Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
[deliverable/linux.git] / drivers / net / 3c59x.c
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Linux Kernel Additions:
21
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
28
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
51
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
58
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
69
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
83
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
94
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
104
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
116
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
121
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
124
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
132
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
142
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
148
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
155
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
168
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
176
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
180
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
183
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
186 */
187
188 /*
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
191 *
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
195 */
196
197
198 #define DRV_NAME "3c59x"
199 #define DRV_VERSION "LK1.1.19"
200 #define DRV_RELDATE "10 Nov 2002"
201
202
203
204 /* A few values that may be tweaked. */
205 /* Keep the ring sizes a power of two for efficiency. */
206 #define TX_RING_SIZE 16
207 #define RX_RING_SIZE 32
208 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
209
210 /* "Knobs" that adjust features and parameters. */
211 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 Setting to > 1512 effectively disables this feature. */
213 #ifndef __arm__
214 static int rx_copybreak = 200;
215 #else
216 /* ARM systems perform better by disregarding the bus-master
217 transfer capability of these cards. -- rmk */
218 static int rx_copybreak = 1513;
219 #endif
220 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
221 static const int mtu = 1500;
222 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
223 static int max_interrupt_work = 32;
224 /* Tx timeout interval (millisecs) */
225 static int watchdog = 5000;
226
227 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
228 * of possible Tx stalls if the system is blocking interrupts
229 * somewhere else. Undefine this to disable.
230 */
231 #define tx_interrupt_mitigation 1
232
233 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
234 #define vortex_debug debug
235 #ifdef VORTEX_DEBUG
236 static int vortex_debug = VORTEX_DEBUG;
237 #else
238 static int vortex_debug = 1;
239 #endif
240
241 #include <linux/config.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/string.h>
245 #include <linux/timer.h>
246 #include <linux/errno.h>
247 #include <linux/in.h>
248 #include <linux/ioport.h>
249 #include <linux/slab.h>
250 #include <linux/interrupt.h>
251 #include <linux/pci.h>
252 #include <linux/mii.h>
253 #include <linux/init.h>
254 #include <linux/netdevice.h>
255 #include <linux/etherdevice.h>
256 #include <linux/skbuff.h>
257 #include <linux/ethtool.h>
258 #include <linux/highmem.h>
259 #include <linux/eisa.h>
260 #include <linux/bitops.h>
261 #include <linux/jiffies.h>
262 #include <asm/irq.h> /* For NR_IRQS only. */
263 #include <asm/io.h>
264 #include <asm/uaccess.h>
265
266 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
267 This is only in the support-all-kernels source code. */
268
269 #define RUN_AT(x) (jiffies + (x))
270
271 #include <linux/delay.h>
272
273
274 static char version[] __devinitdata =
275 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
276
277 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
278 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "
279 DRV_VERSION " " DRV_RELDATE);
280 MODULE_LICENSE("GPL");
281 MODULE_VERSION(DRV_VERSION);
282
283
284 /* Operational parameter that usually are not changed. */
285
286 /* The Vortex size is twice that of the original EtherLinkIII series: the
287 runtime register window, window 1, is now always mapped in.
288 The Boomerang size is twice as large as the Vortex -- it has additional
289 bus master control registers. */
290 #define VORTEX_TOTAL_SIZE 0x20
291 #define BOOMERANG_TOTAL_SIZE 0x40
292
293 /* Set iff a MII transceiver on any interface requires mdio preamble.
294 This only set with the original DP83840 on older 3c905 boards, so the extra
295 code size of a per-interface flag is not worthwhile. */
296 static char mii_preamble_required;
297
298 #define PFX DRV_NAME ": "
299
300
301
302 /*
303 Theory of Operation
304
305 I. Board Compatibility
306
307 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
308 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
309 versions of the FastEtherLink cards. The supported product IDs are
310 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
311
312 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
313 with the kernel source or available from
314 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
315
316 II. Board-specific settings
317
318 PCI bus devices are configured by the system at boot time, so no jumpers
319 need to be set on the board. The system BIOS should be set to assign the
320 PCI INTA signal to an otherwise unused system IRQ line.
321
322 The EEPROM settings for media type and forced-full-duplex are observed.
323 The EEPROM media type should be left at the default "autoselect" unless using
324 10base2 or AUI connections which cannot be reliably detected.
325
326 III. Driver operation
327
328 The 3c59x series use an interface that's very similar to the previous 3c5x9
329 series. The primary interface is two programmed-I/O FIFOs, with an
330 alternate single-contiguous-region bus-master transfer (see next).
331
332 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
333 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
334 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
335 programmed-I/O interface that has been removed in 'B' and subsequent board
336 revisions.
337
338 One extension that is advertised in a very large font is that the adapters
339 are capable of being bus masters. On the Vortex chip this capability was
340 only for a single contiguous region making it far less useful than the full
341 bus master capability. There is a significant performance impact of taking
342 an extra interrupt or polling for the completion of each transfer, as well
343 as difficulty sharing the single transfer engine between the transmit and
344 receive threads. Using DMA transfers is a win only with large blocks or
345 with the flawed versions of the Intel Orion motherboard PCI controller.
346
347 The Boomerang chip's full-bus-master interface is useful, and has the
348 currently-unused advantages over other similar chips that queued transmit
349 packets may be reordered and receive buffer groups are associated with a
350 single frame.
351
352 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
353 Rather than a fixed intermediate receive buffer, this scheme allocates
354 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
355 the copying breakpoint: it is chosen to trade-off the memory wasted by
356 passing the full-sized skbuff to the queue layer for all frames vs. the
357 copying cost of copying a frame to a correctly-sized skbuff.
358
359 IIIC. Synchronization
360 The driver runs as two independent, single-threaded flows of control. One
361 is the send-packet routine, which enforces single-threaded use by the
362 dev->tbusy flag. The other thread is the interrupt handler, which is single
363 threaded by the hardware and other software.
364
365 IV. Notes
366
367 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
368 3c590, 3c595, and 3c900 boards.
369 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
370 the EISA version is called "Demon". According to Terry these names come
371 from rides at the local amusement park.
372
373 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
374 This driver only supports ethernet packets because of the skbuff allocation
375 limit of 4K.
376 */
377
378 /* This table drives the PCI probe routines. It's mostly boilerplate in all
379 of the drivers, and will likely be provided by some future kernel.
380 */
381 enum pci_flags_bit {
382 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
383 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
384 };
385
386 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
387 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
388 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
389 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
390 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
391 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
392
393 enum vortex_chips {
394 CH_3C590 = 0,
395 CH_3C592,
396 CH_3C597,
397 CH_3C595_1,
398 CH_3C595_2,
399
400 CH_3C595_3,
401 CH_3C900_1,
402 CH_3C900_2,
403 CH_3C900_3,
404 CH_3C900_4,
405
406 CH_3C900_5,
407 CH_3C900B_FL,
408 CH_3C905_1,
409 CH_3C905_2,
410 CH_3C905B_1,
411
412 CH_3C905B_2,
413 CH_3C905B_FX,
414 CH_3C905C,
415 CH_3C9202,
416 CH_3C980,
417 CH_3C9805,
418
419 CH_3CSOHO100_TX,
420 CH_3C555,
421 CH_3C556,
422 CH_3C556B,
423 CH_3C575,
424
425 CH_3C575_1,
426 CH_3CCFE575,
427 CH_3CCFE575CT,
428 CH_3CCFE656,
429 CH_3CCFEM656,
430
431 CH_3CCFEM656_1,
432 CH_3C450,
433 CH_3C920,
434 CH_3C982A,
435 CH_3C982B,
436
437 CH_905BT4,
438 CH_920B_EMB_WNM,
439 };
440
441
442 /* note: this array directly indexed by above enums, and MUST
443 * be kept in sync with both the enums above, and the PCI device
444 * table below
445 */
446 static struct vortex_chip_info {
447 const char *name;
448 int flags;
449 int drv_flags;
450 int io_size;
451 } vortex_info_tbl[] __devinitdata = {
452 {"3c590 Vortex 10Mbps",
453 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
454 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
455 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
456 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
457 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
458 {"3c595 Vortex 100baseTx",
459 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
460 {"3c595 Vortex 100baseT4",
461 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
462
463 {"3c595 Vortex 100base-MII",
464 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
465 {"3c900 Boomerang 10baseT",
466 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
467 {"3c900 Boomerang 10Mbps Combo",
468 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
469 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
470 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
471 {"3c900 Cyclone 10Mbps Combo",
472 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
473
474 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
475 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
476 {"3c900B-FL Cyclone 10base-FL",
477 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
478 {"3c905 Boomerang 100baseTx",
479 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
480 {"3c905 Boomerang 100baseT4",
481 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
482 {"3c905B Cyclone 100baseTx",
483 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
484
485 {"3c905B Cyclone 10/100/BNC",
486 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
487 {"3c905B-FX Cyclone 100baseFx",
488 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
489 {"3c905C Tornado",
490 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
491 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
492 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
493 {"3c980 Cyclone",
494 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
495
496 {"3c980C Python-T",
497 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
498 {"3cSOHO100-TX Hurricane",
499 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
500 {"3c555 Laptop Hurricane",
501 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
502 {"3c556 Laptop Tornado",
503 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
504 HAS_HWCKSM, 128, },
505 {"3c556B Laptop Hurricane",
506 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
507 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
508
509 {"3c575 [Megahertz] 10/100 LAN CardBus",
510 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
511 {"3c575 Boomerang CardBus",
512 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
513 {"3CCFE575BT Cyclone CardBus",
514 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
515 INVERT_LED_PWR|HAS_HWCKSM, 128, },
516 {"3CCFE575CT Tornado CardBus",
517 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
518 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
519 {"3CCFE656 Cyclone CardBus",
520 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
521 INVERT_LED_PWR|HAS_HWCKSM, 128, },
522
523 {"3CCFEM656B Cyclone+Winmodem CardBus",
524 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
525 INVERT_LED_PWR|HAS_HWCKSM, 128, },
526 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
527 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
528 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
529 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
530 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
531 {"3c920 Tornado",
532 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
533 {"3c982 Hydra Dual Port A",
534 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
535
536 {"3c982 Hydra Dual Port B",
537 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
538 {"3c905B-T4",
539 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
540 {"3c920B-EMB-WNM Tornado",
541 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
542
543 {NULL,}, /* NULL terminated list. */
544 };
545
546
547 static struct pci_device_id vortex_pci_tbl[] = {
548 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
549 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
550 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
551 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
552 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
553
554 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
555 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
556 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
557 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
558 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
559
560 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
561 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
562 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
563 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
564 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
565
566 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
567 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
568 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
569 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
570 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
571 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
572
573 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
574 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
575 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
576 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
577 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
578
579 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
580 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
581 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
582 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
583 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
584
585 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
586 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
587 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
588 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
589 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
590
591 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
592 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
593
594 {0,} /* 0 terminated list. */
595 };
596 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
597
598
599 /* Operational definitions.
600 These are not used by other compilation units and thus are not
601 exported in a ".h" file.
602
603 First the windows. There are eight register windows, with the command
604 and status registers available in each.
605 */
606 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
607 #define EL3_CMD 0x0e
608 #define EL3_STATUS 0x0e
609
610 /* The top five bits written to EL3_CMD are a command, the lower
611 11 bits are the parameter, if applicable.
612 Note that 11 parameters bits was fine for ethernet, but the new chip
613 can handle FDDI length frames (~4500 octets) and now parameters count
614 32-bit 'Dwords' rather than octets. */
615
616 enum vortex_cmd {
617 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
618 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
619 UpStall = 6<<11, UpUnstall = (6<<11)+1,
620 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
621 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
622 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
623 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
624 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
625 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
626 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
627
628 /* The SetRxFilter command accepts the following classes: */
629 enum RxFilter {
630 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
631
632 /* Bits in the general status register. */
633 enum vortex_status {
634 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
635 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
636 IntReq = 0x0040, StatsFull = 0x0080,
637 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
638 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
639 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
640 };
641
642 /* Register window 1 offsets, the window used in normal operation.
