Merge branch 'master' of /home/aia21/ntfs-2.6/
[deliverable/linux.git] / drivers / net / 3c59x.c
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Linux Kernel Additions:
21
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
28
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
51
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
58
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
69
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
83
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
94
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
104
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
116
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
121
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
124
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
132
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
142
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
148
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
155
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
168
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
176
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
180
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
183
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
186 */
187
188 /*
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
191 *
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
195 */
196
197
198 #define DRV_NAME "3c59x"
199 #define DRV_VERSION "LK1.1.19"
200 #define DRV_RELDATE "10 Nov 2002"
201
202
203
204 /* A few values that may be tweaked. */
205 /* Keep the ring sizes a power of two for efficiency. */
206 #define TX_RING_SIZE 16
207 #define RX_RING_SIZE 32
208 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
209
210 /* "Knobs" that adjust features and parameters. */
211 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 Setting to > 1512 effectively disables this feature. */
213 #ifndef __arm__
214 static int rx_copybreak = 200;
215 #else
216 /* ARM systems perform better by disregarding the bus-master
217 transfer capability of these cards. -- rmk */
218 static int rx_copybreak = 1513;
219 #endif
220 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
221 static const int mtu = 1500;
222 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
223 static int max_interrupt_work = 32;
224 /* Tx timeout interval (millisecs) */
225 static int watchdog = 5000;
226
227 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
228 * of possible Tx stalls if the system is blocking interrupts
229 * somewhere else. Undefine this to disable.
230 */
231 #define tx_interrupt_mitigation 1
232
233 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
234 #define vortex_debug debug
235 #ifdef VORTEX_DEBUG
236 static int vortex_debug = VORTEX_DEBUG;
237 #else
238 static int vortex_debug = 1;
239 #endif
240
241 #include <linux/config.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/string.h>
245 #include <linux/timer.h>
246 #include <linux/errno.h>
247 #include <linux/in.h>
248 #include <linux/ioport.h>
249 #include <linux/slab.h>
250 #include <linux/interrupt.h>
251 #include <linux/pci.h>
252 #include <linux/mii.h>
253 #include <linux/init.h>
254 #include <linux/netdevice.h>
255 #include <linux/etherdevice.h>
256 #include <linux/skbuff.h>
257 #include <linux/ethtool.h>
258 #include <linux/highmem.h>
259 #include <linux/eisa.h>
260 #include <linux/bitops.h>
261 #include <linux/jiffies.h>
262 #include <asm/irq.h> /* For NR_IRQS only. */
263 #include <asm/io.h>
264 #include <asm/uaccess.h>
265
266 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
267 This is only in the support-all-kernels source code. */
268
269 #define RUN_AT(x) (jiffies + (x))
270
271 #include <linux/delay.h>
272
273
274 static char version[] __devinitdata =
275 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
276
277 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
278 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "
279 DRV_VERSION " " DRV_RELDATE);
280 MODULE_LICENSE("GPL");
281 MODULE_VERSION(DRV_VERSION);
282
283
284 /* Operational parameter that usually are not changed. */
285
286 /* The Vortex size is twice that of the original EtherLinkIII series: the
287 runtime register window, window 1, is now always mapped in.
288 The Boomerang size is twice as large as the Vortex -- it has additional
289 bus master control registers. */
290 #define VORTEX_TOTAL_SIZE 0x20
291 #define BOOMERANG_TOTAL_SIZE 0x40
292
293 /* Set iff a MII transceiver on any interface requires mdio preamble.
294 This only set with the original DP83840 on older 3c905 boards, so the extra
295 code size of a per-interface flag is not worthwhile. */
296 static char mii_preamble_required;
297
298 #define PFX DRV_NAME ": "
299
300
301
302 /*
303 Theory of Operation
304
305 I. Board Compatibility
306
307 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
308 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
309 versions of the FastEtherLink cards. The supported product IDs are
310 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
311
312 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
313 with the kernel source or available from
314 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
315
316 II. Board-specific settings
317
318 PCI bus devices are configured by the system at boot time, so no jumpers
319 need to be set on the board. The system BIOS should be set to assign the
320 PCI INTA signal to an otherwise unused system IRQ line.
321
322 The EEPROM settings for media type and forced-full-duplex are observed.
323 The EEPROM media type should be left at the default "autoselect" unless using
324 10base2 or AUI connections which cannot be reliably detected.
325
326 III. Driver operation
327
328 The 3c59x series use an interface that's very similar to the previous 3c5x9
329 series. The primary interface is two programmed-I/O FIFOs, with an
330 alternate single-contiguous-region bus-master transfer (see next).
331
332 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
333 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
334 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
335 programmed-I/O interface that has been removed in 'B' and subsequent board
336 revisions.
337
338 One extension that is advertised in a very large font is that the adapters
339 are capable of being bus masters. On the Vortex chip this capability was
340 only for a single contiguous region making it far less useful than the full
341 bus master capability. There is a significant performance impact of taking
342 an extra interrupt or polling for the completion of each transfer, as well
343 as difficulty sharing the single transfer engine between the transmit and
344 receive threads. Using DMA transfers is a win only with large blocks or
345 with the flawed versions of the Intel Orion motherboard PCI controller.
346
347 The Boomerang chip's full-bus-master interface is useful, and has the
348 currently-unused advantages over other similar chips that queued transmit
349 packets may be reordered and receive buffer groups are associated with a
350 single frame.
351
352 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
353 Rather than a fixed intermediate receive buffer, this scheme allocates
354 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
355 the copying breakpoint: it is chosen to trade-off the memory wasted by
356 passing the full-sized skbuff to the queue layer for all frames vs. the
357 copying cost of copying a frame to a correctly-sized skbuff.
358
359 IIIC. Synchronization
360 The driver runs as two independent, single-threaded flows of control. One
361 is the send-packet routine, which enforces single-threaded use by the
362 dev->tbusy flag. The other thread is the interrupt handler, which is single
363 threaded by the hardware and other software.
364
365 IV. Notes
366
367 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
368 3c590, 3c595, and 3c900 boards.
369 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
370 the EISA version is called "Demon". According to Terry these names come
371 from rides at the local amusement park.
372
373 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
374 This driver only supports ethernet packets because of the skbuff allocation
375 limit of 4K.
376 */
377
378 /* This table drives the PCI probe routines. It's mostly boilerplate in all
379 of the drivers, and will likely be provided by some future kernel.
