ubi->free.rb_node) {
388 if (ubi->works_count == 0) {
389 ubi_assert(list_empty(&ubi->works));
390 ubi_err("no free eraseblocks");
391 spin_unlock(&ubi->wl_lock);
392 return -ENOSPC;
393 }
394 spin_unlock(&ubi->wl_lock);
395
396 err = produce_free_peb(ubi);
397 if (err < 0)
398 return err;
399 goto retry;
400 }
401
402 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
403 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
404
405 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
406 e = rb_entry(ubi->free.rb_node, struct ubi_wl_entry, u.rb);
407 else
408 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2);
409
410 self_check_in_wl_tree(ubi, e, &ubi->free);
411
412 /*
413 * Move the physical eraseblock to the protection queue where it will
414 * be protected from being moved for some time.
415 */
416 rb_erase(&e->u.rb, &ubi->free);
417 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
418 prot_queue_add(ubi, e);
419 spin_unlock(&ubi->wl_lock);
420
421 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
422 ubi->peb_size - ubi->vid_hdr_aloffset);
423 if (err) {
424 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
425 return err;
426 }
427
428 return e->pnum;
429 }
430
431 /**
432 * prot_queue_del - remove a physical eraseblock from the protection queue.
433 * @ubi: UBI device description object
434 * @pnum: the physical eraseblock to remove
435 *
436 * This function deletes PEB @pnum from the protection queue and returns zero
437 * in case of success and %-ENODEV if the PEB was not found.
438 */
439 static int prot_queue_del(struct ubi_device *ubi, int pnum)
440 {
441 struct ubi_wl_entry *e;
442
443 e = ubi->lookuptbl[pnum];
444 if (!e)
445 return -ENODEV;
446
447 if (self_check_in_pq(ubi, e))
448 return -ENODEV;
449
450 list_del(&e->u.list);
451 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
452 return 0;
453 }
454
455 /**
456 * sync_erase - synchronously erase a physical eraseblock.
457 * @ubi: UBI device description object
458 * @e: the the physical eraseblock to erase
459 * @torture: if the physical eraseblock has to be tortured
460 *
461 * This function returns zero in case of success and a negative error code in
462 * case of failure.
463 */
464 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
465 int torture)
466 {
467 int err;
468 struct ubi_ec_hdr *ec_hdr;
469 unsigned long long ec = e->ec;
470
471 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
472
473 err = self_check_ec(ubi, e->pnum, e->ec);
474 if (err)
475 return -EINVAL;
476
477 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
478 if (!ec_hdr)
479 return -ENOMEM;
480
481 err = ubi_io_sync_erase(ubi, e->pnum, torture);
482 if (err < 0)
483 goto out_free;
484
485 ec += err;
486 if (ec > UBI_MAX_ERASECOUNTER) {
487 /*
488 * Erase counter overflow. Upgrade UBI and use 64-bit
489 * erase counters internally.
490 */
491 ubi_err("erase counter overflow at PEB %d, EC %llu",
492 e->pnum, ec);
493 err = -EINVAL;
494 goto out_free;
495 }
496
497 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
498
499 ec_hdr->ec = cpu_to_be64(ec);
500
501 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
502 if (err)
503 goto out_free;
504
505 e->ec = ec;
506 spin_lock(&ubi->wl_lock);
507 if (e->ec > ubi->max_ec)
508 ubi->max_ec = e->ec;
509 spin_unlock(&ubi->wl_lock);
510
511 out_free:
512 kfree(ec_hdr);
513 return err;
514 }
515
516 /**
517 * serve_prot_queue - check if it is time to stop protecting PEBs.
518 * @ubi: UBI device description object
519 *
520 * This function is called after each erase operation and removes PEBs from the
521 * tail of the protection queue. These PEBs have been protected for long enough
522 * and should be moved to the used tree.
523 */
524 static void serve_prot_queue(struct ubi_device *ubi)
525 {
526 struct ubi_wl_entry *e, *tmp;
527 int count;
528
529 /*
530 * There may be several protected physical eraseblock to remove,
531 * process them all.
532 */
533 repeat:
534 count = 0;
535 spin_lock(&ubi->wl_lock);
536 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
537 dbg_wl("PEB %d EC %d protection over, move to used tree",
538 e->pnum, e->ec);
539
540 list_del(&e->u.list);
541 wl_tree_add(e, &ubi->used);
542 if (count++ > 32) {
543 /*
544 * Let's be nice and avoid holding the spinlock for
545 * too long.
546 */
547 spin_unlock(&ubi->wl_lock);
548 cond_resched();
549 goto repeat;
550 }
551 }
552
553 ubi->pq_head += 1;
554 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
555 ubi->pq_head = 0;
556 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
557 spin_unlock(&ubi->wl_lock);
558 }
559
560 /**
561 * schedule_ubi_work - schedule a work.
562 * @ubi: UBI device description object
563 * @wrk: the work to schedule
564 *
565 * This function adds a work defined by @wrk to the tail of the pending works
566 * list.