643 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
644 enum Window1 {
645 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
646 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
647 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
648 };
649 enum Window0 {
650 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
651 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
652 IntrStatus=0x0E, /* Valid in all windows. */
653 };
654 enum Win0_EEPROM_bits {
655 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
656 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
657 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
658 };
659 /* EEPROM locations. */
660 enum eeprom_offset {
661 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
662 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
663 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
664 DriverTune=13, Checksum=15};
665
666 enum Window2 { /* Window 2. */
667 Wn2_ResetOptions=12,
668 };
669 enum Window3 { /* Window 3: MAC/config bits. */
670 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
671 };
672
673 #define BFEXT(value, offset, bitcount) \
674 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
675
676 #define BFINS(lhs, rhs, offset, bitcount) \
677 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
678 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
679
680 #define RAM_SIZE(v) BFEXT(v, 0, 3)
681 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
682 #define RAM_SPEED(v) BFEXT(v, 4, 2)
683 #define ROM_SIZE(v) BFEXT(v, 6, 2)
684 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
685 #define XCVR(v) BFEXT(v, 20, 4)
686 #define AUTOSELECT(v) BFEXT(v, 24, 1)
687
688 enum Window4 { /* Window 4: Xcvr/media bits. */
689 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
690 };
691 enum Win4_Media_bits {
692 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
693 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
694 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
695 Media_LnkBeat = 0x0800,
696 };
697 enum Window7 { /* Window 7: Bus Master control. */
698 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
699 Wn7_MasterStatus = 12,
700 };
701 /* Boomerang bus master control registers. */
702 enum MasterCtrl {
703 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
704 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
705 };
706
707 /* The Rx and Tx descriptor lists.
708 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
709 alignment contraint on tx_ring[] and rx_ring[]. */
710 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
711 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
712 struct boom_rx_desc {
713 u32 next; /* Last entry points to 0. */
714 s32 status;
715 u32 addr; /* Up to 63 addr/len pairs possible. */
716 s32 length; /* Set LAST_FRAG to indicate last pair. */
717 };
718 /* Values for the Rx status entry. */
719 enum rx_desc_status {
720 RxDComplete=0x00008000, RxDError=0x4000,
721 /* See boomerang_rx() for actual error bits */
722 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
723 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
724 };
725
726 #ifdef MAX_SKB_FRAGS
727 #define DO_ZEROCOPY 1
728 #else
729 #define DO_ZEROCOPY 0
730 #endif
731
732 struct boom_tx_desc {
733 u32 next; /* Last entry points to 0. */
734 s32 status; /* bits 0:12 length, others see below. */
735 #if DO_ZEROCOPY
736 struct {
737 u32 addr;
738 s32 length;
739 } frag[1+MAX_SKB_FRAGS];
740 #else
741 u32 addr;
742 s32 length;
743 #endif
744 };
745
746 /* Values for the Tx status entry. */
747 enum tx_desc_status {
748 CRCDisable=0x2000, TxDComplete=0x8000,
749 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
750 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
751 };
752
753 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
754 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
755
756 struct vortex_extra_stats {
757 unsigned long tx_deferred;
758 unsigned long tx_max_collisions;
759 unsigned long tx_multiple_collisions;
760 unsigned long tx_single_collisions;
761 unsigned long rx_bad_ssd;
762 };
763
764 struct vortex_private {
765 /* The Rx and Tx rings should be quad-word-aligned. */
766 struct boom_rx_desc* rx_ring;
767 struct boom_tx_desc* tx_ring;
768 dma_addr_t rx_ring_dma;
769 dma_addr_t tx_ring_dma;
770 /* The addresses of transmit- and receive-in-place skbuffs. */
771 struct sk_buff* rx_skbuff[RX_RING_SIZE];
772 struct sk_buff* tx_skbuff[TX_RING_SIZE];
773 unsigned int cur_rx, cur_tx; /* The next free ring entry */
774 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
775 struct net_device_stats stats; /* Generic stats */
776 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
777 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
778 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
779
780 /* PCI configuration space information. */
781 struct device *gendev;
782 void __iomem *ioaddr; /* IO address space */
783 void __iomem *cb_fn_base; /* CardBus function status addr space. */
784
785 /* Some values here only for performance evaluation and path-coverage */
786 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
787 int card_idx;
788
789 /* The remainder are related to chip state, mostly media selection. */
790 struct timer_list timer; /* Media selection timer. */
791 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
792 int options; /* User-settable misc. driver options. */
793 unsigned int media_override:4, /* Passed-in media type. */
794 default_media:4, /* Read from the EEPROM/Wn3_Config. */
795 full_duplex:1, force_fd:1, autoselect:1,
796 bus_master:1, /* Vortex can only do a fragment bus-m. */
797 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
798 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
799 partner_flow_ctrl:1, /* Partner supports flow control */
800 has_nway:1,
801 enable_wol:1, /* Wake-on-LAN is enabled */
802 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
803 open:1,
804 medialock:1,
805 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
806 large_frames:1; /* accept large frames */
807 int drv_flags;
808 u16 status_enable;
809 u16 intr_enable;
810 u16 available_media; /* From Wn3_Options. */
811 u16 capabilities, info1, info2; /* Various, from EEPROM. */
812 u16 advertising; /* NWay media advertisement */
813 unsigned char phys[2]; /* MII device addresses. */
814 u16 deferred; /* Resend these interrupts when we
815 * bale from the ISR */
816 u16 io_size; /* Size of PCI region (for release_region) */
817 spinlock_t lock; /* Serialise access to device & its vortex_private */
818 struct mii_if_info mii; /* MII lib hooks/info */
819 };
820
821 #ifdef CONFIG_PCI
822 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
823 #else
824 #define DEVICE_PCI(dev) NULL
825 #endif
826
827 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
828
829 #ifdef CONFIG_EISA
830 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
831 #else
832 #define DEVICE_EISA(dev) NULL
833 #endif
834
835 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
836
837 /* The action to take with a media selection timer tick.
838 Note that we deviate from the 3Com order by checking 10base2 before AUI.
839 */
840 enum xcvr_types {
841 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
842 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
843 };
844
845 static const struct media_table {
846 char *name;
847 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
848 mask:8, /* The transceiver-present bit in Wn3_Config.*/
849 next:8; /* The media type to try next. */
850 int wait; /* Time before we check media status. */
851 } media_tbl[] = {
852 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
853 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
854 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
855 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
856 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
857 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
858 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
859 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
860 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
861 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
862 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
863 };
864
865 static struct {
866 const char str[ETH_GSTRING_LEN];
867 } ethtool_stats_keys[] = {
868 { "tx_deferred" },
869 { "tx_max_collisions" },
870 { "tx_multiple_collisions" },
871 { "tx_single_collisions" },
872 { "rx_bad_ssd" },
873 };
874
875 /* number of ETHTOOL_GSTATS u64's */
876 #define VORTEX_NUM_STATS 5
877
878 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
879 int chip_idx, int card_idx);
880 static void vortex_up(struct net_device *dev);
881 static void vortex_down(struct net_device *dev, int final);
882 static int vortex_open(struct net_device *dev);
883 static void mdio_sync(void __iomem *ioaddr, int bits);
884 static int mdio_read(struct net_device *dev, int phy_id, int location);
885 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
886 static void vortex_timer(unsigned long arg);
887 static void rx_oom_timer(unsigned long arg);
888 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
889 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
890 static int vortex_rx(struct net_device *dev);
891 static int boomerang_rx(struct net_device *dev);
892 static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
893 static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
894 static int vortex_close(struct net_device *dev);
895 static void dump_tx_ring(struct net_device *dev);
896 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
897 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
898 static void set_rx_mode(struct net_device *dev);
899 #ifdef CONFIG_PCI
900 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
901 #endif
902 static void vortex_tx_timeout(struct net_device *dev);
903 static void acpi_set_WOL(struct net_device *dev);
904 static struct ethtool_ops vortex_ethtool_ops;
905 static void set_8021q_mode(struct net_device *dev, int enable);
906
907 \f
908 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
909 /* Option count limit only -- unlimited interfaces are supported. */
910 #define MAX_UNITS 8
911 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
912 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
913 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
914 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
915 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
916 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
917 static int global_options = -1;
918 static int global_full_duplex = -1;
919 static int global_enable_wol = -1;
920 static int global_use_mmio = -1;
921
922 /* #define dev_alloc_skb dev_alloc_skb_debug */
923
924 /* Variables to work-around the Compaq PCI BIOS32 problem. */
925 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
926 static struct net_device *compaq_net_device;
927
928 static int vortex_cards_found;
929
930 module_param(debug, int, 0);
931 module_param(global_options, int, 0);
932 module_param_array(options, int, NULL, 0);
933 module_param(global_full_duplex, int, 0);
934 module_param_array(full_duplex, int, NULL, 0);
935 module_param_array(hw_checksums, int, NULL, 0);
936 module_param_array(flow_ctrl, int, NULL, 0);
937 module_param(global_enable_wol, int, 0);
938 module_param_array(enable_wol, int, NULL, 0);
939 module_param(rx_copybreak, int, 0);
940 module_param(max_interrupt_work, int, 0);
941 module_param(compaq_ioaddr, int, 0);
942 module_param(compaq_irq, int, 0);
943 module_param(compaq_device_id, int, 0);
944 module_param(watchdog, int, 0);
945 module_param(global_use_mmio, int, 0);
946 module_param_array(use_mmio, int, NULL, 0);
947 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
948 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
949 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
950 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
951 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
952 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
953 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
954 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
955 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
956 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
957 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
958 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
959 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
960 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
961 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
962 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
963 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
964
965 #ifdef CONFIG_NET_POLL_CONTROLLER
966 static void poll_vortex(struct net_device *dev)
967 {
968 struct vortex_private *vp = netdev_priv(dev);
969 unsigned long flags;
970 local_save_flags(flags);
971 local_irq_disable();
972 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
973 local_irq_restore(flags);
974 }
975 #endif
976
977 #ifdef CONFIG_PM
978
979 static int vortex_suspend (struct pci_dev *pdev, pm_message_t state)
980 {
981 struct net_device *dev = pci_get_drvdata(pdev);
982
983 if (dev && dev->priv) {
984 if (netif_running(dev)) {
985 netif_device_detach(dev);
986 vortex_down(dev, 1);
987 }
988 pci_save_state(pdev);
989 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
990 free_irq(dev->irq, dev);
991 pci_disable_device(pdev);
992 pci_set_power_state(pdev, pci_choose_state(pdev, state));
993 }
994 return 0;
995 }
996
997 static int vortex_resume (struct pci_dev *pdev)
998 {
999 struct net_device *dev = pci_get_drvdata(pdev);
1000 struct vortex_private *vp = netdev_priv(dev);
1001
1002 if (dev && vp) {
1003 pci_set_power_state(pdev, PCI_D0);
1004 pci_restore_state(pdev);
1005 pci_enable_device(pdev);
1006 pci_set_master(pdev);
1007 if (request_irq(dev->irq, vp->full_bus_master_rx ?
1008 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev)) {
1009 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1010 pci_disable_device(pdev);
1011 return -EBUSY;
1012 }
1013 if (netif_running(dev)) {
1014 vortex_up(dev);
1015 netif_device_attach(dev);
1016 }
1017 }
1018 return 0;
1019 }
1020
1021 #endif /* CONFIG_PM */
1022
1023 #ifdef CONFIG_EISA
1024 static struct eisa_device_id vortex_eisa_ids[] = {
1025 { "TCM5920", CH_3C592 },
1026 { "TCM5970", CH_3C597 },
1027 { "" }
1028 };
1029
1030 static int vortex_eisa_probe (struct device *device);
1031 static int vortex_eisa_remove (struct device *device);
1032
1033 static struct eisa_driver vortex_eisa_driver = {
1034 .id_table = vortex_eisa_ids,
1035 .driver = {
1036 .name = "3c59x",
1037 .probe = vortex_eisa_probe,
1038 .remove = vortex_eisa_remove
1039 }
1040 };
1041
1042 static int vortex_eisa_probe (struct device *device)
1043 {
1044 void __iomem *ioaddr;
1045 struct eisa_device *edev;
1046
1047 edev = to_eisa_device (device);
1048
1049 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
1050 return -EBUSY;
1051
1052 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
1053
1054 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
1055 edev->id.driver_data, vortex_cards_found)) {
1056 release_region (edev->base_addr, VORTEX_TOTAL_SIZE);
1057 return -ENODEV;
1058 }
1059
1060 vortex_cards_found++;
1061
1062 return 0;
1063 }
1064
1065 static int vortex_eisa_remove (struct device *device)
1066 {
1067 struct eisa_device *edev;
1068 struct net_device *dev;
1069 struct vortex_private *vp;
1070 void __iomem *ioaddr;
1071
1072 edev = to_eisa_device (device);
1073 dev = eisa_get_drvdata (edev);
1074
1075 if (!dev) {
1076 printk("vortex_eisa_remove called for Compaq device!\n");
1077 BUG();
1078 }
1079
1080 vp = netdev_priv(dev);
1081 ioaddr = vp->ioaddr;
1082
1083 unregister_netdev (dev);
1084 iowrite16 (TotalReset|0x14, ioaddr + EL3_CMD);
1085 release_region (dev->base_addr, VORTEX_TOTAL_SIZE);
1086
1087 free_netdev (dev);
1088 return 0;
1089 }
1090 #endif
1091
1092 /* returns count found (>= 0), or negative on error */
1093 static int __init vortex_eisa_init (void)
1094 {
1095 int eisa_found = 0;
1096 int orig_cards_found = vortex_cards_found;
1097
1098 #ifdef CONFIG_EISA
1099 int err;
1100
1101 err = eisa_driver_register (&vortex_eisa_driver);
1102 if (!err) {
1103 /*
1104 * Because of the way EISA bus is probed, we cannot assume
1105 * any device have been found when we exit from
1106 * eisa_driver_register (the bus root driver may not be
1107 * initialized yet). So we blindly assume something was
1108 * found, and let the sysfs magic happend...
