Input: elantech - discard the first 2 positions on some firmwares
[deliverable/linux.git] / drivers / net / 3c59x.c
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 */
21
22 /*
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32 #define DRV_NAME "3c59x"
33
34
35
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
41
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
62 */
63 #define tx_interrupt_mitigation 1
64
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
99
100 #define RUN_AT(x) (jiffies + (x))
101
102 #include <linux/delay.h>
103
104
105 static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
107
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111
112
113 /* Operational parameter that usually are not changed. */
114
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126
127 #define PFX DRV_NAME ": "
128
129
130
131 /*
132 Theory of Operation
133
134 I. Board Compatibility
135
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145 II. Board-specific settings
146
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154
155 III. Driver operation
156
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193
194 IV. Notes
195
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
201
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
212 };
213
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
227
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
233
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
240
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
247
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
253
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
259
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
265
266 CH_905BT4,
267 CH_920B_EMB_WNM,
268 };
269
270
271 /* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
274 */
275 static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280 } vortex_info_tbl[] __devinitdata = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
291
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
353
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373
374 {NULL,}, /* NULL terminated list. */
375 };
376
377
378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425
426 {0,} /* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429
430
431 /* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
434
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
437 */
438 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
439 #define EL3_CMD 0x0e
440 #define EL3_STATUS 0x0e
441
442 /* The top five bits written to EL3_CMD are a command, the lower
443 11 bits are the parameter, if applicable.
444 Note that 11 parameters bits was fine for ethernet, but the new chip
445 can handle FDDI length frames (~4500 octets) and now parameters count
446 32-bit 'Dwords' rather than octets. */
447
448 enum vortex_cmd {
449 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
450 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
451 UpStall = 6<<11, UpUnstall = (6<<11)+1,
452 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
453 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
454 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
455 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
456 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
457 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
458 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
459
460 /* The SetRxFilter command accepts the following classes: */
461 enum RxFilter {
462 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
463
464 /* Bits in the general status register. */
465 enum vortex_status {
466 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
467 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
468 IntReq = 0x0040, StatsFull = 0x0080,
469 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
470 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
471 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
472 };
473
474 /* Register window 1 offsets, the window used in normal operation.
475 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
476 enum Window1 {
477 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
478 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
479 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
480 };
481 enum Window0 {
482 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
483 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
484 IntrStatus=0x0E, /* Valid in all windows. */
485 };
486 enum Win0_EEPROM_bits {
487 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
488 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
489 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
490 };
491 /* EEPROM locations. */
492 enum eeprom_offset {
493 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
494 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
495 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
496 DriverTune=13, Checksum=15};
497
498 enum Window2 { /* Window 2. */
499 Wn2_ResetOptions=12,
500 };
501 enum Window3 { /* Window 3: MAC/config bits. */
502 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
503 };
504
505 #define BFEXT(value, offset, bitcount) \
506 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
507
508 #define BFINS(lhs, rhs, offset, bitcount) \
509 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
510 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
511
512 #define RAM_SIZE(v) BFEXT(v, 0, 3)
513 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
514 #define RAM_SPEED(v) BFEXT(v, 4, 2)
515 #define ROM_SIZE(v) BFEXT(v, 6, 2)
516 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
517 #define XCVR(v) BFEXT(v, 20, 4)
518 #define AUTOSELECT(v) BFEXT(v, 24, 1)
519
520 enum Window4 { /* Window 4: Xcvr/media bits. */
521 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
522 };
523 enum Win4_Media_bits {
524 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
525 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
526 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
527 Media_LnkBeat = 0x0800,
528 };
529 enum Window7 { /* Window 7: Bus Master control. */
530 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
531 Wn7_MasterStatus = 12,
532 };
533 /* Boomerang bus master control registers. */
534 enum MasterCtrl {
535 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
536 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
537 };
538
539 /* The Rx and Tx descriptor lists.
540 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
541 alignment contraint on tx_ring[] and rx_ring[]. */
542 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
543 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
544 struct boom_rx_desc {
545 __le32 next; /* Last entry points to 0. */
546 __le32 status;
547 __le32 addr; /* Up to 63 addr/len pairs possible. */
548 __le32 length; /* Set LAST_FRAG to indicate last pair. */
549 };
550 /* Values for the Rx status entry. */
551 enum rx_desc_status {
552 RxDComplete=0x00008000, RxDError=0x4000,
553 /* See boomerang_rx() for actual error bits */
554 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
555 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
556 };
557
558 #ifdef MAX_SKB_FRAGS
559 #define DO_ZEROCOPY 1
560 #else
561 #define DO_ZEROCOPY 0
562 #endif
563
564 struct boom_tx_desc {
565 __le32 next; /* Last entry points to 0. */
566 __le32 status; /* bits 0:12 length, others see below. */
567 #if DO_ZEROCOPY
568 struct {
569 __le32 addr;
570 __le32 length;
571 } frag[1+MAX_SKB_FRAGS];
572 #else
573 __le32 addr;
574 __le32 length;
575 #endif
576 };
577
578 /* Values for the Tx status entry. */
579 enum tx_desc_status {
580 CRCDisable=0x2000, TxDComplete=0x8000,
581 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
582 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
583 };
584
585 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
586 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
587
588 struct vortex_extra_stats {
589 unsigned long tx_deferred;
590 unsigned long tx_max_collisions;
591 unsigned long tx_multiple_collisions;
592 unsigned long tx_single_collisions;
593 unsigned long rx_bad_ssd;
594 };
595
596 struct vortex_private {
597 /* The Rx and Tx rings should be quad-word-aligned. */
598 struct boom_rx_desc* rx_ring;
599 struct boom_tx_desc* tx_ring;
600 dma_addr_t rx_ring_dma;
601 dma_addr_t tx_ring_dma;
602 /* The addresses of transmit- and receive-in-place skbuffs. */
603 struct sk_buff* rx_skbuff[RX_RING_SIZE];
604 struct sk_buff* tx_skbuff[TX_RING_SIZE];
605 unsigned int cur_rx, cur_tx; /* The next free ring entry */
606 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
607 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
608 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
609 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
610
611 /* PCI configuration space information. */
612 struct device *gendev;
613 void __iomem *ioaddr; /* IO address space */
614 void __iomem *cb_fn_base; /* CardBus function status addr space. */
615
616 /* Some values here only for performance evaluation and path-coverage */
617 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
618 int card_idx;
619
620 /* The remainder are related to chip state, mostly media selection. */
621 struct timer_list timer; /* Media selection timer. */
622 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
623 int options; /* User-settable misc. driver options. */
624 unsigned int media_override:4, /* Passed-in media type. */
625 default_media:4, /* Read from the EEPROM/Wn3_Config. */
626 full_duplex:1, autoselect:1,
627 bus_master:1, /* Vortex can only do a fragment bus-m. */
628 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
629 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
630 partner_flow_ctrl:1, /* Partner supports flow control */
631 has_nway:1,
632 enable_wol:1, /* Wake-on-LAN is enabled */
633 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
634 open:1,
635 medialock:1,
636 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
637 large_frames:1; /* accept large frames */
638 int drv_flags;
639 u16 status_enable;
640 u16 intr_enable;
641 u16 available_media; /* From Wn3_Options. */
642 u16 capabilities, info1, info2; /* Various, from EEPROM. */
643 u16 advertising; /* NWay media advertisement */
644 unsigned char phys[2]; /* MII device addresses. */
645 u16 deferred; /* Resend these interrupts when we
646 * bale from the ISR */
647 u16 io_size; /* Size of PCI region (for release_region) */
648 spinlock_t lock; /* Serialise access to device & its vortex_private */
649 struct mii_if_info mii; /* MII lib hooks/info */
650 };
651
652 #ifdef CONFIG_PCI
653 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
654 #else
655 #define DEVICE_PCI(dev) NULL
656 #endif
657
658 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
659
660 #ifdef CONFIG_EISA
661 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
662 #else
663 #define DEVICE_EISA(dev) NULL
664 #endif
665
666 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
667
668 /* The action to take with a media selection timer tick.