567 */
568 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
569 {
570 spin_lock(&ubi->wl_lock);
571 list_add_tail(&wrk->list, &ubi->works);
572 ubi_assert(ubi->works_count >= 0);
573 ubi->works_count += 1;
574 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
575 wake_up_process(ubi->bgt_thread);
576 spin_unlock(&ubi->wl_lock);
577 }
578
579 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
580 int cancel);
581
582 /**
583 * schedule_erase - schedule an erase work.
584 * @ubi: UBI device description object
585 * @e: the WL entry of the physical eraseblock to erase
586 * @vol_id: the volume ID that last used this PEB
587 * @lnum: the last used logical eraseblock number for the PEB
588 * @torture: if the physical eraseblock has to be tortured
589 *
590 * This function returns zero in case of success and a %-ENOMEM in case of
591 * failure.
592 */
593 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
594 int vol_id, int lnum, int torture)
595 {
596 struct ubi_work *wl_wrk;
597
598 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
599 e->pnum, e->ec, torture);
600
601 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
602 if (!wl_wrk)
603 return -ENOMEM;
604
605 wl_wrk->func = &erase_worker;
606 wl_wrk->e = e;
607 wl_wrk->vol_id = vol_id;
608 wl_wrk->lnum = lnum;
609 wl_wrk->torture = torture;
610
611 schedule_ubi_work(ubi, wl_wrk);
612 return 0;
613 }
614
615 /**
616 * wear_leveling_worker - wear-leveling worker function.
617 * @ubi: UBI device description object
618 * @wrk: the work object
619 * @cancel: non-zero if the worker has to free memory and exit
620 *
621 * This function copies a more worn out physical eraseblock to a less worn out
622 * one. Returns zero in case of success and a negative error code in case of
623 * failure.
624 */
625 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
626 int cancel)
627 {
628 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
629 int vol_id = -1, uninitialized_var(lnum);
630 struct ubi_wl_entry *e1, *e2;
631 struct ubi_vid_hdr *vid_hdr;
632
633 kfree(wrk);
634 if (cancel)
635 return 0;
636
637 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
638 if (!vid_hdr)
639 return -ENOMEM;
640
641 mutex_lock(&ubi->move_mutex);
642 spin_lock(&ubi->wl_lock);
643 ubi_assert(!ubi->move_from && !ubi->move_to);
644 ubi_assert(!ubi->move_to_put);
645
646 if (!ubi->free.rb_node ||
647 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
648 /*
649 * No free physical eraseblocks? Well, they must be waiting in
650 * the queue to be erased. Cancel movement - it will be
651 * triggered again when a free physical eraseblock appears.
652 *
653 * No used physical eraseblocks? They must be temporarily
654 * protected from being moved. They will be moved to the
655 * @ubi->used tree later and the wear-leveling will be
656 * triggered again.
657 */
658 dbg_wl("cancel WL, a list is empty: free %d, used %d",
659 !ubi->free.rb_node, !ubi->used.rb_node);
660 goto out_cancel;
661 }
662
663 if (!ubi->scrub.rb_node) {
664 /*
665 * Now pick the least worn-out used physical eraseblock and a
666 * highly worn-out free physical eraseblock. If the erase
667 * counters differ much enough, start wear-leveling.
668 */
669 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
670 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
671
672 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
673 dbg_wl("no WL needed: min used EC %d, max free EC %d",
674 e1->ec, e2->ec);
675 goto out_cancel;
676 }
677 self_check_in_wl_tree(ubi, e1, &ubi->used);
678 rb_erase(&e1->u.rb, &ubi->used);
679 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
680 e1->pnum, e1->ec, e2->pnum, e2->ec);
681 } else {
682 /* Perform scrubbing */
683 scrubbing = 1;
684 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
685 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
686 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
687 rb_erase(&e1->u.rb, &ubi->scrub);
688 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
689 }
690
691 self_check_in_wl_tree(ubi, e2, &ubi->free);
692 rb_erase(&e2->u.rb, &ubi->free);
693 ubi->move_from = e1;
694 ubi->move_to = e2;
695 spin_unlock(&ubi->wl_lock);
696
697 /*
698 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
699 * We so far do not know which logical eraseblock our physical
700 * eraseblock (@e1) belongs to. We have to read the volume identifier
701 * header first.
702 *
703 * Note, we are protected from this PEB being unmapped and erased. The
704 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
705 * which is being moved was unmapped.
706 */
707
708 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
709 if (err && err != UBI_IO_BITFLIPS) {
710 if (err == UBI_IO_FF) {
711 /*
712 * We are trying to move PEB without a VID header. UBI
713 * always write VID headers shortly after the PEB was
714 * given, so we have a situation when it has not yet
715 * had a chance to write it, because it was preempted.
716 * So add this PEB to the protection queue so far,
717 * because presumably more data will be written there
718 * (including the missing VID header), and then we'll
719 * move it.