380 */
381 enum pci_flags_bit {
382 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
383 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
384 };
385
386 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
387 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
388 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
389 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
390 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
391 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
392
393 enum vortex_chips {
394 CH_3C590 = 0,
395 CH_3C592,
396 CH_3C597,
397 CH_3C595_1,
398 CH_3C595_2,
399
400 CH_3C595_3,
401 CH_3C900_1,
402 CH_3C900_2,
403 CH_3C900_3,
404 CH_3C900_4,
405
406 CH_3C900_5,
407 CH_3C900B_FL,
408 CH_3C905_1,
409 CH_3C905_2,
410 CH_3C905B_1,
411
412 CH_3C905B_2,
413 CH_3C905B_FX,
414 CH_3C905C,
415 CH_3C9202,
416 CH_3C980,
417 CH_3C9805,
418
419 CH_3CSOHO100_TX,
420 CH_3C555,
421 CH_3C556,
422 CH_3C556B,
423 CH_3C575,
424
425 CH_3C575_1,
426 CH_3CCFE575,
427 CH_3CCFE575CT,
428 CH_3CCFE656,
429 CH_3CCFEM656,
430
431 CH_3CCFEM656_1,
432 CH_3C450,
433 CH_3C920,
434 CH_3C982A,
435 CH_3C982B,
436
437 CH_905BT4,
438 CH_920B_EMB_WNM,
439 };
440
441
442 /* note: this array directly indexed by above enums, and MUST
443 * be kept in sync with both the enums above, and the PCI device
444 * table below
445 */
446 static struct vortex_chip_info {
447 const char *name;
448 int flags;
449 int drv_flags;
450 int io_size;
451 } vortex_info_tbl[] __devinitdata = {
452 {"3c590 Vortex 10Mbps",
453 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
454 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
455 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
456 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
457 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
458 {"3c595 Vortex 100baseTx",
459 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
460 {"3c595 Vortex 100baseT4",
461 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
462
463 {"3c595 Vortex 100base-MII",
464 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
465 {"3c900 Boomerang 10baseT",
466 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
467 {"3c900 Boomerang 10Mbps Combo",
468 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
469 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
470 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
471 {"3c900 Cyclone 10Mbps Combo",
472 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
473
474 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
475 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
476 {"3c900B-FL Cyclone 10base-FL",
477 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
478 {"3c905 Boomerang 100baseTx",
479 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
480 {"3c905 Boomerang 100baseT4",
481 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
482 {"3c905B Cyclone 100baseTx",
483 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
484
485 {"3c905B Cyclone 10/100/BNC",
486 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
487 {"3c905B-FX Cyclone 100baseFx",
488 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
489 {"3c905C Tornado",
490 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
491 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
492 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
493 {"3c980 Cyclone",
494 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
495
496 {"3c980C Python-T",
497 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
498 {"3cSOHO100-TX Hurricane",
499 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
500 {"3c555 Laptop Hurricane",
501 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
502 {"3c556 Laptop Tornado",
503 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
504 HAS_HWCKSM, 128, },
505 {"3c556B Laptop Hurricane",
506 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
507 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
508
509 {"3c575 [Megahertz] 10/100 LAN CardBus",
510 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
511 {"3c575 Boomerang CardBus",
512 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
513 {"3CCFE575BT Cyclone CardBus",
514 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
515 INVERT_LED_PWR|HAS_HWCKSM, 128, },
516 {"3CCFE575CT Tornado CardBus",
517 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
518 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
519 {"3CCFE656 Cyclone CardBus",
520 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
521 INVERT_LED_PWR|HAS_HWCKSM, 128, },
522
523 {"3CCFEM656B Cyclone+Winmodem CardBus",
524 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
525 INVERT_LED_PWR|HAS_HWCKSM, 128, },
526 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
527 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
528 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
529 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
530 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
531 {"3c920 Tornado",
532 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
533 {"3c982 Hydra Dual Port A",
534 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
535
536 {"3c982 Hydra Dual Port B",
537 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
538 {"3c905B-T4",
539 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
540 {"3c920B-EMB-WNM Tornado",
541 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
542
543 {NULL,}, /* NULL terminated list. */
544 };
545
546
547 static struct pci_device_id vortex_pci_tbl[] = {
548 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
549 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
550 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
551 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
552 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
553
554 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
555 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
556 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
557 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
558 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
559
560 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
561 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
562 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
563 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
564 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
565
566 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
567 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
568 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
569 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
570 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
571 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
572
573 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
574 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
575 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
576 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
577 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
578
579 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
580 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
581 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
582 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
583 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
584
585 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
586 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
587 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
588 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
589 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
590
591 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
592 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
593
594 {0,} /* 0 terminated list. */
595 };
596 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
597
598
599 /* Operational definitions.
600 These are not used by other compilation units and thus are not
601 exported in a ".h" file.
602
603 First the windows. There are eight register windows, with the command
604 and status registers available in each.
605 */
606 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
607 #define EL3_CMD 0x0e
608 #define EL3_STATUS 0x0e
609
610 /* The top five bits written to EL3_CMD are a command, the lower
611 11 bits are the parameter, if applicable.
612 Note that 11 parameters bits was fine for ethernet, but the new chip
613 can handle FDDI length frames (~4500 octets) and now parameters count
614 32-bit 'Dwords' rather than octets. */
615
616 enum vortex_cmd {
617 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
618 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
619 UpStall = 6<<11, UpUnstall = (6<<11)+1,
620 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
621 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
622 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
623 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
624 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
625 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
626 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
627
628 /* The SetRxFilter command accepts the following classes: */
629 enum RxFilter {
630 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
631
632 /* Bits in the general status register. */
633 enum vortex_status {
634 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
635 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
636 IntReq = 0x0040, StatsFull = 0x0080,
637 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
638 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
639 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
640 };
641
642 /* Register window 1 offsets, the window used in normal operation.
643 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
644 enum Window1 {
645 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
646 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
647 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
648 };
649 enum Window0 {
650 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
651 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
652 IntrStatus=0x0E, /* Valid in all windows. */
653 };
654 enum Win0_EEPROM_bits {
655 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
656 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
657 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
658 };
659 /* EEPROM locations. */
660 enum eeprom_offset {
661 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
662 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
663 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
664 DriverTune=13, Checksum=15};
665
666 enum Window2 { /* Window 2. */
667 Wn2_ResetOptions=12,
668 };
669 enum Window3 { /* Window 3: MAC/config bits. */
670 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
671 };
672
673 #define BFEXT(value, offset, bitcount) \
674 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
675
676 #define BFINS(lhs, rhs, offset, bitcount) \
677 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
678 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
679
680 #define RAM_SIZE(v) BFEXT(v, 0, 3)
681 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
682 #define RAM_SPEED(v) BFEXT(v, 4, 2)
683 #define ROM_SIZE(v) BFEXT(v, 6, 2)
684 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
685 #define XCVR(v) BFEXT(v, 20, 4)
686 #define AUTOSELECT(v) BFEXT(v, 24, 1)
687
688 enum Window4 { /* Window 4: Xcvr/media bits. */
689 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
690 };
691 enum Win4_Media_bits {
692 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
693 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
694 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
695 Media_LnkBeat = 0x0800,
696 };
697 enum Window7 { /* Window 7: Bus Master control. */
698 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
699 Wn7_MasterStatus = 12,
700 };
701 /* Boomerang bus master control registers. */
702 enum MasterCtrl {
703 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
704 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
705 };
706
707 /* The Rx and Tx descriptor lists.