669 Note that we deviate from the 3Com order by checking 10base2 before AUI.
670 */
671 enum xcvr_types {
672 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
673 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
674 };
675
676 static const struct media_table {
677 char *name;
678 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
679 mask:8, /* The transceiver-present bit in Wn3_Config.*/
680 next:8; /* The media type to try next. */
681 int wait; /* Time before we check media status. */
682 } media_tbl[] = {
683 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
684 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
685 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
686 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
687 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
688 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
689 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
690 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
691 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
692 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
693 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
694 };
695
696 static struct {
697 const char str[ETH_GSTRING_LEN];
698 } ethtool_stats_keys[] = {
699 { "tx_deferred" },
700 { "tx_max_collisions" },
701 { "tx_multiple_collisions" },
702 { "tx_single_collisions" },
703 { "rx_bad_ssd" },
704 };
705
706 /* number of ETHTOOL_GSTATS u64's */
707 #define VORTEX_NUM_STATS 5
708
709 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
710 int chip_idx, int card_idx);
711 static int vortex_up(struct net_device *dev);
712 static void vortex_down(struct net_device *dev, int final);
713 static int vortex_open(struct net_device *dev);
714 static void mdio_sync(void __iomem *ioaddr, int bits);
715 static int mdio_read(struct net_device *dev, int phy_id, int location);
716 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
717 static void vortex_timer(unsigned long arg);
718 static void rx_oom_timer(unsigned long arg);
719 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
720 struct net_device *dev);
721 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
722 struct net_device *dev);
723 static int vortex_rx(struct net_device *dev);
724 static int boomerang_rx(struct net_device *dev);
725 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
726 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
727 static int vortex_close(struct net_device *dev);
728 static void dump_tx_ring(struct net_device *dev);
729 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
730 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
731 static void set_rx_mode(struct net_device *dev);
732 #ifdef CONFIG_PCI
733 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
734 #endif
735 static void vortex_tx_timeout(struct net_device *dev);
736 static void acpi_set_WOL(struct net_device *dev);
737 static const struct ethtool_ops vortex_ethtool_ops;
738 static void set_8021q_mode(struct net_device *dev, int enable);
739
740 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
741 /* Option count limit only -- unlimited interfaces are supported. */
742 #define MAX_UNITS 8
743 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
744 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
745 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
746 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
747 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
748 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
749 static int global_options = -1;
750 static int global_full_duplex = -1;
751 static int global_enable_wol = -1;
752 static int global_use_mmio = -1;
753
754 /* Variables to work-around the Compaq PCI BIOS32 problem. */
755 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
756 static struct net_device *compaq_net_device;
757
758 static int vortex_cards_found;
759
760 module_param(debug, int, 0);
761 module_param(global_options, int, 0);
762 module_param_array(options, int, NULL, 0);
763 module_param(global_full_duplex, int, 0);
764 module_param_array(full_duplex, int, NULL, 0);
765 module_param_array(hw_checksums, int, NULL, 0);
766 module_param_array(flow_ctrl, int, NULL, 0);
767 module_param(global_enable_wol, int, 0);
768 module_param_array(enable_wol, int, NULL, 0);
769 module_param(rx_copybreak, int, 0);
770 module_param(max_interrupt_work, int, 0);
771 module_param(compaq_ioaddr, int, 0);
772 module_param(compaq_irq, int, 0);
773 module_param(compaq_device_id, int, 0);
774 module_param(watchdog, int, 0);
775 module_param(global_use_mmio, int, 0);
776 module_param_array(use_mmio, int, NULL, 0);
777 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
778 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
779 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
780 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
781 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
782 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
783 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
784 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
785 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
786 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
787 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
788 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
789 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
790 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
791 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
792 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
793 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
794
795 #ifdef CONFIG_NET_POLL_CONTROLLER
796 static void poll_vortex(struct net_device *dev)
797 {
798 struct vortex_private *vp = netdev_priv(dev);
799 unsigned long flags;
800 local_irq_save(flags);
801 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
802 local_irq_restore(flags);
803 }
804 #endif
805
806 #ifdef CONFIG_PM
807
808 static int vortex_suspend(struct device *dev)
809 {
810 struct pci_dev *pdev = to_pci_dev(dev);
811 struct net_device *ndev = pci_get_drvdata(pdev);
812
813 if (!ndev || !netif_running(ndev))
814 return 0;
815
816 netif_device_detach(ndev);
817 vortex_down(ndev, 1);
818
819 return 0;
820 }
821
822 static int vortex_resume(struct device *dev)
823 {
824 struct pci_dev *pdev = to_pci_dev(dev);
825 struct net_device *ndev = pci_get_drvdata(pdev);
826 int err;
827
828 if (!ndev || !netif_running(ndev))
829 return 0;
830
831 err = vortex_up(ndev);
832 if (err)
833 return err;
834
835 netif_device_attach(ndev);
836
837 return 0;
838 }
839
840 static const struct dev_pm_ops vortex_pm_ops = {
841 .suspend = vortex_suspend,
842 .resume = vortex_resume,
843 .freeze = vortex_suspend,
844 .thaw = vortex_resume,
845 .poweroff = vortex_suspend,
846 .restore = vortex_resume,
847 };
848
849 #define VORTEX_PM_OPS (&vortex_pm_ops)
850
851 #else /* !CONFIG_PM */
852
853 #define VORTEX_PM_OPS NULL
854
855 #endif /* !CONFIG_PM */
856
857 #ifdef CONFIG_EISA
858 static struct eisa_device_id vortex_eisa_ids[] = {
859 { "TCM5920", CH_3C592 },
860 { "TCM5970", CH_3C597 },
861 { "" }
862 };
863 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
864
865 static int __init vortex_eisa_probe(struct device *device)
866 {
867 void __iomem *ioaddr;
868 struct eisa_device *edev;
869
870 edev = to_eisa_device(device);
871
872 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
873 return -EBUSY;
874
875 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
876
877 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
878 edev->id.driver_data, vortex_cards_found)) {
879 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
880 return -ENODEV;
881 }
882
883 vortex_cards_found++;
884
885 return 0;
886 }
887
888 static int __devexit vortex_eisa_remove(struct device *device)
889 {
890 struct eisa_device *edev;
891 struct net_device *dev;
892 struct vortex_private *vp;
893 void __iomem *ioaddr;
894
895 edev = to_eisa_device(device);
896 dev = eisa_get_drvdata(edev);
897
898 if (!dev) {
899 pr_err("vortex_eisa_remove called for Compaq device!\n");
900 BUG();
901 }
902
903 vp = netdev_priv(dev);
904 ioaddr = vp->ioaddr;
905
906 unregister_netdev(dev);
907 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
908 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
909
910 free_netdev(dev);
911 return 0;
912 }
913
914 static struct eisa_driver vortex_eisa_driver = {
915 .id_table = vortex_eisa_ids,
916 .driver = {
917 .name = "3c59x",
918 .probe = vortex_eisa_probe,
919 .remove = __devexit_p(vortex_eisa_remove)
920 }
921 };
922
923 #endif /* CONFIG_EISA */
924
925 /* returns count found (>= 0), or negative on error */
926 static int __init vortex_eisa_init(void)
927 {
928 int eisa_found = 0;
929 int orig_cards_found = vortex_cards_found;
930
931 #ifdef CONFIG_EISA
932 int err;
933
934 err = eisa_driver_register (&vortex_eisa_driver);
935 if (!err) {
936 /*
937 * Because of the way EISA bus is probed, we cannot assume
938 * any device have been found when we exit from
939 * eisa_driver_register (the bus root driver may not be
940 * initialized yet). So we blindly assume something was
941 * found, and let the sysfs magic happend...
942 */
943 eisa_found = 1;
944 }
945 #endif
946
947 /* Special code to work-around the Compaq PCI BIOS32 problem. */
948 if (compaq_ioaddr) {
949 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
950 compaq_irq, compaq_device_id, vortex_cards_found++);
951 }
952
953 return vortex_cards_found - orig_cards_found + eisa_found;
954 }
955
956 /* returns count (>= 0), or negative on error */
957 static int __devinit vortex_init_one(struct pci_dev *pdev,
958 const struct pci_device_id *ent)
959 {
960 int rc, unit, pci_bar;
961 struct vortex_chip_info *vci;
962 void __iomem *ioaddr;
963
964 /* wake up and enable device */
965 rc = pci_enable_device(pdev);
966 if (rc < 0)
967 goto out;
968
969 unit = vortex_cards_found;
970
971 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
972 /* Determine the default if the user didn't override us */
973 vci = &vortex_info_tbl[ent->driver_data];
974 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
975 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
976 pci_bar = use_mmio[unit] ? 1 : 0;
977 else
978 pci_bar = global_use_mmio ? 1 : 0;
979
980 ioaddr = pci_iomap(pdev, pci_bar, 0);
981 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
982 ioaddr = pci_iomap(pdev, 0, 0);
983
984 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
985 ent->driver_data, unit);
986 if (rc < 0) {
987 pci_disable_device(pdev);
988 goto out;
989 }
990
991 vortex_cards_found++;
992
993 out:
994 return rc;
995 }
996
997 static const struct net_device_ops boomrang_netdev_ops = {
998 .ndo_open = vortex_open,
999 .ndo_stop = vortex_close,
1000 .ndo_start_xmit = boomerang_start_xmit,
1001 .ndo_tx_timeout = vortex_tx_timeout,
1002 .ndo_get_stats = vortex_get_stats,
1003 #ifdef CONFIG_PCI
1004 .ndo_do_ioctl = vortex_ioctl,
1005 #endif
1006 .ndo_set_multicast_list = set_rx_mode,
1007 .ndo_change_mtu = eth_change_mtu,
1008 .ndo_set_mac_address = eth_mac_addr,
1009 .ndo_validate_addr = eth_validate_addr,
1010 #ifdef CONFIG_NET_POLL_CONTROLLER
1011 .ndo_poll_controller = poll_vortex,
1012 #endif
1013 };
1014
1015 static const struct net_device_ops vortex_netdev_ops = {
1016 .ndo_open = vortex_open,
1017 .ndo_stop = vortex_close,
1018 .ndo_start_xmit = vortex_start_xmit,
1019 .ndo_tx_timeout = vortex_tx_timeout,
1020 .ndo_get_stats = vortex_get_stats,
1021 #ifdef CONFIG_PCI
1022 .ndo_do_ioctl = vortex_ioctl,
1023 #endif
1024 .ndo_set_multicast_list = set_rx_mode,
1025 .ndo_change_mtu = eth_change_mtu,
1026 .ndo_set_mac_address = eth_mac_addr,
1027 .ndo_validate_addr = eth_validate_addr,
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1029 .ndo_poll_controller = poll_vortex,
1030 #endif
1031 };
1032
1033 /*
1034 * Start up the PCI/EISA device which is described by *gendev.
1035 * Return 0 on success.
1036 *
1037 * NOTE: pdev can be NULL, for the case of a Compaq device
1038 */
1039 static int __devinit vortex_probe1(struct device *gendev,