720 */
721 dbg_wl("PEB %d has no VID header", e1->pnum);
722 protect = 1;
723 goto out_not_moved;
724 } else if (err == UBI_IO_FF_BITFLIPS) {
725 /*
726 * The same situation as %UBI_IO_FF, but bit-flips were
727 * detected. It is better to schedule this PEB for
728 * scrubbing.
729 */
730 dbg_wl("PEB %d has no VID header but has bit-flips",
731 e1->pnum);
732 scrubbing = 1;
733 goto out_not_moved;
734 }
735
736 ubi_err("error %d while reading VID header from PEB %d",
737 err, e1->pnum);
738 goto out_error;
739 }
740
741 vol_id = be32_to_cpu(vid_hdr->vol_id);
742 lnum = be32_to_cpu(vid_hdr->lnum);
743
744 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
745 if (err) {
746 if (err == MOVE_CANCEL_RACE) {
747 /*
748 * The LEB has not been moved because the volume is
749 * being deleted or the PEB has been put meanwhile. We
750 * should prevent this PEB from being selected for
751 * wear-leveling movement again, so put it to the
752 * protection queue.
753 */
754 protect = 1;
755 goto out_not_moved;
756 }
757 if (err == MOVE_RETRY) {
758 scrubbing = 1;
759 goto out_not_moved;
760 }
761 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
762 err == MOVE_TARGET_RD_ERR) {
763 /*
764 * Target PEB had bit-flips or write error - torture it.
765 */
766 torture = 1;
767 goto out_not_moved;
768 }
769
770 if (err == MOVE_SOURCE_RD_ERR) {
771 /*
772 * An error happened while reading the source PEB. Do
773 * not switch to R/O mode in this case, and give the
774 * upper layers a possibility to recover from this,
775 * e.g. by unmapping corresponding LEB. Instead, just
776 * put this PEB to the @ubi->erroneous list to prevent
777 * UBI from trying to move it over and over again.
778 */
779 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
780 ubi_err("too many erroneous eraseblocks (%d)",
781 ubi->erroneous_peb_count);
782 goto out_error;
783 }
784 erroneous = 1;
785 goto out_not_moved;
786 }
787
788 if (err < 0)
789 goto out_error;
790
791 ubi_assert(0);
792 }
793
794 /* The PEB has been successfully moved */
795 if (scrubbing)
796 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
797 e1->pnum, vol_id, lnum, e2->pnum);
798 ubi_free_vid_hdr(ubi, vid_hdr);
799
800 spin_lock(&ubi->wl_lock);
801 if (!ubi->move_to_put) {
802 wl_tree_add(e2, &ubi->used);
803 e2 = NULL;
804 }
805 ubi->move_from = ubi->move_to = NULL;
806 ubi->move_to_put = ubi->wl_scheduled = 0;
807 spin_unlock(&ubi->wl_lock);
808
809 err = schedule_erase(ubi, e1, vol_id, lnum, 0);
810 if (err) {
811 kmem_cache_free(ubi_wl_entry_slab, e1);
812 if (e2)
813 kmem_cache_free(ubi_wl_entry_slab, e2);
814 goto out_ro;
815 }
816
817 if (e2) {
818 /*
819 * Well, the target PEB was put meanwhile, schedule it for
820 * erasure.
821 */
822 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
823 e2->pnum, vol_id, lnum);
824 err = schedule_erase(ubi, e2, vol_id, lnum, 0);
825 if (err) {
826 kmem_cache_free(ubi_wl_entry_slab, e2);
827 goto out_ro;
828 }
829 }
830
831 dbg_wl("done");
832 mutex_unlock(&ubi->move_mutex);
833 return 0;
834
835 /*
836 * For some reasons the LEB was not moved, might be an error, might be
837 * something else. @e1 was not changed, so return it back. @e2 might
838 * have been changed, schedule it for erasure.
839 */
840 out_not_moved:
841 if (vol_id != -1)
842 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
843 e1->pnum, vol_id, lnum, e2->pnum, err);
844 else
845 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
846 e1->pnum, e2->pnum, err);
847 spin_lock(&ubi->wl_lock);
848 if (protect)
849 prot_queue_add(ubi, e1);
850 else if (erroneous) {
851 wl_tree_add(e1, &ubi->erroneous);
852 ubi->erroneous_peb_count += 1;
853 } else if (scrubbing)
854 wl_tree_add(e1, &ubi->scrub);
855 else
856 wl_tree_add(e1, &ubi->used);
857 ubi_assert(!ubi->move_to_put);
858 ubi->move_from = ubi->move_to = NULL;
859 ubi->wl_scheduled = 0;
860 spin_unlock(&ubi->wl_lock);
861
862 ubi_free_vid_hdr(ubi, vid_hdr);
863 err = schedule_erase(ubi, e2, vol_id, lnum, torture);
864 if (err) {
865 kmem_cache_free(ubi_wl_entry_slab, e2);
866 goto out_ro;
867 }
868 mutex_unlock(&ubi->move_mutex);
869 return 0;
870
871 out_error:
872 if (vol_id != -1)
873 ubi_err("error %d while moving PEB %d to PEB %d",
874 err, e1->pnum, e2->pnum);
875 else
876 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
877 err, e1->pnum, vol_id, lnum, e2->pnum);
878 spin_lock(&ubi->wl_lock);
879 ubi->move_from = ubi->move_to = NULL;
880 ubi->move_to_put = ubi->wl_scheduled = 0;
881 spin_unlock(&ubi->wl_lock);
882
883 ubi_free_vid_hdr(ubi, vid_hdr);
884 kmem_cache_free(ubi_wl_entry_slab, e1);
885 kmem_cache_free(ubi_wl_entry_slab, e2);
886
887 out_ro:
888 ubi_ro_mode(ubi);
889 mutex_unlock(&ubi->move_mutex);
890 ubi_assert(err != 0);
891 return err < 0 ? err : -EIO;
892
893 out_cancel:
894 ubi->wl_scheduled = 0;
895 spin_unlock(&ubi->wl_lock);
896 mutex_unlock(&ubi->move_mutex);
897 ubi_free_vid_hdr(ubi, vid_hdr);
898 return 0;
899 }
900
901 /**
902 * ensure_wear_leveling - schedule wear-leveling if it is needed.
