[PATCH] 3c59x: use ethtool_op_get_link
[deliverable/linux.git] / drivers / net / 3c59x.c
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Linux Kernel Additions:
21
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
28
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
51
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
58
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
69
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
83
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
94
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
104
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
116
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
121
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
124
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
132
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
142
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
148
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
155
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
168
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
176
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
180
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
183
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
186 */
187
188 /*
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
191 *
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
195 */
196
197
198 #define DRV_NAME "3c59x"
199 #define DRV_VERSION "LK1.1.19"
200 #define DRV_RELDATE "10 Nov 2002"
201
202
203
204 /* A few values that may be tweaked. */
205 /* Keep the ring sizes a power of two for efficiency. */
206 #define TX_RING_SIZE 16
207 #define RX_RING_SIZE 32
208 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
209
210 /* "Knobs" that adjust features and parameters. */
211 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 Setting to > 1512 effectively disables this feature. */
213 #ifndef __arm__
214 static int rx_copybreak = 200;
215 #else
216 /* ARM systems perform better by disregarding the bus-master
217 transfer capability of these cards. -- rmk */
218 static int rx_copybreak = 1513;
219 #endif
220 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
221 static const int mtu = 1500;
222 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
223 static int max_interrupt_work = 32;
224 /* Tx timeout interval (millisecs) */
225 static int watchdog = 5000;
226
227 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
228 * of possible Tx stalls if the system is blocking interrupts
229 * somewhere else. Undefine this to disable.
230 */
231 #define tx_interrupt_mitigation 1
232
233 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
234 #define vortex_debug debug
235 #ifdef VORTEX_DEBUG
236 static int vortex_debug = VORTEX_DEBUG;
237 #else
238 static int vortex_debug = 1;
239 #endif
240
241 #include <linux/config.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/string.h>
245 #include <linux/timer.h>
246 #include <linux/errno.h>
247 #include <linux/in.h>
248 #include <linux/ioport.h>
249 #include <linux/slab.h>
250 #include <linux/interrupt.h>
251 #include <linux/pci.h>
252 #include <linux/mii.h>
253 #include <linux/init.h>
254 #include <linux/netdevice.h>
255 #include <linux/etherdevice.h>
256 #include <linux/skbuff.h>
257 #include <linux/ethtool.h>
258 #include <linux/highmem.h>
259 #include <linux/eisa.h>
260 #include <linux/bitops.h>
261 #include <linux/jiffies.h>
262 #include <asm/irq.h> /* For NR_IRQS only. */
263 #include <asm/io.h>
264 #include <asm/uaccess.h>
265
266 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
267 This is only in the support-all-kernels source code. */
268
269 #define RUN_AT(x) (jiffies + (x))
270
271 #include <linux/delay.h>
272
273
274 static char version[] __devinitdata =
275 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
276
277 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
278 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "
279 DRV_VERSION " " DRV_RELDATE);
280 MODULE_LICENSE("GPL");
281 MODULE_VERSION(DRV_VERSION);
282
283
284 /* Operational parameter that usually are not changed. */
285
286 /* The Vortex size is twice that of the original EtherLinkIII series: the
287 runtime register window, window 1, is now always mapped in.
288 The Boomerang size is twice as large as the Vortex -- it has additional
289 bus master control registers. */
290 #define VORTEX_TOTAL_SIZE 0x20
291 #define BOOMERANG_TOTAL_SIZE 0x40
292
293 /* Set iff a MII transceiver on any interface requires mdio preamble.
294 This only set with the original DP83840 on older 3c905 boards, so the extra
295 code size of a per-interface flag is not worthwhile. */
296 static char mii_preamble_required;
297
298 #define PFX DRV_NAME ": "
299
300
301
302 /*
303 Theory of Operation
304
305 I. Board Compatibility
306
307 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
308 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
309 versions of the FastEtherLink cards. The supported product IDs are
310 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
311
312 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
313 with the kernel source or available from
314 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
315
316 II. Board-specific settings
317
318 PCI bus devices are configured by the system at boot time, so no jumpers
319 need to be set on the board. The system BIOS should be set to assign the
320 PCI INTA signal to an otherwise unused system IRQ line.
321
322 The EEPROM settings for media type and forced-full-duplex are observed.
323 The EEPROM media type should be left at the default "autoselect" unless using
324 10base2 or AUI connections which cannot be reliably detected.
325
326 III. Driver operation
327
328 The 3c59x series use an interface that's very similar to the previous 3c5x9
329 series. The primary interface is two programmed-I/O FIFOs, with an
330 alternate single-contiguous-region bus-master transfer (see next).
331
332 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
333 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
334 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
335 programmed-I/O interface that has been removed in 'B' and subsequent board
336 revisions.
337
338 One extension that is advertised in a very large font is that the adapters
339 are capable of being bus masters. On the Vortex chip this capability was
340 only for a single contiguous region making it far less useful than the full
341 bus master capability. There is a significant performance impact of taking
342 an extra interrupt or polling for the completion of each transfer, as well
343 as difficulty sharing the single transfer engine between the transmit and
344 receive threads. Using DMA transfers is a win only with large blocks or
345 with the flawed versions of the Intel Orion motherboard PCI controller.
346
347 The Boomerang chip's full-bus-master interface is useful, and has the
348 currently-unused advantages over other similar chips that queued transmit
349 packets may be reordered and receive buffer groups are associated with a
350 single frame.
351
352 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
353 Rather than a fixed intermediate receive buffer, this scheme allocates
354 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
355 the copying breakpoint: it is chosen to trade-off the memory wasted by
356 passing the full-sized skbuff to the queue layer for all frames vs. the
357 copying cost of copying a frame to a correctly-sized skbuff.
358
359 IIIC. Synchronization
360 The driver runs as two independent, single-threaded flows of control. One
361 is the send-packet routine, which enforces single-threaded use by the
362 dev->tbusy flag. The other thread is the interrupt handler, which is single
363 threaded by the hardware and other software.
364
365 IV. Notes
366
367 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
368 3c590, 3c595, and 3c900 boards.
369 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
370 the EISA version is called "Demon". According to Terry these names come
371 from rides at the local amusement park.
372
373 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
374 This driver only supports ethernet packets because of the skbuff allocation
375 limit of 4K.
376 */
377
378 /* This table drives the PCI probe routines. It's mostly boilerplate in all
379 of the drivers, and will likely be provided by some future kernel.
380 */
381 enum pci_flags_bit {
382 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
383 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
384 };
385
386 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
387 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
388 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
389 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
390 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
391 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
392
393 enum vortex_chips {
394 CH_3C590 = 0,
395 CH_3C592,
396 CH_3C597,
397 CH_3C595_1,
398 CH_3C595_2,
399
400 CH_3C595_3,
401 CH_3C900_1,
402 CH_3C900_2,
403 CH_3C900_3,
404 CH_3C900_4,
405
406 CH_3C900_5,
407 CH_3C900B_FL,
408 CH_3C905_1,
409 CH_3C905_2,
410 CH_3C905B_1,
411
412 CH_3C905B_2,
413 CH_3C905B_FX,
414 CH_3C905C,
415 CH_3C9202,
416 CH_3C980,
417 CH_3C9805,
418
419 CH_3CSOHO100_TX,
420 CH_3C555,
421 CH_3C556,
422 CH_3C556B,
423 CH_3C575,
424
425 CH_3C575_1,
426 CH_3CCFE575,
427 CH_3CCFE575CT,
428 CH_3CCFE656,
429 CH_3CCFEM656,
430
431 CH_3CCFEM656_1,
432 CH_3C450,
433 CH_3C920,
434 CH_3C982A,
435 CH_3C982B,
436
437 CH_905BT4,
438 CH_920B_EMB_WNM,
439 };
440
441
442 /* note: this array directly indexed by above enums, and MUST
443 * be kept in sync with both the enums above, and the PCI device
444 * table below
445 */
446 static struct vortex_chip_info {
447 const char *name;
448 int flags;
449 int drv_flags;
450 int io_size;
451 } vortex_info_tbl[] __devinitdata = {
452 {"3c590 Vortex 10Mbps",
453 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
454 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
455 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
456 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
457 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
458 {"3c595 Vortex 100baseTx",
459 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
460 {"3c595 Vortex 100baseT4",
461 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
462
463 {"3c595 Vortex 100base-MII",
464 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
465 {"3c900 Boomerang 10baseT",
466 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
467 {"3c900 Boomerang 10Mbps Combo",
468 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
469 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
470 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
471 {"3c900 Cyclone 10Mbps Combo",
472 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
473
474 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
475 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
476 {"3c900B-FL Cyclone 10base-FL",
477 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
478 {"3c905 Boomerang 100baseTx",
479 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
480 {"3c905 Boomerang 100baseT4",
481 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
482 {"3c905B Cyclone 100baseTx",
483 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
484
485 {"3c905B Cyclone 10/100/BNC",
486 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
487 {"3c905B-FX Cyclone 100baseFx",
488 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
489 {"3c905C Tornado",
490 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
491 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
492 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
493 {"3c980 Cyclone",
494 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
495
496 {"3c980C Python-T",
497 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
498 {"3cSOHO100-TX Hurricane",
499 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
500 {"3c555 Laptop Hurricane",
501 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
502 {"3c556 Laptop Tornado",
503 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
504 HAS_HWCKSM, 128, },
505 {"3c556B Laptop Hurricane",
506 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
507 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
508
509 {"3c575 [Megahertz] 10/100 LAN CardBus",
510 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
511 {"3c575 Boomerang CardBus",
512 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
513 {"3CCFE575BT Cyclone CardBus",
514 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
515 INVERT_LED_PWR|HAS_HWCKSM, 128, },
516 {"3CCFE575CT Tornado CardBus",
517 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
518 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
519 {"3CCFE656 Cyclone CardBus",
520 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
521 INVERT_LED_PWR|HAS_HWCKSM, 128, },
522
523 {"3CCFEM656B Cyclone+Winmodem CardBus",
524 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
525 INVERT_LED_PWR|HAS_HWCKSM, 128, },
526 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
527 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
528 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
529 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
530 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
531 {"3c920 Tornado",
532 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
533 {"3c982 Hydra Dual Port A",
534 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
535
536 {"3c982 Hydra Dual Port B",
537 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
538 {"3c905B-T4",
539 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
540 {"3c920B-EMB-WNM Tornado",
541 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
542
543 {NULL,}, /* NULL terminated list. */
544 };
545
546
547 static struct pci_device_id vortex_pci_tbl[] = {
548 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
549 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
550 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
551 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
552 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
553
554 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
555 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
556 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
557 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
558 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
559
560 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
561 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
562 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
563 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
564 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
565
566 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
567 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
568 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
569 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
570 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
571 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
572
573 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
574 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
575 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
576 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
577 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
578
579 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
580 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
581 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
582 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
583 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
584
585 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
586 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
587 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
588 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
589 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
590
591 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
592 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
593
594 {0,} /* 0 terminated list. */
595 };
596 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
597
598
599 /* Operational definitions.
600 These are not used by other compilation units and thus are not
601 exported in a ".h" file.
602
603 First the windows. There are eight register windows, with the command
604 and status registers available in each.
605 */
606 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
607 #define EL3_CMD 0x0e
608 #define EL3_STATUS 0x0e
609
610 /* The top five bits written to EL3_CMD are a command, the lower
611 11 bits are the parameter, if applicable.
612 Note that 11 parameters bits was fine for ethernet, but the new chip
613 can handle FDDI length frames (~4500 octets) and now parameters count
614 32-bit 'Dwords' rather than octets. */
615
616 enum vortex_cmd {
617 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
618 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
619 UpStall = 6<<11, UpUnstall = (6<<11)+1,
620 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
621 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
622 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
623 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
624 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
625 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
626 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
627
628 /* The SetRxFilter command accepts the following classes: */
629 enum RxFilter {
630 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
631
632 /* Bits in the general status register. */
633 enum vortex_status {
634 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
635 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
636 IntReq = 0x0040, StatsFull = 0x0080,
637 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
638 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
639 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
640 };
641
642 /* Register window 1 offsets, the window used in normal operation.