708 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
709 alignment contraint on tx_ring[] and rx_ring[]. */
710 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
711 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
712 struct boom_rx_desc {
713 u32 next; /* Last entry points to 0. */
714 s32 status;
715 u32 addr; /* Up to 63 addr/len pairs possible. */
716 s32 length; /* Set LAST_FRAG to indicate last pair. */
717 };
718 /* Values for the Rx status entry. */
719 enum rx_desc_status {
720 RxDComplete=0x00008000, RxDError=0x4000,
721 /* See boomerang_rx() for actual error bits */
722 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
723 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
724 };
725
726 #ifdef MAX_SKB_FRAGS
727 #define DO_ZEROCOPY 1
728 #else
729 #define DO_ZEROCOPY 0
730 #endif
731
732 struct boom_tx_desc {
733 u32 next; /* Last entry points to 0. */
734 s32 status; /* bits 0:12 length, others see below. */
735 #if DO_ZEROCOPY
736 struct {
737 u32 addr;
738 s32 length;
739 } frag[1+MAX_SKB_FRAGS];
740 #else
741 u32 addr;
742 s32 length;
743 #endif
744 };
745
746 /* Values for the Tx status entry. */
747 enum tx_desc_status {
748 CRCDisable=0x2000, TxDComplete=0x8000,
749 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
750 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
751 };
752
753 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
754 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
755
756 struct vortex_extra_stats {
757 unsigned long tx_deferred;
758 unsigned long tx_max_collisions;
759 unsigned long tx_multiple_collisions;
760 unsigned long tx_single_collisions;
761 unsigned long rx_bad_ssd;
762 };
763
764 struct vortex_private {
765 /* The Rx and Tx rings should be quad-word-aligned. */
766 struct boom_rx_desc* rx_ring;
767 struct boom_tx_desc* tx_ring;
768 dma_addr_t rx_ring_dma;
769 dma_addr_t tx_ring_dma;
770 /* The addresses of transmit- and receive-in-place skbuffs. */
771 struct sk_buff* rx_skbuff[RX_RING_SIZE];
772 struct sk_buff* tx_skbuff[TX_RING_SIZE];
773 unsigned int cur_rx, cur_tx; /* The next free ring entry */
774 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
775 struct net_device_stats stats; /* Generic stats */
776 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
777 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
778 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
779
780 /* PCI configuration space information. */
781 struct device *gendev;
782 void __iomem *ioaddr; /* IO address space */
783 void __iomem *cb_fn_base; /* CardBus function status addr space. */
784
785 /* Some values here only for performance evaluation and path-coverage */
786 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
787 int card_idx;
788
789 /* The remainder are related to chip state, mostly media selection. */
790 struct timer_list timer; /* Media selection timer. */
791 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
792 int options; /* User-settable misc. driver options. */
793 unsigned int media_override:4, /* Passed-in media type. */
794 default_media:4, /* Read from the EEPROM/Wn3_Config. */
795 full_duplex:1, force_fd:1, autoselect:1,
796 bus_master:1, /* Vortex can only do a fragment bus-m. */
797 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
798 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
799 partner_flow_ctrl:1, /* Partner supports flow control */
800 has_nway:1,
801 enable_wol:1, /* Wake-on-LAN is enabled */
802 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
803 open:1,
804 medialock:1,
805 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
806 large_frames:1; /* accept large frames */
807 int drv_flags;
808 u16 status_enable;
809 u16 intr_enable;
810 u16 available_media; /* From Wn3_Options. */
811 u16 capabilities, info1, info2; /* Various, from EEPROM. */
812 u16 advertising; /* NWay media advertisement */
813 unsigned char phys[2]; /* MII device addresses. */
814 u16 deferred; /* Resend these interrupts when we
815 * bale from the ISR */
816 u16 io_size; /* Size of PCI region (for release_region) */
817 spinlock_t lock; /* Serialise access to device & its vortex_private */
818 struct mii_if_info mii; /* MII lib hooks/info */
819 };
820
821 #ifdef CONFIG_PCI
822 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
823 #else
824 #define DEVICE_PCI(dev) NULL
825 #endif
826
827 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
828
829 #ifdef CONFIG_EISA
830 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
831 #else
832 #define DEVICE_EISA(dev) NULL
833 #endif
834
835 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
836
837 /* The action to take with a media selection timer tick.
838 Note that we deviate from the 3Com order by checking 10base2 before AUI.
839 */
840 enum xcvr_types {
841 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
842 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
843 };
844
845 static const struct media_table {
846 char *name;
847 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
848 mask:8, /* The transceiver-present bit in Wn3_Config.*/
849 next:8; /* The media type to try next. */
850 int wait; /* Time before we check media status. */
851 } media_tbl[] = {
852 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
853 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
854 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
855 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
856 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
857 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
858 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
859 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
860 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
861 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
862 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
863 };
864
865 static struct {
866 const char str[ETH_GSTRING_LEN];
867 } ethtool_stats_keys[] = {
868 { "tx_deferred" },
869 { "tx_max_collisions" },
870 { "tx_multiple_collisions" },
871 { "tx_single_collisions" },
872 { "rx_bad_ssd" },
873 };
874
875 /* number of ETHTOOL_GSTATS u64's */
876 #define VORTEX_NUM_STATS 5
877
878 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
879 int chip_idx, int card_idx);
880 static void vortex_up(struct net_device *dev);
881 static void vortex_down(struct net_device *dev, int final);
882 static int vortex_open(struct net_device *dev);
883 static void mdio_sync(void __iomem *ioaddr, int bits);
884 static int mdio_read(struct net_device *dev, int phy_id, int location);
885 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
886 static void vortex_timer(unsigned long arg);
887 static void rx_oom_timer(unsigned long arg);
888 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
889 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
890 static int vortex_rx(struct net_device *dev);
891 static int boomerang_rx(struct net_device *dev);
892 static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
893 static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
894 static int vortex_close(struct net_device *dev);
895 static void dump_tx_ring(struct net_device *dev);
896 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
897 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
898 static void set_rx_mode(struct net_device *dev);
899 #ifdef CONFIG_PCI
900 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
901 #endif
902 static void vortex_tx_timeout(struct net_device *dev);
903 static void acpi_set_WOL(struct net_device *dev);
904 static struct ethtool_ops vortex_ethtool_ops;
905 static void set_8021q_mode(struct net_device *dev, int enable);
906
907 \f
908 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
909 /* Option count limit only -- unlimited interfaces are supported. */
910 #define MAX_UNITS 8
911 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
912 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
913 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
914 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
915 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
916 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
917 static int global_options = -1;
918 static int global_full_duplex = -1;
919 static int global_enable_wol = -1;
920 static int global_use_mmio = -1;
921
922 /* #define dev_alloc_skb dev_alloc_skb_debug */
923
924 /* Variables to work-around the Compaq PCI BIOS32 problem. */
925 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
926 static struct net_device *compaq_net_device;
927
928 static int vortex_cards_found;
929
930 module_param(debug, int, 0);
931 module_param(global_options, int, 0);
932 module_param_array(options, int, NULL, 0);
933 module_param(global_full_duplex, int, 0);
934 module_param_array(full_duplex, int, NULL, 0);
935 module_param_array(hw_checksums, int, NULL, 0);
936 module_param_array(flow_ctrl, int, NULL, 0);
937 module_param(global_enable_wol, int, 0);
938 module_param_array(enable_wol, int, NULL, 0);
939 module_param(rx_copybreak, int, 0);
940 module_param(max_interrupt_work, int, 0);
941 module_param(compaq_ioaddr, int, 0);
942 module_param(compaq_irq, int, 0);
943 module_param(compaq_device_id, int, 0);
944 module_param(watchdog, int, 0);
945 module_param(global_use_mmio, int, 0);
946 module_param_array(use_mmio, int, NULL, 0);
947 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
948 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
949 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
950 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
951 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
952 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
953 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
954 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
955 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
956 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
957 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
958 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
959 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
960 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
961 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
962 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
963 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
964
965 #ifdef CONFIG_NET_POLL_CONTROLLER
966 static void poll_vortex(struct net_device *dev)
967 {
968 struct vortex_private *vp = netdev_priv(dev);
969 unsigned long flags;
970 local_save_flags(flags);
971 local_irq_disable();
972 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
973 local_irq_restore(flags);
974 }
975 #endif
976
977 #ifdef CONFIG_PM
978
979 static int vortex_suspend (struct pci_dev *pdev, pm_message_t state)
980 {
981 struct net_device *dev = pci_get_drvdata(pdev);
982
983 if (dev && dev->priv) {
984 if (netif_running(dev)) {
985 netif_device_detach(dev);
986 vortex_down(dev, 1);
987 }
988 pci_save_state(pdev);
989 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
990 free_irq(dev->irq, dev);
991 pci_disable_device(pdev);
992 pci_set_power_state(pdev, pci_choose_state(pdev, state));
993 }
994 return 0;
995 }
996
997 static int vortex_resume (struct pci_dev *pdev)
998 {
999 struct net_device *dev = pci_get_drvdata(pdev);
1000 struct vortex_private *vp = netdev_priv(dev);
1001
1002 if (dev && vp) {
1003 pci_set_power_state(pdev, PCI_D0);
1004 pci_restore_state(pdev);
1005 pci_enable_device(pdev);
1006 pci_set_master(pdev);
1007 if (request_irq(dev->irq, vp->full_bus_master_rx ?