903 * @ubi: UBI device description object
904 *
905 * This function checks if it is time to start wear-leveling and schedules it
906 * if yes. This function returns zero in case of success and a negative error
907 * code in case of failure.
908 */
909 static int ensure_wear_leveling(struct ubi_device *ubi)
910 {
911 int err = 0;
912 struct ubi_wl_entry *e1;
913 struct ubi_wl_entry *e2;
914 struct ubi_work *wrk;
915
916 spin_lock(&ubi->wl_lock);
917 if (ubi->wl_scheduled)
918 /* Wear-leveling is already in the work queue */
919 goto out_unlock;
920
921 /*
922 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
923 * the WL worker has to be scheduled anyway.
924 */
925 if (!ubi->scrub.rb_node) {
926 if (!ubi->used.rb_node || !ubi->free.rb_node)
927 /* No physical eraseblocks - no deal */
928 goto out_unlock;
929
930 /*
931 * We schedule wear-leveling only if the difference between the
932 * lowest erase counter of used physical eraseblocks and a high
933 * erase counter of free physical eraseblocks is greater than
934 * %UBI_WL_THRESHOLD.
935 */
936 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
937 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
938
939 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
940 goto out_unlock;
941 dbg_wl("schedule wear-leveling");
942 } else
943 dbg_wl("schedule scrubbing");
944
945 ubi->wl_scheduled = 1;
946 spin_unlock(&ubi->wl_lock);
947
948 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
949 if (!wrk) {
950 err = -ENOMEM;
951 goto out_cancel;
952 }
953
954 wrk->func = &wear_leveling_worker;
955 schedule_ubi_work(ubi, wrk);
956 return err;
957
958 out_cancel:
959 spin_lock(&ubi->wl_lock);
960 ubi->wl_scheduled = 0;
961 out_unlock:
962 spin_unlock(&ubi->wl_lock);
963 return err;
964 }
965
966 /**
967 * erase_worker - physical eraseblock erase worker function.
968 * @ubi: UBI device description object
969 * @wl_wrk: the work object
970 * @cancel: non-zero if the worker has to free memory and exit
971 *
972 * This function erases a physical eraseblock and perform torture testing if
973 * needed. It also takes care about marking the physical eraseblock bad if
974 * needed. Returns zero in case of success and a negative error code in case of
975 * failure.
976 */
977 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
978 int cancel)
979 {
980 struct ubi_wl_entry *e = wl_wrk->e;
981 int pnum = e->pnum;
982 int vol_id = wl_wrk->vol_id;
983 int lnum = wl_wrk->lnum;
984 int err, available_consumed = 0;
985
986 if (cancel) {
987 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
988 kfree(wl_wrk);
989 kmem_cache_free(ubi_wl_entry_slab, e);
990 return 0;
991 }
992
993 dbg_wl("erase PEB %d EC %d LEB %d:%d",
994 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
995
996 err = sync_erase(ubi, e, wl_wrk->torture);
997 if (!err) {
998 /* Fine, we've erased it successfully */
999 kfree(wl_wrk);
1000
1001 spin_lock(&ubi->wl_lock);
1002 wl_tree_add(e, &ubi->free);
1003 spin_unlock(&ubi->wl_lock);
1004
1005 /*
1006 * One more erase operation has happened, take care about
1007 * protected physical eraseblocks.
1008 */
1009 serve_prot_queue(ubi);
1010
1011 /* And take care about wear-leveling */
1012 err = ensure_wear_leveling(ubi);
1013 return err;
1014 }
1015
1016 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1017 kfree(wl_wrk);
1018
1019 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1020 err == -EBUSY) {
1021 int err1;
1022
1023 /* Re-schedule the LEB for erasure */
1024 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1025 if (err1) {
1026 err = err1;
1027 goto out_ro;
1028 }
1029 return err;
1030 }
1031
1032 kmem_cache_free(ubi_wl_entry_slab, e);
1033 if (err != -EIO)
1034 /*
1035 * If this is not %-EIO, we have no idea what to do. Scheduling
1036 * this physical eraseblock for erasure again would cause
1037 * errors again and again. Well, lets switch to R/O mode.