643 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
644 enum Window1 {
645 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
646 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
647 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
648 };
649 enum Window0 {
650 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
651 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
652 IntrStatus=0x0E, /* Valid in all windows. */
653 };
654 enum Win0_EEPROM_bits {
655 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
656 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
657 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
658 };
659 /* EEPROM locations. */
660 enum eeprom_offset {
661 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
662 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
663 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
664 DriverTune=13, Checksum=15};
665
666 enum Window2 { /* Window 2. */
667 Wn2_ResetOptions=12,
668 };
669 enum Window3 { /* Window 3: MAC/config bits. */
670 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
671 };
672
673 #define BFEXT(value, offset, bitcount) \
674 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
675
676 #define BFINS(lhs, rhs, offset, bitcount) \
677 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
678 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
679
680 #define RAM_SIZE(v) BFEXT(v, 0, 3)
681 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
682 #define RAM_SPEED(v) BFEXT(v, 4, 2)
683 #define ROM_SIZE(v) BFEXT(v, 6, 2)
684 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
685 #define XCVR(v) BFEXT(v, 20, 4)
686 #define AUTOSELECT(v) BFEXT(v, 24, 1)
687
688 enum Window4 { /* Window 4: Xcvr/media bits. */
689 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
690 };
691 enum Win4_Media_bits {
692 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
693 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
694 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
695 Media_LnkBeat = 0x0800,
696 };
697 enum Window7 { /* Window 7: Bus Master control. */
698 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
699 Wn7_MasterStatus = 12,
700 };
701 /* Boomerang bus master control registers. */
702 enum MasterCtrl {
703 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
704 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
705 };
706
707 /* The Rx and Tx descriptor lists.
708 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
709 alignment contraint on tx_ring[] and rx_ring[]. */
710 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
711 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
712 struct boom_rx_desc {
713 u32 next; /* Last entry points to 0. */
714 s32 status;
715 u32 addr; /* Up to 63 addr/len pairs possible. */
716 s32 length; /* Set LAST_FRAG to indicate last pair. */
717 };
718 /* Values for the Rx status entry. */
719 enum rx_desc_status {
720 RxDComplete=0x00008000, RxDError=0x4000,
721 /* See boomerang_rx() for actual error bits */
722 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
723 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
724 };
725
726 #ifdef MAX_SKB_FRAGS
727 #define DO_ZEROCOPY 1
728 #else
729 #define DO_ZEROCOPY 0
730 #endif
731
732 struct boom_tx_desc {
733 u32 next; /* Last entry points to 0. */
734 s32 status; /* bits 0:12 length, others see below. */
735 #if DO_ZEROCOPY
736 struct {
737 u32 addr;
738 s32 length;
739 } frag[1+MAX_SKB_FRAGS];
740 #else
741 u32 addr;
742 s32 length;
743 #endif
744 };
745
746 /* Values for the Tx status entry. */
747 enum tx_desc_status {
748 CRCDisable=0x2000, TxDComplete=0x8000,
749 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
750 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
751 };
752
753 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
754 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
755
756 struct vortex_extra_stats {
757 unsigned long tx_deferred;
758 unsigned long tx_max_collisions;
759 unsigned long tx_multiple_collisions;
760 unsigned long tx_single_collisions;
761 unsigned long rx_bad_ssd;
762 };
763
764 struct vortex_private {
765 /* The Rx and Tx rings should be quad-word-aligned. */
766 struct boom_rx_desc* rx_ring;
767 struct boom_tx_desc* tx_ring;
768 dma_addr_t rx_ring_dma;
769 dma_addr_t tx_ring_dma;
770 /* The addresses of transmit- and receive-in-place skbuffs. */
771 struct sk_buff* rx_skbuff[RX_RING_SIZE];
772 struct sk_buff* tx_skbuff[TX_RING_SIZE];
773 unsigned int cur_rx, cur_tx; /* The next free ring entry */
774 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
775 struct net_device_stats stats; /* Generic stats */
776 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
777 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
778 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
779
780 /* PCI configuration space information. */
781 struct device *gendev;
782 void __iomem *ioaddr; /* IO address space */
783 void __iomem *cb_fn_base; /* CardBus function status addr space. */
784
785 /* Some values here only for performance evaluation and path-coverage */
786 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
787 int card_idx;
788
789 /* The remainder are related to chip state, mostly media selection. */
790 struct timer_list timer; /* Media selection timer. */
791 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
792 int options; /* User-settable misc. driver options. */
793 unsigned int media_override:4, /* Passed-in media type. */
794 default_media:4, /* Read from the EEPROM/Wn3_Config. */
795 full_duplex:1, force_fd:1, autoselect:1,
796 bus_master:1, /* Vortex can only do a fragment bus-m. */
797 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
798 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
799 partner_flow_ctrl:1, /* Partner supports flow control */
800 has_nway:1,
801 enable_wol:1, /* Wake-on-LAN is enabled */
802 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
803 open:1,
804 medialock:1,
805 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
806 large_frames:1; /* accept large frames */
807 int drv_flags;
808 u16 status_enable;
809 u16 intr_enable;
810 u16 available_media; /* From Wn3_Options. */
811 u16 capabilities, info1, info2; /* Various, from EEPROM. */
812 u16 advertising; /* NWay media advertisement */
813 unsigned char phys[2]; /* MII device addresses. */
814 u16 deferred; /* Resend these interrupts when we
815 * bale from the ISR */
816 u16 io_size; /* Size of PCI region (for release_region) */
817 spinlock_t lock; /* Serialise access to device & its vortex_private */
818 struct mii_if_info mii; /* MII lib hooks/info */
819 };
820
821 #ifdef CONFIG_PCI
822 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
823 #else
824 #define DEVICE_PCI(dev) NULL
825 #endif
826
827 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
828
829 #ifdef CONFIG_EISA
830 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
831 #else
832 #define DEVICE_EISA(dev) NULL
833 #endif
834
835 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
836
837 /* The action to take with a media selection timer tick.
838 Note that we deviate from the 3Com order by checking 10base2 before AUI.
839 */
840 enum xcvr_types {
841 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
842 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
843 };
844
845 static const struct media_table {
846 char *name;
847 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
848 mask:8, /* The transceiver-present bit in Wn3_Config.*/
849 next:8; /* The media type to try next. */
850 int wait; /* Time before we check media status. */
851 } media_tbl[] = {
852 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
853 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
854 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
855 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
856 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
857 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
858 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
859 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
860 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
861 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
862 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
863 };
864
865 static struct {
866 const char str[ETH_GSTRING_LEN];
867 } ethtool_stats_keys[] = {
868 { "tx_deferred" },
869 { "tx_max_collisions" },
870 { "tx_multiple_collisions" },
871 { "tx_single_collisions" },
872 { "rx_bad_ssd" },
873 };
874
875 /* number of ETHTOOL_GSTATS u64's */
876 #define VORTEX_NUM_STATS 5
877
878 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
879 int chip_idx, int card_idx);
880 static void vortex_up(struct net_device *dev);
881 static void vortex_down(struct net_device *dev, int final);
882 static int vortex_open(struct net_device *dev);
883 static void mdio_sync(void __iomem *ioaddr, int bits);
884 static int mdio_read(struct net_device *dev, int phy_id, int location);
885 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
886 static void vortex_timer(unsigned long arg);
887 static void rx_oom_timer(unsigned long arg);
888 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
889 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
890 static int vortex_rx(struct net_device *dev);
891 static int boomerang_rx(struct net_device *dev);
892 static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
893 static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
894 static int vortex_close(struct net_device *dev);
895 static void dump_tx_ring(struct net_device *dev);
896 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
897 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
898 static void set_rx_mode(struct net_device *dev);
899 #ifdef CONFIG_PCI
900 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
901 #endif
902 static void vortex_tx_timeout(struct net_device *dev);
903 static void acpi_set_WOL(struct net_device *dev);
904 static struct ethtool_ops vortex_ethtool_ops;
905 static void set_8021q_mode(struct net_device *dev, int enable);
906
907 \f
908 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
909 /* Option count limit only -- unlimited interfaces are supported. */
910 #define MAX_UNITS 8
911 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
912 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
913 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
914 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
915 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
916 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
917 static int global_options = -1;
918 static int global_full_duplex = -1;
919 static int global_enable_wol = -1;
920 static int global_use_mmio = -1;
921
922 /* #define dev_alloc_skb dev_alloc_skb_debug */
923
924 /* Variables to work-around the Compaq PCI BIOS32 problem. */
925 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
926 static struct net_device *compaq_net_device;
927
928 static int vortex_cards_found;
929
930 module_param(debug, int, 0);
931 module_param(global_options, int, 0);
932 module_param_array(options, int, NULL, 0);
933 module_param(global_full_duplex, int, 0);
934 module_param_array(full_duplex, int, NULL, 0);
935 module_param_array(hw_checksums, int, NULL, 0);
936 module_param_array(flow_ctrl, int, NULL, 0);
937 module_param(global_enable_wol, int, 0);
938 module_param_array(enable_wol, int, NULL, 0);
939 module_param(rx_copybreak, int, 0);
940 module_param(max_interrupt_work, int, 0);
941 module_param(compaq_ioaddr, int, 0);
942 module_param(compaq_irq, int, 0);
943 module_param(compaq_device_id, int, 0);
944 module_param(watchdog, int, 0);
945 module_param(global_use_mmio, int, 0);
946 module_param_array(use_mmio, int, NULL, 0);
947 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
948 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
949 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
950 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
951 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
952 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
953 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
954 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
955 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
956 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
957 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
958 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
959 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
960 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
961 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
962 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
963 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
964
965 #ifdef CONFIG_NET_POLL_CONTROLLER
966 static void poll_vortex(struct net_device *dev)
967 {
968 struct vortex_private *vp = netdev_priv(dev);
969 unsigned long flags;
970 local_save_flags(flags);
971 local_irq_disable();
972 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
973 local_irq_restore(flags);
974 }
975 #endif
976
977 #ifdef CONFIG_PM
978
979 static int vortex_suspend (struct pci_dev *pdev, pm_message_t state)
980 {
981 struct net_device *dev = pci_get_drvdata(pdev);
982
983 if (dev && dev->priv) {
984 if (netif_running(dev)) {
985 netif_device_detach(dev);
986 vortex_down(dev, 1);
987 }
988 pci_save_state(pdev);
989 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
990 free_irq(dev->irq, dev);
991 pci_disable_device(pdev);
992 pci_set_power_state(pdev, pci_choose_state(pdev, state));
993 }
994 return 0;
995 }
996
997 static int vortex_resume (struct pci_dev *pdev)
998 {
999 struct net_device *dev = pci_get_drvdata(pdev);
1000 struct vortex_private *vp = netdev_priv(dev);
1001
1002 if (dev && vp) {
1003 pci_set_power_state(pdev, PCI_D0);
1004 pci_restore_state(pdev);
1005 pci_enable_device(pdev);
1006 pci_set_master(pdev);
1007 if (request_irq(dev->irq, vp->full_bus_master_rx ?