1109 */
1110 eisa_found = 1;
1111 }
1112 #endif
1113
1114 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1115 if (compaq_ioaddr) {
1116 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
1117 compaq_irq, compaq_device_id, vortex_cards_found++);
1118 }
1119
1120 return vortex_cards_found - orig_cards_found + eisa_found;
1121 }
1122
1123 /* returns count (>= 0), or negative on error */
1124 static int __devinit vortex_init_one (struct pci_dev *pdev,
1125 const struct pci_device_id *ent)
1126 {
1127 int rc, unit, pci_bar;
1128 struct vortex_chip_info *vci;
1129 void __iomem *ioaddr;
1130
1131 /* wake up and enable device */
1132 rc = pci_enable_device (pdev);
1133 if (rc < 0)
1134 goto out;
1135
1136 unit = vortex_cards_found;
1137
1138 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1139 /* Determine the default if the user didn't override us */
1140 vci = &vortex_info_tbl[ent->driver_data];
1141 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1142 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1143 pci_bar = use_mmio[unit] ? 1 : 0;
1144 else
1145 pci_bar = global_use_mmio ? 1 : 0;
1146
1147 ioaddr = pci_iomap(pdev, pci_bar, 0);
1148 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1149 ioaddr = pci_iomap(pdev, 0, 0);
1150
1151 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1152 ent->driver_data, unit);
1153 if (rc < 0) {
1154 pci_disable_device (pdev);
1155 goto out;
1156 }
1157
1158 vortex_cards_found++;
1159
1160 out:
1161 return rc;
1162 }
1163
1164 /*
1165 * Start up the PCI/EISA device which is described by *gendev.
1166 * Return 0 on success.
1167 *
1168 * NOTE: pdev can be NULL, for the case of a Compaq device
1169 */
1170 static int __devinit vortex_probe1(struct device *gendev,
1171 void __iomem *ioaddr, int irq,
1172 int chip_idx, int card_idx)
1173 {
1174 struct vortex_private *vp;
1175 int option;
1176 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1177 int i, step;
1178 struct net_device *dev;
1179 static int printed_version;
1180 int retval, print_info;
1181 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1182 char *print_name = "3c59x";
1183 struct pci_dev *pdev = NULL;
1184 struct eisa_device *edev = NULL;
1185
1186 if (!printed_version) {
1187 printk (version);
1188 printed_version = 1;
1189 }
1190
1191 if (gendev) {
1192 if ((pdev = DEVICE_PCI(gendev))) {
1193 print_name = pci_name(pdev);
1194 }
1195
1196 if ((edev = DEVICE_EISA(gendev))) {
1197 print_name = edev->dev.bus_id;
1198 }
1199 }
1200
1201 dev = alloc_etherdev(sizeof(*vp));
1202 retval = -ENOMEM;
1203 if (!dev) {
1204 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1205 goto out;
1206 }
1207 SET_MODULE_OWNER(dev);
1208 SET_NETDEV_DEV(dev, gendev);
1209 vp = netdev_priv(dev);
1210
1211 option = global_options;
1212
1213 /* The lower four bits are the media type. */
1214 if (dev->mem_start) {
1215 /*
1216 * The 'options' param is passed in as the third arg to the
1217 * LILO 'ether=' argument for non-modular use
1218 */
1219 option = dev->mem_start;
1220 }
1221 else if (card_idx < MAX_UNITS) {
1222 if (options[card_idx] >= 0)
1223 option = options[card_idx];
1224 }
1225
1226 if (option > 0) {
1227 if (option & 0x8000)
1228 vortex_debug = 7;
1229 if (option & 0x4000)
1230 vortex_debug = 2;
1231 if (option & 0x0400)
1232 vp->enable_wol = 1;
1233 }
1234
1235 print_info = (vortex_debug > 1);
1236 if (print_info)
1237 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1238
1239 printk(KERN_INFO "%s: 3Com %s %s at %p. Vers " DRV_VERSION "\n",
1240 print_name,
1241 pdev ? "PCI" : "EISA",
1242 vci->name,
1243 ioaddr);
1244
1245 dev->base_addr = (unsigned long)ioaddr;
1246 dev->irq = irq;
1247 dev->mtu = mtu;
1248 vp->ioaddr = ioaddr;
1249 vp->large_frames = mtu > 1500;
1250 vp->drv_flags = vci->drv_flags;
1251 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1252 vp->io_size = vci->io_size;
1253 vp->card_idx = card_idx;
1254
1255 /* module list only for Compaq device */
1256 if (gendev == NULL) {
1257 compaq_net_device = dev;
1258 }
1259
1260 /* PCI-only startup logic */
1261 if (pdev) {
1262 /* EISA resources already marked, so only PCI needs to do this here */
1263 /* Ignore return value, because Cardbus drivers already allocate for us */
1264 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1265 vp->must_free_region = 1;
1266
1267 /* enable bus-mastering if necessary */
1268 if (vci->flags & PCI_USES_MASTER)
1269 pci_set_master (pdev);
1270
1271 if (vci->drv_flags & IS_VORTEX) {
1272 u8 pci_latency;
1273 u8 new_latency = 248;
1274
1275 /* Check the PCI latency value. On the 3c590 series the latency timer
1276 must be set to the maximum value to avoid data corruption that occurs
1277 when the timer expires during a transfer. This bug exists the Vortex
1278 chip only. */
1279 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1280 if (pci_latency < new_latency) {
1281 printk(KERN_INFO "%s: Overriding PCI latency"
1282 " timer (CFLT) setting of %d, new value is %d.\n",
1283 print_name, pci_latency, new_latency);
1284 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1285 }
1286 }
1287 }
1288
1289 spin_lock_init(&vp->lock);
1290 vp->gendev = gendev;
1291 vp->mii.dev = dev;
1292 vp->mii.mdio_read = mdio_read;
1293 vp->mii.mdio_write = mdio_write;
1294 vp->mii.phy_id_mask = 0x1f;
1295 vp->mii.reg_num_mask = 0x1f;
1296
1297 /* Makes sure rings are at least 16 byte aligned. */
1298 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1299 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1300 &vp->rx_ring_dma);
1301 retval = -ENOMEM;
1302 if (vp->rx_ring == 0)
1303 goto free_region;
1304
1305 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1306 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1307
1308 /* if we are a PCI driver, we store info in pdev->driver_data
1309 * instead of a module list */
1310 if (pdev)
1311 pci_set_drvdata(pdev, dev);
1312 if (edev)
1313 eisa_set_drvdata (edev, dev);
1314
1315 vp->media_override = 7;
1316 if (option >= 0) {
1317 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1318 if (vp->media_override != 7)
1319 vp->medialock = 1;
1320 vp->full_duplex = (option & 0x200) ? 1 : 0;
1321 vp->bus_master = (option & 16) ? 1 : 0;
1322 }
1323
1324 if (global_full_duplex > 0)
1325 vp->full_duplex = 1;
1326 if (global_enable_wol > 0)
1327 vp->enable_wol = 1;
1328
1329 if (card_idx < MAX_UNITS) {
1330 if (full_duplex[card_idx] > 0)
1331 vp->full_duplex = 1;
1332 if (flow_ctrl[card_idx] > 0)
1333 vp->flow_ctrl = 1;
1334 if (enable_wol[card_idx] > 0)
1335 vp->enable_wol = 1;
1336 }
1337
1338 vp->force_fd = vp->full_duplex;
1339 vp->options = option;
1340 /* Read the station address from the EEPROM. */
1341 EL3WINDOW(0);
1342 {
1343 int base;
1344
1345 if (vci->drv_flags & EEPROM_8BIT)
1346 base = 0x230;
1347 else if (vci->drv_flags & EEPROM_OFFSET)
1348 base = EEPROM_Read + 0x30;
1349 else
1350 base = EEPROM_Read;
1351
1352 for (i = 0; i < 0x40; i++) {
1353 int timer;
1354 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1355 /* Pause for at least 162 us. for the read to take place. */
1356 for (timer = 10; timer >= 0; timer--) {
1357 udelay(162);
1358 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1359 break;
1360 }
1361 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1362 }
1363 }
1364 for (i = 0; i < 0x18; i++)
1365 checksum ^= eeprom[i];
1366 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1367 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1368 while (i < 0x21)
1369 checksum ^= eeprom[i++];
1370 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1371 }
1372 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1373 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1374 for (i = 0; i < 3; i++)
1375 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1376 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1377 if (print_info) {
1378 for (i = 0; i < 6; i++)
1379 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1380 }
1381 /* Unfortunately an all zero eeprom passes the checksum and this
1382 gets found in the wild in failure cases. Crypto is hard 8) */
1383 if (!is_valid_ether_addr(dev->dev_addr)) {
1384 retval = -EINVAL;
1385 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1386 goto free_ring; /* With every pack */
1387 }
1388 EL3WINDOW(2);
1389 for (i = 0; i < 6; i++)
1390 iowrite8(dev->dev_addr[i], ioaddr + i);
1391
1392 #ifdef __sparc__
1393 if (print_info)
1394 printk(", IRQ %s\n", __irq_itoa(dev->irq));
1395 #else
1396 if (print_info)
1397 printk(", IRQ %d\n", dev->irq);
1398 /* Tell them about an invalid IRQ. */
1399 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1400 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1401 dev->irq);
1402 #endif
1403
1404 EL3WINDOW(4);
1405 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1406 if (print_info) {
1407 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1408 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1409 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1410 }
1411
1412
1413 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1414 unsigned short n;
1415
1416 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1417 if (!vp->cb_fn_base) {
1418 retval = -ENOMEM;
1419 goto free_ring;
1420 }
1421
1422 if (print_info) {
1423 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1424 print_name, pci_resource_start(pdev, 2),
1425 vp->cb_fn_base);
1426 }
1427 EL3WINDOW(2);
1428
1429 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1430 if (vp->drv_flags & INVERT_LED_PWR)
1431 n |= 0x10;
1432 if (vp->drv_flags & INVERT_MII_PWR)
1433 n |= 0x4000;
1434 iowrite16(n, ioaddr + Wn2_ResetOptions);
1435 if (vp->drv_flags & WNO_XCVR_PWR) {
1436 EL3WINDOW(0);
1437 iowrite16(0x0800, ioaddr);
1438 }
1439 }
1440
1441 /* Extract our information from the EEPROM data. */
1442 vp->info1 = eeprom[13];
1443 vp->info2 = eeprom[15];
1444 vp->capabilities = eeprom[16];
1445
1446 if (vp->info1 & 0x8000) {
1447 vp->full_duplex = 1;
1448 if (print_info)
1449 printk(KERN_INFO "Full duplex capable\n");
1450 }
1451
1452 {
1453 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1454 unsigned int config;
1455 EL3WINDOW(3);
1456 vp->available_media = ioread16(ioaddr + Wn3_Options);
1457 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1458 vp->available_media = 0x40;
1459 config = ioread32(ioaddr + Wn3_Config);
1460 if (print_info) {
1461 printk(KERN_DEBUG " Internal config register is %4.4x, "