1008 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev)) {
1009 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1010 pci_disable_device(pdev);
1011 return -EBUSY;
1012 }
1013 if (netif_running(dev)) {
1014 vortex_up(dev);
1015 netif_device_attach(dev);
1016 }
1017 }
1018 return 0;
1019 }
1020
1021 #endif /* CONFIG_PM */
1022
1023 #ifdef CONFIG_EISA
1024 static struct eisa_device_id vortex_eisa_ids[] = {
1025 { "TCM5920", CH_3C592 },
1026 { "TCM5970", CH_3C597 },
1027 { "" }
1028 };
1029
1030 static int vortex_eisa_probe (struct device *device);
1031 static int vortex_eisa_remove (struct device *device);
1032
1033 static struct eisa_driver vortex_eisa_driver = {
1034 .id_table = vortex_eisa_ids,
1035 .driver = {
1036 .name = "3c59x",
1037 .probe = vortex_eisa_probe,
1038 .remove = vortex_eisa_remove
1039 }
1040 };
1041
1042 static int vortex_eisa_probe (struct device *device)
1043 {
1044 void __iomem *ioaddr;
1045 struct eisa_device *edev;
1046
1047 edev = to_eisa_device (device);
1048
1049 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
1050 return -EBUSY;
1051
1052 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
1053
1054 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
1055 edev->id.driver_data, vortex_cards_found)) {
1056 release_region (edev->base_addr, VORTEX_TOTAL_SIZE);
1057 return -ENODEV;
1058 }
1059
1060 vortex_cards_found++;
1061
1062 return 0;
1063 }
1064
1065 static int vortex_eisa_remove (struct device *device)
1066 {
1067 struct eisa_device *edev;
1068 struct net_device *dev;
1069 struct vortex_private *vp;
1070 void __iomem *ioaddr;
1071
1072 edev = to_eisa_device (device);
1073 dev = eisa_get_drvdata (edev);
1074
1075 if (!dev) {
1076 printk("vortex_eisa_remove called for Compaq device!\n");
1077 BUG();
1078 }
1079
1080 vp = netdev_priv(dev);
1081 ioaddr = vp->ioaddr;
1082
1083 unregister_netdev (dev);
1084 iowrite16 (TotalReset|0x14, ioaddr + EL3_CMD);
1085 release_region (dev->base_addr, VORTEX_TOTAL_SIZE);
1086
1087 free_netdev (dev);
1088 return 0;
1089 }
1090 #endif
1091
1092 /* returns count found (>= 0), or negative on error */
1093 static int __init vortex_eisa_init (void)
1094 {
1095 int eisa_found = 0;
1096 int orig_cards_found = vortex_cards_found;
1097
1098 #ifdef CONFIG_EISA
1099 if (eisa_driver_register (&vortex_eisa_driver) >= 0) {
1100 /* Because of the way EISA bus is probed, we cannot assume
1101 * any device have been found when we exit from
1102 * eisa_driver_register (the bus root driver may not be
1103 * initialized yet). So we blindly assume something was
1104 * found, and let the sysfs magic happend... */
1105
1106 eisa_found = 1;
1107 }
1108 #endif
1109
1110 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1111 if (compaq_ioaddr) {
1112 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
1113 compaq_irq, compaq_device_id, vortex_cards_found++);
1114 }
1115
1116 return vortex_cards_found - orig_cards_found + eisa_found;
1117 }
1118
1119 /* returns count (>= 0), or negative on error */
1120 static int __devinit vortex_init_one (struct pci_dev *pdev,
1121 const struct pci_device_id *ent)
1122 {
1123 int rc, unit, pci_bar;
1124 struct vortex_chip_info *vci;
1125 void __iomem *ioaddr;
1126
1127 /* wake up and enable device */
1128 rc = pci_enable_device (pdev);
1129 if (rc < 0)
1130 goto out;
1131
1132 unit = vortex_cards_found;
1133
1134 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1135 /* Determine the default if the user didn't override us */
1136 vci = &vortex_info_tbl[ent->driver_data];
1137 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1138 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1139 pci_bar = use_mmio[unit] ? 1 : 0;
1140 else
1141 pci_bar = global_use_mmio ? 1 : 0;
1142
1143 ioaddr = pci_iomap(pdev, pci_bar, 0);
1144 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1145 ioaddr = pci_iomap(pdev, 0, 0);
1146
1147 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1148 ent->driver_data, unit);
1149 if (rc < 0) {
1150 pci_disable_device (pdev);
1151 goto out;
1152 }
1153
1154 vortex_cards_found++;
1155
1156 out:
1157 return rc;
1158 }
1159
1160 /*
1161 * Start up the PCI/EISA device which is described by *gendev.
1162 * Return 0 on success.
1163 *
1164 * NOTE: pdev can be NULL, for the case of a Compaq device
1165 */
1166 static int __devinit vortex_probe1(struct device *gendev,
1167 void __iomem *ioaddr, int irq,
1168 int chip_idx, int card_idx)
1169 {
1170 struct vortex_private *vp;
1171 int option;
1172 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1173 int i, step;
1174 struct net_device *dev;
1175 static int printed_version;
1176 int retval, print_info;
1177 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1178 char *print_name = "3c59x";
1179 struct pci_dev *pdev = NULL;
1180 struct eisa_device *edev = NULL;
1181
1182 if (!printed_version) {
1183 printk (version);
1184 printed_version = 1;
1185 }
1186
1187 if (gendev) {
1188 if ((pdev = DEVICE_PCI(gendev))) {
1189 print_name = pci_name(pdev);
1190 }
1191
1192 if ((edev = DEVICE_EISA(gendev))) {
1193 print_name = edev->dev.bus_id;
1194 }
1195 }
1196
1197 dev = alloc_etherdev(sizeof(*vp));
1198 retval = -ENOMEM;
1199 if (!dev) {
1200 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1201 goto out;
1202 }
1203 SET_MODULE_OWNER(dev);
1204 SET_NETDEV_DEV(dev, gendev);
1205 vp = netdev_priv(dev);
1206
1207 option = global_options;
1208
1209 /* The lower four bits are the media type. */
1210 if (dev->mem_start) {
1211 /*
1212 * The 'options' param is passed in as the third arg to the
1213 * LILO 'ether=' argument for non-modular use
1214 */
1215 option = dev->mem_start;
1216 }
1217 else if (card_idx < MAX_UNITS) {
1218 if (options[card_idx] >= 0)
1219 option = options[card_idx];
1220 }
1221
1222 if (option > 0) {
1223 if (option & 0x8000)
1224 vortex_debug = 7;
1225 if (option & 0x4000)
1226 vortex_debug = 2;
1227 if (option & 0x0400)
1228 vp->enable_wol = 1;
1229 }
1230
1231 print_info = (vortex_debug > 1);
1232 if (print_info)
1233 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1234
1235 printk(KERN_INFO "%s: 3Com %s %s at %p. Vers " DRV_VERSION "\n",
1236 print_name,
1237 pdev ? "PCI" : "EISA",
1238 vci->name,
1239 ioaddr);
1240
1241 dev->base_addr = (unsigned long)ioaddr;
1242 dev->irq = irq;
1243 dev->mtu = mtu;
1244 vp->ioaddr = ioaddr;
1245 vp->large_frames = mtu > 1500;
1246 vp->drv_flags = vci->drv_flags;
1247 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1248 vp->io_size = vci->io_size;
1249 vp->card_idx = card_idx;
1250
1251 /* module list only for Compaq device */
1252 if (gendev == NULL) {
1253 compaq_net_device = dev;
1254 }
1255
1256 /* PCI-only startup logic */
1257 if (pdev) {
1258 /* EISA resources already marked, so only PCI needs to do this here */
1259 /* Ignore return value, because Cardbus drivers already allocate for us */
1260 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1261 vp->must_free_region = 1;
1262
1263 /* enable bus-mastering if necessary */
1264 if (vci->flags & PCI_USES_MASTER)
1265 pci_set_master (pdev);
1266
1267 if (vci->drv_flags & IS_VORTEX) {
1268 u8 pci_latency;
1269 u8 new_latency = 248;
1270
1271 /* Check the PCI latency value. On the 3c590 series the latency timer
1272 must be set to the maximum value to avoid data corruption that occurs
1273 when the timer expires during a transfer. This bug exists the Vortex
1274 chip only. */
1275 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1276 if (pci_latency < new_latency) {
1277 printk(KERN_INFO "%s: Overriding PCI latency"
1278 " timer (CFLT) setting of %d, new value is %d.\n",
1279 print_name, pci_latency, new_latency);