1008 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev)) {
1009 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1010 pci_disable_device(pdev);
1011 return -EBUSY;
1012 }
1013 if (netif_running(dev)) {
1014 vortex_up(dev);
1015 netif_device_attach(dev);
1016 }
1017 }
1018 return 0;
1019 }
1020
1021 #endif /* CONFIG_PM */
1022
1023 #ifdef CONFIG_EISA
1024 static struct eisa_device_id vortex_eisa_ids[] = {
1025 { "TCM5920", CH_3C592 },
1026 { "TCM5970", CH_3C597 },
1027 { "" }
1028 };
1029
1030 static int vortex_eisa_probe (struct device *device);
1031 static int vortex_eisa_remove (struct device *device);
1032
1033 static struct eisa_driver vortex_eisa_driver = {
1034 .id_table = vortex_eisa_ids,
1035 .driver = {
1036 .name = "3c59x",
1037 .probe = vortex_eisa_probe,
1038 .remove = vortex_eisa_remove
1039 }
1040 };
1041
1042 static int vortex_eisa_probe (struct device *device)
1043 {
1044 void __iomem *ioaddr;
1045 struct eisa_device *edev;
1046
1047 edev = to_eisa_device (device);
1048
1049 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
1050 return -EBUSY;
1051
1052 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
1053
1054 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
1055 edev->id.driver_data, vortex_cards_found)) {
1056 release_region (edev->base_addr, VORTEX_TOTAL_SIZE);
1057 return -ENODEV;
1058 }
1059
1060 vortex_cards_found++;
1061
1062 return 0;
1063 }
1064
1065 static int vortex_eisa_remove (struct device *device)
1066 {
1067 struct eisa_device *edev;
1068 struct net_device *dev;
1069 struct vortex_private *vp;
1070 void __iomem *ioaddr;
1071
1072 edev = to_eisa_device (device);
1073 dev = eisa_get_drvdata (edev);
1074
1075 if (!dev) {
1076 printk("vortex_eisa_remove called for Compaq device!\n");
1077 BUG();
1078 }
1079
1080 vp = netdev_priv(dev);
1081 ioaddr = vp->ioaddr;
1082
1083 unregister_netdev (dev);
1084 iowrite16 (TotalReset|0x14, ioaddr + EL3_CMD);
1085 release_region (dev->base_addr, VORTEX_TOTAL_SIZE);
1086
1087 free_netdev (dev);
1088 return 0;
1089 }
1090 #endif
1091
1092 /* returns count found (>= 0), or negative on error */
1093 static int __init vortex_eisa_init (void)
1094 {
1095 int eisa_found = 0;
1096 int orig_cards_found = vortex_cards_found;
1097
1098 #ifdef CONFIG_EISA
1099 int err;
1100
1101 err = eisa_driver_register (&vortex_eisa_driver);
1102 if (!err) {
1103 /*
1104 * Because of the way EISA bus is probed, we cannot assume
1105 * any device have been found when we exit from
1106 * eisa_driver_register (the bus root driver may not be
1107 * initialized yet). So we blindly assume something was
1108 * found, and let the sysfs magic happend...
1109 */
1110 eisa_found = 1;
1111 }
1112 #endif
1113
1114 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1115 if (compaq_ioaddr) {
1116 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
1117 compaq_irq, compaq_device_id, vortex_cards_found++);
1118 }
1119
1120 return vortex_cards_found - orig_cards_found + eisa_found;
1121 }
1122
1123 /* returns count (>= 0), or negative on error */
1124 static int __devinit vortex_init_one (struct pci_dev *pdev,
1125 const struct pci_device_id *ent)
1126 {
1127 int rc, unit, pci_bar;
1128 struct vortex_chip_info *vci;
1129 void __iomem *ioaddr;
1130
1131 /* wake up and enable device */
1132 rc = pci_enable_device (pdev);
1133 if (rc < 0)
1134 goto out;
1135
1136 unit = vortex_cards_found;
1137
1138 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1139 /* Determine the default if the user didn't override us */
1140 vci = &vortex_info_tbl[ent->driver_data];
1141 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1142 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1143 pci_bar = use_mmio[unit] ? 1 : 0;
1144 else
1145 pci_bar = global_use_mmio ? 1 : 0;
1146
1147 ioaddr = pci_iomap(pdev, pci_bar, 0);
1148 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1149 ioaddr = pci_iomap(pdev, 0, 0);
1150
1151 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1152 ent->driver_data, unit);
1153 if (rc < 0) {
1154 pci_disable_device (pdev);
1155 goto out;
1156 }
1157
1158 vortex_cards_found++;
1159
1160 out:
1161 return rc;
1162 }
1163
1164 /*
1165 * Start up the PCI/EISA device which is described by *gendev.
1166 * Return 0 on success.
1167 *
1168 * NOTE: pdev can be NULL, for the case of a Compaq device
1169 */
1170 static int __devinit vortex_probe1(struct device *gendev,
1171 void __iomem *ioaddr, int irq,
1172 int chip_idx, int card_idx)
1173 {
1174 struct vortex_private *vp;
1175 int option;
1176 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1177 int i, step;
1178 struct net_device *dev;
1179 static int printed_version;
1180 int retval, print_info;
1181 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1182 char *print_name = "3c59x";
1183 struct pci_dev *pdev = NULL;
1184 struct eisa_device *edev = NULL;
1185
1186 if (!printed_version) {
1187 printk (version);
1188 printed_version = 1;
1189 }
1190
1191 if (gendev) {
1192 if ((pdev = DEVICE_PCI(gendev))) {
1193 print_name = pci_name(pdev);
1194 }
1195
1196 if ((edev = DEVICE_EISA(gendev))) {
1197 print_name = edev->dev.bus_id;
1198 }
1199 }
1200
1201 dev = alloc_etherdev(sizeof(*vp));
1202 retval = -ENOMEM;
1203 if (!dev) {
1204 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1205 goto out;
1206 }
1207 SET_MODULE_OWNER(dev);
1208 SET_NETDEV_DEV(dev, gendev);
1209 vp = netdev_priv(dev);
1210
1211 option = global_options;
1212
1213 /* The lower four bits are the media type. */
1214 if (dev->mem_start) {
1215 /*
1216 * The 'options' param is passed in as the third arg to the
1217 * LILO 'ether=' argument for non-modular use
1218 */
1219 option = dev->mem_start;
1220 }
1221 else if (card_idx < MAX_UNITS) {
1222 if (options[card_idx] >= 0)
1223 option = options[card_idx];
1224 }
1225
1226 if (option > 0) {
1227 if (option & 0x8000)
1228 vortex_debug = 7;
1229 if (option & 0x4000)
1230 vortex_debug = 2;
1231 if (option & 0x0400)
1232 vp->enable_wol = 1;
1233 }
1234
1235 print_info = (vortex_debug > 1);
1236 if (print_info)
1237 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1238
1239 printk(KERN_INFO "%s: 3Com %s %s at %p. Vers " DRV_VERSION "\n",
1240 print_name,
1241 pdev ? "PCI" : "EISA",
1242 vci->name,
1243 ioaddr);
1244
1245 dev->base_addr = (unsigned long)ioaddr;
1246 dev->irq = irq;
1247 dev->mtu = mtu;
1248 vp->ioaddr = ioaddr;
1249 vp->large_frames = mtu > 1500;
1250 vp->drv_flags = vci->drv_flags;
1251 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1252 vp->io_size = vci->io_size;
1253 vp->card_idx = card_idx;
1254
1255 /* module list only for Compaq device */
1256 if (gendev == NULL) {
1257 compaq_net_device = dev;
1258 }
1259
1260 /* PCI-only startup logic */
1261 if (pdev) {
1262 /* EISA resources already marked, so only PCI needs to do this here */
1263 /* Ignore return value, because Cardbus drivers already allocate for us */
1264 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1265 vp->must_free_region = 1;
1266
1267 /* enable bus-mastering if necessary */
1268 if (vci->flags & PCI_USES_MASTER)
1269 pci_set_master (pdev);
1270
1271 if (vci->drv_flags & IS_VORTEX) {
1272 u8 pci_latency;
1273 u8 new_latency = 248;
1274
1275 /* Check the PCI latency value. On the 3c590 series the latency timer
1276 must be set to the maximum value to avoid data corruption that occurs
1277 when the timer expires during a transfer. This bug exists the Vortex
1278 chip only. */
1279 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1280 if (pci_latency < new_latency) {
1281 printk(KERN_INFO "%s: Overriding PCI latency"
1282 " timer (CFLT) setting of %d, new value is %d.\n",
1283 print_name, pci_latency, new_latency);
1284 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1285 }
1286 }
1287 }
1288
1289 spin_lock_init(&vp->lock);
1290 vp->gendev = gendev;
1291 vp->mii.dev = dev;
1292 vp->mii.mdio_read = mdio_read;
1293 vp->mii.mdio_write = mdio_write;
1294 vp->mii.phy_id_mask = 0x1f;
1295 vp->mii.reg_num_mask = 0x1f;
1296
1297 /* Makes sure rings are at least 16 byte aligned. */
1298 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1299 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1300 &vp->rx_ring_dma);
1301 retval = -ENOMEM;
1302 if (vp->rx_ring == 0)
1303 goto free_region;
1304
1305 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1306 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1307
1308 /* if we are a PCI driver, we store info in pdev->driver_data
1309 * instead of a module list */
1310 if (pdev)
1311 pci_set_drvdata(pdev, dev);
1312 if (edev)
1313 eisa_set_drvdata (edev, dev);
1314
1315 vp->media_override = 7;
1316 if (option >= 0) {
1317 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1318 if (vp->media_override != 7)
1319 vp->medialock = 1;
1320 vp->full_duplex = (option & 0x200) ? 1 : 0;
1321 vp->bus_master = (option & 16) ? 1 : 0;
1322 }
1323
1324 if (global_full_duplex > 0)
1325 vp->full_duplex = 1;
1326 if (global_enable_wol > 0)
1327 vp->enable_wol = 1;
1328
1329 if (card_idx < MAX_UNITS) {
1330 if (full_duplex[card_idx] > 0)
1331 vp->full_duplex = 1;
1332 if (flow_ctrl[card_idx] > 0)
1333 vp->flow_ctrl = 1;
1334 if (enable_wol[card_idx] > 0)
1335 vp->enable_wol = 1;
1336 }
1337
1338 vp->mii.force_media = vp->full_duplex;
1339 vp->options = option;
1340 /* Read the station address from the EEPROM. */
1341 EL3WINDOW(0);
1342 {
1343 int base;
1344
1345 if (vci->drv_flags & EEPROM_8BIT)
1346 base = 0x230;
1347 else if (vci->drv_flags & EEPROM_OFFSET)
1348 base = EEPROM_Read + 0x30;
1349 else
1350 base = EEPROM_Read;
1351
1352 for (i = 0; i < 0x40; i++) {
1353 int timer;
1354 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1355 /* Pause for at least 162 us. for the read to take place. */
1356 for (timer = 10; timer >= 0; timer--) {
1357 udelay(162);
1358 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1359 break;
1360 }
1361 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1362 }
1363 }
1364 for (i = 0; i < 0x18; i++)
1365 checksum ^= eeprom[i];
1366 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1367 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1368 while (i < 0x21)
1369 checksum ^= eeprom[i++];
1370 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1371 }
1372 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1373 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1374 for (i = 0; i < 3; i++)
1375 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1376 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1377 if (print_info) {
1378 for (i = 0; i < 6; i++)
1379 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1380 }
1381 /* Unfortunately an all zero eeprom passes the checksum and this
1382 gets found in the wild in failure cases. Crypto is hard 8) */
1383 if (!is_valid_ether_addr(dev->dev_addr)) {
1384 retval = -EINVAL;
1385 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1386 goto free_ring; /* With every pack */
1387 }
1388 EL3WINDOW(2);
1389 for (i = 0; i < 6; i++)
1390 iowrite8(dev->dev_addr[i], ioaddr + i);
1391
1392 #ifdef __sparc__
1393 if (print_info)
1394 printk(", IRQ %s\n", __irq_itoa(dev->irq));
1395 #else
1396 if (print_info)
1397 printk(", IRQ %d\n", dev->irq);
1398 /* Tell them about an invalid IRQ. */
1399 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1400 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1401 dev->irq);
1402 #endif
1403
1404 EL3WINDOW(4);
1405 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1406 if (print_info) {
1407 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1408 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1409 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1410 }
1411
1412
1413 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1414 unsigned short n;
1415
1416 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1417 if (!vp->cb_fn_base) {
1418 retval = -ENOMEM;
1419 goto free_ring;
1420 }
1421
1422 if (print_info) {
1423 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1424 print_name, pci_resource_start(pdev, 2),
1425 vp->cb_fn_base);
1426 }
1427 EL3WINDOW(2);
1428
1429 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1430 if (vp->drv_flags & INVERT_LED_PWR)
1431 n |= 0x10;
1432 if (vp->drv_flags & INVERT_MII_PWR)
1433 n |= 0x4000;
1434 iowrite16(n, ioaddr + Wn2_ResetOptions);
1435 if (vp->drv_flags & WNO_XCVR_PWR) {
1436 EL3WINDOW(0);
1437 iowrite16(0x0800, ioaddr);
1438 }
1439 }
1440
1441 /* Extract our information from the EEPROM data. */
1442 vp->info1 = eeprom[13];
1443 vp->info2 = eeprom[15];
1444 vp->capabilities = eeprom[16];
1445
1446 if (vp->info1 & 0x8000) {
1447 vp->full_duplex = 1;
1448 if (print_info)
1449 printk(KERN_INFO "Full duplex capable\n");
1450 }
1451
1452 {
1453 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1454 unsigned int config;
1455 EL3WINDOW(3);
1456 vp->available_media = ioread16(ioaddr + Wn3_Options);
1457 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1458 vp->available_media = 0x40;
1459 config = ioread32(ioaddr + Wn3_Config);
1460 if (print_info) {
1461 printk(KERN_DEBUG " Internal config register is %4.4x, "
1462 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1463 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1464 8 << RAM_SIZE(config),
1465 RAM_WIDTH(config) ? "word" : "byte",
1466 ram_split[RAM_SPLIT(config)],
1467 AUTOSELECT(config) ? "autoselect/" : "",
1468 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1469 media_tbl[XCVR(config)].name);
1470 }
1471 vp->default_media = XCVR(config);
1472 if (vp->default_media == XCVR_NWAY)
1473 vp->has_nway = 1;
1474 vp->autoselect = AUTOSELECT(config);
1475 }
1476
1477 if (vp->media_override != 7) {
1478 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1479 print_name, vp->media_override,