1462 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1463 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1464 8 << RAM_SIZE(config),
1465 RAM_WIDTH(config) ? "word" : "byte",
1466 ram_split[RAM_SPLIT(config)],
1467 AUTOSELECT(config) ? "autoselect/" : "",
1468 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1469 media_tbl[XCVR(config)].name);
1470 }
1471 vp->default_media = XCVR(config);
1472 if (vp->default_media == XCVR_NWAY)
1473 vp->has_nway = 1;
1474 vp->autoselect = AUTOSELECT(config);
1475 }
1476
1477 if (vp->media_override != 7) {
1478 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1479 print_name, vp->media_override,
1480 media_tbl[vp->media_override].name);
1481 dev->if_port = vp->media_override;
1482 } else
1483 dev->if_port = vp->default_media;
1484
1485 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1486 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1487 int phy, phy_idx = 0;
1488 EL3WINDOW(4);
1489 mii_preamble_required++;
1490 if (vp->drv_flags & EXTRA_PREAMBLE)
1491 mii_preamble_required++;
1492 mdio_sync(ioaddr, 32);
1493 mdio_read(dev, 24, MII_BMSR);
1494 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1495 int mii_status, phyx;
1496
1497 /*
1498 * For the 3c905CX we look at index 24 first, because it bogusly
1499 * reports an external PHY at all indices
1500 */
1501 if (phy == 0)
1502 phyx = 24;
1503 else if (phy <= 24)
1504 phyx = phy - 1;
1505 else
1506 phyx = phy;
1507 mii_status = mdio_read(dev, phyx, MII_BMSR);
1508 if (mii_status && mii_status != 0xffff) {
1509 vp->phys[phy_idx++] = phyx;
1510 if (print_info) {
1511 printk(KERN_INFO " MII transceiver found at address %d,"
1512 " status %4x.\n", phyx, mii_status);
1513 }
1514 if ((mii_status & 0x0040) == 0)
1515 mii_preamble_required++;
1516 }
1517 }
1518 mii_preamble_required--;
1519 if (phy_idx == 0) {
1520 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1521 vp->phys[0] = 24;
1522 } else {
1523 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1524 if (vp->full_duplex) {
1525 /* Only advertise the FD media types. */
1526 vp->advertising &= ~0x02A0;
1527 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1528 }
1529 }
1530 vp->mii.phy_id = vp->phys[0];
1531 }
1532
1533 if (vp->capabilities & CapBusMaster) {
1534 vp->full_bus_master_tx = 1;
1535 if (print_info) {
1536 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1537 (vp->info2 & 1) ? "early" : "whole-frame" );
1538 }
1539 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1540 vp->bus_master = 0; /* AKPM: vortex only */
1541 }
1542
1543 /* The 3c59x-specific entries in the device structure. */
1544 dev->open = vortex_open;
1545 if (vp->full_bus_master_tx) {
1546 dev->hard_start_xmit = boomerang_start_xmit;
1547 /* Actually, it still should work with iommu. */
1548 if (card_idx < MAX_UNITS &&
1549 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1550 hw_checksums[card_idx] == 1)) {
1551 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1552 }
1553 } else {
1554 dev->hard_start_xmit = vortex_start_xmit;
1555 }
1556
1557 if (print_info) {
1558 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1559 print_name,
1560 (dev->features & NETIF_F_SG) ? "en":"dis",
1561 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1562 }
1563
1564 dev->stop = vortex_close;
1565 dev->get_stats = vortex_get_stats;
1566 #ifdef CONFIG_PCI
1567 dev->do_ioctl = vortex_ioctl;
1568 #endif
1569 dev->ethtool_ops = &vortex_ethtool_ops;
1570 dev->set_multicast_list = set_rx_mode;
1571 dev->tx_timeout = vortex_tx_timeout;
1572 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1573 #ifdef CONFIG_NET_POLL_CONTROLLER
1574 dev->poll_controller = poll_vortex;
1575 #endif
1576 if (pdev) {
1577 vp->pm_state_valid = 1;
1578 pci_save_state(VORTEX_PCI(vp));
1579 acpi_set_WOL(dev);
1580 }
1581 retval = register_netdev(dev);
1582 if (retval == 0)
1583 return 0;
1584
1585 free_ring:
1586 pci_free_consistent(pdev,
1587 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1588 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1589 vp->rx_ring,
1590 vp->rx_ring_dma);
1591 free_region:
1592 if (vp->must_free_region)
1593 release_region(dev->base_addr, vci->io_size);
1594 free_netdev(dev);
1595 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1596 out:
1597 return retval;
1598 }
1599
1600 static void
1601 issue_and_wait(struct net_device *dev, int cmd)
1602 {
1603 struct vortex_private *vp = netdev_priv(dev);
1604 void __iomem *ioaddr = vp->ioaddr;
1605 int i;
1606
1607 iowrite16(cmd, ioaddr + EL3_CMD);
1608 for (i = 0; i < 2000; i++) {
1609 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1610 return;
1611 }
1612
1613 /* OK, that didn't work. Do it the slow way. One second */
1614 for (i = 0; i < 100000; i++) {
1615 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1616 if (vortex_debug > 1)
1617 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1618 dev->name, cmd, i * 10);
1619 return;
1620 }
1621 udelay(10);
1622 }
1623 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1624 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1625 }
1626
1627 static void
1628 vortex_up(struct net_device *dev)
1629 {
1630 struct vortex_private *vp = netdev_priv(dev);
1631 void __iomem *ioaddr = vp->ioaddr;
1632 unsigned int config;
1633 int i;
1634
1635 if (VORTEX_PCI(vp)) {
1636 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1637 if (vp->pm_state_valid)
1638 pci_restore_state(VORTEX_PCI(vp));
1639 pci_enable_device(VORTEX_PCI(vp));
1640 }
1641
1642 /* Before initializing select the active media port. */
1643 EL3WINDOW(3);
1644 config = ioread32(ioaddr + Wn3_Config);
1645
1646 if (vp->media_override != 7) {
1647 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1648 dev->name, vp->media_override,
1649 media_tbl[vp->media_override].name);
1650 dev->if_port = vp->media_override;
1651 } else if (vp->autoselect) {
1652 if (vp->has_nway) {
1653 if (vortex_debug > 1)
1654 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1655 dev->name, dev->if_port);
1656 dev->if_port = XCVR_NWAY;
1657 } else {
1658 /* Find first available media type, starting with 100baseTx. */
1659 dev->if_port = XCVR_100baseTx;
1660 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1661 dev->if_port = media_tbl[dev->if_port].next;
1662 if (vortex_debug > 1)
1663 printk(KERN_INFO "%s: first available media type: %s\n",
1664 dev->name, media_tbl[dev->if_port].name);
1665 }
1666 } else {
1667 dev->if_port = vp->default_media;
1668 if (vortex_debug > 1)
1669 printk(KERN_INFO "%s: using default media %s\n",
1670 dev->name, media_tbl[dev->if_port].name);
1671 }
1672
1673 init_timer(&vp->timer);
1674 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1675 vp->timer.data = (unsigned long)dev;
1676 vp->timer.function = vortex_timer; /* timer handler */
1677 add_timer(&vp->timer);
1678
1679 init_timer(&vp->rx_oom_timer);
1680 vp->rx_oom_timer.data = (unsigned long)dev;
1681 vp->rx_oom_timer.function = rx_oom_timer;
1682
1683 if (vortex_debug > 1)
1684 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1685 dev->name, media_tbl[dev->if_port].name);
1686
1687 vp->full_duplex = vp->force_fd;
1688 config = BFINS(config, dev->if_port, 20, 4);
1689 if (vortex_debug > 6)
1690 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1691 iowrite32(config, ioaddr + Wn3_Config);
1692
1693 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1694 int mii_reg1, mii_reg5;
1695 EL3WINDOW(4);
1696 /* Read BMSR (reg1) only to clear old status. */
1697 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1698 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1699 if (mii_reg5 == 0xffff || mii_reg5 == 0x0000) {
1700 netif_carrier_off(dev); /* No MII device or no link partner report */
1701 } else {
1702 mii_reg5 &= vp->advertising;
1703 if ((mii_reg5 & 0x0100) != 0 /* 100baseTx-FD */
1704 || (mii_reg5 & 0x00C0) == 0x0040) /* 10T-FD, but not 100-HD */
1705 vp->full_duplex = 1;
1706 netif_carrier_on(dev);
1707 }
1708 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1709 if (vortex_debug > 1)
1710 printk(KERN_INFO "%s: MII #%d status %4.4x, link partner capability %4.4x,"
1711 " info1 %04x, setting %s-duplex.\n",
1712 dev->name, vp->phys[0],
1713 mii_reg1, mii_reg5,
1714 vp->info1, ((vp->info1 & 0x8000) || vp->full_duplex) ? "full" : "half");
1715 EL3WINDOW(3);
1716 }
1717
1718 /* Set the full-duplex bit. */
1719 iowrite16( ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1720 (vp->large_frames ? 0x40 : 0) |
1721 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1722 ioaddr + Wn3_MAC_Ctrl);
1723
1724 if (vortex_debug > 1) {
1725 printk(KERN_DEBUG "%s: vortex_up() InternalConfig %8.8x.\n",
1726 dev->name, config);
1727 }
1728
1729 issue_and_wait(dev, TxReset);
1730 /*
1731 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1732 */
1733 issue_and_wait(dev, RxReset|0x04);
1734
1735 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1736
1737 if (vortex_debug > 1) {
1738 EL3WINDOW(4);
1739 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1740 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1741 }
1742
1743 /* Set the station address and mask in window 2 each time opened. */
1744 EL3WINDOW(2);
1745 for (i = 0; i < 6; i++)
1746 iowrite8(dev->dev_addr[i], ioaddr + i);
1747 for (; i < 12; i+=2)
1748 iowrite16(0, ioaddr + i);
1749
1750 if (vp->cb_fn_base) {
1751 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1752 if (vp->drv_flags & INVERT_LED_PWR)
1753 n |= 0x10;
1754 if (vp->drv_flags & INVERT_MII_PWR)
1755 n |= 0x4000;
1756 iowrite16(n, ioaddr + Wn2_ResetOptions);
1757 }
1758
1759 if (dev->if_port == XCVR_10base2)
1760 /* Start the thinnet transceiver. We should really wait 50ms...*/
1761 iowrite16(StartCoax, ioaddr + EL3_CMD);
1762 if (dev->if_port != XCVR_NWAY) {
1763 EL3WINDOW(4);
1764 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1765 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1766 }
1767
1768 /* Switch to the stats window, and clear all stats by reading. */
1769 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1770 EL3WINDOW(6);
1771 for (i = 0; i < 10; i++)
1772 ioread8(ioaddr + i);
1773 ioread16(ioaddr + 10);
1774 ioread16(ioaddr + 12);
1775 /* New: On the Vortex we must also clear the BadSSD counter. */
1776 EL3WINDOW(4);
1777 ioread8(ioaddr + 12);
1778 /* ..and on the Boomerang we enable the extra statistics bits. */
1779 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1780
1781 /* Switch to register set 7 for normal use. */
1782 EL3WINDOW(7);
1783