1038 */
1039 goto out_ro;
1040
1041 /* It is %-EIO, the PEB went bad */
1042
1043 if (!ubi->bad_allowed) {
1044 ubi_err("bad physical eraseblock %d detected", pnum);
1045 goto out_ro;
1046 }
1047
1048 spin_lock(&ubi->volumes_lock);
1049 if (ubi->beb_rsvd_pebs == 0) {
1050 if (ubi->avail_pebs == 0) {
1051 spin_unlock(&ubi->volumes_lock);
1052 ubi_err("no reserved/available physical eraseblocks");
1053 goto out_ro;
1054 }
1055 ubi->avail_pebs -= 1;
1056 available_consumed = 1;
1057 }
1058 spin_unlock(&ubi->volumes_lock);
1059
1060 ubi_msg("mark PEB %d as bad", pnum);
1061 err = ubi_io_mark_bad(ubi, pnum);
1062 if (err)
1063 goto out_ro;
1064
1065 spin_lock(&ubi->volumes_lock);
1066 if (ubi->beb_rsvd_pebs > 0) {
1067 if (available_consumed) {
1068 /*
1069 * The amount of reserved PEBs increased since we last
1070 * checked.
1071 */
1072 ubi->avail_pebs += 1;
1073 available_consumed = 0;
1074 }
1075 ubi->beb_rsvd_pebs -= 1;
1076 }
1077 ubi->bad_peb_count += 1;
1078 ubi->good_peb_count -= 1;
1079 ubi_calculate_reserved(ubi);
1080 if (available_consumed)
1081 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1082 else if (ubi->beb_rsvd_pebs)
1083 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1084 else
1085 ubi_warn("last PEB from the reserve was used");
1086 spin_unlock(&ubi->volumes_lock);
1087
1088 return err;
1089
1090 out_ro:
1091 if (available_consumed) {
1092 spin_lock(&ubi->volumes_lock);
1093 ubi->avail_pebs += 1;
1094 spin_unlock(&ubi->volumes_lock);
1095 }
1096 ubi_ro_mode(ubi);
1097 return err;
1098 }
1099
1100 /**
1101 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1102 * @ubi: UBI device description object
1103 * @vol_id: the volume ID that last used this PEB
1104 * @lnum: the last used logical eraseblock number for the PEB
1105 * @pnum: physical eraseblock to return
1106 * @torture: if this physical eraseblock has to be tortured
1107 *
1108 * This function is called to return physical eraseblock @pnum to the pool of
1109 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1110 * occurred to this @pnum and it has to be tested. This function returns zero
1111 * in case of success, and a negative error code in case of failure.
1112 */
1113 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1114 int pnum, int torture)
1115 {
1116 int err;
1117 struct ubi_wl_entry *e;
1118
1119 dbg_wl("PEB %d", pnum);
1120 ubi_assert(pnum >= 0);
1121 ubi_assert(pnum < ubi->peb_count);
1122
1123 retry:
1124 spin_lock(&ubi->wl_lock);
1125 e = ubi->lookuptbl[pnum];
1126 if (e == ubi->move_from) {
1127 /*
1128 * User is putting the physical eraseblock which was selected to
1129 * be moved. It will be scheduled for erasure in the
1130 * wear-leveling worker.
1131 */
1132 dbg_wl("PEB %d is being moved, wait", pnum);
1133 spin_unlock(&ubi->wl_lock);
1134
1135 /* Wait for the WL worker by taking the @ubi->move_mutex */
1136 mutex_lock(&ubi->move_mutex);
1137 mutex_unlock(&ubi->move_mutex);
1138 goto retry;
1139 } else if (e == ubi->move_to) {
1140 /*
1141 * User is putting the physical eraseblock which was selected
1142 * as the target the data is moved to. It may happen if the EBA
1143 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1144 * but the WL sub-system has not put the PEB to the "used" tree
1145 * yet, but it is about to do this. So we just set a flag which
1146 * will tell the WL worker that the PEB is not needed anymore
1147 * and should be scheduled for erasure.