1480 media_tbl[vp->media_override].name);
1481 dev->if_port = vp->media_override;
1482 } else
1483 dev->if_port = vp->default_media;
1484
1485 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1486 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1487 int phy, phy_idx = 0;
1488 EL3WINDOW(4);
1489 mii_preamble_required++;
1490 if (vp->drv_flags & EXTRA_PREAMBLE)
1491 mii_preamble_required++;
1492 mdio_sync(ioaddr, 32);
1493 mdio_read(dev, 24, MII_BMSR);
1494 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1495 int mii_status, phyx;
1496
1497 /*
1498 * For the 3c905CX we look at index 24 first, because it bogusly
1499 * reports an external PHY at all indices
1500 */
1501 if (phy == 0)
1502 phyx = 24;
1503 else if (phy <= 24)
1504 phyx = phy - 1;
1505 else
1506 phyx = phy;
1507 mii_status = mdio_read(dev, phyx, MII_BMSR);
1508 if (mii_status && mii_status != 0xffff) {
1509 vp->phys[phy_idx++] = phyx;
1510 if (print_info) {
1511 printk(KERN_INFO " MII transceiver found at address %d,"
1512 " status %4x.\n", phyx, mii_status);
1513 }
1514 if ((mii_status & 0x0040) == 0)
1515 mii_preamble_required++;
1516 }
1517 }
1518 mii_preamble_required--;
1519 if (phy_idx == 0) {
1520 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1521 vp->phys[0] = 24;
1522 } else {
1523 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1524 if (vp->full_duplex) {
1525 /* Only advertise the FD media types. */
1526 vp->advertising &= ~0x02A0;
1527 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1528 }
1529 }
1530 vp->mii.phy_id = vp->phys[0];
1531 }
1532
1533 if (vp->capabilities & CapBusMaster) {
1534 vp->full_bus_master_tx = 1;
1535 if (print_info) {
1536 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1537 (vp->info2 & 1) ? "early" : "whole-frame" );
1538 }
1539 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1540 vp->bus_master = 0; /* AKPM: vortex only */
1541 }
1542
1543 /* The 3c59x-specific entries in the device structure. */
1544 dev->open = vortex_open;
1545 if (vp->full_bus_master_tx) {
1546 dev->hard_start_xmit = boomerang_start_xmit;
1547 /* Actually, it still should work with iommu. */
1548 if (card_idx < MAX_UNITS &&
1549 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1550 hw_checksums[card_idx] == 1)) {
1551 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1552 }
1553 } else {
1554 dev->hard_start_xmit = vortex_start_xmit;
1555 }
1556
1557 if (print_info) {
1558 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1559 print_name,
1560 (dev->features & NETIF_F_SG) ? "en":"dis",
1561 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1562 }
1563
1564 dev->stop = vortex_close;
1565 dev->get_stats = vortex_get_stats;
1566 #ifdef CONFIG_PCI
1567 dev->do_ioctl = vortex_ioctl;
1568 #endif
1569 dev->ethtool_ops = &vortex_ethtool_ops;
1570 dev->set_multicast_list = set_rx_mode;
1571 dev->tx_timeout = vortex_tx_timeout;
1572 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1573 #ifdef CONFIG_NET_POLL_CONTROLLER
1574 dev->poll_controller = poll_vortex;
1575 #endif
1576 if (pdev) {
1577 vp->pm_state_valid = 1;
1578 pci_save_state(VORTEX_PCI(vp));
1579 acpi_set_WOL(dev);
1580 }
1581 retval = register_netdev(dev);
1582 if (retval == 0)
1583 return 0;
1584
1585 free_ring:
1586 pci_free_consistent(pdev,
1587 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1588 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1589 vp->rx_ring,
1590 vp->rx_ring_dma);
1591 free_region:
1592 if (vp->must_free_region)
1593 release_region(dev->base_addr, vci->io_size);
1594 free_netdev(dev);
1595 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1596 out:
1597 return retval;
1598 }
1599
1600 static void
1601 issue_and_wait(struct net_device *dev, int cmd)
1602 {
1603 struct vortex_private *vp = netdev_priv(dev);
1604 void __iomem *ioaddr = vp->ioaddr;
1605 int i;
1606
1607 iowrite16(cmd, ioaddr + EL3_CMD);
1608 for (i = 0; i < 2000; i++) {
1609 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1610 return;
1611 }
1612
1613 /* OK, that didn't work. Do it the slow way. One second */
1614 for (i = 0; i < 100000; i++) {
1615 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1616 if (vortex_debug > 1)
1617 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1618 dev->name, cmd, i * 10);
1619 return;
1620 }
1621 udelay(10);
1622 }
1623 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1624 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1625 }
1626
1627 static void
1628 vortex_set_duplex(struct net_device *dev)
1629 {
1630 struct vortex_private *vp = netdev_priv(dev);
1631 void __iomem *ioaddr = vp->ioaddr;
1632
1633 printk(KERN_INFO "%s: setting %s-duplex.\n",
1634 dev->name, (vp->full_duplex) ? "full" : "half");
1635
1636 EL3WINDOW(3);
1637 /* Set the full-duplex bit. */
1638 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1639 (vp->large_frames ? 0x40 : 0) |
1640 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1641 0x100 : 0),
1642 ioaddr + Wn3_MAC_Ctrl);
1643
1644 issue_and_wait(dev, TxReset);
1645 /*
1646 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1647 */
1648 issue_and_wait(dev, RxReset|0x04);
1649 }
1650
1651 static void vortex_check_media(struct net_device *dev, unsigned int init)
1652 {
1653 struct vortex_private *vp = netdev_priv(dev);
1654 unsigned int ok_to_print = 0;
1655
1656 if (vortex_debug > 3)
1657 ok_to_print = 1;
1658
1659 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1660 vp->full_duplex = vp->mii.full_duplex;
1661 vortex_set_duplex(dev);
1662 } else if (init) {
1663 vortex_set_duplex(dev);
1664 }
1665 }
1666
1667 static void
1668 vortex_up(struct net_device *dev)
1669 {
1670 struct vortex_private *vp = netdev_priv(dev);
1671 void __iomem *ioaddr = vp->ioaddr;
1672 unsigned int config;
1673 int i;
1674
1675 if (VORTEX_PCI(vp)) {
1676 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1677 if (vp->pm_state_valid)
1678 pci_restore_state(VORTEX_PCI(vp));
1679 pci_enable_device(VORTEX_PCI(vp));
1680 }
1681
1682 /* Before initializing select the active media port. */
1683 EL3WINDOW(3);
1684 config = ioread32(ioaddr + Wn3_Config);
1685
1686 if (vp->media_override != 7) {
1687 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1688 dev->name, vp->media_override,
1689 media_tbl[vp->media_override].name);
1690 dev->if_port = vp->media_override;
1691 } else if (vp->autoselect) {
1692 if (vp->has_nway) {
1693 if (vortex_debug > 1)
1694 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1695 dev->name, dev->if_port);
1696 dev->if_port = XCVR_NWAY;
1697 } else {
1698 /* Find first available media type, starting with 100baseTx. */
1699 dev->if_port = XCVR_100baseTx;
1700 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1701 dev->if_port = media_tbl[dev->if_port].next;
1702 if (vortex_debug > 1)
1703 printk(KERN_INFO "%s: first available media type: %s\n",
1704 dev->name, media_tbl[dev->if_port].name);
1705 }
1706 } else {
1707 dev->if_port = vp->default_media;
1708 if (vortex_debug > 1)
1709 printk(KERN_INFO "%s: using default media %s\n",
1710 dev->name, media_tbl[dev->if_port].name);
1711 }
1712
1713 init_timer(&vp->timer);
1714 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1715 vp->timer.data = (unsigned long)dev;
1716 vp->timer.function = vortex_timer; /* timer handler */
1717 add_timer(&vp->timer);
1718
1719 init_timer(&vp->rx_oom_timer);
1720 vp->rx_oom_timer.data = (unsigned long)dev;
1721 vp->rx_oom_timer.function = rx_oom_timer;
1722
1723 if (vortex_debug > 1)
1724 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1725 dev->name, media_tbl[dev->if_port].name);
1726
1727 vp->full_duplex = vp->mii.force_media;
1728 config = BFINS(config, dev->if_port, 20, 4);
1729 if (vortex_debug > 6)
1730 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1731 iowrite32(config, ioaddr + Wn3_Config);
1732
1733 netif_carrier_off(dev);
1734 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1735 EL3WINDOW(4);
1736 vortex_check_media(dev, 1);
1737 }
1738 else
1739 vortex_set_duplex(dev);
1740
1741
1742 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1743
1744 if (vortex_debug > 1) {
1745 EL3WINDOW(4);
1746 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1747 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1748 }
1749
1750 /* Set the station address and mask in window 2 each time opened. */
1751 EL3WINDOW(2);
1752 for (i = 0; i < 6; i++)
1753 iowrite8(dev->dev_addr[i], ioaddr + i);
1754 for (; i < 12; i+=2)
1755 iowrite16(0, ioaddr + i);
1756
1757 if (vp->cb_fn_base) {
1758 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1759 if (vp->drv_flags & INVERT_LED_PWR)
1760 n |= 0x10;
1761 if (vp->drv_flags & INVERT_MII_PWR)
1762 n |= 0x4000;
1763 iowrite16(n, ioaddr + Wn2_ResetOptions);
1764 }
1765
1766 if (dev->if_port == XCVR_10base2)
1767 /* Start the thinnet transceiver. We should really wait 50ms...*/
1768 iowrite16(StartCoax, ioaddr + EL3_CMD);
1769 if (dev->if_port != XCVR_NWAY) {
1770 EL3WINDOW(4);
1771 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1772 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1773 }
1774
1775 /* Switch to the stats window, and clear all stats by reading. */
1776 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1777 EL3WINDOW(6);
1778 for (i = 0; i < 10; i++)
1779 ioread8(ioaddr + i);
1780 ioread16(ioaddr + 10);
1781 ioread16(ioaddr + 12);
1782 /* New: On the Vortex we must also clear the BadSSD counter. */
1783 EL3WINDOW(4);
1784 ioread8(ioaddr + 12);
1785 /* ..and on the Boomerang we enable the extra statistics bits. */
1786 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1787
1788 /* Switch to register set 7 for normal use. */
1789 EL3WINDOW(7);
1790
1791 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1792 vp->cur_rx = vp->dirty_rx = 0;
1793 /* Initialize the RxEarly register as recommended. */
1794 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1795 iowrite32(0x0020, ioaddr + PktStatus);
1796 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1797 }
1798 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1799 vp->cur_tx = vp->dirty_tx = 0;
1800 if (vp->drv_flags & IS_BOOMERANG)
1801 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1802 /* Clear the Rx, Tx rings. */
1803 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1804 vp->rx_ring[i].status = 0;
1805 for (i = 0; i < TX_RING_SIZE; i++)
1806 vp->tx_skbuff[i] = NULL;
1807 iowrite32(0, ioaddr + DownListPtr);
1808 }
1809 /* Set receiver mode: presumably accept b-case and phys addr only. */
1810 set_rx_mode(dev);
1811 /* enable 802.1q tagged frames */
1812 set_8021q_mode(dev, 1);
1813 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1814
1815 // issue_and_wait(dev, SetTxStart|0x07ff);
1816 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1817 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1818 /* Allow status bits to be seen. */
1819 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1820 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1821 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1822 (vp->bus_master ? DMADone : 0);
1823 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1824 (vp->full_bus_master_rx ? 0 : RxComplete) |
1825 StatsFull | HostError | TxComplete | IntReq
1826 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1827 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1828 /* Ack all pending events, and set active indicator mask. */
1829 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1830 ioaddr + EL3_CMD);
1831 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1832 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1833 iowrite32(0x8000, vp->cb_fn_base + 4);
1834 netif_start_queue (dev);
1835 }
1836
1837 static int
1838 vortex_open(struct net_device *dev)
1839 {
1840 struct vortex_private *vp = netdev_priv(dev);
1841 int i;
1842 int retval;
1843
1844 /* Use the now-standard shared IRQ implementation. */
1845 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1846 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1847 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1848 goto out;
1849 }
1850
1851 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1852 if (vortex_debug > 2)
1853 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1854 for (i = 0; i < RX_RING_SIZE; i++) {
1855 struct sk_buff *skb;
1856 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1857 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1858 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1859 skb = dev_alloc_skb(PKT_BUF_SZ);
1860 vp->rx_skbuff[i] = skb;
1861 if (skb == NULL)
1862 break; /* Bad news! */
1863 skb->dev = dev; /* Mark as being used by this device. */
1864 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1865 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1866 }
1867 if (i != RX_RING_SIZE) {
1868 int j;
1869 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1870 for (j = 0; j < i; j++) {
1871 if (vp->rx_skbuff[j]) {
1872 dev_kfree_skb(vp->rx_skbuff[j]);
1873 vp->rx_skbuff[j] = NULL;
1874 }
1875 }
1876 retval = -ENOMEM;
1877 goto out_free_irq;
1878 }
1879 /* Wrap the ring. */
1880 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1881 }
1882
1883 vortex_up(dev);
1884 return 0;
1885
1886 out_free_irq:
1887 free_irq(dev->irq, dev);
1888 out:
1889 if (vortex_debug > 1)
1890 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1891 return retval;
1892 }
1893
1894 static void
1895 vortex_timer(unsigned long data)
1896 {
1897 struct net_device *dev = (struct net_device *)data;
1898 struct vortex_private *vp = netdev_priv(dev);
1899 void __iomem *ioaddr = vp->ioaddr;
1900 int next_tick = 60*HZ;
1901 int ok = 0;
1902 int media_status, old_window;