1784 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1785 vp->cur_rx = vp->dirty_rx = 0;
1786 /* Initialize the RxEarly register as recommended. */
1787 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1788 iowrite32(0x0020, ioaddr + PktStatus);
1789 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1790 }
1791 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1792 vp->cur_tx = vp->dirty_tx = 0;
1793 if (vp->drv_flags & IS_BOOMERANG)
1794 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1795 /* Clear the Rx, Tx rings. */
1796 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1797 vp->rx_ring[i].status = 0;
1798 for (i = 0; i < TX_RING_SIZE; i++)
1799 vp->tx_skbuff[i] = NULL;
1800 iowrite32(0, ioaddr + DownListPtr);
1801 }
1802 /* Set receiver mode: presumably accept b-case and phys addr only. */
1803 set_rx_mode(dev);
1804 /* enable 802.1q tagged frames */
1805 set_8021q_mode(dev, 1);
1806 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1807
1808 // issue_and_wait(dev, SetTxStart|0x07ff);
1809 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1810 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1811 /* Allow status bits to be seen. */
1812 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1813 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1814 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1815 (vp->bus_master ? DMADone : 0);
1816 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1817 (vp->full_bus_master_rx ? 0 : RxComplete) |
1818 StatsFull | HostError | TxComplete | IntReq
1819 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1820 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1821 /* Ack all pending events, and set active indicator mask. */
1822 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1823 ioaddr + EL3_CMD);
1824 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1825 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1826 iowrite32(0x8000, vp->cb_fn_base + 4);
1827 netif_start_queue (dev);
1828 }
1829
1830 static int
1831 vortex_open(struct net_device *dev)
1832 {
1833 struct vortex_private *vp = netdev_priv(dev);
1834 int i;
1835 int retval;
1836
1837 /* Use the now-standard shared IRQ implementation. */
1838 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1839 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1840 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1841 goto out;
1842 }
1843
1844 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1845 if (vortex_debug > 2)
1846 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1847 for (i = 0; i < RX_RING_SIZE; i++) {
1848 struct sk_buff *skb;
1849 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1850 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1851 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1852 skb = dev_alloc_skb(PKT_BUF_SZ);
1853 vp->rx_skbuff[i] = skb;
1854 if (skb == NULL)
1855 break; /* Bad news! */
1856 skb->dev = dev; /* Mark as being used by this device. */
1857 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1858 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1859 }
1860 if (i != RX_RING_SIZE) {
1861 int j;
1862 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1863 for (j = 0; j < i; j++) {
1864 if (vp->rx_skbuff[j]) {
1865 dev_kfree_skb(vp->rx_skbuff[j]);
1866 vp->rx_skbuff[j] = NULL;
1867 }
1868 }
1869 retval = -ENOMEM;
1870 goto out_free_irq;
1871 }
1872 /* Wrap the ring. */
1873 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1874 }
1875
1876 vortex_up(dev);
1877 return 0;
1878
1879 out_free_irq:
1880 free_irq(dev->irq, dev);
1881 out:
1882 if (vortex_debug > 1)
1883 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1884 return retval;
1885 }
1886
1887 static void
1888 vortex_timer(unsigned long data)
1889 {
1890 struct net_device *dev = (struct net_device *)data;
1891 struct vortex_private *vp = netdev_priv(dev);
1892 void __iomem *ioaddr = vp->ioaddr;
1893 int next_tick = 60*HZ;
1894 int ok = 0;
1895 int media_status, mii_status, old_window;
1896
1897 if (vortex_debug > 2) {
1898 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1899 dev->name, media_tbl[dev->if_port].name);
1900 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1901 }
1902
1903 if (vp->medialock)
1904 goto leave_media_alone;
1905 disable_irq(dev->irq);
1906 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1907 EL3WINDOW(4);
1908 media_status = ioread16(ioaddr + Wn4_Media);
1909 switch (dev->if_port) {
1910 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1911 if (media_status & Media_LnkBeat) {
1912 netif_carrier_on(dev);
1913 ok = 1;
1914 if (vortex_debug > 1)
1915 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1916 dev->name, media_tbl[dev->if_port].name, media_status);
1917 } else {
1918 netif_carrier_off(dev);
1919 if (vortex_debug > 1) {
1920 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1921 dev->name, media_tbl[dev->if_port].name, media_status);
1922 }
1923 }
1924 break;
1925 case XCVR_MII: case XCVR_NWAY:
1926 {
1927 spin_lock_bh(&vp->lock);
1928 mii_status = mdio_read(dev, vp->phys[0], MII_BMSR);
1929 if (!(mii_status & BMSR_LSTATUS)) {
1930 /* Re-read to get actual link status */
1931 mii_status = mdio_read(dev, vp->phys[0], MII_BMSR);
1932 }
1933 ok = 1;
1934 if (vortex_debug > 2)
1935 printk(KERN_DEBUG "%s: MII transceiver has status %4.4x.\n",
1936 dev->name, mii_status);
1937 if (mii_status & BMSR_LSTATUS) {
1938 int mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1939 if (! vp->force_fd && mii_reg5 != 0xffff) {
1940 int duplex;
1941
1942 mii_reg5 &= vp->advertising;
1943 duplex = (mii_reg5&0x0100) || (mii_reg5 & 0x01C0) == 0x0040;
1944 if (vp->full_duplex != duplex) {
1945 vp->full_duplex = duplex;
1946 printk(KERN_INFO "%s: Setting %s-duplex based on MII "
1947 "#%d link partner capability of %4.4x.\n",
1948 dev->name, vp->full_duplex ? "full" : "half",
1949 vp->phys[0], mii_reg5);
1950 /* Set the full-duplex bit. */
1951 EL3WINDOW(3);
1952 iowrite16( (vp->full_duplex ? 0x20 : 0) |
1953 (vp->large_frames ? 0x40 : 0) |
1954 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1955 ioaddr + Wn3_MAC_Ctrl);
1956 if (vortex_debug > 1)
1957 printk(KERN_DEBUG "Setting duplex in Wn3_MAC_Ctrl\n");
1958 /* AKPM: bug: should reset Tx and Rx after setting Duplex. Page 180 */
1959 }
1960 }
1961 netif_carrier_on(dev);
1962 } else {
1963 netif_carrier_off(dev);
1964 }
1965 spin_unlock_bh(&vp->lock);
1966 }
1967 break;
1968 default: /* Other media types handled by Tx timeouts. */
1969 if (vortex_debug > 1)
1970 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1971 dev->name, media_tbl[dev->if_port].name, media_status);
1972 ok = 1;
1973 }
1974 if ( ! ok) {
1975 unsigned int config;
1976
1977 do {
1978 dev->if_port = media_tbl[dev->if_port].next;
1979 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1980 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1981 dev->if_port = vp->default_media;
1982 if (vortex_debug > 1)
1983 printk(KERN_DEBUG "%s: Media selection failing, using default "
1984 "%s port.\n",
1985 dev->name, media_tbl[dev->if_port].name);
1986 } else {
1987 if (vortex_debug > 1)
1988 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1989 "%s port.\n",
1990 dev->name, media_tbl[dev->if_port].name);
1991 next_tick = media_tbl[dev->if_port].wait;
1992 }
1993 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1994 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1995
1996 EL3WINDOW(3);
1997 config = ioread32(ioaddr + Wn3_Config);
1998 config = BFINS(config, dev->if_port, 20, 4);
1999 iowrite32(config, ioaddr + Wn3_Config);
2000
2001 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
2002 ioaddr + EL3_CMD);
2003 if (vortex_debug > 1)
2004 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
2005 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
2006 }
2007 EL3WINDOW(old_window);
2008 enable_irq(dev->irq);
2009
2010 leave_media_alone:
2011 if (vortex_debug > 2)
2012 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
2013 dev->name, media_tbl[dev->if_port].name);
2014
2015 mod_timer(&vp->timer, RUN_AT(next_tick));
2016 if (vp->deferred)
2017 iowrite16(FakeIntr, ioaddr + EL3_CMD);
2018 return;
2019 }
2020
2021 static void vortex_tx_timeout(struct net_device *dev)
2022 {
2023 struct vortex_private *vp = netdev_priv(dev);
2024 void __iomem *ioaddr = vp->ioaddr;
2025
2026 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
2027 dev->name, ioread8(ioaddr + TxStatus),
2028 ioread16(ioaddr + EL3_STATUS));
2029 EL3WINDOW(4);
2030 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
2031 ioread16(ioaddr + Wn4_NetDiag),
2032 ioread16(ioaddr + Wn4_Media),
2033 ioread32(ioaddr + PktStatus),
2034 ioread16(ioaddr + Wn4_FIFODiag));
2035 /* Slight code bloat to be user friendly. */
2036 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
2037 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
2038 " network cable problem?\n", dev->name);
2039 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
2040 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
2041 " IRQ blocked by another device?\n", dev->name);
2042 /* Bad idea here.. but we might as well handle a few events. */
2043 {
2044 /*
2045 * Block interrupts because vortex_interrupt does a bare spin_lock()
2046 */
2047 unsigned long flags;
2048 local_irq_save(flags);
2049 if (vp->full_bus_master_tx)
2050 boomerang_interrupt(dev->irq, dev, NULL);
2051 else
2052 vortex_interrupt(dev->irq, dev, NULL);
2053 local_irq_restore(flags);
2054 }
2055 }
2056
2057 if (vortex_debug > 0)
2058 dump_tx_ring(dev);
2059
2060 issue_and_wait(dev, TxReset);
2061
2062 vp->stats.tx_errors++;
2063 if (vp->full_bus_master_tx) {
2064 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2065 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
2066 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2067 ioaddr + DownListPtr);
2068 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2069 netif_wake_queue (dev);
2070 if (vp->drv_flags & IS_BOOMERANG)
2071 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2072 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2073 } else {
2074 vp->stats.tx_dropped++;
2075 netif_wake_queue(dev);
2076 }
2077
2078 /* Issue Tx Enable */
2079 iowrite16(TxEnable, ioaddr + EL3_CMD);
2080 dev->trans_start = jiffies;
2081
2082 /* Switch to register set 7 for normal use. */
2083 EL3WINDOW(7);
2084 }
2085
2086 /*
2087 * Handle uncommon interrupt sources. This is a separate routine to minimize
2088 * the cache impact.