1148 */
1149 dbg_wl("PEB %d is the target of data moving", pnum);
1150 ubi_assert(!ubi->move_to_put);
1151 ubi->move_to_put = 1;
1152 spin_unlock(&ubi->wl_lock);
1153 return 0;
1154 } else {
1155 if (in_wl_tree(e, &ubi->used)) {
1156 self_check_in_wl_tree(ubi, e, &ubi->used);
1157 rb_erase(&e->u.rb, &ubi->used);
1158 } else if (in_wl_tree(e, &ubi->scrub)) {
1159 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1160 rb_erase(&e->u.rb, &ubi->scrub);
1161 } else if (in_wl_tree(e, &ubi->erroneous)) {
1162 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1163 rb_erase(&e->u.rb, &ubi->erroneous);
1164 ubi->erroneous_peb_count -= 1;
1165 ubi_assert(ubi->erroneous_peb_count >= 0);
1166 /* Erroneous PEBs should be tortured */
1167 torture = 1;
1168 } else {
1169 err = prot_queue_del(ubi, e->pnum);
1170 if (err) {
1171 ubi_err("PEB %d not found", pnum);
1172 ubi_ro_mode(ubi);
1173 spin_unlock(&ubi->wl_lock);
1174 return err;
1175 }
1176 }
1177 }
1178 spin_unlock(&ubi->wl_lock);
1179
1180 err = schedule_erase(ubi, e, vol_id, lnum, torture);
1181 if (err) {
1182 spin_lock(&ubi->wl_lock);
1183 wl_tree_add(e, &ubi->used);
1184 spin_unlock(&ubi->wl_lock);
1185 }
1186
1187 return err;
1188 }
1189
1190 /**
1191 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1192 * @ubi: UBI device description object
1193 * @pnum: the physical eraseblock to schedule
1194 *
1195 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1196 * needs scrubbing. This function schedules a physical eraseblock for
1197 * scrubbing which is done in background. This function returns zero in case of
1198 * success and a negative error code in case of failure.
1199 */
1200 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1201 {
1202 struct ubi_wl_entry *e;
1203
1204 ubi_msg("schedule PEB %d for scrubbing", pnum);
1205
1206 retry:
1207 spin_lock(&ubi->wl_lock);
1208 e = ubi->lookuptbl[pnum];
1209 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1210 in_wl_tree(e, &ubi->erroneous)) {
1211 spin_unlock(&ubi->wl_lock);
1212 return 0;
1213 }
1214
1215 if (e == ubi->move_to) {
1216 /*
1217 * This physical eraseblock was used to move data to. The data
1218 * was moved but the PEB was not yet inserted to the proper
1219 * tree. We should just wait a little and let the WL worker
1220 * proceed.
1221 */
1222 spin_unlock(&ubi->wl_lock);
1223 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1224 yield();
1225 goto retry;
1226 }
1227
1228 if (in_wl_tree(e, &ubi->used)) {
1229 self_check_in_wl_tree(ubi, e, &ubi->used);
1230 rb_erase(&e->u.rb, &ubi->used);
1231 } else {
1232 int err;
1233
1234 err = prot_queue_del(ubi, e->pnum);
1235 if (err) {
1236 ubi_err("PEB %d not found", pnum);
1237 ubi_ro_mode(ubi);
1238 spin_unlock(&ubi->wl_lock);
1239 return err;
1240 }
1241 }
1242
1243 wl_tree_add(e, &ubi->scrub);
1244 spin_unlock(&ubi->wl_lock);
1245
1246 /*
1247 * Technically scrubbing is the same as wear-leveling, so it is done
1248 * by the WL worker.
1249 */
1250 return ensure_wear_leveling(ubi);
1251 }
1252
1253 /**
1254 * ubi_wl_flush - flush all pending works.
1255 * @ubi: UBI device description object
1256 * @vol_id: the volume id to flush for
1257 * @lnum: the logical eraseblock number to flush for
1258 *
1259 * This function executes all pending works for a particular volume id /
1260 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1261 * acts as a wildcard for all of the corresponding volume numbers or logical
1262 * eraseblock numbers. It returns zero in case of success and a negative error
1263 * code in case of failure.
1264 */
1265 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1266 {
1267 int err = 0;
1268 int found = 1;
1269
1270 /*
1271 * Erase while the pending works queue is not empty, but not more than
1272 * the number of currently pending works.
1273 */
1274 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1275 vol_id, lnum, ubi->works_count);
1276
1277 while (found) {
1278 struct ubi_work *wrk;
1279 found = 0;
1280
1281 down_read(&ubi->work_sem);
1282 spin_lock(&ubi->wl_lock);
1283 list_for_each_entry(wrk, &ubi->works, list) {
1284 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1285 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1286 list_del(&wrk->list);
1287 ubi->works_count -= 1;
1288 ubi_assert(ubi->works_count >= 0);
1289 spin_unlock(&ubi->wl_lock);
1290
1291 err = wrk->func(ubi, wrk, 0);
1292 if (err) {
1293 up_read(&ubi->work_sem);
1294 return err;
1295 }
1296
1297 spin_lock(&ubi->wl_lock);
1298 found = 1;
1299 break;
1300 }
1301 }
1302 spin_unlock(&ubi->wl_lock);
1303 up_read(&ubi->work_sem);
1304 }
1305
1306 /*
1307 * Make sure all the works which have been done in parallel are
1308 * finished.
1309 */
1310 down_write(&ubi->work_sem);
1311 up_write(&ubi->work_sem);
1312
1313 return err;
1314 }
1315
1316 /**
1317 * tree_destroy - destroy an RB-tree.