1040 void __iomem *ioaddr, int irq,
1041 int chip_idx, int card_idx)
1042 {
1043 struct vortex_private *vp;
1044 int option;
1045 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1046 int i, step;
1047 struct net_device *dev;
1048 static int printed_version;
1049 int retval, print_info;
1050 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1051 const char *print_name = "3c59x";
1052 struct pci_dev *pdev = NULL;
1053 struct eisa_device *edev = NULL;
1054
1055 if (!printed_version) {
1056 pr_info("%s", version);
1057 printed_version = 1;
1058 }
1059
1060 if (gendev) {
1061 if ((pdev = DEVICE_PCI(gendev))) {
1062 print_name = pci_name(pdev);
1063 }
1064
1065 if ((edev = DEVICE_EISA(gendev))) {
1066 print_name = dev_name(&edev->dev);
1067 }
1068 }
1069
1070 dev = alloc_etherdev(sizeof(*vp));
1071 retval = -ENOMEM;
1072 if (!dev) {
1073 pr_err(PFX "unable to allocate etherdev, aborting\n");
1074 goto out;
1075 }
1076 SET_NETDEV_DEV(dev, gendev);
1077 vp = netdev_priv(dev);
1078
1079 option = global_options;
1080
1081 /* The lower four bits are the media type. */
1082 if (dev->mem_start) {
1083 /*
1084 * The 'options' param is passed in as the third arg to the
1085 * LILO 'ether=' argument for non-modular use
1086 */
1087 option = dev->mem_start;
1088 }
1089 else if (card_idx < MAX_UNITS) {
1090 if (options[card_idx] >= 0)
1091 option = options[card_idx];
1092 }
1093
1094 if (option > 0) {
1095 if (option & 0x8000)
1096 vortex_debug = 7;
1097 if (option & 0x4000)
1098 vortex_debug = 2;
1099 if (option & 0x0400)
1100 vp->enable_wol = 1;
1101 }
1102
1103 print_info = (vortex_debug > 1);
1104 if (print_info)
1105 pr_info("See Documentation/networking/vortex.txt\n");
1106
1107 pr_info("%s: 3Com %s %s at %p.\n",
1108 print_name,
1109 pdev ? "PCI" : "EISA",
1110 vci->name,
1111 ioaddr);
1112
1113 dev->base_addr = (unsigned long)ioaddr;
1114 dev->irq = irq;
1115 dev->mtu = mtu;
1116 vp->ioaddr = ioaddr;
1117 vp->large_frames = mtu > 1500;
1118 vp->drv_flags = vci->drv_flags;
1119 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1120 vp->io_size = vci->io_size;
1121 vp->card_idx = card_idx;
1122
1123 /* module list only for Compaq device */
1124 if (gendev == NULL) {
1125 compaq_net_device = dev;
1126 }
1127
1128 /* PCI-only startup logic */
1129 if (pdev) {
1130 /* EISA resources already marked, so only PCI needs to do this here */
1131 /* Ignore return value, because Cardbus drivers already allocate for us */
1132 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1133 vp->must_free_region = 1;
1134
1135 /* enable bus-mastering if necessary */
1136 if (vci->flags & PCI_USES_MASTER)
1137 pci_set_master(pdev);
1138
1139 if (vci->drv_flags & IS_VORTEX) {
1140 u8 pci_latency;
1141 u8 new_latency = 248;
1142
1143 /* Check the PCI latency value. On the 3c590 series the latency timer
1144 must be set to the maximum value to avoid data corruption that occurs
1145 when the timer expires during a transfer. This bug exists the Vortex
1146 chip only. */
1147 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1148 if (pci_latency < new_latency) {
1149 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1150 print_name, pci_latency, new_latency);
1151 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1152 }
1153 }
1154 }
1155
1156 spin_lock_init(&vp->lock);
1157 vp->gendev = gendev;
1158 vp->mii.dev = dev;
1159 vp->mii.mdio_read = mdio_read;
1160 vp->mii.mdio_write = mdio_write;
1161 vp->mii.phy_id_mask = 0x1f;
1162 vp->mii.reg_num_mask = 0x1f;
1163
1164 /* Makes sure rings are at least 16 byte aligned. */
1165 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1166 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1167 &vp->rx_ring_dma);
1168 retval = -ENOMEM;
1169 if (!vp->rx_ring)
1170 goto free_region;
1171
1172 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1173 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1174
1175 /* if we are a PCI driver, we store info in pdev->driver_data
1176 * instead of a module list */
1177 if (pdev)
1178 pci_set_drvdata(pdev, dev);
1179 if (edev)
1180 eisa_set_drvdata(edev, dev);
1181
1182 vp->media_override = 7;
1183 if (option >= 0) {
1184 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1185 if (vp->media_override != 7)
1186 vp->medialock = 1;
1187 vp->full_duplex = (option & 0x200) ? 1 : 0;
1188 vp->bus_master = (option & 16) ? 1 : 0;
1189 }
1190
1191 if (global_full_duplex > 0)
1192 vp->full_duplex = 1;
1193 if (global_enable_wol > 0)
1194 vp->enable_wol = 1;
1195
1196 if (card_idx < MAX_UNITS) {
1197 if (full_duplex[card_idx] > 0)
1198 vp->full_duplex = 1;
1199 if (flow_ctrl[card_idx] > 0)
1200 vp->flow_ctrl = 1;
1201 if (enable_wol[card_idx] > 0)
1202 vp->enable_wol = 1;
1203 }
1204
1205 vp->mii.force_media = vp->full_duplex;
1206 vp->options = option;
1207 /* Read the station address from the EEPROM. */
1208 EL3WINDOW(0);
1209 {
1210 int base;
1211
1212 if (vci->drv_flags & EEPROM_8BIT)
1213 base = 0x230;
1214 else if (vci->drv_flags & EEPROM_OFFSET)
1215 base = EEPROM_Read + 0x30;
1216 else
1217 base = EEPROM_Read;
1218
1219 for (i = 0; i < 0x40; i++) {
1220 int timer;
1221 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1222 /* Pause for at least 162 us. for the read to take place. */
1223 for (timer = 10; timer >= 0; timer--) {
1224 udelay(162);
1225 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1226 break;
1227 }
1228 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1229 }
1230 }
1231 for (i = 0; i < 0x18; i++)
1232 checksum ^= eeprom[i];
1233 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1234 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1235 while (i < 0x21)
1236 checksum ^= eeprom[i++];
1237 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1238 }
1239 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1240 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1241 for (i = 0; i < 3; i++)
1242 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1243 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1244 if (print_info)
1245 pr_cont(" %pM", dev->dev_addr);
1246 /* Unfortunately an all zero eeprom passes the checksum and this
1247 gets found in the wild in failure cases. Crypto is hard 8) */
1248 if (!is_valid_ether_addr(dev->dev_addr)) {
1249 retval = -EINVAL;
1250 pr_err("*** EEPROM MAC address is invalid.\n");
1251 goto free_ring; /* With every pack */
1252 }
1253 EL3WINDOW(2);
1254 for (i = 0; i < 6; i++)
1255 iowrite8(dev->dev_addr[i], ioaddr + i);
1256
1257 if (print_info)
1258 pr_cont(", IRQ %d\n", dev->irq);
1259 /* Tell them about an invalid IRQ. */
1260 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1261 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1262 dev->irq);
1263
1264 EL3WINDOW(4);
1265 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1266 if (print_info) {
1267 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1268 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1269 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1270 }
1271
1272
1273 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1274 unsigned short n;
1275
1276 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1277 if (!vp->cb_fn_base) {
1278 retval = -ENOMEM;
1279 goto free_ring;
1280 }
1281
1282 if (print_info) {
1283 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1284 print_name,
1285 (unsigned long long)pci_resource_start(pdev, 2),
1286 vp->cb_fn_base);
1287 }
1288 EL3WINDOW(2);
1289
1290 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1291 if (vp->drv_flags & INVERT_LED_PWR)
1292 n |= 0x10;
1293 if (vp->drv_flags & INVERT_MII_PWR)
1294 n |= 0x4000;
1295 iowrite16(n, ioaddr + Wn2_ResetOptions);
1296 if (vp->drv_flags & WNO_XCVR_PWR) {
1297 EL3WINDOW(0);
1298 iowrite16(0x0800, ioaddr);
1299 }
1300 }
1301
1302 /* Extract our information from the EEPROM data. */
1303 vp->info1 = eeprom[13];
1304 vp->info2 = eeprom[15];
1305 vp->capabilities = eeprom[16];
1306
1307 if (vp->info1 & 0x8000) {
1308 vp->full_duplex = 1;
1309 if (print_info)
1310 pr_info("Full duplex capable\n");
1311 }
1312
1313 {
1314 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1315 unsigned int config;
1316 EL3WINDOW(3);
1317 vp->available_media = ioread16(ioaddr + Wn3_Options);
1318 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1319 vp->available_media = 0x40;
1320 config = ioread32(ioaddr + Wn3_Config);
1321 if (print_info) {
1322 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1323 config, ioread16(ioaddr + Wn3_Options));
1324 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1325 8 << RAM_SIZE(config),
1326 RAM_WIDTH(config) ? "word" : "byte",
1327 ram_split[RAM_SPLIT(config)],
1328 AUTOSELECT(config) ? "autoselect/" : "",
1329 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1330 media_tbl[XCVR(config)].name);
1331 }
1332 vp->default_media = XCVR(config);
1333 if (vp->default_media == XCVR_NWAY)
1334 vp->has_nway = 1;
1335 vp->autoselect = AUTOSELECT(config);
1336 }
1337
1338 if (vp->media_override != 7) {
1339 pr_info("%s: Media override to transceiver type %d (%s).\n",
1340 print_name, vp->media_override,
1341 media_tbl[vp->media_override].name);
1342 dev->if_port = vp->media_override;
1343 } else
1344 dev->if_port = vp->default_media;
1345
1346 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1347 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1348 int phy, phy_idx = 0;
1349 EL3WINDOW(4);
1350 mii_preamble_required++;
1351 if (vp->drv_flags & EXTRA_PREAMBLE)
1352 mii_preamble_required++;
1353 mdio_sync(ioaddr, 32);
1354 mdio_read(dev, 24, MII_BMSR);
1355 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1356 int mii_status, phyx;
1357
1358 /*
1359 * For the 3c905CX we look at index 24 first, because it bogusly
1360 * reports an external PHY at all indices
1361 */
1362 if (phy == 0)
1363 phyx = 24;
1364 else if (phy <= 24)
1365 phyx = phy - 1;
1366 else
1367 phyx = phy;
1368 mii_status = mdio_read(dev, phyx, MII_BMSR);
1369 if (mii_status && mii_status != 0xffff) {
1370 vp->phys[phy_idx++] = phyx;
1371 if (print_info) {
1372 pr_info(" MII transceiver found at address %d, status %4x.\n",
1373 phyx, mii_status);
1374 }
1375 if ((mii_status & 0x0040) == 0)
1376 mii_preamble_required++;
1377 }
1378 }
1379 mii_preamble_required--;
1380 if (phy_idx == 0) {
1381 pr_warning(" ***WARNING*** No MII transceivers found!\n");
1382 vp->phys[0] = 24;
1383 } else {
1384 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1385 if (vp->full_duplex) {
1386 /* Only advertise the FD media types. */
1387 vp->advertising &= ~0x02A0;
1388 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1389 }
1390 }
1391 vp->mii.phy_id = vp->phys[0];
1392 }
1393
1394 if (vp->capabilities & CapBusMaster) {
1395 vp->full_bus_master_tx = 1;
1396 if (print_info) {
1397 pr_info(" Enabling bus-master transmits and %s receives.\n",
1398 (vp->info2 & 1) ? "early" : "whole-frame" );
1399 }
1400 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1401 vp->bus_master = 0; /* AKPM: vortex only */
1402 }
1403
1404 /* The 3c59x-specific entries in the device structure. */
1405 if (vp->full_bus_master_tx) {
1406 dev->netdev_ops = &boomrang_netdev_ops;
1407 /* Actually, it still should work with iommu. */
1408 if (card_idx < MAX_UNITS &&
1409 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1410 hw_checksums[card_idx] == 1)) {
1411 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1412 }
1413 } else
1414 dev->netdev_ops = &vortex_netdev_ops;
1415
1416 if (print_info) {
1417 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1418 print_name,
1419 (dev->features & NETIF_F_SG) ? "en":"dis",
1420 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1421 }
1422
1423 dev->ethtool_ops = &vortex_ethtool_ops;
1424 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1425
1426 if (pdev) {
1427 vp->pm_state_valid = 1;
1428 pci_save_state(VORTEX_PCI(vp));
1429 acpi_set_WOL(dev);
1430 }
1431 retval = register_netdev(dev);
1432 if (retval == 0)
1433 return 0;
1434
1435 free_ring:
1436 pci_free_consistent(pdev,
1437 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1438 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1439 vp->rx_ring,