2089 */
2090 static void
2091 vortex_error(struct net_device *dev, int status)
2092 {
2093 struct vortex_private *vp = netdev_priv(dev);
2094 void __iomem *ioaddr = vp->ioaddr;
2095 int do_tx_reset = 0, reset_mask = 0;
2096 unsigned char tx_status = 0;
2097
2098 if (vortex_debug > 2) {
2099 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2100 }
2101
2102 if (status & TxComplete) { /* Really "TxError" for us. */
2103 tx_status = ioread8(ioaddr + TxStatus);
2104 /* Presumably a tx-timeout. We must merely re-enable. */
2105 if (vortex_debug > 2
2106 || (tx_status != 0x88 && vortex_debug > 0)) {
2107 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2108 dev->name, tx_status);
2109 if (tx_status == 0x82) {
2110 printk(KERN_ERR "Probably a duplex mismatch. See "
2111 "Documentation/networking/vortex.txt\n");
2112 }
2113 dump_tx_ring(dev);
2114 }
2115 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2116 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2117 iowrite8(0, ioaddr + TxStatus);
2118 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2119 do_tx_reset = 1;
2120 } else if (tx_status & 0x08) { /* maxCollisions */
2121 vp->xstats.tx_max_collisions++;
2122 if (vp->drv_flags & MAX_COLLISION_RESET) {
2123 do_tx_reset = 1;
2124 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2125 }
2126 } else { /* Merely re-enable the transmitter. */
2127 iowrite16(TxEnable, ioaddr + EL3_CMD);
2128 }
2129 }
2130
2131 if (status & RxEarly) { /* Rx early is unused. */
2132 vortex_rx(dev);
2133 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2134 }
2135 if (status & StatsFull) { /* Empty statistics. */
2136 static int DoneDidThat;
2137 if (vortex_debug > 4)
2138 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2139 update_stats(ioaddr, dev);
2140 /* HACK: Disable statistics as an interrupt source. */
2141 /* This occurs when we have the wrong media type! */
2142 if (DoneDidThat == 0 &&
2143 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2144 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2145 "stats as an interrupt source.\n", dev->name);
2146 EL3WINDOW(5);
2147 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2148 vp->intr_enable &= ~StatsFull;
2149 EL3WINDOW(7);
2150 DoneDidThat++;
2151 }
2152 }
2153 if (status & IntReq) { /* Restore all interrupt sources. */
2154 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2155 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2156 }
2157 if (status & HostError) {
2158 u16 fifo_diag;
2159 EL3WINDOW(4);
2160 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2161 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2162 dev->name, fifo_diag);
2163 /* Adapter failure requires Tx/Rx reset and reinit. */
2164 if (vp->full_bus_master_tx) {
2165 int bus_status = ioread32(ioaddr + PktStatus);
2166 /* 0x80000000 PCI master abort. */
2167 /* 0x40000000 PCI target abort. */
2168 if (vortex_debug)
2169 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2170
2171 /* In this case, blow the card away */
2172 /* Must not enter D3 or we can't legally issue the reset! */
2173 vortex_down(dev, 0);
2174 issue_and_wait(dev, TotalReset | 0xff);
2175 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2176 } else if (fifo_diag & 0x0400)
2177 do_tx_reset = 1;
2178 if (fifo_diag & 0x3000) {
2179 /* Reset Rx fifo and upload logic */
2180 issue_and_wait(dev, RxReset|0x07);
2181 /* Set the Rx filter to the current state. */
2182 set_rx_mode(dev);
2183 /* enable 802.1q VLAN tagged frames */
2184 set_8021q_mode(dev, 1);
2185 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2186 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2187 }
2188 }
2189
2190 if (do_tx_reset) {
2191 issue_and_wait(dev, TxReset|reset_mask);
2192 iowrite16(TxEnable, ioaddr + EL3_CMD);
2193 if (!vp->full_bus_master_tx)
2194 netif_wake_queue(dev);
2195 }
2196 }
2197
2198 static int
2199 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2200 {
2201 struct vortex_private *vp = netdev_priv(dev);
2202 void __iomem *ioaddr = vp->ioaddr;
2203
2204 /* Put out the doubleword header... */
2205 iowrite32(skb->len, ioaddr + TX_FIFO);
2206 if (vp->bus_master) {
2207 /* Set the bus-master controller to transfer the packet. */
2208 int len = (skb->len + 3) & ~3;
2209 iowrite32( vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2210 ioaddr + Wn7_MasterAddr);
2211 iowrite16(len, ioaddr + Wn7_MasterLen);
2212 vp->tx_skb = skb;
2213 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2214 /* netif_wake_queue() will be called at the DMADone interrupt. */
2215 } else {
2216 /* ... and the packet rounded to a doubleword. */
2217 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2218 dev_kfree_skb (skb);
2219 if (ioread16(ioaddr + TxFree) > 1536) {
2220 netif_start_queue (dev); /* AKPM: redundant? */
2221 } else {
2222 /* Interrupt us when the FIFO has room for max-sized packet. */
2223 netif_stop_queue(dev);
2224 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2225 }
2226 }
2227
2228 dev->trans_start = jiffies;
2229
2230 /* Clear the Tx status stack. */
2231 {
2232 int tx_status;
2233 int i = 32;
2234
2235 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2236 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2237 if (vortex_debug > 2)
2238 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2239 dev->name, tx_status);
2240 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2241 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2242 if (tx_status & 0x30) {
2243 issue_and_wait(dev, TxReset);
2244 }
2245 iowrite16(TxEnable, ioaddr + EL3_CMD);
2246 }
2247 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2248 }
2249 }
2250 return 0;
2251 }
2252
2253 static int
2254 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2255 {
2256 struct vortex_private *vp = netdev_priv(dev);
2257 void __iomem *ioaddr = vp->ioaddr;
2258 /* Calculate the next Tx descriptor entry. */
2259 int entry = vp->cur_tx % TX_RING_SIZE;
2260 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2261 unsigned long flags;
2262
2263 if (vortex_debug > 6) {
2264 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2265 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2266 dev->name, vp->cur_tx);
2267 }
2268
2269 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2270 if (vortex_debug > 0)
2271 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2272 dev->name);
2273 netif_stop_queue(dev);
2274 return 1;
2275 }
2276
2277 vp->tx_skbuff[entry] = skb;
2278
2279 vp->tx_ring[entry].next = 0;
2280 #if DO_ZEROCOPY
2281 if (skb->ip_summed != CHECKSUM_HW)
2282 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2283 else
2284 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2285
2286 if (!skb_shinfo(skb)->nr_frags) {
2287 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2288 skb->len, PCI_DMA_TODEVICE));
2289 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2290 } else {
2291 int i;
2292
2293 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2294 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2295 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2296
2297 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2298 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2299
2300 vp->tx_ring[entry].frag[i+1].addr =
2301 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2302 (void*)page_address(frag->page) + frag->page_offset,
2303 frag->size, PCI_DMA_TODEVICE));
2304
2305 if (i == skb_shinfo(skb)->nr_frags-1)
2306 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2307 else
2308 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2309 }
2310 }
2311 #else
2312 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2313 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2314 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2315 #endif
2316
2317 spin_lock_irqsave(&vp->lock, flags);
2318 /* Wait for the stall to complete. */
2319 issue_and_wait(dev, DownStall);
2320 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2321 if (ioread32(ioaddr + DownListPtr) == 0) {
2322 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2323 vp->queued_packet++;
2324 }
2325
2326 vp->cur_tx++;
2327 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2328 netif_stop_queue (dev);
2329 } else { /* Clear previous interrupt enable. */
2330 #if defined(tx_interrupt_mitigation)
2331 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2332 * were selected, this would corrupt DN_COMPLETE. No?
2333 */
2334 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2335 #endif
2336 }
2337 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2338 spin_unlock_irqrestore(&vp->lock, flags);
2339 dev->trans_start = jiffies;
2340 return 0;
2341 }
2342
2343 /* The interrupt handler does all of the Rx thread work and cleans up
2344 after the Tx thread. */
2345
2346 /*
2347 * This is the ISR for the vortex series chips.
2348 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2349 */
2350
2351 static irqreturn_t
2352 vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2353 {
2354 struct net_device *dev = dev_id;
2355 struct vortex_private *vp = netdev_priv(dev);
2356 void __iomem *ioaddr;
2357 int status;
2358 int work_done = max_interrupt_work;
2359 int handled = 0;
2360
2361 ioaddr = vp->ioaddr;
2362 spin_lock(&vp->lock);
2363
2364 status = ioread16(ioaddr + EL3_STATUS);
2365
2366 if (vortex_debug > 6)
2367 printk("vortex_interrupt(). status=0x%4x\n", status);
2368
2369 if ((status & IntLatch) == 0)
2370 goto handler_exit; /* No interrupt: shared IRQs cause this */
2371 handled = 1;
2372
2373 if (status & IntReq) {
2374 status |= vp->deferred;
2375 vp->deferred = 0;
2376 }
2377
2378 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2379 goto handler_exit;
2380
2381 if (vortex_debug > 4)
2382 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2383 dev->name, status, ioread8(ioaddr + Timer));
2384
2385 do {
2386 if (vortex_debug > 5)
2387 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2388 dev->name, status);
2389 if (status & RxComplete)
2390 vortex_rx(dev);
2391
2392 if (status & TxAvailable) {
2393 if (vortex_debug > 5)
2394 printk(KERN_DEBUG " TX room bit was handled.\n");
2395 /* There's room in the FIFO for a full-sized packet. */
2396 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2397 netif_wake_queue (dev);
2398 }
2399
2400 if (status & DMADone) {
2401 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2402 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2403 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2404 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2405 if (ioread16(ioaddr + TxFree) > 1536) {
2406 /*
2407 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2408 * insufficient FIFO room, the TxAvailable test will succeed and call
2409 * netif_wake_queue()
2410 */
2411 netif_wake_queue(dev);
2412 } else { /* Interrupt when FIFO has room for max-sized packet. */
2413 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2414 netif_stop_queue(dev);
2415 }
2416 }
2417 }
2418 /* Check for all uncommon interrupts at once. */
2419 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2420 if (status == 0xffff)
2421 break;
2422 vortex_error(dev, status);
2423 }
2424
2425 if (--work_done < 0) {
2426 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2427 "%4.4x.\n", dev->name, status);
2428 /* Disable all pending interrupts. */
2429 do {
2430 vp->deferred |= status;
2431 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2432 ioaddr + EL3_CMD);
2433 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2434 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2435 /* The timer will reenable interrupts. */
2436 mod_timer(&vp->timer, jiffies + 1*HZ);
2437 break;
2438 }
2439 /* Acknowledge the IRQ. */
2440 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2441 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2442
2443 if (vortex_debug > 4)
2444 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2445 dev->name, status);
2446 handler_exit:
2447 spin_unlock(&vp->lock);
2448 return IRQ_RETVAL(handled);
2449 }
2450
2451 /*
2452 * This is the ISR for the boomerang series chips.
2453 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2454 */
2455
2456 static irqreturn_t
2457 boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2458 {
2459 struct net_device *dev = dev_id;
2460 struct vortex_private *vp = netdev_priv(dev);
2461 void __iomem *ioaddr;
2462 int status;
2463 int work_done = max_interrupt_work;
2464
2465 ioaddr = vp->ioaddr;
2466
2467 /*
2468 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2469 * and boomerang_start_xmit
2470 */
2471 spin_lock(&vp->lock);
2472
2473 status = ioread16(ioaddr + EL3_STATUS);
2474
2475 if (vortex_debug > 6)
2476 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2477
2478 if ((status & IntLatch) == 0)
2479 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2480
2481 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2482 if (vortex_debug > 1)
2483 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2484 goto handler_exit;
2485 }
2486
2487 if (status & IntReq) {
2488 status |= vp->deferred;
2489 vp->deferred = 0;
2490 }
2491
2492 if (vortex_debug > 4)
2493 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2494 dev->name, status, ioread8(ioaddr + Timer));
2495 do {
2496 if (vortex_debug > 5)
2497 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2498 dev->name, status);
2499 if (status & UpComplete) {
2500 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2501 if (vortex_debug > 5)
2502 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2503 boomerang_rx(dev);
2504 }
2505
2506 if (status & DownComplete) {
2507 unsigned int dirty_tx = vp->dirty_tx;
2508
2509 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2510 while (vp->cur_tx - dirty_tx > 0) {
2511 int entry = dirty_tx % TX_RING_SIZE;
2512 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2513 if (ioread32(ioaddr + DownListPtr) ==
2514 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2515 break; /* It still hasn't been processed. */
2516 #else
2517 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2518 break; /* It still hasn't been processed. */
2519 #endif
2520
2521 if (vp->tx_skbuff[entry]) {
2522 struct sk_buff *skb = vp->tx_skbuff[entry];
2523 #if DO_ZEROCOPY
2524 int i;
2525 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2526 pci_unmap_single(VORTEX_PCI(vp),
2527 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2528 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2529 PCI_DMA_TODEVICE);
2530 #else
2531 pci_unmap_single(VORTEX_PCI(vp),
2532 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2533 #endif
2534 dev_kfree_skb_irq(skb);
2535 vp->tx_skbuff[entry] = NULL;
2536 } else {
2537 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2538 }
2539 /* vp->stats.tx_packets++; Counted below. */
2540 dirty_tx++;
2541 }
2542 vp->dirty_tx = dirty_tx;
2543 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2544 if (vortex_debug > 6)
2545 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2546 netif_wake_queue (dev);
2547 }
2548 }
2549
2550 /* Check for all uncommon interrupts at once. */
2551 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2552 vortex_error(dev, status);
2553
2554 if (--work_done < 0) {
2555 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2556 "%4.4x.\n", dev->name, status);
2557 /* Disable all pending interrupts. */
2558 do {
2559 vp->deferred |= status;
2560 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2561 ioaddr + EL3_CMD);
2562 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2563 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2564 /* The timer will reenable interrupts. */
2565 mod_timer(&vp->timer, jiffies + 1*HZ);
2566 break;
2567 }
2568 /* Acknowledge the IRQ. */
2569 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2570 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2571 iowrite32(0x8000, vp->cb_fn_base + 4);
2572
2573 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2574
2575 if (vortex_debug > 4)
2576 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2577 dev->name, status);
2578 handler_exit:
2579 spin_unlock(&vp->lock);
2580 return IRQ_HANDLED;
2581 }
2582
2583 static int vortex_rx(struct net_device *dev)
2584 {
2585 struct vortex_private *vp = netdev_priv(dev);
2586 void __iomem *ioaddr = vp->ioaddr;
2587 int i;
2588 short rx_status;
2589
2590 if (vortex_debug > 5)
2591 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2592 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2593 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2594 if (rx_status & 0x4000) { /* Error, update stats. */
2595 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2596 if (vortex_debug > 2)
2597 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2598 vp->stats.rx_errors++;
2599 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2600 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2601 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2602 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2603 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2604 } else {
2605 /* The packet length: up to 4.5K!. */
2606 int pkt_len = rx_status & 0x1fff;
2607 struct sk_buff *skb;
2608
2609 skb = dev_alloc_skb(pkt_len + 5);
2610 if (vortex_debug > 4)
2611 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2612 pkt_len, rx_status);
2613 if (skb != NULL) {
2614 skb->dev = dev;
2615 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2616 /* 'skb_put()' points to the start of sk_buff data area. */
2617 if (vp->bus_master &&
2618 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2619 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2620 pkt_len, PCI_DMA_FROMDEVICE);
2621 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2622 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2623 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2624 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2625 ;
2626 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2627 } else {
2628 ioread32_rep(ioaddr + RX_FIFO,
2629 skb_put(skb, pkt_len),
2630 (pkt_len + 3) >> 2);
2631 }
2632 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2633 skb->protocol = eth_type_trans(skb, dev);
2634 netif_rx(skb);
2635 dev->last_rx = jiffies;
2636 vp->stats.rx_packets++;
2637 /* Wait a limited time to go to next packet. */
2638 for (i = 200; i >= 0; i--)
2639 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2640 break;
2641 continue;
2642 } else if (vortex_debug > 0)
2643 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2644 "size %d.\n", dev->name, pkt_len);
2645 vp->stats.rx_dropped++;
2646 }
2647 issue_and_wait(dev, RxDiscard);
2648 }
2649
2650 return 0;
2651 }
2652
2653 static int
2654 boomerang_rx(struct net_device *dev)
2655 {
2656 struct vortex_private *vp = netdev_priv(dev);
2657 int entry = vp->cur_rx % RX_RING_SIZE;
2658 void __iomem *ioaddr = vp->ioaddr;
2659 int rx_status;
2660 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2661
2662 if (vortex_debug > 5)
2663 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2664
2665 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2666 if (--rx_work_limit < 0)
2667 break;
2668 if (rx_status & RxDError) { /* Error, update stats. */
2669 unsigned char rx_error = rx_status >> 16;
2670 if (vortex_debug > 2)
2671 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2672 vp->stats.rx_errors++;
2673 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2674 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2675 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2676 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2677 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2678 } else {
2679 /* The packet length: up to 4.5K!. */
2680 int pkt_len = rx_status & 0x1fff;
2681 struct sk_buff *skb;
2682 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2683
2684 if (vortex_debug > 4)
2685 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2686 pkt_len, rx_status);
2687
2688 /* Check if the packet is long enough to just accept without
2689 copying to a properly sized skbuff. */
2690 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2691 skb->dev = dev;
2692 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2693 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2694 /* 'skb_put()' points to the start of sk_buff data area. */
2695 memcpy(skb_put(skb, pkt_len),
2696 vp->rx_skbuff[entry]->data,
2697 pkt_len);
2698 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2699 vp->rx_copy++;
2700 } else {
2701 /* Pass up the skbuff already on the Rx ring. */
2702 skb = vp->rx_skbuff[entry];
2703 vp->rx_skbuff[entry] = NULL;
2704 skb_put(skb, pkt_len);
2705 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2706 vp->rx_nocopy++;
2707 }
2708 skb->protocol = eth_type_trans(skb, dev);
2709 { /* Use hardware checksum info. */
2710 int csum_bits = rx_status & 0xee000000;
2711 if (csum_bits &&
2712 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2713 csum_bits == (IPChksumValid | UDPChksumValid))) {
2714 skb->ip_summed = CHECKSUM_UNNECESSARY;
2715 vp->rx_csumhits++;
2716 }
2717 }
2718 netif_rx(skb);
2719 dev->last_rx = jiffies;
2720 vp->stats.rx_packets++;
2721 }
2722 entry = (++vp->cur_rx) % RX_RING_SIZE;
2723 }
2724 /* Refill the Rx ring buffers. */
2725 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2726 struct sk_buff *skb;
2727 entry = vp->dirty_rx % RX_RING_SIZE;
2728 if (vp->rx_skbuff[entry] == NULL) {
2729 skb = dev_alloc_skb(PKT_BUF_SZ);
2730 if (skb == NULL) {
2731 static unsigned long last_jif;
2732 if (time_after(jiffies, last_jif + 10 * HZ)) {
2733 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2734 last_jif = jiffies;
2735 }
2736 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2737 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2738 break; /* Bad news! */
2739 }
2740 skb->dev = dev; /* Mark as being used by this device. */
2741 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2742 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2743 vp->rx_skbuff[entry] = skb;
2744 }
2745 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2746 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2747 }
2748 return 0;
2749 }
2750
2751 /*
2752 * If we've hit a total OOM refilling the Rx ring we poll once a second
2753 * for some memory. Otherwise there is no way to restart the rx process.