1280 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1281 }
1282 }
1283 }
1284
1285 spin_lock_init(&vp->lock);
1286 vp->gendev = gendev;
1287 vp->mii.dev = dev;
1288 vp->mii.mdio_read = mdio_read;
1289 vp->mii.mdio_write = mdio_write;
1290 vp->mii.phy_id_mask = 0x1f;
1291 vp->mii.reg_num_mask = 0x1f;
1292
1293 /* Makes sure rings are at least 16 byte aligned. */
1294 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1295 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1296 &vp->rx_ring_dma);
1297 retval = -ENOMEM;
1298 if (vp->rx_ring == 0)
1299 goto free_region;
1300
1301 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1302 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1303
1304 /* if we are a PCI driver, we store info in pdev->driver_data
1305 * instead of a module list */
1306 if (pdev)
1307 pci_set_drvdata(pdev, dev);
1308 if (edev)
1309 eisa_set_drvdata (edev, dev);
1310
1311 vp->media_override = 7;
1312 if (option >= 0) {
1313 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1314 if (vp->media_override != 7)
1315 vp->medialock = 1;
1316 vp->full_duplex = (option & 0x200) ? 1 : 0;
1317 vp->bus_master = (option & 16) ? 1 : 0;
1318 }
1319
1320 if (global_full_duplex > 0)
1321 vp->full_duplex = 1;
1322 if (global_enable_wol > 0)
1323 vp->enable_wol = 1;
1324
1325 if (card_idx < MAX_UNITS) {
1326 if (full_duplex[card_idx] > 0)
1327 vp->full_duplex = 1;
1328 if (flow_ctrl[card_idx] > 0)
1329 vp->flow_ctrl = 1;
1330 if (enable_wol[card_idx] > 0)
1331 vp->enable_wol = 1;
1332 }
1333
1334 vp->force_fd = vp->full_duplex;
1335 vp->options = option;
1336 /* Read the station address from the EEPROM. */
1337 EL3WINDOW(0);
1338 {
1339 int base;
1340
1341 if (vci->drv_flags & EEPROM_8BIT)
1342 base = 0x230;
1343 else if (vci->drv_flags & EEPROM_OFFSET)
1344 base = EEPROM_Read + 0x30;
1345 else
1346 base = EEPROM_Read;
1347
1348 for (i = 0; i < 0x40; i++) {
1349 int timer;
1350 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1351 /* Pause for at least 162 us. for the read to take place. */
1352 for (timer = 10; timer >= 0; timer--) {
1353 udelay(162);
1354 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1355 break;
1356 }
1357 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1358 }
1359 }
1360 for (i = 0; i < 0x18; i++)
1361 checksum ^= eeprom[i];
1362 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1363 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1364 while (i < 0x21)
1365 checksum ^= eeprom[i++];
1366 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1367 }
1368 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1369 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1370 for (i = 0; i < 3; i++)
1371 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1372 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1373 if (print_info) {
1374 for (i = 0; i < 6; i++)
1375 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1376 }
1377 /* Unfortunately an all zero eeprom passes the checksum and this
1378 gets found in the wild in failure cases. Crypto is hard 8) */
1379 if (!is_valid_ether_addr(dev->dev_addr)) {
1380 retval = -EINVAL;
1381 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1382 goto free_ring; /* With every pack */
1383 }
1384 EL3WINDOW(2);
1385 for (i = 0; i < 6; i++)
1386 iowrite8(dev->dev_addr[i], ioaddr + i);
1387
1388 #ifdef __sparc__
1389 if (print_info)
1390 printk(", IRQ %s\n", __irq_itoa(dev->irq));
1391 #else
1392 if (print_info)
1393 printk(", IRQ %d\n", dev->irq);
1394 /* Tell them about an invalid IRQ. */
1395 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1396 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1397 dev->irq);
1398 #endif
1399
1400 EL3WINDOW(4);
1401 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1402 if (print_info) {
1403 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1404 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1405 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1406 }
1407
1408
1409 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1410 unsigned short n;
1411
1412 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1413 if (!vp->cb_fn_base) {
1414 retval = -ENOMEM;
1415 goto free_ring;
1416 }
1417
1418 if (print_info) {
1419 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1420 print_name, pci_resource_start(pdev, 2),
1421 vp->cb_fn_base);
1422 }
1423 EL3WINDOW(2);
1424
1425 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1426 if (vp->drv_flags & INVERT_LED_PWR)
1427 n |= 0x10;
1428 if (vp->drv_flags & INVERT_MII_PWR)
1429 n |= 0x4000;
1430 iowrite16(n, ioaddr + Wn2_ResetOptions);
1431 if (vp->drv_flags & WNO_XCVR_PWR) {
1432 EL3WINDOW(0);
1433 iowrite16(0x0800, ioaddr);
1434 }
1435 }
1436
1437 /* Extract our information from the EEPROM data. */
1438 vp->info1 = eeprom[13];
1439 vp->info2 = eeprom[15];
1440 vp->capabilities = eeprom[16];
1441
1442 if (vp->info1 & 0x8000) {
1443 vp->full_duplex = 1;
1444 if (print_info)
1445 printk(KERN_INFO "Full duplex capable\n");
1446 }
1447
1448 {
1449 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1450 unsigned int config;
1451 EL3WINDOW(3);
1452 vp->available_media = ioread16(ioaddr + Wn3_Options);
1453 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1454 vp->available_media = 0x40;
1455 config = ioread32(ioaddr + Wn3_Config);
1456 if (print_info) {
1457 printk(KERN_DEBUG " Internal config register is %4.4x, "
1458 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1459 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1460 8 << RAM_SIZE(config),
1461 RAM_WIDTH(config) ? "word" : "byte",
1462 ram_split[RAM_SPLIT(config)],
1463 AUTOSELECT(config) ? "autoselect/" : "",
1464 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1465 media_tbl[XCVR(config)].name);
1466 }
1467 vp->default_media = XCVR(config);
1468 if (vp->default_media == XCVR_NWAY)
1469 vp->has_nway = 1;
1470 vp->autoselect = AUTOSELECT(config);
1471 }
1472
1473 if (vp->media_override != 7) {
1474 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1475 print_name, vp->media_override,
1476 media_tbl[vp->media_override].name);
1477 dev->if_port = vp->media_override;
1478 } else
1479 dev->if_port = vp->default_media;
1480
1481 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1482 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1483 int phy, phy_idx = 0;
1484 EL3WINDOW(4);
1485 mii_preamble_required++;
1486 if (vp->drv_flags & EXTRA_PREAMBLE)
1487 mii_preamble_required++;
1488 mdio_sync(ioaddr, 32);
1489 mdio_read(dev, 24, MII_BMSR);
1490 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1491 int mii_status, phyx;
1492
1493 /*
1494 * For the 3c905CX we look at index 24 first, because it bogusly
1495 * reports an external PHY at all indices
1496 */
1497 if (phy == 0)
1498 phyx = 24;
1499 else if (phy <= 24)
1500 phyx = phy - 1;
1501 else
1502 phyx = phy;
1503 mii_status = mdio_read(dev, phyx, MII_BMSR);
1504 if (mii_status && mii_status != 0xffff) {
1505 vp->phys[phy_idx++] = phyx;
1506 if (print_info) {
1507 printk(KERN_INFO " MII transceiver found at address %d,"
1508 " status %4x.\n", phyx, mii_status);
1509 }
1510 if ((mii_status & 0x0040) == 0)
1511 mii_preamble_required++;
1512 }
1513 }
1514 mii_preamble_required--;
1515 if (phy_idx == 0) {
1516 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1517 vp->phys[0] = 24;
1518 } else {
1519 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1520 if (vp->full_duplex) {
1521 /* Only advertise the FD media types. */
1522 vp->advertising &= ~0x02A0;
1523 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1524 }
1525 }
1526 vp->mii.phy_id = vp->phys[0];
1527 }
1528
1529 if (vp->capabilities & CapBusMaster) {