1440 vp->rx_ring_dma);
1441 free_region:
1442 if (vp->must_free_region)
1443 release_region(dev->base_addr, vci->io_size);
1444 free_netdev(dev);
1445 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1446 out:
1447 return retval;
1448 }
1449
1450 static void
1451 issue_and_wait(struct net_device *dev, int cmd)
1452 {
1453 struct vortex_private *vp = netdev_priv(dev);
1454 void __iomem *ioaddr = vp->ioaddr;
1455 int i;
1456
1457 iowrite16(cmd, ioaddr + EL3_CMD);
1458 for (i = 0; i < 2000; i++) {
1459 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1460 return;
1461 }
1462
1463 /* OK, that didn't work. Do it the slow way. One second */
1464 for (i = 0; i < 100000; i++) {
1465 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1466 if (vortex_debug > 1)
1467 pr_info("%s: command 0x%04x took %d usecs\n",
1468 dev->name, cmd, i * 10);
1469 return;
1470 }
1471 udelay(10);
1472 }
1473 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1474 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1475 }
1476
1477 static void
1478 vortex_set_duplex(struct net_device *dev)
1479 {
1480 struct vortex_private *vp = netdev_priv(dev);
1481 void __iomem *ioaddr = vp->ioaddr;
1482
1483 pr_info("%s: setting %s-duplex.\n",
1484 dev->name, (vp->full_duplex) ? "full" : "half");
1485
1486 EL3WINDOW(3);
1487 /* Set the full-duplex bit. */
1488 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1489 (vp->large_frames ? 0x40 : 0) |
1490 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1491 0x100 : 0),
1492 ioaddr + Wn3_MAC_Ctrl);
1493 }
1494
1495 static void vortex_check_media(struct net_device *dev, unsigned int init)
1496 {
1497 struct vortex_private *vp = netdev_priv(dev);
1498 unsigned int ok_to_print = 0;
1499
1500 if (vortex_debug > 3)
1501 ok_to_print = 1;
1502
1503 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1504 vp->full_duplex = vp->mii.full_duplex;
1505 vortex_set_duplex(dev);
1506 } else if (init) {
1507 vortex_set_duplex(dev);
1508 }
1509 }
1510
1511 static int
1512 vortex_up(struct net_device *dev)
1513 {
1514 struct vortex_private *vp = netdev_priv(dev);
1515 void __iomem *ioaddr = vp->ioaddr;
1516 unsigned int config;
1517 int i, mii_reg1, mii_reg5, err = 0;
1518
1519 if (VORTEX_PCI(vp)) {
1520 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1521 if (vp->pm_state_valid)
1522 pci_restore_state(VORTEX_PCI(vp));
1523 err = pci_enable_device(VORTEX_PCI(vp));
1524 if (err) {
1525 pr_warning("%s: Could not enable device\n",
1526 dev->name);
1527 goto err_out;
1528 }
1529 }
1530
1531 /* Before initializing select the active media port. */
1532 EL3WINDOW(3);
1533 config = ioread32(ioaddr + Wn3_Config);
1534
1535 if (vp->media_override != 7) {
1536 pr_info("%s: Media override to transceiver %d (%s).\n",
1537 dev->name, vp->media_override,
1538 media_tbl[vp->media_override].name);
1539 dev->if_port = vp->media_override;
1540 } else if (vp->autoselect) {
1541 if (vp->has_nway) {
1542 if (vortex_debug > 1)
1543 pr_info("%s: using NWAY device table, not %d\n",
1544 dev->name, dev->if_port);
1545 dev->if_port = XCVR_NWAY;
1546 } else {
1547 /* Find first available media type, starting with 100baseTx. */
1548 dev->if_port = XCVR_100baseTx;
1549 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1550 dev->if_port = media_tbl[dev->if_port].next;
1551 if (vortex_debug > 1)
1552 pr_info("%s: first available media type: %s\n",
1553 dev->name, media_tbl[dev->if_port].name);
1554 }
1555 } else {
1556 dev->if_port = vp->default_media;
1557 if (vortex_debug > 1)
1558 pr_info("%s: using default media %s\n",
1559 dev->name, media_tbl[dev->if_port].name);
1560 }
1561
1562 init_timer(&vp->timer);
1563 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1564 vp->timer.data = (unsigned long)dev;
1565 vp->timer.function = vortex_timer; /* timer handler */
1566 add_timer(&vp->timer);
1567
1568 init_timer(&vp->rx_oom_timer);
1569 vp->rx_oom_timer.data = (unsigned long)dev;
1570 vp->rx_oom_timer.function = rx_oom_timer;
1571
1572 if (vortex_debug > 1)
1573 pr_debug("%s: Initial media type %s.\n",
1574 dev->name, media_tbl[dev->if_port].name);
1575
1576 vp->full_duplex = vp->mii.force_media;
1577 config = BFINS(config, dev->if_port, 20, 4);
1578 if (vortex_debug > 6)
1579 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1580 iowrite32(config, ioaddr + Wn3_Config);
1581
1582 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1583 EL3WINDOW(4);
1584 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1585 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1586 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1587 vp->mii.full_duplex = vp->full_duplex;
1588
1589 vortex_check_media(dev, 1);
1590 }
1591 else
1592 vortex_set_duplex(dev);
1593
1594 issue_and_wait(dev, TxReset);
1595 /*
1596 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1597 */
1598 issue_and_wait(dev, RxReset|0x04);
1599
1600
1601 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1602
1603 if (vortex_debug > 1) {
1604 EL3WINDOW(4);
1605 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1606 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1607 }
1608
1609 /* Set the station address and mask in window 2 each time opened. */
1610 EL3WINDOW(2);
1611 for (i = 0; i < 6; i++)
1612 iowrite8(dev->dev_addr[i], ioaddr + i);
1613 for (; i < 12; i+=2)
1614 iowrite16(0, ioaddr + i);
1615
1616 if (vp->cb_fn_base) {
1617 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1618 if (vp->drv_flags & INVERT_LED_PWR)
1619 n |= 0x10;
1620 if (vp->drv_flags & INVERT_MII_PWR)
1621 n |= 0x4000;
1622 iowrite16(n, ioaddr + Wn2_ResetOptions);
1623 }
1624
1625 if (dev->if_port == XCVR_10base2)
1626 /* Start the thinnet transceiver. We should really wait 50ms...*/
1627 iowrite16(StartCoax, ioaddr + EL3_CMD);
1628 if (dev->if_port != XCVR_NWAY) {
1629 EL3WINDOW(4);
1630 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1631 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1632 }
1633
1634 /* Switch to the stats window, and clear all stats by reading. */
1635 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1636 EL3WINDOW(6);
1637 for (i = 0; i < 10; i++)
1638 ioread8(ioaddr + i);
1639 ioread16(ioaddr + 10);
1640 ioread16(ioaddr + 12);
1641 /* New: On the Vortex we must also clear the BadSSD counter. */
1642 EL3WINDOW(4);
1643 ioread8(ioaddr + 12);
1644 /* ..and on the Boomerang we enable the extra statistics bits. */
1645 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1646
1647 /* Switch to register set 7 for normal use. */
1648 EL3WINDOW(7);
1649
1650 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1651 vp->cur_rx = vp->dirty_rx = 0;
1652 /* Initialize the RxEarly register as recommended. */
1653 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1654 iowrite32(0x0020, ioaddr + PktStatus);
1655 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1656 }
1657 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1658 vp->cur_tx = vp->dirty_tx = 0;
1659 if (vp->drv_flags & IS_BOOMERANG)
1660 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1661 /* Clear the Rx, Tx rings. */
1662 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1663 vp->rx_ring[i].status = 0;
1664 for (i = 0; i < TX_RING_SIZE; i++)
1665 vp->tx_skbuff[i] = NULL;
1666 iowrite32(0, ioaddr + DownListPtr);
1667 }
1668 /* Set receiver mode: presumably accept b-case and phys addr only. */
1669 set_rx_mode(dev);
1670 /* enable 802.1q tagged frames */
1671 set_8021q_mode(dev, 1);
1672 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1673
1674 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1675 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1676 /* Allow status bits to be seen. */
1677 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1678 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1679 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1680 (vp->bus_master ? DMADone : 0);
1681 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1682 (vp->full_bus_master_rx ? 0 : RxComplete) |
1683 StatsFull | HostError | TxComplete | IntReq
1684 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1685 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1686 /* Ack all pending events, and set active indicator mask. */
1687 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1688 ioaddr + EL3_CMD);
1689 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1690 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1691 iowrite32(0x8000, vp->cb_fn_base + 4);
1692 netif_start_queue (dev);
1693 err_out:
1694 return err;
1695 }
1696
1697 static int
1698 vortex_open(struct net_device *dev)
1699 {
1700 struct vortex_private *vp = netdev_priv(dev);
1701 int i;
1702 int retval;
1703
1704 /* Use the now-standard shared IRQ implementation. */
1705 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1706 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1707 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1708 goto err;
1709 }
1710
1711 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1712 if (vortex_debug > 2)
1713 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1714 for (i = 0; i < RX_RING_SIZE; i++) {
1715 struct sk_buff *skb;
1716 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1717 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1718 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1719
1720 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1721 GFP_KERNEL);
1722 vp->rx_skbuff[i] = skb;
1723 if (skb == NULL)
1724 break; /* Bad news! */
1725
1726 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1727 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1728 }
1729 if (i != RX_RING_SIZE) {
1730 int j;
1731 pr_emerg("%s: no memory for rx ring\n", dev->name);
1732 for (j = 0; j < i; j++) {
1733 if (vp->rx_skbuff[j]) {
1734 dev_kfree_skb(vp->rx_skbuff[j]);
1735 vp->rx_skbuff[j] = NULL;
1736 }
1737 }
1738 retval = -ENOMEM;
1739 goto err_free_irq;
1740 }
1741 /* Wrap the ring. */
1742 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1743 }
1744
1745 retval = vortex_up(dev);
1746 if (!retval)
1747 goto out;
1748
1749 err_free_irq:
1750 free_irq(dev->irq, dev);
1751 err:
1752 if (vortex_debug > 1)
1753 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1754 out:
1755 return retval;
1756 }
1757
1758 static void
1759 vortex_timer(unsigned long data)
1760 {
1761 struct net_device *dev = (struct net_device *)data;
1762 struct vortex_private *vp = netdev_priv(dev);
1763 void __iomem *ioaddr = vp->ioaddr;
1764 int next_tick = 60*HZ;
1765 int ok = 0;
1766 int media_status, old_window;
1767
1768 if (vortex_debug > 2) {
1769 pr_debug("%s: Media selection timer tick happened, %s.\n",
1770 dev->name, media_tbl[dev->if_port].name);
1771 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1772 }
1773
1774 disable_irq_lockdep(dev->irq);
1775 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1776 EL3WINDOW(4);
1777 media_status = ioread16(ioaddr + Wn4_Media);
1778 switch (dev->if_port) {
1779 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1780 if (media_status & Media_LnkBeat) {
1781 netif_carrier_on(dev);
1782 ok = 1;
1783 if (vortex_debug > 1)
1784 pr_debug("%s: Media %s has link beat, %x.\n",
1785 dev->name, media_tbl[dev->if_port].name, media_status);
1786 } else {
1787 netif_carrier_off(dev);
1788 if (vortex_debug > 1) {
1789 pr_debug("%s: Media %s has no link beat, %x.\n",
1790 dev->name, media_tbl[dev->if_port].name, media_status);
1791 }
1792 }
1793 break;
1794 case XCVR_MII: case XCVR_NWAY:
1795 {
1796 ok = 1;
1797 /* Interrupts are already disabled */
1798 spin_lock(&vp->lock);
1799 vortex_check_media(dev, 0);
1800 spin_unlock(&vp->lock);
1801 }
1802 break;
1803 default: /* Other media types handled by Tx timeouts. */
1804 if (vortex_debug > 1)
1805 pr_debug("%s: Media %s has no indication, %x.\n",
1806 dev->name, media_tbl[dev->if_port].name, media_status);
1807 ok = 1;
1808 }
1809
1810 if (!netif_carrier_ok(dev))
1811 next_tick = 5*HZ;
1812
1813 if (vp->medialock)
1814 goto leave_media_alone;
1815
1816 if (!ok) {
1817 unsigned int config;
1818
1819 do {