1903
1904 if (vortex_debug > 2) {
1905 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1906 dev->name, media_tbl[dev->if_port].name);
1907 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1908 }
1909
1910 disable_irq(dev->irq);
1911 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1912 EL3WINDOW(4);
1913 media_status = ioread16(ioaddr + Wn4_Media);
1914 switch (dev->if_port) {
1915 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1916 if (media_status & Media_LnkBeat) {
1917 netif_carrier_on(dev);
1918 ok = 1;
1919 if (vortex_debug > 1)
1920 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1921 dev->name, media_tbl[dev->if_port].name, media_status);
1922 } else {
1923 netif_carrier_off(dev);
1924 if (vortex_debug > 1) {
1925 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1926 dev->name, media_tbl[dev->if_port].name, media_status);
1927 }
1928 }
1929 break;
1930 case XCVR_MII: case XCVR_NWAY:
1931 {
1932 ok = 1;
1933 spin_lock_bh(&vp->lock);
1934 vortex_check_media(dev, 0);
1935 spin_unlock_bh(&vp->lock);
1936 }
1937 break;
1938 default: /* Other media types handled by Tx timeouts. */
1939 if (vortex_debug > 1)
1940 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1941 dev->name, media_tbl[dev->if_port].name, media_status);
1942 ok = 1;
1943 }
1944
1945 if (!netif_carrier_ok(dev))
1946 next_tick = 5*HZ;
1947
1948 if (vp->medialock)
1949 goto leave_media_alone;
1950
1951 if ( ! ok) {
1952 unsigned int config;
1953
1954 do {
1955 dev->if_port = media_tbl[dev->if_port].next;
1956 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1957 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1958 dev->if_port = vp->default_media;
1959 if (vortex_debug > 1)
1960 printk(KERN_DEBUG "%s: Media selection failing, using default "
1961 "%s port.\n",
1962 dev->name, media_tbl[dev->if_port].name);
1963 } else {
1964 if (vortex_debug > 1)
1965 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1966 "%s port.\n",
1967 dev->name, media_tbl[dev->if_port].name);
1968 next_tick = media_tbl[dev->if_port].wait;
1969 }
1970 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1971 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1972
1973 EL3WINDOW(3);
1974 config = ioread32(ioaddr + Wn3_Config);
1975 config = BFINS(config, dev->if_port, 20, 4);
1976 iowrite32(config, ioaddr + Wn3_Config);
1977
1978 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1979 ioaddr + EL3_CMD);
1980 if (vortex_debug > 1)
1981 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1982 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1983 }
1984
1985 leave_media_alone:
1986 if (vortex_debug > 2)
1987 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1988 dev->name, media_tbl[dev->if_port].name);
1989
1990 EL3WINDOW(old_window);
1991 enable_irq(dev->irq);
1992 mod_timer(&vp->timer, RUN_AT(next_tick));
1993 if (vp->deferred)
1994 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1995 return;
1996 }
1997
1998 static void vortex_tx_timeout(struct net_device *dev)
1999 {
2000 struct vortex_private *vp = netdev_priv(dev);
2001 void __iomem *ioaddr = vp->ioaddr;
2002
2003 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
2004 dev->name, ioread8(ioaddr + TxStatus),
2005 ioread16(ioaddr + EL3_STATUS));
2006 EL3WINDOW(4);
2007 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
2008 ioread16(ioaddr + Wn4_NetDiag),
2009 ioread16(ioaddr + Wn4_Media),
2010 ioread32(ioaddr + PktStatus),
2011 ioread16(ioaddr + Wn4_FIFODiag));
2012 /* Slight code bloat to be user friendly. */
2013 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
2014 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
2015 " network cable problem?\n", dev->name);
2016 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
2017 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
2018 " IRQ blocked by another device?\n", dev->name);
2019 /* Bad idea here.. but we might as well handle a few events. */
2020 {
2021 /*
2022 * Block interrupts because vortex_interrupt does a bare spin_lock()
2023 */
2024 unsigned long flags;
2025 local_irq_save(flags);
2026 if (vp->full_bus_master_tx)
2027 boomerang_interrupt(dev->irq, dev, NULL);
2028 else
2029 vortex_interrupt(dev->irq, dev, NULL);
2030 local_irq_restore(flags);
2031 }
2032 }
2033
2034 if (vortex_debug > 0)
2035 dump_tx_ring(dev);
2036
2037 issue_and_wait(dev, TxReset);
2038
2039 vp->stats.tx_errors++;
2040 if (vp->full_bus_master_tx) {
2041 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2042 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
2043 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2044 ioaddr + DownListPtr);
2045 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2046 netif_wake_queue (dev);
2047 if (vp->drv_flags & IS_BOOMERANG)
2048 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2049 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2050 } else {
2051 vp->stats.tx_dropped++;
2052 netif_wake_queue(dev);
2053 }
2054
2055 /* Issue Tx Enable */
2056 iowrite16(TxEnable, ioaddr + EL3_CMD);
2057 dev->trans_start = jiffies;
2058
2059 /* Switch to register set 7 for normal use. */
2060 EL3WINDOW(7);
2061 }
2062
2063 /*
2064 * Handle uncommon interrupt sources. This is a separate routine to minimize
2065 * the cache impact.
2066 */
2067 static void
2068 vortex_error(struct net_device *dev, int status)
2069 {
2070 struct vortex_private *vp = netdev_priv(dev);
2071 void __iomem *ioaddr = vp->ioaddr;
2072 int do_tx_reset = 0, reset_mask = 0;
2073 unsigned char tx_status = 0;
2074
2075 if (vortex_debug > 2) {
2076 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2077 }
2078
2079 if (status & TxComplete) { /* Really "TxError" for us. */
2080 tx_status = ioread8(ioaddr + TxStatus);
2081 /* Presumably a tx-timeout. We must merely re-enable. */
2082 if (vortex_debug > 2
2083 || (tx_status != 0x88 && vortex_debug > 0)) {
2084 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2085 dev->name, tx_status);
2086 if (tx_status == 0x82) {
2087 printk(KERN_ERR "Probably a duplex mismatch. See "
2088 "Documentation/networking/vortex.txt\n");
2089 }
2090 dump_tx_ring(dev);
2091 }
2092 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2093 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2094 iowrite8(0, ioaddr + TxStatus);
2095 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2096 do_tx_reset = 1;
2097 } else if (tx_status & 0x08) { /* maxCollisions */
2098 vp->xstats.tx_max_collisions++;
2099 if (vp->drv_flags & MAX_COLLISION_RESET) {
2100 do_tx_reset = 1;
2101 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2102 }
2103 } else { /* Merely re-enable the transmitter. */
2104 iowrite16(TxEnable, ioaddr + EL3_CMD);
2105 }
2106 }
2107
2108 if (status & RxEarly) { /* Rx early is unused. */
2109 vortex_rx(dev);
2110 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2111 }
2112 if (status & StatsFull) { /* Empty statistics. */
2113 static int DoneDidThat;
2114 if (vortex_debug > 4)
2115 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2116 update_stats(ioaddr, dev);
2117 /* HACK: Disable statistics as an interrupt source. */
2118 /* This occurs when we have the wrong media type! */
2119 if (DoneDidThat == 0 &&
2120 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2121 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2122 "stats as an interrupt source.\n", dev->name);
2123 EL3WINDOW(5);
2124 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2125 vp->intr_enable &= ~StatsFull;
2126 EL3WINDOW(7);
2127 DoneDidThat++;
2128 }
2129 }
2130 if (status & IntReq) { /* Restore all interrupt sources. */
2131 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2132 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2133 }
2134 if (status & HostError) {
2135 u16 fifo_diag;
2136 EL3WINDOW(4);
2137 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2138 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2139 dev->name, fifo_diag);
2140 /* Adapter failure requires Tx/Rx reset and reinit. */
2141 if (vp->full_bus_master_tx) {
2142 int bus_status = ioread32(ioaddr + PktStatus);
2143 /* 0x80000000 PCI master abort. */
2144 /* 0x40000000 PCI target abort. */
2145 if (vortex_debug)
2146 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2147
2148 /* In this case, blow the card away */
2149 /* Must not enter D3 or we can't legally issue the reset! */
2150 vortex_down(dev, 0);
2151 issue_and_wait(dev, TotalReset | 0xff);
2152 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2153 } else if (fifo_diag & 0x0400)
2154 do_tx_reset = 1;
2155 if (fifo_diag & 0x3000) {
2156 /* Reset Rx fifo and upload logic */
2157 issue_and_wait(dev, RxReset|0x07);
2158 /* Set the Rx filter to the current state. */
2159 set_rx_mode(dev);
2160 /* enable 802.1q VLAN tagged frames */
2161 set_8021q_mode(dev, 1);
2162 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2163 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2164 }
2165 }
2166
2167 if (do_tx_reset) {
2168 issue_and_wait(dev, TxReset|reset_mask);
2169 iowrite16(TxEnable, ioaddr + EL3_CMD);
2170 if (!vp->full_bus_master_tx)
2171 netif_wake_queue(dev);
2172 }
2173 }
2174
2175 static int
2176 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2177 {
2178 struct vortex_private *vp = netdev_priv(dev);
2179 void __iomem *ioaddr = vp->ioaddr;
2180
2181 /* Put out the doubleword header... */
2182 iowrite32(skb->len, ioaddr + TX_FIFO);
2183 if (vp->bus_master) {
2184 /* Set the bus-master controller to transfer the packet. */
2185 int len = (skb->len + 3) & ~3;
2186 iowrite32( vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2187 ioaddr + Wn7_MasterAddr);
2188 iowrite16(len, ioaddr + Wn7_MasterLen);
2189 vp->tx_skb = skb;
2190 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2191 /* netif_wake_queue() will be called at the DMADone interrupt. */
2192 } else {
2193 /* ... and the packet rounded to a doubleword. */
2194 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2195 dev_kfree_skb (skb);
2196 if (ioread16(ioaddr + TxFree) > 1536) {
2197 netif_start_queue (dev); /* AKPM: redundant? */
2198 } else {
2199 /* Interrupt us when the FIFO has room for max-sized packet. */
2200 netif_stop_queue(dev);
2201 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2202 }
2203 }
2204
2205 dev->trans_start = jiffies;
2206
2207 /* Clear the Tx status stack. */
2208 {
2209 int tx_status;
2210 int i = 32;
2211
2212 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2213 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2214 if (vortex_debug > 2)
2215 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2216 dev->name, tx_status);
2217 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2218 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2219 if (tx_status & 0x30) {
2220 issue_and_wait(dev, TxReset);
2221 }
2222 iowrite16(TxEnable, ioaddr + EL3_CMD);
2223 }
2224 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2225 }
2226 }
2227 return 0;
2228 }
2229
2230 static int
2231 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2232 {
2233 struct vortex_private *vp = netdev_priv(dev);
2234 void __iomem *ioaddr = vp->ioaddr;
2235 /* Calculate the next Tx descriptor entry. */
2236 int entry = vp->cur_tx % TX_RING_SIZE;
2237 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2238 unsigned long flags;
2239
2240 if (vortex_debug > 6) {
2241 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2242 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2243 dev->name, vp->cur_tx);
2244 }
2245
2246 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2247 if (vortex_debug > 0)
2248 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2249 dev->name);
2250 netif_stop_queue(dev);
2251 return 1;
2252 }
2253
2254 vp->tx_skbuff[entry] = skb;
2255
2256 vp->tx_ring[entry].next = 0;
2257 #if DO_ZEROCOPY
2258 if (skb->ip_summed != CHECKSUM_HW)
2259 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2260 else
2261 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2262
2263 if (!skb_shinfo(skb)->nr_frags) {
2264 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2265 skb->len, PCI_DMA_TODEVICE));
2266 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2267 } else {
2268 int i;
2269
2270 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2271 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2272 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2273
2274 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2275 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2276
2277 vp->tx_ring[entry].frag[i+1].addr =
2278 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2279 (void*)page_address(frag->page) + frag->page_offset,
2280 frag->size, PCI_DMA_TODEVICE));
2281
2282 if (i == skb_shinfo(skb)->nr_frags-1)
2283 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2284 else
2285 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2286 }
2287 }
2288 #else
2289 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2290 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2291 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2292 #endif
2293
2294 spin_lock_irqsave(&vp->lock, flags);
2295 /* Wait for the stall to complete. */
2296 issue_and_wait(dev, DownStall);
2297 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2298 if (ioread32(ioaddr + DownListPtr) == 0) {
2299 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2300 vp->queued_packet++;
2301 }
2302
2303 vp->cur_tx++;
2304 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2305 netif_stop_queue (dev);
2306 } else { /* Clear previous interrupt enable. */
2307 #if defined(tx_interrupt_mitigation)
2308 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2309 * were selected, this would corrupt DN_COMPLETE. No?