1530 vp->full_bus_master_tx = 1;
1531 if (print_info) {
1532 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1533 (vp->info2 & 1) ? "early" : "whole-frame" );
1534 }
1535 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1536 vp->bus_master = 0; /* AKPM: vortex only */
1537 }
1538
1539 /* The 3c59x-specific entries in the device structure. */
1540 dev->open = vortex_open;
1541 if (vp->full_bus_master_tx) {
1542 dev->hard_start_xmit = boomerang_start_xmit;
1543 /* Actually, it still should work with iommu. */
1544 if (card_idx < MAX_UNITS &&
1545 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1546 hw_checksums[card_idx] == 1)) {
1547 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1548 }
1549 } else {
1550 dev->hard_start_xmit = vortex_start_xmit;
1551 }
1552
1553 if (print_info) {
1554 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1555 print_name,
1556 (dev->features & NETIF_F_SG) ? "en":"dis",
1557 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1558 }
1559
1560 dev->stop = vortex_close;
1561 dev->get_stats = vortex_get_stats;
1562 #ifdef CONFIG_PCI
1563 dev->do_ioctl = vortex_ioctl;
1564 #endif
1565 dev->ethtool_ops = &vortex_ethtool_ops;
1566 dev->set_multicast_list = set_rx_mode;
1567 dev->tx_timeout = vortex_tx_timeout;
1568 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1569 #ifdef CONFIG_NET_POLL_CONTROLLER
1570 dev->poll_controller = poll_vortex;
1571 #endif
1572 if (pdev) {
1573 vp->pm_state_valid = 1;
1574 pci_save_state(VORTEX_PCI(vp));
1575 acpi_set_WOL(dev);
1576 }
1577 retval = register_netdev(dev);
1578 if (retval == 0)
1579 return 0;
1580
1581 free_ring:
1582 pci_free_consistent(pdev,
1583 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1584 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1585 vp->rx_ring,
1586 vp->rx_ring_dma);
1587 free_region:
1588 if (vp->must_free_region)
1589 release_region(dev->base_addr, vci->io_size);
1590 free_netdev(dev);
1591 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1592 out:
1593 return retval;
1594 }
1595
1596 static void
1597 issue_and_wait(struct net_device *dev, int cmd)
1598 {
1599 struct vortex_private *vp = netdev_priv(dev);
1600 void __iomem *ioaddr = vp->ioaddr;
1601 int i;
1602
1603 iowrite16(cmd, ioaddr + EL3_CMD);
1604 for (i = 0; i < 2000; i++) {
1605 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1606 return;
1607 }
1608
1609 /* OK, that didn't work. Do it the slow way. One second */
1610 for (i = 0; i < 100000; i++) {
1611 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1612 if (vortex_debug > 1)
1613 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1614 dev->name, cmd, i * 10);
1615 return;
1616 }
1617 udelay(10);
1618 }
1619 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1620 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1621 }
1622
1623 static void
1624 vortex_up(struct net_device *dev)
1625 {
1626 struct vortex_private *vp = netdev_priv(dev);
1627 void __iomem *ioaddr = vp->ioaddr;
1628 unsigned int config;
1629 int i;
1630
1631 if (VORTEX_PCI(vp)) {
1632 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1633 if (vp->pm_state_valid)
1634 pci_restore_state(VORTEX_PCI(vp));
1635 pci_enable_device(VORTEX_PCI(vp));
1636 }
1637
1638 /* Before initializing select the active media port. */
1639 EL3WINDOW(3);
1640 config = ioread32(ioaddr + Wn3_Config);
1641
1642 if (vp->media_override != 7) {
1643 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1644 dev->name, vp->media_override,
1645 media_tbl[vp->media_override].name);
1646 dev->if_port = vp->media_override;
1647 } else if (vp->autoselect) {
1648 if (vp->has_nway) {
1649 if (vortex_debug > 1)
1650 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1651 dev->name, dev->if_port);
1652 dev->if_port = XCVR_NWAY;
1653 } else {
1654 /* Find first available media type, starting with 100baseTx. */
1655 dev->if_port = XCVR_100baseTx;
1656 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1657 dev->if_port = media_tbl[dev->if_port].next;
1658 if (vortex_debug > 1)
1659 printk(KERN_INFO "%s: first available media type: %s\n",
1660 dev->name, media_tbl[dev->if_port].name);
1661 }
1662 } else {
1663 dev->if_port = vp->default_media;
1664 if (vortex_debug > 1)
1665 printk(KERN_INFO "%s: using default media %s\n",
1666 dev->name, media_tbl[dev->if_port].name);
1667 }
1668
1669 init_timer(&vp->timer);
1670 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1671 vp->timer.data = (unsigned long)dev;
1672 vp->timer.function = vortex_timer; /* timer handler */
1673 add_timer(&vp->timer);
1674
1675 init_timer(&vp->rx_oom_timer);
1676 vp->rx_oom_timer.data = (unsigned long)dev;
1677 vp->rx_oom_timer.function = rx_oom_timer;
1678
1679 if (vortex_debug > 1)
1680 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1681 dev->name, media_tbl[dev->if_port].name);
1682
1683 vp->full_duplex = vp->force_fd;
1684 config = BFINS(config, dev->if_port, 20, 4);
1685 if (vortex_debug > 6)
1686 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1687 iowrite32(config, ioaddr + Wn3_Config);
1688
1689 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1690 int mii_reg1, mii_reg5;
1691 EL3WINDOW(4);
1692 /* Read BMSR (reg1) only to clear old status. */
1693 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1694 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1695 if (mii_reg5 == 0xffff || mii_reg5 == 0x0000) {
1696 netif_carrier_off(dev); /* No MII device or no link partner report */
1697 } else {
1698 mii_reg5 &= vp->advertising;
1699 if ((mii_reg5 & 0x0100) != 0 /* 100baseTx-FD */
1700 || (mii_reg5 & 0x00C0) == 0x0040) /* 10T-FD, but not 100-HD */
1701 vp->full_duplex = 1;
1702 netif_carrier_on(dev);
1703 }
1704 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1705 if (vortex_debug > 1)
1706 printk(KERN_INFO "%s: MII #%d status %4.4x, link partner capability %4.4x,"
1707 " info1 %04x, setting %s-duplex.\n",
1708 dev->name, vp->phys[0],
1709 mii_reg1, mii_reg5,
1710 vp->info1, ((vp->info1 & 0x8000) || vp->full_duplex) ? "full" : "half");
1711 EL3WINDOW(3);
1712 }
1713
1714 /* Set the full-duplex bit. */
1715 iowrite16( ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1716 (vp->large_frames ? 0x40 : 0) |
1717 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1718 ioaddr + Wn3_MAC_Ctrl);
1719
1720 if (vortex_debug > 1) {
1721 printk(KERN_DEBUG "%s: vortex_up() InternalConfig %8.8x.\n",
1722 dev->name, config);
1723 }
1724
1725 issue_and_wait(dev, TxReset);
1726 /*
1727 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1728 */
1729 issue_and_wait(dev, RxReset|0x04);
1730
1731 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1732
1733 if (vortex_debug > 1) {
1734 EL3WINDOW(4);
1735 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1736 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1737 }
1738
1739 /* Set the station address and mask in window 2 each time opened. */
1740 EL3WINDOW(2);
1741 for (i = 0; i < 6; i++)
1742 iowrite8(dev->dev_addr[i], ioaddr + i);
1743 for (; i < 12; i+=2)
1744 iowrite16(0, ioaddr + i);
1745
1746 if (vp->cb_fn_base) {
1747 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1748 if (vp->drv_flags & INVERT_LED_PWR)
1749 n |= 0x10;
1750 if (vp->drv_flags & INVERT_MII_PWR)
1751 n |= 0x4000;
1752 iowrite16(n, ioaddr + Wn2_ResetOptions);
1753 }
1754
1755 if (dev->if_port == XCVR_10base2)
1756 /* Start the thinnet transceiver. We should really wait 50ms...*/
1757 iowrite16(StartCoax, ioaddr + EL3_CMD);
1758 if (dev->if_port != XCVR_NWAY) {
1759 EL3WINDOW(4);
1760 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1761 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1762 }
1763