1820 dev->if_port = media_tbl[dev->if_port].next;
1821 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1822 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1823 dev->if_port = vp->default_media;
1824 if (vortex_debug > 1)
1825 pr_debug("%s: Media selection failing, using default %s port.\n",
1826 dev->name, media_tbl[dev->if_port].name);
1827 } else {
1828 if (vortex_debug > 1)
1829 pr_debug("%s: Media selection failed, now trying %s port.\n",
1830 dev->name, media_tbl[dev->if_port].name);
1831 next_tick = media_tbl[dev->if_port].wait;
1832 }
1833 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1834 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1835
1836 EL3WINDOW(3);
1837 config = ioread32(ioaddr + Wn3_Config);
1838 config = BFINS(config, dev->if_port, 20, 4);
1839 iowrite32(config, ioaddr + Wn3_Config);
1840
1841 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1842 ioaddr + EL3_CMD);
1843 if (vortex_debug > 1)
1844 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1845 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1846 }
1847
1848 leave_media_alone:
1849 if (vortex_debug > 2)
1850 pr_debug("%s: Media selection timer finished, %s.\n",
1851 dev->name, media_tbl[dev->if_port].name);
1852
1853 EL3WINDOW(old_window);
1854 enable_irq_lockdep(dev->irq);
1855 mod_timer(&vp->timer, RUN_AT(next_tick));
1856 if (vp->deferred)
1857 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1858 }
1859
1860 static void vortex_tx_timeout(struct net_device *dev)
1861 {
1862 struct vortex_private *vp = netdev_priv(dev);
1863 void __iomem *ioaddr = vp->ioaddr;
1864
1865 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1866 dev->name, ioread8(ioaddr + TxStatus),
1867 ioread16(ioaddr + EL3_STATUS));
1868 EL3WINDOW(4);
1869 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1870 ioread16(ioaddr + Wn4_NetDiag),
1871 ioread16(ioaddr + Wn4_Media),
1872 ioread32(ioaddr + PktStatus),
1873 ioread16(ioaddr + Wn4_FIFODiag));
1874 /* Slight code bloat to be user friendly. */
1875 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1876 pr_err("%s: Transmitter encountered 16 collisions --"
1877 " network cable problem?\n", dev->name);
1878 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1879 pr_err("%s: Interrupt posted but not delivered --"
1880 " IRQ blocked by another device?\n", dev->name);
1881 /* Bad idea here.. but we might as well handle a few events. */
1882 {
1883 /*
1884 * Block interrupts because vortex_interrupt does a bare spin_lock()
1885 */
1886 unsigned long flags;
1887 local_irq_save(flags);
1888 if (vp->full_bus_master_tx)
1889 boomerang_interrupt(dev->irq, dev);
1890 else
1891 vortex_interrupt(dev->irq, dev);
1892 local_irq_restore(flags);
1893 }
1894 }
1895
1896 if (vortex_debug > 0)
1897 dump_tx_ring(dev);
1898
1899 issue_and_wait(dev, TxReset);
1900
1901 dev->stats.tx_errors++;
1902 if (vp->full_bus_master_tx) {
1903 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1904 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1905 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1906 ioaddr + DownListPtr);
1907 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1908 netif_wake_queue (dev);
1909 if (vp->drv_flags & IS_BOOMERANG)
1910 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1911 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1912 } else {
1913 dev->stats.tx_dropped++;
1914 netif_wake_queue(dev);
1915 }
1916
1917 /* Issue Tx Enable */
1918 iowrite16(TxEnable, ioaddr + EL3_CMD);
1919 dev->trans_start = jiffies; /* prevent tx timeout */
1920
1921 /* Switch to register set 7 for normal use. */
1922 EL3WINDOW(7);
1923 }
1924
1925 /*
1926 * Handle uncommon interrupt sources. This is a separate routine to minimize
1927 * the cache impact.
1928 */
1929 static void
1930 vortex_error(struct net_device *dev, int status)
1931 {
1932 struct vortex_private *vp = netdev_priv(dev);
1933 void __iomem *ioaddr = vp->ioaddr;
1934 int do_tx_reset = 0, reset_mask = 0;
1935 unsigned char tx_status = 0;
1936
1937 if (vortex_debug > 2) {
1938 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1939 }
1940
1941 if (status & TxComplete) { /* Really "TxError" for us. */
1942 tx_status = ioread8(ioaddr + TxStatus);
1943 /* Presumably a tx-timeout. We must merely re-enable. */
1944 if (vortex_debug > 2 ||
1945 (tx_status != 0x88 && vortex_debug > 0)) {
1946 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1947 dev->name, tx_status);
1948 if (tx_status == 0x82) {
1949 pr_err("Probably a duplex mismatch. See "
1950 "Documentation/networking/vortex.txt\n");
1951 }
1952 dump_tx_ring(dev);
1953 }
1954 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1955 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1956 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1957 iowrite8(0, ioaddr + TxStatus);
1958 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1959 do_tx_reset = 1;
1960 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1961 do_tx_reset = 1;
1962 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1963 } else { /* Merely re-enable the transmitter. */
1964 iowrite16(TxEnable, ioaddr + EL3_CMD);
1965 }
1966 }
1967
1968 if (status & RxEarly) { /* Rx early is unused. */
1969 vortex_rx(dev);
1970 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1971 }
1972 if (status & StatsFull) { /* Empty statistics. */
1973 static int DoneDidThat;
1974 if (vortex_debug > 4)
1975 pr_debug("%s: Updating stats.\n", dev->name);
1976 update_stats(ioaddr, dev);
1977 /* HACK: Disable statistics as an interrupt source. */
1978 /* This occurs when we have the wrong media type! */
1979 if (DoneDidThat == 0 &&
1980 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1981 pr_warning("%s: Updating statistics failed, disabling "
1982 "stats as an interrupt source.\n", dev->name);
1983 EL3WINDOW(5);
1984 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1985 vp->intr_enable &= ~StatsFull;
1986 EL3WINDOW(7);
1987 DoneDidThat++;
1988 }
1989 }
1990 if (status & IntReq) { /* Restore all interrupt sources. */
1991 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1992 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1993 }
1994 if (status & HostError) {
1995 u16 fifo_diag;
1996 EL3WINDOW(4);
1997 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
1998 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
1999 dev->name, fifo_diag);
2000 /* Adapter failure requires Tx/Rx reset and reinit. */
2001 if (vp->full_bus_master_tx) {
2002 int bus_status = ioread32(ioaddr + PktStatus);
2003 /* 0x80000000 PCI master abort. */
2004 /* 0x40000000 PCI target abort. */
2005 if (vortex_debug)
2006 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2007
2008 /* In this case, blow the card away */
2009 /* Must not enter D3 or we can't legally issue the reset! */
2010 vortex_down(dev, 0);
2011 issue_and_wait(dev, TotalReset | 0xff);
2012 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2013 } else if (fifo_diag & 0x0400)
2014 do_tx_reset = 1;
2015 if (fifo_diag & 0x3000) {
2016 /* Reset Rx fifo and upload logic */
2017 issue_and_wait(dev, RxReset|0x07);
2018 /* Set the Rx filter to the current state. */
2019 set_rx_mode(dev);
2020 /* enable 802.1q VLAN tagged frames */
2021 set_8021q_mode(dev, 1);
2022 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2023 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2024 }
2025 }
2026
2027 if (do_tx_reset) {
2028 issue_and_wait(dev, TxReset|reset_mask);
2029 iowrite16(TxEnable, ioaddr + EL3_CMD);
2030 if (!vp->full_bus_master_tx)
2031 netif_wake_queue(dev);
2032 }
2033 }
2034
2035 static netdev_tx_t
2036 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2037 {
2038 struct vortex_private *vp = netdev_priv(dev);
2039 void __iomem *ioaddr = vp->ioaddr;
2040
2041 /* Put out the doubleword header... */
2042 iowrite32(skb->len, ioaddr + TX_FIFO);
2043 if (vp->bus_master) {
2044 /* Set the bus-master controller to transfer the packet. */
2045 int len = (skb->len + 3) & ~3;
2046 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2047 ioaddr + Wn7_MasterAddr);
2048 iowrite16(len, ioaddr + Wn7_MasterLen);
2049 vp->tx_skb = skb;
2050 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2051 /* netif_wake_queue() will be called at the DMADone interrupt. */
2052 } else {
2053 /* ... and the packet rounded to a doubleword. */
2054 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2055 dev_kfree_skb (skb);
2056 if (ioread16(ioaddr + TxFree) > 1536) {
2057 netif_start_queue (dev); /* AKPM: redundant? */
2058 } else {
2059 /* Interrupt us when the FIFO has room for max-sized packet. */
2060 netif_stop_queue(dev);
2061 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2062 }
2063 }
2064
2065
2066 /* Clear the Tx status stack. */
2067 {
2068 int tx_status;
2069 int i = 32;
2070
2071 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2072 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2073 if (vortex_debug > 2)
2074 pr_debug("%s: Tx error, status %2.2x.\n",
2075 dev->name, tx_status);
2076 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2077 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2078 if (tx_status & 0x30) {
2079 issue_and_wait(dev, TxReset);
2080 }
2081 iowrite16(TxEnable, ioaddr + EL3_CMD);
2082 }
2083 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2084 }
2085 }
2086 return NETDEV_TX_OK;
2087 }
2088
2089 static netdev_tx_t
2090 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2091 {
2092 struct vortex_private *vp = netdev_priv(dev);
2093 void __iomem *ioaddr = vp->ioaddr;
2094 /* Calculate the next Tx descriptor entry. */
2095 int entry = vp->cur_tx % TX_RING_SIZE;
2096 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2097 unsigned long flags;
2098
2099 if (vortex_debug > 6) {
2100 pr_debug("boomerang_start_xmit()\n");
2101 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2102 dev->name, vp->cur_tx);
2103 }
2104
2105 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2106 if (vortex_debug > 0)
2107 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2108 dev->name);
2109 netif_stop_queue(dev);
2110 return NETDEV_TX_BUSY;
2111 }
2112
2113 vp->tx_skbuff[entry] = skb;
2114
2115 vp->tx_ring[entry].next = 0;
2116 #if DO_ZEROCOPY
2117 if (skb->ip_summed != CHECKSUM_PARTIAL)
2118 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2119 else
2120 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2121
2122 if (!skb_shinfo(skb)->nr_frags) {
2123 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2124 skb->len, PCI_DMA_TODEVICE));
2125 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2126 } else {
2127 int i;
2128
2129 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2130 skb_headlen(skb), PCI_DMA_TODEVICE));
2131 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2132
2133 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2134 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2135
2136 vp->tx_ring[entry].frag[i+1].addr =
2137 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2138 (void*)page_address(frag->page) + frag->page_offset,
2139 frag->size, PCI_DMA_TODEVICE));
2140
2141 if (i == skb_shinfo(skb)->nr_frags-1)
2142 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2143 else
2144 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2145 }
2146 }
2147 #else
2148 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2149 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2150 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2151 #endif
2152
2153 spin_lock_irqsave(&vp->lock, flags);
2154 /* Wait for the stall to complete. */
2155 issue_and_wait(dev, DownStall);
2156 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2157 if (ioread32(ioaddr + DownListPtr) == 0) {
2158 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2159 vp->queued_packet++;
2160 }
2161
2162 vp->cur_tx++;
2163 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2164 netif_stop_queue (dev);
2165 } else { /* Clear previous interrupt enable. */
2166 #if defined(tx_interrupt_mitigation)
2167 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2168 * were selected, this would corrupt DN_COMPLETE. No?