1318 * @root: the root of the tree to destroy
1319 */
1320 static void tree_destroy(struct rb_root *root)
1321 {
1322 struct rb_node *rb;
1323 struct ubi_wl_entry *e;
1324
1325 rb = root->rb_node;
1326 while (rb) {
1327 if (rb->rb_left)
1328 rb = rb->rb_left;
1329 else if (rb->rb_right)
1330 rb = rb->rb_right;
1331 else {
1332 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1333
1334 rb = rb_parent(rb);
1335 if (rb) {
1336 if (rb->rb_left == &e->u.rb)
1337 rb->rb_left = NULL;
1338 else
1339 rb->rb_right = NULL;
1340 }
1341
1342 kmem_cache_free(ubi_wl_entry_slab, e);
1343 }
1344 }
1345 }
1346
1347 /**
1348 * ubi_thread - UBI background thread.
1349 * @u: the UBI device description object pointer
1350 */
1351 int ubi_thread(void *u)
1352 {
1353 int failures = 0;
1354 struct ubi_device *ubi = u;
1355
1356 ubi_msg("background thread \"%s\" started, PID %d",
1357 ubi->bgt_name, task_pid_nr(current));
1358
1359 set_freezable();
1360 for (;;) {
1361 int err;
1362
1363 if (kthread_should_stop())
1364 break;
1365
1366 if (try_to_freeze())
1367 continue;
1368
1369 spin_lock(&ubi->wl_lock);
1370 if (list_empty(&ubi->works) || ubi->ro_mode ||
1371 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1372 set_current_state(TASK_INTERRUPTIBLE);
1373 spin_unlock(&ubi->wl_lock);
1374 schedule();
1375 continue;
1376 }
1377 spin_unlock(&ubi->wl_lock);
1378
1379 err = do_work(ubi);
1380 if (err) {
1381 ubi_err("%s: work failed with error code %d",
1382 ubi->bgt_name, err);
1383 if (failures++ > WL_MAX_FAILURES) {
1384 /*
1385 * Too many failures, disable the thread and
1386 * switch to read-only mode.
1387 */
1388 ubi_msg("%s: %d consecutive failures",
1389 ubi->bgt_name, WL_MAX_FAILURES);
1390 ubi_ro_mode(ubi);
1391 ubi->thread_enabled = 0;
1392 continue;
1393 }
1394 } else
1395 failures = 0;
1396
1397 cond_resched();
1398 }
1399
1400 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1401 return 0;
1402 }
1403
1404 /**
1405 * cancel_pending - cancel all pending works.
1406 * @ubi: UBI device description object
1407 */
1408 static void cancel_pending(struct ubi_device *ubi)
1409 {
1410 while (!list_empty(&ubi->works)) {
1411 struct ubi_work *wrk;
1412
1413 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1414 list_del(&wrk->list);
1415 wrk->func(ubi, wrk, 1);
1416 ubi->works_count -= 1;
1417 ubi_assert(ubi->works_count >= 0);
1418 }
1419 }
1420
1421 /**
1422 * ubi_wl_init - initialize the WL sub-system using attaching information.
1423 * @ubi: UBI device description object
1424 * @ai: attaching information
1425 *
1426 * This function returns zero in case of success, and a negative error code in
1427 * case of failure.
1428 */
1429 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1430 {
1431 int err, i;
1432 struct rb_node *rb1, *rb2;
1433 struct ubi_ainf_volume *av;
1434 struct ubi_ainf_peb *aeb, *tmp;
1435 struct ubi_wl_entry *e;
1436
1437 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1438 spin_lock_init(&ubi->wl_lock);
1439 mutex_init(&ubi->move_mutex);
1440 init_rwsem(&ubi->work_sem);
1441 ubi->max_ec = ai->max_ec;
1442 INIT_LIST_HEAD(&ubi->works);
1443
1444 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1445
1446 err = -ENOMEM;
1447 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1448 if (!ubi->lookuptbl)
1449 return err;
1450
1451 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1452 INIT_LIST_HEAD(&ubi->pq[i]);
1453 ubi->pq_head = 0;
1454
1455 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1456 cond_resched();
1457
1458 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1459 if (!e)
1460 goto out_free;
1461
1462 e->pnum = aeb->pnum;
1463 e->ec = aeb->ec;
1464 ubi->lookuptbl[e->pnum] = e;
1465 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1466 kmem_cache_free(ubi_wl_entry_slab, e);
1467 goto out_free;
1468 }
1469 }
1470
1471 list_for_each_entry(aeb, &ai->free, u.list) {
1472 cond_resched();
1473
1474 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1475 if (!e)
1476 goto out_free;
1477
1478 e->pnum = aeb->pnum;
1479 e->ec = aeb->ec;
1480 ubi_assert(e->ec >= 0);
1481 wl_tree_add(e, &ubi->free);
1482 ubi->lookuptbl[e->pnum] = e;
1483 }
1484
1485 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1486 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1487 cond_resched();
1488
1489 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1490 if (!e)
1491 goto out_free;
1492
1493 e->pnum = aeb->pnum;
1494 e->ec = aeb->ec;
1495 ubi->lookuptbl[e->pnum] = e;
1496 if (!aeb->scrub) {
1497 dbg_wl("add PEB %d EC %d to the used tree",
1498 e->pnum, e->ec);
1499 wl_tree_add(e, &ubi->used);
1500 } else {
1501 dbg_wl("add PEB %d EC %d to the scrub tree",
1502 e->pnum, e->ec);
1503 wl_tree_add(e, &ubi->scrub);
1504 }
1505 }
1506 }
1507
1508 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1509 ubi_err("no enough physical eraseblocks (%d, need %d)",
1510 ubi->avail_pebs, WL_RESERVED_PEBS);
1511 if (ubi->corr_peb_count)
1512 ubi_err("%d PEBs are corrupted and not used",
1513 ubi->corr_peb_count);
1514 goto out_free;
1515 }
1516 ubi->avail_pebs -= WL_RESERVED_PEBS;
1517 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1518
1519 /* Schedule wear-leveling if needed */
1520 err = ensure_wear_leveling(ubi);
1521 if (err)
1522 goto out_free;
1523
1524 return 0;
1525
1526 out_free:
1527 cancel_pending(ubi);
1528 tree_destroy(&ubi->used);
1529 tree_destroy(&ubi->free);
1530 tree_destroy(&ubi->scrub);
1531 kfree(ubi->lookuptbl);
1532 return err;
1533 }
1534
1535 /**
1536 * protection_queue_destroy - destroy the protection queue.