1764 /* Switch to the stats window, and clear all stats by reading. */
1765 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1766 EL3WINDOW(6);
1767 for (i = 0; i < 10; i++)
1768 ioread8(ioaddr + i);
1769 ioread16(ioaddr + 10);
1770 ioread16(ioaddr + 12);
1771 /* New: On the Vortex we must also clear the BadSSD counter. */
1772 EL3WINDOW(4);
1773 ioread8(ioaddr + 12);
1774 /* ..and on the Boomerang we enable the extra statistics bits. */
1775 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1776
1777 /* Switch to register set 7 for normal use. */
1778 EL3WINDOW(7);
1779
1780 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1781 vp->cur_rx = vp->dirty_rx = 0;
1782 /* Initialize the RxEarly register as recommended. */
1783 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1784 iowrite32(0x0020, ioaddr + PktStatus);
1785 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1786 }
1787 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1788 vp->cur_tx = vp->dirty_tx = 0;
1789 if (vp->drv_flags & IS_BOOMERANG)
1790 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1791 /* Clear the Rx, Tx rings. */
1792 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1793 vp->rx_ring[i].status = 0;
1794 for (i = 0; i < TX_RING_SIZE; i++)
1795 vp->tx_skbuff[i] = NULL;
1796 iowrite32(0, ioaddr + DownListPtr);
1797 }
1798 /* Set receiver mode: presumably accept b-case and phys addr only. */
1799 set_rx_mode(dev);
1800 /* enable 802.1q tagged frames */
1801 set_8021q_mode(dev, 1);
1802 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1803
1804 // issue_and_wait(dev, SetTxStart|0x07ff);
1805 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1806 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1807 /* Allow status bits to be seen. */
1808 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1809 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1810 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1811 (vp->bus_master ? DMADone : 0);
1812 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1813 (vp->full_bus_master_rx ? 0 : RxComplete) |
1814 StatsFull | HostError | TxComplete | IntReq
1815 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1816 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1817 /* Ack all pending events, and set active indicator mask. */
1818 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1819 ioaddr + EL3_CMD);
1820 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1821 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1822 iowrite32(0x8000, vp->cb_fn_base + 4);
1823 netif_start_queue (dev);
1824 }
1825
1826 static int
1827 vortex_open(struct net_device *dev)
1828 {
1829 struct vortex_private *vp = netdev_priv(dev);
1830 int i;
1831 int retval;
1832
1833 /* Use the now-standard shared IRQ implementation. */
1834 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1835 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1836 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1837 goto out;
1838 }
1839
1840 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1841 if (vortex_debug > 2)
1842 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1843 for (i = 0; i < RX_RING_SIZE; i++) {
1844 struct sk_buff *skb;
1845 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1846 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1847 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1848 skb = dev_alloc_skb(PKT_BUF_SZ);
1849 vp->rx_skbuff[i] = skb;
1850 if (skb == NULL)
1851 break; /* Bad news! */
1852 skb->dev = dev; /* Mark as being used by this device. */
1853 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1854 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1855 }
1856 if (i != RX_RING_SIZE) {
1857 int j;
1858 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1859 for (j = 0; j < i; j++) {
1860 if (vp->rx_skbuff[j]) {
1861 dev_kfree_skb(vp->rx_skbuff[j]);
1862 vp->rx_skbuff[j] = NULL;
1863 }
1864 }
1865 retval = -ENOMEM;
1866 goto out_free_irq;
1867 }
1868 /* Wrap the ring. */
1869 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1870 }
1871
1872 vortex_up(dev);
1873 return 0;
1874
1875 out_free_irq:
1876 free_irq(dev->irq, dev);
1877 out:
1878 if (vortex_debug > 1)
1879 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1880 return retval;
1881 }
1882
1883 static void
1884 vortex_timer(unsigned long data)
1885 {
1886 struct net_device *dev = (struct net_device *)data;
1887 struct vortex_private *vp = netdev_priv(dev);
1888 void __iomem *ioaddr = vp->ioaddr;
1889 int next_tick = 60*HZ;
1890 int ok = 0;
1891 int media_status, mii_status, old_window;
1892
1893 if (vortex_debug > 2) {
1894 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1895 dev->name, media_tbl[dev->if_port].name);
1896 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1897 }
1898
1899 if (vp->medialock)
1900 goto leave_media_alone;
1901 disable_irq(dev->irq);
1902 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1903 EL3WINDOW(4);
1904 media_status = ioread16(ioaddr + Wn4_Media);
1905 switch (dev->if_port) {
1906 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1907 if (media_status & Media_LnkBeat) {
1908 netif_carrier_on(dev);
1909 ok = 1;
1910 if (vortex_debug > 1)
1911 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1912 dev->name, media_tbl[dev->if_port].name, media_status);
1913 } else {
1914 netif_carrier_off(dev);
1915 if (vortex_debug > 1) {
1916 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1917 dev->name, media_tbl[dev->if_port].name, media_status);
1918 }
1919 }
1920 break;
1921 case XCVR_MII: case XCVR_NWAY:
1922 {
1923 spin_lock_bh(&vp->lock);
1924 mii_status = mdio_read(dev, vp->phys[0], MII_BMSR);
1925 if (!(mii_status & BMSR_LSTATUS)) {
1926 /* Re-read to get actual link status */
1927 mii_status = mdio_read(dev, vp->phys[0], MII_BMSR);
1928 }
1929 ok = 1;
1930 if (vortex_debug > 2)
1931 printk(KERN_DEBUG "%s: MII transceiver has status %4.4x.\n",
1932 dev->name, mii_status);
1933 if (mii_status & BMSR_LSTATUS) {
1934 int mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1935 if (! vp->force_fd && mii_reg5 != 0xffff) {
1936 int duplex;
1937
1938 mii_reg5 &= vp->advertising;
1939 duplex = (mii_reg5&0x0100) || (mii_reg5 & 0x01C0) == 0x0040;
1940 if (vp->full_duplex != duplex) {
1941 vp->full_duplex = duplex;
1942 printk(KERN_INFO "%s: Setting %s-duplex based on MII "
1943 "#%d link partner capability of %4.4x.\n",
1944 dev->name, vp->full_duplex ? "full" : "half",
1945 vp->phys[0], mii_reg5);
1946 /* Set the full-duplex bit. */
1947 EL3WINDOW(3);
1948 iowrite16( (vp->full_duplex ? 0x20 : 0) |
1949 (vp->large_frames ? 0x40 : 0) |
1950 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1951 ioaddr + Wn3_MAC_Ctrl);
1952 if (vortex_debug > 1)
1953 printk(KERN_DEBUG "Setting duplex in Wn3_MAC_Ctrl\n");
1954 /* AKPM: bug: should reset Tx and Rx after setting Duplex. Page 180 */
1955 }
1956 }
1957 netif_carrier_on(dev);
1958 } else {
1959 netif_carrier_off(dev);
1960 }
1961 spin_unlock_bh(&vp->lock);
1962 }
1963 break;
1964 default: /* Other media types handled by Tx timeouts. */
1965 if (vortex_debug > 1)
1966 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1967 dev->name, media_tbl[dev->if_port].name, media_status);
1968 ok = 1;
1969 }
1970 if ( ! ok) {
1971 unsigned int config;
1972
1973 do {
1974 dev->if_port = media_tbl[dev->if_port].next;
1975 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1976 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1977 dev->if_port = vp->default_media;
1978 if (vortex_debug > 1)
1979 printk(KERN_DEBUG "%s: Media selection failing, using default "
1980 "%s port.\n",
1981 dev->name, media_tbl[dev->if_port].name);