2169 */
2170 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2171 #endif
2172 }
2173 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2174 spin_unlock_irqrestore(&vp->lock, flags);
2175 return NETDEV_TX_OK;
2176 }
2177
2178 /* The interrupt handler does all of the Rx thread work and cleans up
2179 after the Tx thread. */
2180
2181 /*
2182 * This is the ISR for the vortex series chips.
2183 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2184 */
2185
2186 static irqreturn_t
2187 vortex_interrupt(int irq, void *dev_id)
2188 {
2189 struct net_device *dev = dev_id;
2190 struct vortex_private *vp = netdev_priv(dev);
2191 void __iomem *ioaddr;
2192 int status;
2193 int work_done = max_interrupt_work;
2194 int handled = 0;
2195
2196 ioaddr = vp->ioaddr;
2197 spin_lock(&vp->lock);
2198
2199 status = ioread16(ioaddr + EL3_STATUS);
2200
2201 if (vortex_debug > 6)
2202 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2203
2204 if ((status & IntLatch) == 0)
2205 goto handler_exit; /* No interrupt: shared IRQs cause this */
2206 handled = 1;
2207
2208 if (status & IntReq) {
2209 status |= vp->deferred;
2210 vp->deferred = 0;
2211 }
2212
2213 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2214 goto handler_exit;
2215
2216 if (vortex_debug > 4)
2217 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2218 dev->name, status, ioread8(ioaddr + Timer));
2219
2220 do {
2221 if (vortex_debug > 5)
2222 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2223 dev->name, status);
2224 if (status & RxComplete)
2225 vortex_rx(dev);
2226
2227 if (status & TxAvailable) {
2228 if (vortex_debug > 5)
2229 pr_debug(" TX room bit was handled.\n");
2230 /* There's room in the FIFO for a full-sized packet. */
2231 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2232 netif_wake_queue (dev);
2233 }
2234
2235 if (status & DMADone) {
2236 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2237 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2238 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2239 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2240 if (ioread16(ioaddr + TxFree) > 1536) {
2241 /*
2242 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2243 * insufficient FIFO room, the TxAvailable test will succeed and call
2244 * netif_wake_queue()
2245 */
2246 netif_wake_queue(dev);
2247 } else { /* Interrupt when FIFO has room for max-sized packet. */
2248 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2249 netif_stop_queue(dev);
2250 }
2251 }
2252 }
2253 /* Check for all uncommon interrupts at once. */
2254 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2255 if (status == 0xffff)
2256 break;
2257 vortex_error(dev, status);
2258 }
2259
2260 if (--work_done < 0) {
2261 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2262 dev->name, status);
2263 /* Disable all pending interrupts. */
2264 do {
2265 vp->deferred |= status;
2266 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2267 ioaddr + EL3_CMD);
2268 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2269 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2270 /* The timer will reenable interrupts. */
2271 mod_timer(&vp->timer, jiffies + 1*HZ);
2272 break;
2273 }
2274 /* Acknowledge the IRQ. */
2275 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2276 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2277
2278 if (vortex_debug > 4)
2279 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2280 dev->name, status);
2281 handler_exit:
2282 spin_unlock(&vp->lock);
2283 return IRQ_RETVAL(handled);
2284 }
2285
2286 /*
2287 * This is the ISR for the boomerang series chips.
2288 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2289 */
2290
2291 static irqreturn_t
2292 boomerang_interrupt(int irq, void *dev_id)
2293 {
2294 struct net_device *dev = dev_id;
2295 struct vortex_private *vp = netdev_priv(dev);
2296 void __iomem *ioaddr;
2297 int status;
2298 int work_done = max_interrupt_work;
2299
2300 ioaddr = vp->ioaddr;
2301
2302 /*
2303 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2304 * and boomerang_start_xmit
2305 */
2306 spin_lock(&vp->lock);
2307
2308 status = ioread16(ioaddr + EL3_STATUS);
2309
2310 if (vortex_debug > 6)
2311 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2312
2313 if ((status & IntLatch) == 0)
2314 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2315
2316 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2317 if (vortex_debug > 1)
2318 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2319 goto handler_exit;
2320 }
2321
2322 if (status & IntReq) {
2323 status |= vp->deferred;
2324 vp->deferred = 0;
2325 }
2326
2327 if (vortex_debug > 4)
2328 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2329 dev->name, status, ioread8(ioaddr + Timer));
2330 do {
2331 if (vortex_debug > 5)
2332 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2333 dev->name, status);
2334 if (status & UpComplete) {
2335 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2336 if (vortex_debug > 5)
2337 pr_debug("boomerang_interrupt->boomerang_rx\n");
2338 boomerang_rx(dev);
2339 }
2340
2341 if (status & DownComplete) {
2342 unsigned int dirty_tx = vp->dirty_tx;
2343
2344 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2345 while (vp->cur_tx - dirty_tx > 0) {
2346 int entry = dirty_tx % TX_RING_SIZE;
2347 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2348 if (ioread32(ioaddr + DownListPtr) ==
2349 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2350 break; /* It still hasn't been processed. */
2351 #else
2352 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2353 break; /* It still hasn't been processed. */
2354 #endif
2355
2356 if (vp->tx_skbuff[entry]) {
2357 struct sk_buff *skb = vp->tx_skbuff[entry];
2358 #if DO_ZEROCOPY
2359 int i;
2360 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2361 pci_unmap_single(VORTEX_PCI(vp),
2362 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2363 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2364 PCI_DMA_TODEVICE);
2365 #else
2366 pci_unmap_single(VORTEX_PCI(vp),
2367 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2368 #endif
2369 dev_kfree_skb_irq(skb);
2370 vp->tx_skbuff[entry] = NULL;
2371 } else {
2372 pr_debug("boomerang_interrupt: no skb!\n");
2373 }
2374 /* dev->stats.tx_packets++; Counted below. */
2375 dirty_tx++;
2376 }
2377 vp->dirty_tx = dirty_tx;
2378 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2379 if (vortex_debug > 6)
2380 pr_debug("boomerang_interrupt: wake queue\n");
2381 netif_wake_queue (dev);
2382 }
2383 }
2384
2385 /* Check for all uncommon interrupts at once. */
2386 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2387 vortex_error(dev, status);
2388
2389 if (--work_done < 0) {
2390 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2391 dev->name, status);
2392 /* Disable all pending interrupts. */
2393 do {
2394 vp->deferred |= status;
2395 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2396 ioaddr + EL3_CMD);
2397 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2398 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2399 /* The timer will reenable interrupts. */
2400 mod_timer(&vp->timer, jiffies + 1*HZ);
2401 break;
2402 }
2403 /* Acknowledge the IRQ. */
2404 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2405 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2406 iowrite32(0x8000, vp->cb_fn_base + 4);
2407
2408 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2409
2410 if (vortex_debug > 4)
2411 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2412 dev->name, status);
2413 handler_exit:
2414 spin_unlock(&vp->lock);
2415 return IRQ_HANDLED;
2416 }
2417
2418 static int vortex_rx(struct net_device *dev)
2419 {
2420 struct vortex_private *vp = netdev_priv(dev);
2421 void __iomem *ioaddr = vp->ioaddr;
2422 int i;
2423 short rx_status;
2424
2425 if (vortex_debug > 5)
2426 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2427 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2428 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2429 if (rx_status & 0x4000) { /* Error, update stats. */
2430 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2431 if (vortex_debug > 2)
2432 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2433 dev->stats.rx_errors++;
2434 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2435 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2436 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2437 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2438 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2439 } else {
2440 /* The packet length: up to 4.5K!. */
2441 int pkt_len = rx_status & 0x1fff;
2442 struct sk_buff *skb;
2443
2444 skb = dev_alloc_skb(pkt_len + 5);
2445 if (vortex_debug > 4)
2446 pr_debug("Receiving packet size %d status %4.4x.\n",
2447 pkt_len, rx_status);
2448 if (skb != NULL) {
2449 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2450 /* 'skb_put()' points to the start of sk_buff data area. */
2451 if (vp->bus_master &&
2452 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2453 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2454 pkt_len, PCI_DMA_FROMDEVICE);
2455 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2456 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2457 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2458 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2459 ;
2460 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2461 } else {
2462 ioread32_rep(ioaddr + RX_FIFO,
2463 skb_put(skb, pkt_len),
2464 (pkt_len + 3) >> 2);
2465 }
2466 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2467 skb->protocol = eth_type_trans(skb, dev);
2468 netif_rx(skb);
2469 dev->stats.rx_packets++;
2470 /* Wait a limited time to go to next packet. */
2471 for (i = 200; i >= 0; i--)
2472 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2473 break;
2474 continue;
2475 } else if (vortex_debug > 0)
2476 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2477 dev->name, pkt_len);
2478 dev->stats.rx_dropped++;
2479 }
2480 issue_and_wait(dev, RxDiscard);
2481 }
2482
2483 return 0;
2484 }
2485
2486 static int
2487 boomerang_rx(struct net_device *dev)
2488 {
2489 struct vortex_private *vp = netdev_priv(dev);
2490 int entry = vp->cur_rx % RX_RING_SIZE;
2491 void __iomem *ioaddr = vp->ioaddr;
2492 int rx_status;
2493 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2494
2495 if (vortex_debug > 5)
2496 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2497
2498 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2499 if (--rx_work_limit < 0)
2500 break;
2501 if (rx_status & RxDError) { /* Error, update stats. */
2502 unsigned char rx_error = rx_status >> 16;
2503 if (vortex_debug > 2)
2504 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2505 dev->stats.rx_errors++;
2506 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2507 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2508 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2509 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2510 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2511 } else {
2512 /* The packet length: up to 4.5K!. */
2513 int pkt_len = rx_status & 0x1fff;
2514 struct sk_buff *skb;
2515 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2516
2517 if (vortex_debug > 4)
2518 pr_debug("Receiving packet size %d status %4.4x.\n",
2519 pkt_len, rx_status);
2520
2521 /* Check if the packet is long enough to just accept without
2522 copying to a properly sized skbuff. */
2523 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2524 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2525 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2526 /* 'skb_put()' points to the start of sk_buff data area. */
2527 memcpy(skb_put(skb, pkt_len),
2528 vp->rx_skbuff[entry]->data,
2529 pkt_len);
2530 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2531 vp->rx_copy++;
2532 } else {
2533 /* Pass up the skbuff already on the Rx ring. */
2534 skb = vp->rx_skbuff[entry];
2535 vp->rx_skbuff[entry] = NULL;
2536 skb_put(skb, pkt_len);
2537 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2538 vp->rx_nocopy++;
2539 }
2540 skb->protocol = eth_type_trans(skb, dev);
2541 { /* Use hardware checksum info. */
2542 int csum_bits = rx_status & 0xee000000;
2543 if (csum_bits &&
2544 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2545 csum_bits == (IPChksumValid | UDPChksumValid))) {
2546 skb->ip_summed = CHECKSUM_UNNECESSARY;
2547 vp->rx_csumhits++;
2548 }
2549 }
2550 netif_rx(skb);
2551 dev->stats.rx_packets++;
2552 }
2553 entry = (++vp->cur_rx) % RX_RING_SIZE;
2554 }
2555 /* Refill the Rx ring buffers. */
2556 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2557 struct sk_buff *skb;
2558 entry = vp->dirty_rx % RX_RING_SIZE;
2559 if (vp->rx_skbuff[entry] == NULL) {
2560 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2561 if (skb == NULL) {
2562 static unsigned long last_jif;
2563 if (time_after(jiffies, last_jif + 10 * HZ)) {
2564 pr_warning("%s: memory shortage\n", dev->name);
2565 last_jif = jiffies;
2566 }
2567 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2568 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2569 break; /* Bad news! */
2570 }
2571
2572 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2573 vp->rx_skbuff[entry] = skb;
2574 }
2575 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2576 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2577 }
2578 return 0;
2579 }
2580
2581 /*
2582 * If we've hit a total OOM refilling the Rx ring we poll once a second
2583 * for some memory. Otherwise there is no way to restart the rx process.