2310 */
2311 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2312 #endif
2313 }
2314 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2315 spin_unlock_irqrestore(&vp->lock, flags);
2316 dev->trans_start = jiffies;
2317 return 0;
2318 }
2319
2320 /* The interrupt handler does all of the Rx thread work and cleans up
2321 after the Tx thread. */
2322
2323 /*
2324 * This is the ISR for the vortex series chips.
2325 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2326 */
2327
2328 static irqreturn_t
2329 vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2330 {
2331 struct net_device *dev = dev_id;
2332 struct vortex_private *vp = netdev_priv(dev);
2333 void __iomem *ioaddr;
2334 int status;
2335 int work_done = max_interrupt_work;
2336 int handled = 0;
2337
2338 ioaddr = vp->ioaddr;
2339 spin_lock(&vp->lock);
2340
2341 status = ioread16(ioaddr + EL3_STATUS);
2342
2343 if (vortex_debug > 6)
2344 printk("vortex_interrupt(). status=0x%4x\n", status);
2345
2346 if ((status & IntLatch) == 0)
2347 goto handler_exit; /* No interrupt: shared IRQs cause this */
2348 handled = 1;
2349
2350 if (status & IntReq) {
2351 status |= vp->deferred;
2352 vp->deferred = 0;
2353 }
2354
2355 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2356 goto handler_exit;
2357
2358 if (vortex_debug > 4)
2359 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2360 dev->name, status, ioread8(ioaddr + Timer));
2361
2362 do {
2363 if (vortex_debug > 5)
2364 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2365 dev->name, status);
2366 if (status & RxComplete)
2367 vortex_rx(dev);
2368
2369 if (status & TxAvailable) {
2370 if (vortex_debug > 5)
2371 printk(KERN_DEBUG " TX room bit was handled.\n");
2372 /* There's room in the FIFO for a full-sized packet. */
2373 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2374 netif_wake_queue (dev);
2375 }
2376
2377 if (status & DMADone) {
2378 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2379 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2380 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2381 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2382 if (ioread16(ioaddr + TxFree) > 1536) {
2383 /*
2384 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2385 * insufficient FIFO room, the TxAvailable test will succeed and call
2386 * netif_wake_queue()
2387 */
2388 netif_wake_queue(dev);
2389 } else { /* Interrupt when FIFO has room for max-sized packet. */
2390 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2391 netif_stop_queue(dev);
2392 }
2393 }
2394 }
2395 /* Check for all uncommon interrupts at once. */
2396 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2397 if (status == 0xffff)
2398 break;
2399 vortex_error(dev, status);
2400 }
2401
2402 if (--work_done < 0) {
2403 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2404 "%4.4x.\n", dev->name, status);
2405 /* Disable all pending interrupts. */
2406 do {
2407 vp->deferred |= status;
2408 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2409 ioaddr + EL3_CMD);
2410 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2411 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2412 /* The timer will reenable interrupts. */
2413 mod_timer(&vp->timer, jiffies + 1*HZ);
2414 break;
2415 }
2416 /* Acknowledge the IRQ. */
2417 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2418 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2419
2420 if (vortex_debug > 4)
2421 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2422 dev->name, status);
2423 handler_exit:
2424 spin_unlock(&vp->lock);
2425 return IRQ_RETVAL(handled);
2426 }
2427
2428 /*
2429 * This is the ISR for the boomerang series chips.
2430 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2431 */
2432
2433 static irqreturn_t
2434 boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2435 {
2436 struct net_device *dev = dev_id;
2437 struct vortex_private *vp = netdev_priv(dev);
2438 void __iomem *ioaddr;
2439 int status;
2440 int work_done = max_interrupt_work;
2441
2442 ioaddr = vp->ioaddr;
2443
2444 /*
2445 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2446 * and boomerang_start_xmit
2447 */
2448 spin_lock(&vp->lock);
2449
2450 status = ioread16(ioaddr + EL3_STATUS);
2451
2452 if (vortex_debug > 6)
2453 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2454
2455 if ((status & IntLatch) == 0)
2456 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2457
2458 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2459 if (vortex_debug > 1)
2460 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2461 goto handler_exit;
2462 }
2463
2464 if (status & IntReq) {
2465 status |= vp->deferred;
2466 vp->deferred = 0;
2467 }
2468
2469 if (vortex_debug > 4)
2470 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2471 dev->name, status, ioread8(ioaddr + Timer));
2472 do {
2473 if (vortex_debug > 5)
2474 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2475 dev->name, status);
2476 if (status & UpComplete) {
2477 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2478 if (vortex_debug > 5)
2479 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2480 boomerang_rx(dev);
2481 }
2482
2483 if (status & DownComplete) {
2484 unsigned int dirty_tx = vp->dirty_tx;
2485
2486 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2487 while (vp->cur_tx - dirty_tx > 0) {
2488 int entry = dirty_tx % TX_RING_SIZE;
2489 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2490 if (ioread32(ioaddr + DownListPtr) ==
2491 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2492 break; /* It still hasn't been processed. */
2493 #else
2494 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2495 break; /* It still hasn't been processed. */
2496 #endif
2497
2498 if (vp->tx_skbuff[entry]) {
2499 struct sk_buff *skb = vp->tx_skbuff[entry];
2500 #if DO_ZEROCOPY
2501 int i;
2502 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2503 pci_unmap_single(VORTEX_PCI(vp),
2504 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2505 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2506 PCI_DMA_TODEVICE);
2507 #else
2508 pci_unmap_single(VORTEX_PCI(vp),
2509 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2510 #endif
2511 dev_kfree_skb_irq(skb);
2512 vp->tx_skbuff[entry] = NULL;
2513 } else {
2514 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2515 }
2516 /* vp->stats.tx_packets++; Counted below. */
2517 dirty_tx++;
2518 }
2519 vp->dirty_tx = dirty_tx;
2520 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2521 if (vortex_debug > 6)
2522 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2523 netif_wake_queue (dev);
2524 }
2525 }
2526
2527 /* Check for all uncommon interrupts at once. */
2528 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2529 vortex_error(dev, status);
2530
2531 if (--work_done < 0) {
2532 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2533 "%4.4x.\n", dev->name, status);
2534 /* Disable all pending interrupts. */
2535 do {
2536 vp->deferred |= status;
2537 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2538 ioaddr + EL3_CMD);
2539 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2540 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2541 /* The timer will reenable interrupts. */
2542 mod_timer(&vp->timer, jiffies + 1*HZ);
2543 break;
2544 }
2545 /* Acknowledge the IRQ. */
2546 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2547 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2548 iowrite32(0x8000, vp->cb_fn_base + 4);
2549
2550 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2551
2552 if (vortex_debug > 4)
2553 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2554 dev->name, status);
2555 handler_exit:
2556 spin_unlock(&vp->lock);
2557 return IRQ_HANDLED;
2558 }
2559
2560 static int vortex_rx(struct net_device *dev)
2561 {
2562 struct vortex_private *vp = netdev_priv(dev);
2563 void __iomem *ioaddr = vp->ioaddr;
2564 int i;
2565 short rx_status;
2566
2567 if (vortex_debug > 5)
2568 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2569 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2570 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2571 if (rx_status & 0x4000) { /* Error, update stats. */
2572 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2573 if (vortex_debug > 2)
2574 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2575 vp->stats.rx_errors++;
2576 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2577 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2578 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2579 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2580 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2581 } else {
2582 /* The packet length: up to 4.5K!. */
2583 int pkt_len = rx_status & 0x1fff;
2584 struct sk_buff *skb;
2585
2586 skb = dev_alloc_skb(pkt_len + 5);
2587 if (vortex_debug > 4)
2588 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2589 pkt_len, rx_status);
2590 if (skb != NULL) {
2591 skb->dev = dev;
2592 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2593 /* 'skb_put()' points to the start of sk_buff data area. */
2594 if (vp->bus_master &&
2595 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2596 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2597 pkt_len, PCI_DMA_FROMDEVICE);
2598 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2599 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2600 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2601 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2602 ;
2603 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2604 } else {
2605 ioread32_rep(ioaddr + RX_FIFO,
2606 skb_put(skb, pkt_len),
2607 (pkt_len + 3) >> 2);
2608 }
2609 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2610 skb->protocol = eth_type_trans(skb, dev);
2611 netif_rx(skb);
2612 dev->last_rx = jiffies;
2613 vp->stats.rx_packets++;
2614 /* Wait a limited time to go to next packet. */
2615 for (i = 200; i >= 0; i--)
2616 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2617 break;
2618 continue;
2619 } else if (vortex_debug > 0)
2620 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2621 "size %d.\n", dev->name, pkt_len);
2622 vp->stats.rx_dropped++;
2623 }
2624 issue_and_wait(dev, RxDiscard);
2625 }
2626
2627 return 0;
2628 }
2629
2630 static int
2631 boomerang_rx(struct net_device *dev)
2632 {
2633 struct vortex_private *vp = netdev_priv(dev);
2634 int entry = vp->cur_rx % RX_RING_SIZE;
2635 void __iomem *ioaddr = vp->ioaddr;
2636 int rx_status;
2637 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2638
2639 if (vortex_debug > 5)
2640 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2641
2642 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2643 if (--rx_work_limit < 0)
2644 break;
2645 if (rx_status & RxDError) { /* Error, update stats. */
2646 unsigned char rx_error = rx_status >> 16;
2647 if (vortex_debug > 2)
2648 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2649 vp->stats.rx_errors++;
2650 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2651 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2652 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2653 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2654 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2655 } else {
2656 /* The packet length: up to 4.5K!. */
2657 int pkt_len = rx_status & 0x1fff;
2658 struct sk_buff *skb;
2659 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2660
2661 if (vortex_debug > 4)
2662 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2663 pkt_len, rx_status);
2664
2665 /* Check if the packet is long enough to just accept without
2666 copying to a properly sized skbuff. */
2667 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2668 skb->dev = dev;
2669 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2670 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2671 /* 'skb_put()' points to the start of sk_buff data area. */
2672 memcpy(skb_put(skb, pkt_len),
2673 vp->rx_skbuff[entry]->data,
2674 pkt_len);
2675 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2676 vp->rx_copy++;
2677 } else {
2678 /* Pass up the skbuff already on the Rx ring. */
2679 skb = vp->rx_skbuff[entry];
2680 vp->rx_skbuff[entry] = NULL;
2681 skb_put(skb, pkt_len);
2682 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2683 vp->rx_nocopy++;
2684 }
2685 skb->protocol = eth_type_trans(skb, dev);
2686 { /* Use hardware checksum info. */
2687 int csum_bits = rx_status & 0xee000000;
2688 if (csum_bits &&
2689 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2690 csum_bits == (IPChksumValid | UDPChksumValid))) {
2691 skb->ip_summed = CHECKSUM_UNNECESSARY;
2692 vp->rx_csumhits++;
2693 }
2694 }
2695 netif_rx(skb);
2696 dev->last_rx = jiffies;
2697 vp->stats.rx_packets++;
2698 }
2699 entry = (++vp->cur_rx) % RX_RING_SIZE;
2700 }
2701 /* Refill the Rx ring buffers. */
2702 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2703 struct sk_buff *skb;
2704 entry = vp->dirty_rx % RX_RING_SIZE;
2705 if (vp->rx_skbuff[entry] == NULL) {
2706 skb = dev_alloc_skb(PKT_BUF_SZ);
2707 if (skb == NULL) {
2708 static unsigned long last_jif;
2709 if (time_after(jiffies, last_jif + 10 * HZ)) {
2710 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2711 last_jif = jiffies;
2712 }
2713 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2714 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2715 break; /* Bad news! */
2716 }
2717 skb->dev = dev; /* Mark as being used by this device. */
2718 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2719 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2720 vp->rx_skbuff[entry] = skb;
2721 }
2722 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2723 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2724 }
2725 return 0;
2726 }
2727
2728 /*
2729 * If we've hit a total OOM refilling the Rx ring we poll once a second
2730 * for some memory. Otherwise there is no way to restart the rx process.