2754 */
2755 static void
2756 rx_oom_timer(unsigned long arg)
2757 {
2758 struct net_device *dev = (struct net_device *)arg;
2759 struct vortex_private *vp = netdev_priv(dev);
2760
2761 spin_lock_irq(&vp->lock);
2762 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2763 boomerang_rx(dev);
2764 if (vortex_debug > 1) {
2765 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2766 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2767 }
2768 spin_unlock_irq(&vp->lock);
2769 }
2770
2771 static void
2772 vortex_down(struct net_device *dev, int final_down)
2773 {
2774 struct vortex_private *vp = netdev_priv(dev);
2775 void __iomem *ioaddr = vp->ioaddr;
2776
2777 netif_stop_queue (dev);
2778
2779 del_timer_sync(&vp->rx_oom_timer);
2780 del_timer_sync(&vp->timer);
2781
2782 /* Turn off statistics ASAP. We update vp->stats below. */
2783 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2784
2785 /* Disable the receiver and transmitter. */
2786 iowrite16(RxDisable, ioaddr + EL3_CMD);
2787 iowrite16(TxDisable, ioaddr + EL3_CMD);
2788
2789 /* Disable receiving 802.1q tagged frames */
2790 set_8021q_mode(dev, 0);
2791
2792 if (dev->if_port == XCVR_10base2)
2793 /* Turn off thinnet power. Green! */
2794 iowrite16(StopCoax, ioaddr + EL3_CMD);
2795
2796 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2797
2798 update_stats(ioaddr, dev);
2799 if (vp->full_bus_master_rx)
2800 iowrite32(0, ioaddr + UpListPtr);
2801 if (vp->full_bus_master_tx)
2802 iowrite32(0, ioaddr + DownListPtr);
2803
2804 if (final_down && VORTEX_PCI(vp)) {
2805 vp->pm_state_valid = 1;
2806 pci_save_state(VORTEX_PCI(vp));
2807 acpi_set_WOL(dev);
2808 }
2809 }
2810
2811 static int
2812 vortex_close(struct net_device *dev)
2813 {
2814 struct vortex_private *vp = netdev_priv(dev);
2815 void __iomem *ioaddr = vp->ioaddr;
2816 int i;
2817
2818 if (netif_device_present(dev))
2819 vortex_down(dev, 1);
2820
2821 if (vortex_debug > 1) {
2822 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2823 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2824 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2825 " tx_queued %d Rx pre-checksummed %d.\n",
2826 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2827 }
2828
2829 #if DO_ZEROCOPY
2830 if (vp->rx_csumhits &&
2831 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2832 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2833 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2834 "not using them!\n", dev->name);
2835 }
2836 #endif
2837
2838 free_irq(dev->irq, dev);
2839
2840 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2841 for (i = 0; i < RX_RING_SIZE; i++)
2842 if (vp->rx_skbuff[i]) {
2843 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2844 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2845 dev_kfree_skb(vp->rx_skbuff[i]);
2846 vp->rx_skbuff[i] = NULL;
2847 }
2848 }
2849 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2850 for (i = 0; i < TX_RING_SIZE; i++) {
2851 if (vp->tx_skbuff[i]) {
2852 struct sk_buff *skb = vp->tx_skbuff[i];
2853 #if DO_ZEROCOPY
2854 int k;
2855
2856 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2857 pci_unmap_single(VORTEX_PCI(vp),
2858 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2859 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2860 PCI_DMA_TODEVICE);
2861 #else
2862 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2863 #endif
2864 dev_kfree_skb(skb);
2865 vp->tx_skbuff[i] = NULL;
2866 }
2867 }
2868 }
2869
2870 return 0;
2871 }
2872
2873 static void
2874 dump_tx_ring(struct net_device *dev)
2875 {
2876 if (vortex_debug > 0) {
2877 struct vortex_private *vp = netdev_priv(dev);
2878 void __iomem *ioaddr = vp->ioaddr;
2879
2880 if (vp->full_bus_master_tx) {
2881 int i;
2882 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2883
2884 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2885 vp->full_bus_master_tx,
2886 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2887 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2888 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2889 ioread32(ioaddr + DownListPtr),
2890 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2891 issue_and_wait(dev, DownStall);
2892 for (i = 0; i < TX_RING_SIZE; i++) {
2893 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2894 &vp->tx_ring[i],
2895 #if DO_ZEROCOPY
2896 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2897 #else
2898 le32_to_cpu(vp->tx_ring[i].length),
2899 #endif
2900 le32_to_cpu(vp->tx_ring[i].status));
2901 }
2902 if (!stalled)
2903 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2904 }
2905 }
2906 }
2907
2908 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2909 {
2910 struct vortex_private *vp = netdev_priv(dev);
2911 void __iomem *ioaddr = vp->ioaddr;
2912 unsigned long flags;
2913
2914 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2915 spin_lock_irqsave (&vp->lock, flags);
2916 update_stats(ioaddr, dev);
2917 spin_unlock_irqrestore (&vp->lock, flags);
2918 }
2919 return &vp->stats;
2920 }
2921
2922 /* Update statistics.
2923 Unlike with the EL3 we need not worry about interrupts changing
2924 the window setting from underneath us, but we must still guard
2925 against a race condition with a StatsUpdate interrupt updating the
2926 table. This is done by checking that the ASM (!) code generated uses
2927 atomic updates with '+='.
2928 */
2929 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2930 {
2931 struct vortex_private *vp = netdev_priv(dev);
2932 int old_window = ioread16(ioaddr + EL3_CMD);
2933
2934 if (old_window == 0xffff) /* Chip suspended or ejected. */
2935 return;
2936 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2937 /* Switch to the stats window, and read everything. */
2938 EL3WINDOW(6);
2939 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2940 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2941 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2942 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2943 vp->stats.tx_packets += ioread8(ioaddr + 6);
2944 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2945 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2946 /* Don't bother with register 9, an extension of registers 6&7.