2584 */
2585 static void
2586 rx_oom_timer(unsigned long arg)
2587 {
2588 struct net_device *dev = (struct net_device *)arg;
2589 struct vortex_private *vp = netdev_priv(dev);
2590
2591 spin_lock_irq(&vp->lock);
2592 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2593 boomerang_rx(dev);
2594 if (vortex_debug > 1) {
2595 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2596 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2597 }
2598 spin_unlock_irq(&vp->lock);
2599 }
2600
2601 static void
2602 vortex_down(struct net_device *dev, int final_down)
2603 {
2604 struct vortex_private *vp = netdev_priv(dev);
2605 void __iomem *ioaddr = vp->ioaddr;
2606
2607 netif_stop_queue (dev);
2608
2609 del_timer_sync(&vp->rx_oom_timer);
2610 del_timer_sync(&vp->timer);
2611
2612 /* Turn off statistics ASAP. We update dev->stats below. */
2613 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2614
2615 /* Disable the receiver and transmitter. */
2616 iowrite16(RxDisable, ioaddr + EL3_CMD);
2617 iowrite16(TxDisable, ioaddr + EL3_CMD);
2618
2619 /* Disable receiving 802.1q tagged frames */
2620 set_8021q_mode(dev, 0);
2621
2622 if (dev->if_port == XCVR_10base2)
2623 /* Turn off thinnet power. Green! */
2624 iowrite16(StopCoax, ioaddr + EL3_CMD);
2625
2626 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2627
2628 update_stats(ioaddr, dev);
2629 if (vp->full_bus_master_rx)
2630 iowrite32(0, ioaddr + UpListPtr);
2631 if (vp->full_bus_master_tx)
2632 iowrite32(0, ioaddr + DownListPtr);
2633
2634 if (final_down && VORTEX_PCI(vp)) {
2635 vp->pm_state_valid = 1;
2636 pci_save_state(VORTEX_PCI(vp));
2637 acpi_set_WOL(dev);
2638 }
2639 }
2640
2641 static int
2642 vortex_close(struct net_device *dev)
2643 {
2644 struct vortex_private *vp = netdev_priv(dev);
2645 void __iomem *ioaddr = vp->ioaddr;
2646 int i;
2647
2648 if (netif_device_present(dev))
2649 vortex_down(dev, 1);
2650
2651 if (vortex_debug > 1) {
2652 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2653 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2654 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2655 " tx_queued %d Rx pre-checksummed %d.\n",
2656 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2657 }
2658
2659 #if DO_ZEROCOPY
2660 if (vp->rx_csumhits &&
2661 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2662 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2663 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2664 }
2665 #endif
2666
2667 free_irq(dev->irq, dev);
2668
2669 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2670 for (i = 0; i < RX_RING_SIZE; i++)
2671 if (vp->rx_skbuff[i]) {
2672 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2673 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2674 dev_kfree_skb(vp->rx_skbuff[i]);
2675 vp->rx_skbuff[i] = NULL;
2676 }
2677 }
2678 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2679 for (i = 0; i < TX_RING_SIZE; i++) {
2680 if (vp->tx_skbuff[i]) {
2681 struct sk_buff *skb = vp->tx_skbuff[i];
2682 #if DO_ZEROCOPY
2683 int k;
2684
2685 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2686 pci_unmap_single(VORTEX_PCI(vp),
2687 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2688 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2689 PCI_DMA_TODEVICE);
2690 #else
2691 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2692 #endif
2693 dev_kfree_skb(skb);
2694 vp->tx_skbuff[i] = NULL;
2695 }
2696 }
2697 }
2698
2699 return 0;
2700 }
2701
2702 static void
2703 dump_tx_ring(struct net_device *dev)
2704 {
2705 if (vortex_debug > 0) {
2706 struct vortex_private *vp = netdev_priv(dev);
2707 void __iomem *ioaddr = vp->ioaddr;
2708
2709 if (vp->full_bus_master_tx) {
2710 int i;
2711 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2712
2713 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2714 vp->full_bus_master_tx,
2715 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2716 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2717 pr_err(" Transmit list %8.8x vs. %p.\n",
2718 ioread32(ioaddr + DownListPtr),
2719 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2720 issue_and_wait(dev, DownStall);
2721 for (i = 0; i < TX_RING_SIZE; i++) {
2722 unsigned int length;
2723
2724 #if DO_ZEROCOPY
2725 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2726 #else
2727 length = le32_to_cpu(vp->tx_ring[i].length);
2728 #endif
2729 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2730 i, &vp->tx_ring[i], length,
2731 le32_to_cpu(vp->tx_ring[i].status));
2732 }
2733 if (!stalled)
2734 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2735 }
2736 }
2737 }
2738
2739 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2740 {
2741 struct vortex_private *vp = netdev_priv(dev);
2742 void __iomem *ioaddr = vp->ioaddr;
2743 unsigned long flags;
2744
2745 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2746 spin_lock_irqsave (&vp->lock, flags);
2747 update_stats(ioaddr, dev);
2748 spin_unlock_irqrestore (&vp->lock, flags);
2749 }
2750 return &dev->stats;
2751 }
2752
2753 /* Update statistics.
2754 Unlike with the EL3 we need not worry about interrupts changing
2755 the window setting from underneath us, but we must still guard
2756 against a race condition with a StatsUpdate interrupt updating the
2757 table. This is done by checking that the ASM (!) code generated uses
2758 atomic updates with '+='.
2759 */
2760 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2761 {
2762 struct vortex_private *vp = netdev_priv(dev);
2763 int old_window = ioread16(ioaddr + EL3_CMD);
2764
2765 if (old_window == 0xffff) /* Chip suspended or ejected. */
2766 return;
2767 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2768 /* Switch to the stats window, and read everything. */
2769 EL3WINDOW(6);
2770 dev->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2771 dev->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2772 dev->stats.tx_window_errors += ioread8(ioaddr + 4);
2773 dev->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2774 dev->stats.tx_packets += ioread8(ioaddr + 6);
2775 dev->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2776 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2777 /* Don't bother with register 9, an extension of registers 6&7.
2778 If we do use the 6&7 values the atomic update assumption above
2779 is invalid. */
2780 dev->stats.rx_bytes += ioread16(ioaddr + 10);
2781 dev->stats.tx_bytes += ioread16(ioaddr + 12);
2782 /* Extra stats for get_ethtool_stats() */
2783 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2784 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2785 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2786 EL3WINDOW(4);
2787 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2788
2789 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2790 + vp->xstats.tx_single_collisions
2791 + vp->xstats.tx_max_collisions;
2792
2793 {
2794 u8 up = ioread8(ioaddr + 13);
2795 dev->stats.rx_bytes += (up & 0x0f) << 16;
2796 dev->stats.tx_bytes += (up & 0xf0) << 12;
2797 }
2798
2799 EL3WINDOW(old_window >> 13);
2800 }
2801
2802 static int vortex_nway_reset(struct net_device *dev)
2803 {
2804 struct vortex_private *vp = netdev_priv(dev);
2805 void __iomem *ioaddr = vp->ioaddr;
2806 unsigned long flags;
2807 int rc;
2808
2809 spin_lock_irqsave(&vp->lock, flags);
2810 EL3WINDOW(4);
2811 rc = mii_nway_restart(&vp->mii);
2812 spin_unlock_irqrestore(&vp->lock, flags);
2813 return rc;
2814 }
2815
2816 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2817 {
2818 struct vortex_private *vp = netdev_priv(dev);
2819 void __iomem *ioaddr = vp->ioaddr;
2820 unsigned long flags;
2821 int rc;
2822
2823 spin_lock_irqsave(&vp->lock, flags);
2824 EL3WINDOW(4);
2825 rc = mii_ethtool_gset(&vp->mii, cmd);
2826 spin_unlock_irqrestore(&vp->lock, flags);
2827 return rc;
2828 }
2829
2830 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2831 {
2832 struct vortex_private *vp = netdev_priv(dev);
2833 void __iomem *ioaddr = vp->ioaddr;
2834 unsigned long flags;
2835 int rc;
2836
2837 spin_lock_irqsave(&vp->lock, flags);
2838 EL3WINDOW(4);
2839 rc = mii_ethtool_sset(&vp->mii, cmd);
2840 spin_unlock_irqrestore(&vp->lock, flags);
2841 return rc;
2842 }
2843
2844 static u32 vortex_get_msglevel(struct net_device *dev)
2845 {
2846 return vortex_debug;
2847 }
2848
2849 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2850 {
2851 vortex_debug = dbg;
2852 }
2853
2854 static int vortex_get_sset_count(struct net_device *dev, int sset)
2855 {
2856 switch (sset) {
2857 case ETH_SS_STATS:
2858 return VORTEX_NUM_STATS;
2859 default:
2860 return -EOPNOTSUPP;
2861 }
2862 }
2863
2864 static void vortex_get_ethtool_stats(struct net_device *dev,
2865 struct ethtool_stats *stats, u64 *data)
2866 {
2867 struct vortex_private *vp = netdev_priv(dev);
2868 void __iomem *ioaddr = vp->ioaddr;
2869 unsigned long flags;
2870
2871 spin_lock_irqsave(&vp->lock, flags);
2872 update_stats(ioaddr, dev);
2873 spin_unlock_irqrestore(&vp->lock, flags);
2874
2875 data[0] = vp->xstats.tx_deferred;
2876 data[1] = vp->xstats.tx_max_collisions;
2877 data[2] = vp->xstats.tx_multiple_collisions;
2878 data[3] = vp->xstats.tx_single_collisions;
2879 data[4] = vp->xstats.rx_bad_ssd;
2880 }
2881
2882
2883 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2884 {
2885 switch (stringset) {
2886 case ETH_SS_STATS:
2887 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2888 break;
2889 default:
2890 WARN_ON(1);
2891 break;
2892 }
2893 }
2894
2895 static void vortex_get_drvinfo(struct net_device *dev,
2896 struct ethtool_drvinfo *info)
2897 {
2898 struct vortex_private *vp = netdev_priv(dev);
2899
2900 strcpy(info->driver, DRV_NAME);
2901 if (VORTEX_PCI(vp)) {
2902 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2903 } else {
2904 if (VORTEX_EISA(vp))
2905 strcpy(info->bus_info, dev_name(vp->gendev));
2906 else
2907 sprintf(info->bus_info, "EISA 0x%lx %d",
2908 dev->base_addr, dev->irq);
2909 }
2910 }
2911
2912 static const struct ethtool_ops vortex_ethtool_ops = {
2913 .get_drvinfo = vortex_get_drvinfo,
2914 .get_strings = vortex_get_strings,
2915 .get_msglevel = vortex_get_msglevel,
2916 .set_msglevel = vortex_set_msglevel,
2917 .get_ethtool_stats = vortex_get_ethtool_stats,
2918 .get_sset_count = vortex_get_sset_count,