2731 */
2732 static void
2733 rx_oom_timer(unsigned long arg)
2734 {
2735 struct net_device *dev = (struct net_device *)arg;
2736 struct vortex_private *vp = netdev_priv(dev);
2737
2738 spin_lock_irq(&vp->lock);
2739 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2740 boomerang_rx(dev);
2741 if (vortex_debug > 1) {
2742 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2743 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2744 }
2745 spin_unlock_irq(&vp->lock);
2746 }
2747
2748 static void
2749 vortex_down(struct net_device *dev, int final_down)
2750 {
2751 struct vortex_private *vp = netdev_priv(dev);
2752 void __iomem *ioaddr = vp->ioaddr;
2753
2754 netif_stop_queue (dev);
2755
2756 del_timer_sync(&vp->rx_oom_timer);
2757 del_timer_sync(&vp->timer);
2758
2759 /* Turn off statistics ASAP. We update vp->stats below. */
2760 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2761
2762 /* Disable the receiver and transmitter. */
2763 iowrite16(RxDisable, ioaddr + EL3_CMD);
2764 iowrite16(TxDisable, ioaddr + EL3_CMD);
2765
2766 /* Disable receiving 802.1q tagged frames */
2767 set_8021q_mode(dev, 0);
2768
2769 if (dev->if_port == XCVR_10base2)
2770 /* Turn off thinnet power. Green! */
2771 iowrite16(StopCoax, ioaddr + EL3_CMD);
2772
2773 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2774
2775 update_stats(ioaddr, dev);
2776 if (vp->full_bus_master_rx)
2777 iowrite32(0, ioaddr + UpListPtr);
2778 if (vp->full_bus_master_tx)
2779 iowrite32(0, ioaddr + DownListPtr);
2780
2781 if (final_down && VORTEX_PCI(vp)) {
2782 vp->pm_state_valid = 1;
2783 pci_save_state(VORTEX_PCI(vp));
2784 acpi_set_WOL(dev);
2785 }
2786 }
2787
2788 static int
2789 vortex_close(struct net_device *dev)
2790 {
2791 struct vortex_private *vp = netdev_priv(dev);
2792 void __iomem *ioaddr = vp->ioaddr;
2793 int i;
2794
2795 if (netif_device_present(dev))
2796 vortex_down(dev, 1);
2797
2798 if (vortex_debug > 1) {
2799 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2800 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2801 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2802 " tx_queued %d Rx pre-checksummed %d.\n",
2803 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2804 }
2805
2806 #if DO_ZEROCOPY
2807 if (vp->rx_csumhits &&
2808 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2809 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2810 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2811 "not using them!\n", dev->name);
2812 }
2813 #endif
2814
2815 free_irq(dev->irq, dev);
2816
2817 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2818 for (i = 0; i < RX_RING_SIZE; i++)
2819 if (vp->rx_skbuff[i]) {
2820 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2821 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2822 dev_kfree_skb(vp->rx_skbuff[i]);
2823 vp->rx_skbuff[i] = NULL;
2824 }
2825 }
2826 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2827 for (i = 0; i < TX_RING_SIZE; i++) {
2828 if (vp->tx_skbuff[i]) {
2829 struct sk_buff *skb = vp->tx_skbuff[i];
2830 #if DO_ZEROCOPY
2831 int k;
2832
2833 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2834 pci_unmap_single(VORTEX_PCI(vp),
2835 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2836 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2837 PCI_DMA_TODEVICE);
2838 #else
2839 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2840 #endif
2841 dev_kfree_skb(skb);
2842 vp->tx_skbuff[i] = NULL;
2843 }
2844 }
2845 }
2846
2847 return 0;
2848 }
2849
2850 static void
2851 dump_tx_ring(struct net_device *dev)
2852 {
2853 if (vortex_debug > 0) {
2854 struct vortex_private *vp = netdev_priv(dev);
2855 void __iomem *ioaddr = vp->ioaddr;
2856
2857 if (vp->full_bus_master_tx) {
2858 int i;
2859 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2860
2861 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2862 vp->full_bus_master_tx,
2863 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2864 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2865 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2866 ioread32(ioaddr + DownListPtr),
2867 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2868 issue_and_wait(dev, DownStall);
2869 for (i = 0; i < TX_RING_SIZE; i++) {
2870 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2871 &vp->tx_ring[i],
2872 #if DO_ZEROCOPY
2873 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2874 #else
2875 le32_to_cpu(vp->tx_ring[i].length),
2876 #endif
2877 le32_to_cpu(vp->tx_ring[i].status));
2878 }
2879 if (!stalled)
2880 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2881 }
2882 }
2883 }
2884
2885 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2886 {
2887 struct vortex_private *vp = netdev_priv(dev);
2888 void __iomem *ioaddr = vp->ioaddr;
2889 unsigned long flags;
2890
2891 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2892 spin_lock_irqsave (&vp->lock, flags);
2893 update_stats(ioaddr, dev);
2894 spin_unlock_irqrestore (&vp->lock, flags);
2895 }
2896 return &vp->stats;
2897 }
2898
2899 /* Update statistics.
2900 Unlike with the EL3 we need not worry about interrupts changing
2901 the window setting from underneath us, but we must still guard
2902 against a race condition with a StatsUpdate interrupt updating the
2903 table. This is done by checking that the ASM (!) code generated uses
2904 atomic updates with '+='.
2905 */
2906 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2907 {
2908 struct vortex_private *vp = netdev_priv(dev);
2909 int old_window = ioread16(ioaddr + EL3_CMD);
2910
2911 if (old_window == 0xffff) /* Chip suspended or ejected. */
2912 return;
2913 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2914 /* Switch to the stats window, and read everything. */
2915 EL3WINDOW(6);
2916 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2917 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2918 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2919 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2920 vp->stats.tx_packets += ioread8(ioaddr + 6);
2921 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2922 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2923 /* Don't bother with register 9, an extension of registers 6&7.