1537 * @ubi: UBI device description object
1538 */
1539 static void protection_queue_destroy(struct ubi_device *ubi)
1540 {
1541 int i;
1542 struct ubi_wl_entry *e, *tmp;
1543
1544 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1545 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1546 list_del(&e->u.list);
1547 kmem_cache_free(ubi_wl_entry_slab, e);
1548 }
1549 }
1550 }
1551
1552 /**
1553 * ubi_wl_close - close the wear-leveling sub-system.
1554 * @ubi: UBI device description object
1555 */
1556 void ubi_wl_close(struct ubi_device *ubi)
1557 {
1558 dbg_wl("close the WL sub-system");
1559 cancel_pending(ubi);
1560 protection_queue_destroy(ubi);
1561 tree_destroy(&ubi->used);
1562 tree_destroy(&ubi->erroneous);
1563 tree_destroy(&ubi->free);
1564 tree_destroy(&ubi->scrub);
1565 kfree(ubi->lookuptbl);
1566 }
1567
1568 /**
1569 * self_check_ec - make sure that the erase counter of a PEB is correct.
1570 * @ubi: UBI device description object
1571 * @pnum: the physical eraseblock number to check
1572 * @ec: the erase counter to check
1573 *
1574 * This function returns zero if the erase counter of physical eraseblock @pnum
1575 * is equivalent to @ec, and a negative error code if not or if an error
1576 * occurred.
1577 */
1578 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1579 {
1580 int err;
1581 long long read_ec;
1582 struct ubi_ec_hdr *ec_hdr;
1583
1584 if (!ubi->dbg->chk_gen)
1585 return 0;
1586
1587 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1588 if (!ec_hdr)
1589 return -ENOMEM;
1590
1591 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1592 if (err && err != UBI_IO_BITFLIPS) {
1593 /* The header does not have to exist */
1594 err = 0;
1595 goto out_free;
1596 }
1597
1598 read_ec = be64_to_cpu(ec_hdr->ec);
1599 if (ec != read_ec) {
1600 ubi_err("self-check failed for PEB %d", pnum);
1601 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1602 dump_stack();
1603 err = 1;
1604 } else
1605 err = 0;
1606
1607 out_free:
1608 kfree(ec_hdr);
1609 return err;
1610 }
1611
1612 /**
1613 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1614 * @ubi: UBI device description object
1615 * @e: the wear-leveling entry to check
1616 * @root: the root of the tree
1617 *
1618 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1619 * is not.
1620 */
1621 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1622 struct ubi_wl_entry *e, struct rb_root *root)
1623 {
1624 if (!ubi->dbg->chk_gen)
1625 return 0;
1626
1627 if (in_wl_tree(e, root))
1628 return 0;
1629
1630 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
1631 e->pnum, e->ec, root);
1632 dump_stack();
1633 return -EINVAL;
1634 }
1635
1636 /**
1637 * self_check_in_pq - check if wear-leveling entry is in the protection
1638 * queue.
1639 * @ubi: UBI device description object
1640 * @e: the wear-leveling entry to check
1641 *
1642 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1643 */
1644 static int self_check_in_pq(const struct ubi_device *ubi,
1645 struct ubi_wl_entry *e)
1646 {
1647 struct ubi_wl_entry *p;
1648 int i;
1649
1650 if (!ubi->dbg->chk_gen)
1651 return 0;
1652
1653 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1654 list_for_each_entry(p, &ubi->pq[i], u.list)
1655 if (p == e)
1656 return 0;
1657
1658 ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
1659 e->pnum, e->ec);
1660 dump_stack();
1661 return -EINVAL;
1662 }
This page took 0.088724 seconds and 6 git commands to generate.