2919 .get_settings = vortex_get_settings,
2920 .set_settings = vortex_set_settings,
2921 .get_link = ethtool_op_get_link,
2922 .nway_reset = vortex_nway_reset,
2923 };
2924
2925 #ifdef CONFIG_PCI
2926 /*
2927 * Must power the device up to do MDIO operations
2928 */
2929 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2930 {
2931 int err;
2932 struct vortex_private *vp = netdev_priv(dev);
2933 void __iomem *ioaddr = vp->ioaddr;
2934 unsigned long flags;
2935 pci_power_t state = 0;
2936
2937 if(VORTEX_PCI(vp))
2938 state = VORTEX_PCI(vp)->current_state;
2939
2940 /* The kernel core really should have pci_get_power_state() */
2941
2942 if(state != 0)
2943 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2944 spin_lock_irqsave(&vp->lock, flags);
2945 EL3WINDOW(4);
2946 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2947 spin_unlock_irqrestore(&vp->lock, flags);
2948 if(state != 0)
2949 pci_set_power_state(VORTEX_PCI(vp), state);
2950
2951 return err;
2952 }
2953 #endif
2954
2955
2956 /* Pre-Cyclone chips have no documented multicast filter, so the only
2957 multicast setting is to receive all multicast frames. At least
2958 the chip has a very clean way to set the mode, unlike many others. */
2959 static void set_rx_mode(struct net_device *dev)
2960 {
2961 struct vortex_private *vp = netdev_priv(dev);
2962 void __iomem *ioaddr = vp->ioaddr;
2963 int new_mode;
2964
2965 if (dev->flags & IFF_PROMISC) {
2966 if (vortex_debug > 3)
2967 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
2968 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2969 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
2970 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2971 } else
2972 new_mode = SetRxFilter | RxStation | RxBroadcast;
2973
2974 iowrite16(new_mode, ioaddr + EL3_CMD);
2975 }
2976
2977 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2978 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2979 Note that this must be done after each RxReset due to some backwards
2980 compatibility logic in the Cyclone and Tornado ASICs */
2981
2982 /* The Ethernet Type used for 802.1q tagged frames */
2983 #define VLAN_ETHER_TYPE 0x8100
2984
2985 static void set_8021q_mode(struct net_device *dev, int enable)
2986 {
2987 struct vortex_private *vp = netdev_priv(dev);
2988 void __iomem *ioaddr = vp->ioaddr;
2989 int old_window = ioread16(ioaddr + EL3_CMD);
2990 int mac_ctrl;
2991
2992 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2993 /* cyclone and tornado chipsets can recognize 802.1q
2994 * tagged frames and treat them correctly */
2995
2996 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
2997 if (enable)
2998 max_pkt_size += 4; /* 802.1Q VLAN tag */
2999
3000 EL3WINDOW(3);
3001 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3002
3003 /* set VlanEtherType to let the hardware checksumming
3004 treat tagged frames correctly */
3005 EL3WINDOW(7);
3006 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3007 } else {
3008 /* on older cards we have to enable large frames */
3009
3010 vp->large_frames = dev->mtu > 1500 || enable;
3011
3012 EL3WINDOW(3);
3013 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3014 if (vp->large_frames)
3015 mac_ctrl |= 0x40;
3016 else
3017 mac_ctrl &= ~0x40;
3018 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3019 }
3020
3021 EL3WINDOW(old_window);
3022 }
3023 #else
3024
3025 static void set_8021q_mode(struct net_device *dev, int enable)
3026 {
3027 }
3028
3029
3030 #endif
3031
3032 /* MII transceiver control section.
3033 Read and write the MII registers using software-generated serial
3034 MDIO protocol. See the MII specifications or DP83840A data sheet
3035 for details. */
3036
3037 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3038 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3039 "overclocking" issues. */
3040 #define mdio_delay() ioread32(mdio_addr)
3041
3042 #define MDIO_SHIFT_CLK 0x01
3043 #define MDIO_DIR_WRITE 0x04
3044 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3045 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3046 #define MDIO_DATA_READ 0x02
3047 #define MDIO_ENB_IN 0x00
3048
3049 /* Generate the preamble required for initial synchronization and
3050 a few older transceivers. */
3051 static void mdio_sync(void __iomem *ioaddr, int bits)
3052 {
3053 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3054
3055 /* Establish sync by sending at least 32 logic ones. */
3056 while (-- bits >= 0) {
3057 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3058 mdio_delay();
3059 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3060 mdio_delay();
3061 }
3062 }
3063
3064 static int mdio_read(struct net_device *dev, int phy_id, int location)
3065 {
3066 int i;
3067 struct vortex_private *vp = netdev_priv(dev);
3068 void __iomem *ioaddr = vp->ioaddr;
3069 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3070 unsigned int retval = 0;
3071 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3072
3073 if (mii_preamble_required)
3074 mdio_sync(ioaddr, 32);
3075
3076 /* Shift the read command bits out. */
3077 for (i = 14; i >= 0; i--) {
3078 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3079 iowrite16(dataval, mdio_addr);
3080 mdio_delay();
3081 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3082 mdio_delay();
3083 }
3084 /* Read the two transition, 16 data, and wire-idle bits. */
3085 for (i = 19; i > 0; i--) {
3086 iowrite16(MDIO_ENB_IN, mdio_addr);
3087 mdio_delay();
3088 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3089 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3090 mdio_delay();
3091 }
3092 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3093 }
3094
3095 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3096 {
3097 struct vortex_private *vp = netdev_priv(dev);
3098 void __iomem *ioaddr = vp->ioaddr;
3099 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3100 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3101 int i;
3102
3103 if (mii_preamble_required)
3104 mdio_sync(ioaddr, 32);
3105
3106 /* Shift the command bits out. */
3107 for (i = 31; i >= 0; i--) {
3108 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3109 iowrite16(dataval, mdio_addr);
3110 mdio_delay();
3111 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3112 mdio_delay();
3113 }
3114 /* Leave the interface idle. */
3115 for (i = 1; i >= 0; i--) {
3116 iowrite16(MDIO_ENB_IN, mdio_addr);
3117 mdio_delay();
3118 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3119 mdio_delay();
3120 }
3121 }
3122
3123 /* ACPI: Advanced Configuration and Power Interface. */
3124 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3125 static void acpi_set_WOL(struct net_device *dev)
3126 {
3127 struct vortex_private *vp = netdev_priv(dev);
3128 void __iomem *ioaddr = vp->ioaddr;
3129
3130 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3131
3132 if (vp->enable_wol) {
3133 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3134 EL3WINDOW(7);
3135 iowrite16(2, ioaddr + 0x0c);
3136 /* The RxFilter must accept the WOL frames. */
3137 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3138 iowrite16(RxEnable, ioaddr + EL3_CMD);
3139
3140 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3141 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3142
3143 vp->enable_wol = 0;
3144 return;
3145 }
3146
3147 /* Change the power state to D3; RxEnable doesn't take effect. */
3148 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3149 }
3150 }
3151
3152
3153 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3154 {
3155 struct net_device *dev = pci_get_drvdata(pdev);
3156 struct vortex_private *vp;
3157
3158 if (!dev) {
3159 pr_err("vortex_remove_one called for Compaq device!\n");
3160 BUG();
3161 }
3162
3163 vp = netdev_priv(dev);
3164
3165 if (vp->cb_fn_base)
3166 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3167
3168 unregister_netdev(dev);
3169
3170 if (VORTEX_PCI(vp)) {
3171 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3172 if (vp->pm_state_valid)
3173 pci_restore_state(VORTEX_PCI(vp));
3174 pci_disable_device(VORTEX_PCI(vp));
3175 }
3176 /* Should really use issue_and_wait() here */
3177 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3178 vp->ioaddr + EL3_CMD);
3179
3180 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3181
3182 pci_free_consistent(pdev,
3183 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3184 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3185 vp->rx_ring,
3186 vp->rx_ring_dma);
3187 if (vp->must_free_region)
3188 release_region(dev->base_addr, vp->io_size);
3189 free_netdev(dev);
3190 }
3191
3192
3193 static struct pci_driver vortex_driver = {
3194 .name = "3c59x",
3195 .probe = vortex_init_one,
3196 .remove = __devexit_p(vortex_remove_one),
3197 .id_table = vortex_pci_tbl,
3198 .driver.pm = VORTEX_PM_OPS,
3199 };
3200
3201
3202 static int vortex_have_pci;
3203 static int vortex_have_eisa;
3204
3205
3206 static int __init vortex_init(void)
3207 {
3208 int pci_rc, eisa_rc;
3209
3210 pci_rc = pci_register_driver(&vortex_driver);
3211 eisa_rc = vortex_eisa_init();
3212
3213 if (pci_rc == 0)
3214 vortex_have_pci = 1;
3215 if (eisa_rc > 0)
3216 vortex_have_eisa = 1;
3217
3218 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3219 }
3220
3221
3222 static void __exit vortex_eisa_cleanup(void)
3223 {
3224 struct vortex_private *vp;
3225 void __iomem *ioaddr;
3226
3227 #ifdef CONFIG_EISA
3228 /* Take care of the EISA devices */
3229 eisa_driver_unregister(&vortex_eisa_driver);
3230 #endif
3231
3232 if (compaq_net_device) {
3233 vp = netdev_priv(compaq_net_device);
3234 ioaddr = ioport_map(compaq_net_device->base_addr,
3235 VORTEX_TOTAL_SIZE);
3236
3237 unregister_netdev(compaq_net_device);
3238 iowrite16(TotalReset, ioaddr + EL3_CMD);
3239 release_region(compaq_net_device->base_addr,
3240 VORTEX_TOTAL_SIZE);
3241
3242 free_netdev(compaq_net_device);
3243 }
3244 }
3245
3246
3247 static void __exit vortex_cleanup(void)
3248 {
3249 if (vortex_have_pci)
3250 pci_unregister_driver(&vortex_driver);
3251 if (vortex_have_eisa)
3252 vortex_eisa_cleanup();
3253 }
3254
3255
3256 module_init(vortex_init);
3257 module_exit(vortex_cleanup);
This page took 0.161466 seconds and 5 git commands to generate.