2924 If we do use the 6&7 values the atomic update assumption above
2925 is invalid. */
2926 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2927 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2928 /* Extra stats for get_ethtool_stats() */
2929 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2930 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2931 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2932 EL3WINDOW(4);
2933 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2934
2935 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2936 + vp->xstats.tx_single_collisions
2937 + vp->xstats.tx_max_collisions;
2938
2939 {
2940 u8 up = ioread8(ioaddr + 13);
2941 vp->stats.rx_bytes += (up & 0x0f) << 16;
2942 vp->stats.tx_bytes += (up & 0xf0) << 12;
2943 }
2944
2945 EL3WINDOW(old_window >> 13);
2946 return;
2947 }
2948
2949 static int vortex_nway_reset(struct net_device *dev)
2950 {
2951 struct vortex_private *vp = netdev_priv(dev);
2952 void __iomem *ioaddr = vp->ioaddr;
2953 unsigned long flags;
2954 int rc;
2955
2956 spin_lock_irqsave(&vp->lock, flags);
2957 EL3WINDOW(4);
2958 rc = mii_nway_restart(&vp->mii);
2959 spin_unlock_irqrestore(&vp->lock, flags);
2960 return rc;
2961 }
2962
2963 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2964 {
2965 struct vortex_private *vp = netdev_priv(dev);
2966 void __iomem *ioaddr = vp->ioaddr;
2967 unsigned long flags;
2968 int rc;
2969
2970 spin_lock_irqsave(&vp->lock, flags);
2971 EL3WINDOW(4);
2972 rc = mii_ethtool_gset(&vp->mii, cmd);
2973 spin_unlock_irqrestore(&vp->lock, flags);
2974 return rc;
2975 }
2976
2977 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2978 {
2979 struct vortex_private *vp = netdev_priv(dev);
2980 void __iomem *ioaddr = vp->ioaddr;
2981 unsigned long flags;
2982 int rc;
2983
2984 spin_lock_irqsave(&vp->lock, flags);
2985 EL3WINDOW(4);
2986 rc = mii_ethtool_sset(&vp->mii, cmd);
2987 spin_unlock_irqrestore(&vp->lock, flags);
2988 return rc;
2989 }
2990
2991 static u32 vortex_get_msglevel(struct net_device *dev)
2992 {
2993 return vortex_debug;
2994 }
2995
2996 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2997 {
2998 vortex_debug = dbg;
2999 }
3000
3001 static int vortex_get_stats_count(struct net_device *dev)
3002 {
3003 return VORTEX_NUM_STATS;
3004 }
3005
3006 static void vortex_get_ethtool_stats(struct net_device *dev,
3007 struct ethtool_stats *stats, u64 *data)
3008 {
3009 struct vortex_private *vp = netdev_priv(dev);
3010 void __iomem *ioaddr = vp->ioaddr;
3011 unsigned long flags;
3012
3013 spin_lock_irqsave(&vp->lock, flags);
3014 update_stats(ioaddr, dev);
3015 spin_unlock_irqrestore(&vp->lock, flags);
3016
3017 data[0] = vp->xstats.tx_deferred;
3018 data[1] = vp->xstats.tx_max_collisions;
3019 data[2] = vp->xstats.tx_multiple_collisions;
3020 data[3] = vp->xstats.tx_single_collisions;
3021 data[4] = vp->xstats.rx_bad_ssd;
3022 }
3023
3024
3025 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
3026 {
3027 switch (stringset) {
3028 case ETH_SS_STATS:
3029 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
3030 break;
3031 default:
3032 WARN_ON(1);
3033 break;
3034 }
3035 }
3036
3037 static void vortex_get_drvinfo(struct net_device *dev,
3038 struct ethtool_drvinfo *info)
3039 {
3040 struct vortex_private *vp = netdev_priv(dev);
3041
3042 strcpy(info->driver, DRV_NAME);
3043 strcpy(info->version, DRV_VERSION);
3044 if (VORTEX_PCI(vp)) {
3045 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3046 } else {
3047 if (VORTEX_EISA(vp))
3048 sprintf(info->bus_info, vp->gendev->bus_id);
3049 else
3050 sprintf(info->bus_info, "EISA 0x%lx %d",
3051 dev->base_addr, dev->irq);
3052 }
3053 }
3054
3055 static struct ethtool_ops vortex_ethtool_ops = {
3056 .get_drvinfo = vortex_get_drvinfo,
3057 .get_strings = vortex_get_strings,
3058 .get_msglevel = vortex_get_msglevel,
3059 .set_msglevel = vortex_set_msglevel,
3060 .get_ethtool_stats = vortex_get_ethtool_stats,
3061 .get_stats_count = vortex_get_stats_count,
3062 .get_settings = vortex_get_settings,
3063 .set_settings = vortex_set_settings,
3064 .get_link = ethtool_op_get_link,
3065 .nway_reset = vortex_nway_reset,
3066 .get_perm_addr = ethtool_op_get_perm_addr,
3067 };
3068
3069 #ifdef CONFIG_PCI
3070 /*
3071 * Must power the device up to do MDIO operations
3072 */
3073 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3074 {
3075 int err;
3076 struct vortex_private *vp = netdev_priv(dev);
3077 void __iomem *ioaddr = vp->ioaddr;
3078 unsigned long flags;
3079 int state = 0;
3080
3081 if(VORTEX_PCI(vp))
3082 state = VORTEX_PCI(vp)->current_state;
3083
3084 /* The kernel core really should have pci_get_power_state() */
3085
3086 if(state != 0)
3087 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3088 spin_lock_irqsave(&vp->lock, flags);
3089 EL3WINDOW(4);
3090 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3091 spin_unlock_irqrestore(&vp->lock, flags);
3092 if(state != 0)
3093 pci_set_power_state(VORTEX_PCI(vp), state);
3094
3095 return err;
3096 }
3097 #endif
3098
3099
3100 /* Pre-Cyclone chips have no documented multicast filter, so the only
3101 multicast setting is to receive all multicast frames. At least
3102 the chip has a very clean way to set the mode, unlike many others. */
3103 static void set_rx_mode(struct net_device *dev)
3104 {
3105 struct vortex_private *vp = netdev_priv(dev);
3106 void __iomem *ioaddr = vp->ioaddr;
3107 int new_mode;
3108
3109 if (dev->flags & IFF_PROMISC) {
3110 if (vortex_debug > 0)
3111 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3112 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3113 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3114 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3115 } else
3116 new_mode = SetRxFilter | RxStation | RxBroadcast;
3117
3118 iowrite16(new_mode, ioaddr + EL3_CMD);
3119 }
3120
3121 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3122 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3123 Note that this must be done after each RxReset due to some backwards
3124 compatibility logic in the Cyclone and Tornado ASICs */
3125
3126 /* The Ethernet Type used for 802.1q tagged frames */
3127 #define VLAN_ETHER_TYPE 0x8100
3128
3129 static void set_8021q_mode(struct net_device *dev, int enable)
3130 {
3131 struct vortex_private *vp = netdev_priv(dev);
3132 void __iomem *ioaddr = vp->ioaddr;
3133 int old_window = ioread16(ioaddr + EL3_CMD);
3134 int mac_ctrl;
3135
3136 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3137 /* cyclone and tornado chipsets can recognize 802.1q
3138 * tagged frames and treat them correctly */
3139
3140 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3141 if (enable)
3142 max_pkt_size += 4; /* 802.1Q VLAN tag */
3143
3144 EL3WINDOW(3);
3145 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3146
3147 /* set VlanEtherType to let the hardware checksumming
3148 treat tagged frames correctly */
3149 EL3WINDOW(7);
3150 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3151 } else {
3152 /* on older cards we have to enable large frames */
3153
3154 vp->large_frames = dev->mtu > 1500 || enable;
3155
3156 EL3WINDOW(3);
3157 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3158 if (vp->large_frames)
3159 mac_ctrl |= 0x40;
3160 else
3161 mac_ctrl &= ~0x40;
3162 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3163 }
3164
3165 EL3WINDOW(old_window);
3166 }
3167 #else
3168
3169 static void set_8021q_mode(struct net_device *dev, int enable)
3170 {
3171 }
3172
3173
3174 #endif
3175
3176 /* MII transceiver control section.
3177 Read and write the MII registers using software-generated serial
3178 MDIO protocol. See the MII specifications or DP83840A data sheet
3179 for details. */
3180
3181 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3182 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3183 "overclocking" issues. */
3184 #define mdio_delay() ioread32(mdio_addr)
3185
3186 #define MDIO_SHIFT_CLK 0x01
3187 #define MDIO_DIR_WRITE 0x04
3188 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3189 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3190 #define MDIO_DATA_READ 0x02
3191 #define MDIO_ENB_IN 0x00
3192
3193 /* Generate the preamble required for initial synchronization and
3194 a few older transceivers. */
3195 static void mdio_sync(void __iomem *ioaddr, int bits)
3196 {
3197 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3198
3199 /* Establish sync by sending at least 32 logic ones. */
3200 while (-- bits >= 0) {
3201 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3202 mdio_delay();
3203 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3204 mdio_delay();
3205 }
3206 }
3207
3208 static int mdio_read(struct net_device *dev, int phy_id, int location)
3209 {
3210 int i;
3211 struct vortex_private *vp = netdev_priv(dev);
3212 void __iomem *ioaddr = vp->ioaddr;
3213 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3214 unsigned int retval = 0;
3215 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3216
3217 if (mii_preamble_required)
3218 mdio_sync(ioaddr, 32);
3219
3220 /* Shift the read command bits out. */
3221 for (i = 14; i >= 0; i--) {
3222 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3223 iowrite16(dataval, mdio_addr);
3224 mdio_delay();
3225 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3226 mdio_delay();
3227 }
3228 /* Read the two transition, 16 data, and wire-idle bits. */
3229 for (i = 19; i > 0; i--) {
3230 iowrite16(MDIO_ENB_IN, mdio_addr);
3231 mdio_delay();
3232 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3233 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3234 mdio_delay();
3235 }
3236 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3237 }
3238
3239 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3240 {
3241 struct vortex_private *vp = netdev_priv(dev);
3242 void __iomem *ioaddr = vp->ioaddr;
3243 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3244 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3245 int i;
3246
3247 if (mii_preamble_required)
3248 mdio_sync(ioaddr, 32);
3249
3250 /* Shift the command bits out. */
3251 for (i = 31; i >= 0; i--) {
3252 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3253 iowrite16(dataval, mdio_addr);
3254 mdio_delay();
3255 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3256 mdio_delay();
3257 }
3258 /* Leave the interface idle. */
3259 for (i = 1; i >= 0; i--) {
3260 iowrite16(MDIO_ENB_IN, mdio_addr);
3261 mdio_delay();
3262 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3263 mdio_delay();
3264 }
3265 return;
3266 }
3267 \f
3268 /* ACPI: Advanced Configuration and Power Interface. */
3269 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3270 static void acpi_set_WOL(struct net_device *dev)
3271 {
3272 struct vortex_private *vp = netdev_priv(dev);
3273 void __iomem *ioaddr = vp->ioaddr;
3274
3275 if (vp->enable_wol) {
3276 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3277 EL3WINDOW(7);
3278 iowrite16(2, ioaddr + 0x0c);
3279 /* The RxFilter must accept the WOL frames. */
3280 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3281 iowrite16(RxEnable, ioaddr + EL3_CMD);
3282
3283 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3284
3285 /* Change the power state to D3; RxEnable doesn't take effect. */
3286 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3287 }
3288 }
3289
3290
3291 static void __devexit vortex_remove_one (struct pci_dev *pdev)
3292 {
3293 struct net_device *dev = pci_get_drvdata(pdev);
3294 struct vortex_private *vp;
3295
3296 if (!dev) {
3297 printk("vortex_remove_one called for Compaq device!\n");
3298 BUG();
3299 }
3300
3301 vp = netdev_priv(dev);
3302
3303 if (vp->cb_fn_base)
3304 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3305
3306 unregister_netdev(dev);
3307
3308 if (VORTEX_PCI(vp)) {
3309 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3310 if (vp->pm_state_valid)
3311 pci_restore_state(VORTEX_PCI(vp));
3312 pci_disable_device(VORTEX_PCI(vp));
3313 }
3314 /* Should really use issue_and_wait() here */
3315 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3316 vp->ioaddr + EL3_CMD);
3317
3318 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3319
3320 pci_free_consistent(pdev,
3321 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3322 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3323 vp->rx_ring,
3324 vp->rx_ring_dma);
3325 if (vp->must_free_region)
3326 release_region(dev->base_addr, vp->io_size);
3327 free_netdev(dev);
3328 }
3329
3330
3331 static struct pci_driver vortex_driver = {
3332 .name = "3c59x",
3333 .probe = vortex_init_one,
3334 .remove = __devexit_p(vortex_remove_one),
3335 .id_table = vortex_pci_tbl,
3336 #ifdef CONFIG_PM
3337 .suspend = vortex_suspend,
3338 .resume = vortex_resume,
3339 #endif
3340 };
3341
3342
3343 static int vortex_have_pci;
3344 static int vortex_have_eisa;
3345
3346
3347 static int __init vortex_init (void)
3348 {
3349 int pci_rc, eisa_rc;
3350
3351 pci_rc = pci_module_init(&vortex_driver);
3352 eisa_rc = vortex_eisa_init();
3353
3354 if (pci_rc == 0)
3355 vortex_have_pci = 1;
3356 if (eisa_rc > 0)
3357 vortex_have_eisa = 1;
3358
3359 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3360 }
3361
3362
3363 static void __exit vortex_eisa_cleanup (void)
3364 {
3365 struct vortex_private *vp;
3366 void __iomem *ioaddr;
3367
3368 #ifdef CONFIG_EISA
3369 /* Take care of the EISA devices */
3370 eisa_driver_unregister (&vortex_eisa_driver);
3371 #endif
3372
3373 if (compaq_net_device) {
3374 vp = compaq_net_device->priv;
3375 ioaddr = ioport_map(compaq_net_device->base_addr,
3376 VORTEX_TOTAL_SIZE);
3377
3378 unregister_netdev (compaq_net_device);
3379 iowrite16 (TotalReset, ioaddr + EL3_CMD);
3380 release_region(compaq_net_device->base_addr,
3381 VORTEX_TOTAL_SIZE);
3382
3383 free_netdev (compaq_net_device);
3384 }
3385 }
3386
3387
3388 static void __exit vortex_cleanup (void)
3389 {
3390 if (vortex_have_pci)
3391 pci_unregister_driver (&vortex_driver);
3392 if (vortex_have_eisa)
3393 vortex_eisa_cleanup ();
3394 }
3395
3396
3397 module_init(vortex_init);
3398 module_exit(vortex_cleanup);
3399
3400 \f
3401 /*
3402 * Local variables:
3403 * c-indent-level: 4
3404 * c-basic-offset: 4
3405 * tab-width: 4
3406 * End:
3407 */
This page took 0.119822 seconds and 6 git commands to generate.