2947 If we do use the 6&7 values the atomic update assumption above
2948 is invalid. */
2949 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2950 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2951 /* Extra stats for get_ethtool_stats() */
2952 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2953 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2954 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2955 EL3WINDOW(4);
2956 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2957
2958 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2959 + vp->xstats.tx_single_collisions
2960 + vp->xstats.tx_max_collisions;
2961
2962 {
2963 u8 up = ioread8(ioaddr + 13);
2964 vp->stats.rx_bytes += (up & 0x0f) << 16;
2965 vp->stats.tx_bytes += (up & 0xf0) << 12;
2966 }
2967
2968 EL3WINDOW(old_window >> 13);
2969 return;
2970 }
2971
2972 static int vortex_nway_reset(struct net_device *dev)
2973 {
2974 struct vortex_private *vp = netdev_priv(dev);
2975 void __iomem *ioaddr = vp->ioaddr;
2976 unsigned long flags;
2977 int rc;
2978
2979 spin_lock_irqsave(&vp->lock, flags);
2980 EL3WINDOW(4);
2981 rc = mii_nway_restart(&vp->mii);
2982 spin_unlock_irqrestore(&vp->lock, flags);
2983 return rc;
2984 }
2985
2986 static u32 vortex_get_link(struct net_device *dev)
2987 {
2988 struct vortex_private *vp = netdev_priv(dev);
2989 void __iomem *ioaddr = vp->ioaddr;
2990 unsigned long flags;
2991 int rc;
2992
2993 spin_lock_irqsave(&vp->lock, flags);
2994 EL3WINDOW(4);
2995 rc = mii_link_ok(&vp->mii);
2996 spin_unlock_irqrestore(&vp->lock, flags);
2997 return rc;
2998 }
2999
3000 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3001 {
3002 struct vortex_private *vp = netdev_priv(dev);
3003 void __iomem *ioaddr = vp->ioaddr;
3004 unsigned long flags;
3005 int rc;
3006
3007 spin_lock_irqsave(&vp->lock, flags);
3008 EL3WINDOW(4);
3009 rc = mii_ethtool_gset(&vp->mii, cmd);
3010 spin_unlock_irqrestore(&vp->lock, flags);
3011 return rc;
3012 }
3013
3014 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3015 {
3016 struct vortex_private *vp = netdev_priv(dev);
3017 void __iomem *ioaddr = vp->ioaddr;
3018 unsigned long flags;
3019 int rc;
3020
3021 spin_lock_irqsave(&vp->lock, flags);
3022 EL3WINDOW(4);
3023 rc = mii_ethtool_sset(&vp->mii, cmd);
3024 spin_unlock_irqrestore(&vp->lock, flags);
3025 return rc;
3026 }
3027
3028 static u32 vortex_get_msglevel(struct net_device *dev)
3029 {
3030 return vortex_debug;
3031 }
3032
3033 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
3034 {
3035 vortex_debug = dbg;
3036 }
3037
3038 static int vortex_get_stats_count(struct net_device *dev)
3039 {
3040 return VORTEX_NUM_STATS;
3041 }
3042
3043 static void vortex_get_ethtool_stats(struct net_device *dev,
3044 struct ethtool_stats *stats, u64 *data)
3045 {
3046 struct vortex_private *vp = netdev_priv(dev);
3047 void __iomem *ioaddr = vp->ioaddr;
3048 unsigned long flags;
3049
3050 spin_lock_irqsave(&vp->lock, flags);
3051 update_stats(ioaddr, dev);
3052 spin_unlock_irqrestore(&vp->lock, flags);
3053
3054 data[0] = vp->xstats.tx_deferred;
3055 data[1] = vp->xstats.tx_max_collisions;
3056 data[2] = vp->xstats.tx_multiple_collisions;
3057 data[3] = vp->xstats.tx_single_collisions;
3058 data[4] = vp->xstats.rx_bad_ssd;
3059 }
3060
3061
3062 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
3063 {
3064 switch (stringset) {
3065 case ETH_SS_STATS:
3066 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
3067 break;
3068 default:
3069 WARN_ON(1);
3070 break;
3071 }
3072 }
3073
3074 static void vortex_get_drvinfo(struct net_device *dev,
3075 struct ethtool_drvinfo *info)
3076 {
3077 struct vortex_private *vp = netdev_priv(dev);
3078
3079 strcpy(info->driver, DRV_NAME);
3080 strcpy(info->version, DRV_VERSION);
3081 if (VORTEX_PCI(vp)) {
3082 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3083 } else {
3084 if (VORTEX_EISA(vp))
3085 sprintf(info->bus_info, vp->gendev->bus_id);
3086 else
3087 sprintf(info->bus_info, "EISA 0x%lx %d",
3088 dev->base_addr, dev->irq);
3089 }
3090 }
3091
3092 static struct ethtool_ops vortex_ethtool_ops = {
3093 .get_drvinfo = vortex_get_drvinfo,
3094 .get_strings = vortex_get_strings,
3095 .get_msglevel = vortex_get_msglevel,
3096 .set_msglevel = vortex_set_msglevel,
3097 .get_ethtool_stats = vortex_get_ethtool_stats,
3098 .get_stats_count = vortex_get_stats_count,
3099 .get_settings = vortex_get_settings,
3100 .set_settings = vortex_set_settings,
3101 .get_link = vortex_get_link,
3102 .nway_reset = vortex_nway_reset,
3103 .get_perm_addr = ethtool_op_get_perm_addr,
3104 };
3105
3106 #ifdef CONFIG_PCI
3107 /*
3108 * Must power the device up to do MDIO operations
3109 */
3110 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3111 {
3112 int err;
3113 struct vortex_private *vp = netdev_priv(dev);
3114 void __iomem *ioaddr = vp->ioaddr;
3115 unsigned long flags;
3116 int state = 0;
3117
3118 if(VORTEX_PCI(vp))
3119 state = VORTEX_PCI(vp)->current_state;
3120
3121 /* The kernel core really should have pci_get_power_state() */
3122
3123 if(state != 0)
3124 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3125 spin_lock_irqsave(&vp->lock, flags);
3126 EL3WINDOW(4);
3127 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3128 spin_unlock_irqrestore(&vp->lock, flags);
3129 if(state != 0)
3130 pci_set_power_state(VORTEX_PCI(vp), state);
3131
3132 return err;
3133 }
3134 #endif
3135
3136
3137 /* Pre-Cyclone chips have no documented multicast filter, so the only
3138 multicast setting is to receive all multicast frames. At least
3139 the chip has a very clean way to set the mode, unlike many others. */
3140 static void set_rx_mode(struct net_device *dev)
3141 {
3142 struct vortex_private *vp = netdev_priv(dev);
3143 void __iomem *ioaddr = vp->ioaddr;
3144 int new_mode;
3145
3146 if (dev->flags & IFF_PROMISC) {
3147 if (vortex_debug > 0)
3148 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3149 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3150 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3151 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3152 } else
3153 new_mode = SetRxFilter | RxStation | RxBroadcast;
3154
3155 iowrite16(new_mode, ioaddr + EL3_CMD);
3156 }
3157
3158 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3159 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3160 Note that this must be done after each RxReset due to some backwards
3161 compatibility logic in the Cyclone and Tornado ASICs */
3162
3163 /* The Ethernet Type used for 802.1q tagged frames */
3164 #define VLAN_ETHER_TYPE 0x8100
3165
3166 static void set_8021q_mode(struct net_device *dev, int enable)
3167 {
3168 struct vortex_private *vp = netdev_priv(dev);
3169 void __iomem *ioaddr = vp->ioaddr;
3170 int old_window = ioread16(ioaddr + EL3_CMD);
3171 int mac_ctrl;
3172
3173 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3174 /* cyclone and tornado chipsets can recognize 802.1q
3175 * tagged frames and treat them correctly */
3176
3177 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3178 if (enable)
3179 max_pkt_size += 4; /* 802.1Q VLAN tag */
3180
3181 EL3WINDOW(3);
3182 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3183
3184 /* set VlanEtherType to let the hardware checksumming
3185 treat tagged frames correctly */
3186 EL3WINDOW(7);
3187 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3188 } else {
3189 /* on older cards we have to enable large frames */
3190
3191 vp->large_frames = dev->mtu > 1500 || enable;
3192
3193 EL3WINDOW(3);
3194 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3195 if (vp->large_frames)
3196 mac_ctrl |= 0x40;
3197 else
3198 mac_ctrl &= ~0x40;
3199 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3200 }
3201
3202 EL3WINDOW(old_window);
3203 }
3204 #else
3205
3206 static void set_8021q_mode(struct net_device *dev, int enable)
3207 {
3208 }
3209
3210
3211 #endif
3212
3213 /* MII transceiver control section.
3214 Read and write the MII registers using software-generated serial
3215 MDIO protocol. See the MII specifications or DP83840A data sheet
3216 for details. */
3217
3218 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3219 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3220 "overclocking" issues. */
3221 #define mdio_delay() ioread32(mdio_addr)
3222
3223 #define MDIO_SHIFT_CLK 0x01
3224 #define MDIO_DIR_WRITE 0x04
3225 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3226 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3227 #define MDIO_DATA_READ 0x02
3228 #define MDIO_ENB_IN 0x00
3229
3230 /* Generate the preamble required for initial synchronization and
3231 a few older transceivers. */
3232 static void mdio_sync(void __iomem *ioaddr, int bits)
3233 {
3234 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3235
3236 /* Establish sync by sending at least 32 logic ones. */
3237 while (-- bits >= 0) {
3238 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3239 mdio_delay();
3240 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3241 mdio_delay();
3242 }
3243 }
3244
3245 static int mdio_read(struct net_device *dev, int phy_id, int location)
3246 {
3247 int i;
3248 struct vortex_private *vp = netdev_priv(dev);
3249 void __iomem *ioaddr = vp->ioaddr;
3250 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3251 unsigned int retval = 0;
3252 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3253
3254 if (mii_preamble_required)
3255 mdio_sync(ioaddr, 32);
3256
3257 /* Shift the read command bits out. */
3258 for (i = 14; i >= 0; i--) {
3259 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3260 iowrite16(dataval, mdio_addr);
3261 mdio_delay();
3262 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3263 mdio_delay();
3264 }
3265 /* Read the two transition, 16 data, and wire-idle bits. */
3266 for (i = 19; i > 0; i--) {
3267 iowrite16(MDIO_ENB_IN, mdio_addr);
3268 mdio_delay();
3269 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3270 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3271 mdio_delay();
3272 }
3273 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3274 }
3275
3276 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3277 {
3278 struct vortex_private *vp = netdev_priv(dev);
3279 void __iomem *ioaddr = vp->ioaddr;
3280 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3281 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3282 int i;
3283
3284 if (mii_preamble_required)
3285 mdio_sync(ioaddr, 32);
3286
3287 /* Shift the command bits out. */
3288 for (i = 31; i >= 0; i--) {
3289 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3290 iowrite16(dataval, mdio_addr);
3291 mdio_delay();
3292 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3293 mdio_delay();
3294 }
3295 /* Leave the interface idle. */
3296 for (i = 1; i >= 0; i--) {
3297 iowrite16(MDIO_ENB_IN, mdio_addr);
3298 mdio_delay();
3299 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3300 mdio_delay();
3301 }
3302 return;
3303 }
3304 \f
3305 /* ACPI: Advanced Configuration and Power Interface. */
3306 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3307 static void acpi_set_WOL(struct net_device *dev)
3308 {
3309 struct vortex_private *vp = netdev_priv(dev);
3310 void __iomem *ioaddr = vp->ioaddr;
3311
3312 if (vp->enable_wol) {
3313 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3314 EL3WINDOW(7);
3315 iowrite16(2, ioaddr + 0x0c);
3316 /* The RxFilter must accept the WOL frames. */
3317 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3318 iowrite16(RxEnable, ioaddr + EL3_CMD);
3319
3320 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3321
3322 /* Change the power state to D3; RxEnable doesn't take effect. */
3323 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3324 }
3325 }
3326
3327
3328 static void __devexit vortex_remove_one (struct pci_dev *pdev)
3329 {
3330 struct net_device *dev = pci_get_drvdata(pdev);
3331 struct vortex_private *vp;
3332
3333 if (!dev) {
3334 printk("vortex_remove_one called for Compaq device!\n");
3335 BUG();
3336 }
3337
3338 vp = netdev_priv(dev);
3339
3340 if (vp->cb_fn_base)
3341 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3342
3343 unregister_netdev(dev);
3344
3345 if (VORTEX_PCI(vp)) {
3346 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3347 if (vp->pm_state_valid)
3348 pci_restore_state(VORTEX_PCI(vp));
3349 pci_disable_device(VORTEX_PCI(vp));
3350 }
3351 /* Should really use issue_and_wait() here */
3352 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3353 vp->ioaddr + EL3_CMD);
3354
3355 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3356
3357 pci_free_consistent(pdev,
3358 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3359 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3360 vp->rx_ring,
3361 vp->rx_ring_dma);
3362 if (vp->must_free_region)
3363 release_region(dev->base_addr, vp->io_size);
3364 free_netdev(dev);
3365 }
3366
3367
3368 static struct pci_driver vortex_driver = {
3369 .name = "3c59x",
3370 .probe = vortex_init_one,
3371 .remove = __devexit_p(vortex_remove_one),
3372 .id_table = vortex_pci_tbl,
3373 #ifdef CONFIG_PM
3374 .suspend = vortex_suspend,
3375 .resume = vortex_resume,
3376 #endif
3377 };
3378
3379
3380 static int vortex_have_pci;
3381 static int vortex_have_eisa;
3382
3383
3384 static int __init vortex_init (void)
3385 {
3386 int pci_rc, eisa_rc;
3387
3388 pci_rc = pci_module_init(&vortex_driver);
3389 eisa_rc = vortex_eisa_init();
3390
3391 if (pci_rc == 0)
3392 vortex_have_pci = 1;
3393 if (eisa_rc > 0)
3394 vortex_have_eisa = 1;
3395
3396 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3397 }
3398
3399
3400 static void __exit vortex_eisa_cleanup (void)
3401 {
3402 struct vortex_private *vp;
3403 void __iomem *ioaddr;
3404
3405 #ifdef CONFIG_EISA
3406 /* Take care of the EISA devices */
3407 eisa_driver_unregister (&vortex_eisa_driver);
3408 #endif
3409
3410 if (compaq_net_device) {
3411 vp = compaq_net_device->priv;
3412 ioaddr = ioport_map(compaq_net_device->base_addr,
3413 VORTEX_TOTAL_SIZE);
3414
3415 unregister_netdev (compaq_net_device);
3416 iowrite16 (TotalReset, ioaddr + EL3_CMD);
3417 release_region(compaq_net_device->base_addr,
3418 VORTEX_TOTAL_SIZE);
3419
3420 free_netdev (compaq_net_device);
3421 }
3422 }
3423
3424
3425 static void __exit vortex_cleanup (void)
3426 {
3427 if (vortex_have_pci)
3428 pci_unregister_driver (&vortex_driver);
3429 if (vortex_have_eisa)
3430 vortex_eisa_cleanup ();
3431 }
3432
3433
3434 module_init(vortex_init);
3435 module_exit(vortex_cleanup);
3436
3437 \f
3438 /*
3439 * Local variables:
3440 * c-indent-level: 4
3441 * c-basic-offset: 4
3442 * tab-width: 4
3443 * End:
3444 */
This page took 0.12661 seconds and 6 git commands to generate.