1982 } else {
1983 if (vortex_debug > 1)
1984 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1985 "%s port.\n",
1986 dev->name, media_tbl[dev->if_port].name);
1987 next_tick = media_tbl[dev->if_port].wait;
1988 }
1989 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1990 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1991
1992 EL3WINDOW(3);
1993 config = ioread32(ioaddr + Wn3_Config);
1994 config = BFINS(config, dev->if_port, 20, 4);
1995 iowrite32(config, ioaddr + Wn3_Config);
1996
1997 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1998 ioaddr + EL3_CMD);
1999 if (vortex_debug > 1)
2000 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
2001 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
2002 }
2003 EL3WINDOW(old_window);
2004 enable_irq(dev->irq);
2005
2006 leave_media_alone:
2007 if (vortex_debug > 2)
2008 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
2009 dev->name, media_tbl[dev->if_port].name);
2010
2011 mod_timer(&vp->timer, RUN_AT(next_tick));
2012 if (vp->deferred)
2013 iowrite16(FakeIntr, ioaddr + EL3_CMD);
2014 return;
2015 }
2016
2017 static void vortex_tx_timeout(struct net_device *dev)
2018 {
2019 struct vortex_private *vp = netdev_priv(dev);
2020 void __iomem *ioaddr = vp->ioaddr;
2021
2022 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
2023 dev->name, ioread8(ioaddr + TxStatus),
2024 ioread16(ioaddr + EL3_STATUS));
2025 EL3WINDOW(4);
2026 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
2027 ioread16(ioaddr + Wn4_NetDiag),
2028 ioread16(ioaddr + Wn4_Media),
2029 ioread32(ioaddr + PktStatus),
2030 ioread16(ioaddr + Wn4_FIFODiag));
2031 /* Slight code bloat to be user friendly. */
2032 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
2033 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
2034 " network cable problem?\n", dev->name);
2035 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
2036 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
2037 " IRQ blocked by another device?\n", dev->name);
2038 /* Bad idea here.. but we might as well handle a few events. */
2039 {
2040 /*
2041 * Block interrupts because vortex_interrupt does a bare spin_lock()
2042 */
2043 unsigned long flags;
2044 local_irq_save(flags);
2045 if (vp->full_bus_master_tx)
2046 boomerang_interrupt(dev->irq, dev, NULL);
2047 else
2048 vortex_interrupt(dev->irq, dev, NULL);
2049 local_irq_restore(flags);
2050 }
2051 }
2052
2053 if (vortex_debug > 0)
2054 dump_tx_ring(dev);
2055
2056 issue_and_wait(dev, TxReset);
2057
2058 vp->stats.tx_errors++;
2059 if (vp->full_bus_master_tx) {
2060 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2061 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
2062 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2063 ioaddr + DownListPtr);
2064 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2065 netif_wake_queue (dev);
2066 if (vp->drv_flags & IS_BOOMERANG)
2067 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2068 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2069 } else {
2070 vp->stats.tx_dropped++;
2071 netif_wake_queue(dev);
2072 }
2073
2074 /* Issue Tx Enable */
2075 iowrite16(TxEnable, ioaddr + EL3_CMD);
2076 dev->trans_start = jiffies;
2077
2078 /* Switch to register set 7 for normal use. */
2079 EL3WINDOW(7);
2080 }
2081
2082 /*
2083 * Handle uncommon interrupt sources. This is a separate routine to minimize
2084 * the cache impact.
2085 */
2086 static void
2087 vortex_error(struct net_device *dev, int status)
2088 {
2089 struct vortex_private *vp = netdev_priv(dev);
2090 void __iomem *ioaddr = vp->ioaddr;
2091 int do_tx_reset = 0, reset_mask = 0;
2092 unsigned char tx_status = 0;
2093
2094 if (vortex_debug > 2) {
2095 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2096 }
2097
2098 if (status & TxComplete) { /* Really "TxError" for us. */
2099 tx_status = ioread8(ioaddr + TxStatus);
2100 /* Presumably a tx-timeout. We must merely re-enable. */
2101 if (vortex_debug > 2
2102 || (tx_status != 0x88 && vortex_debug > 0)) {
2103 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2104 dev->name, tx_status);
2105 if (tx_status == 0x82) {
2106 printk(KERN_ERR "Probably a duplex mismatch. See "
2107 "Documentation/networking/vortex.txt\n");
2108 }
2109 dump_tx_ring(dev);
2110 }
2111 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2112 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2113 iowrite8(0, ioaddr + TxStatus);
2114 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2115 do_tx_reset = 1;
2116 } else if (tx_status & 0x08) { /* maxCollisions */
2117 vp->xstats.tx_max_collisions++;
2118 if (vp->drv_flags & MAX_COLLISION_RESET) {
2119 do_tx_reset = 1;
2120 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2121 }
2122 } else { /* Merely re-enable the transmitter. */
2123 iowrite16(TxEnable, ioaddr + EL3_CMD);
2124 }
2125 }
2126
2127 if (status & RxEarly) { /* Rx early is unused. */
2128 vortex_rx(dev);
2129 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2130 }
2131 if (status & StatsFull) { /* Empty statistics. */
2132 static int DoneDidThat;
2133 if (vortex_debug > 4)
2134 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2135 update_stats(ioaddr, dev);
2136 /* HACK: Disable statistics as an interrupt source. */
2137 /* This occurs when we have the wrong media type! */
2138 if (DoneDidThat == 0 &&
2139 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2140 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2141 "stats as an interrupt source.\n", dev->name);
2142 EL3WINDOW(5);
2143 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2144 vp->intr_enable &= ~StatsFull;
2145 EL3WINDOW(7);
2146 DoneDidThat++;
2147 }
2148 }
2149 if (status & IntReq) { /* Restore all interrupt sources. */
2150 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2151 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2152 }
2153 if (status & HostError) {
2154 u16 fifo_diag;
2155 EL3WINDOW(4);
2156 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2157 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2158 dev->name, fifo_diag);
2159 /* Adapter failure requires Tx/Rx reset and reinit. */
2160 if (vp->full_bus_master_tx) {
2161 int bus_status = ioread32(ioaddr + PktStatus);
2162 /* 0x80000000 PCI master abort. */
2163 /* 0x40000000 PCI target abort. */
2164 if (vortex_debug)
2165 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2166
2167 /* In this case, blow the card away */
2168 /* Must not enter D3 or we can't legally issue the reset! */
2169 vortex_down(dev, 0);
2170 issue_and_wait(dev, TotalReset | 0xff);
2171 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2172 } else if (fifo_diag & 0x0400)
2173 do_tx_reset = 1;
2174 if (fifo_diag & 0x3000) {
2175 /* Reset Rx fifo and upload logic */
2176 issue_and_wait(dev, RxReset|0x07);
2177 /* Set the Rx filter to the current state. */
2178 set_rx_mode(dev);
2179 /* enable 802.1q VLAN tagged frames */
2180 set_8021q_mode(dev, 1);
2181 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2182 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2183 }
2184 }
2185
2186 if (do_tx_reset) {
2187 issue_and_wait(dev, TxReset|reset_mask);
2188 iowrite16(TxEnable, ioaddr + EL3_CMD);
2189 if (!vp->full_bus_master_tx)
2190 netif_wake_queue(dev);
2191 }
2192 }
2193
2194 static int
2195 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2196 {
2197 struct vortex_private *vp = netdev_priv(dev);
2198 void __iomem *ioaddr = vp->ioaddr;
2199
2200 /* Put out the doubleword header... */
2201 iowrite32(skb->len, ioaddr + TX_FIFO);
2202 if (vp->bus_master) {
2203 /* Set the bus-master controller to transfer the packet. */
2204 int len = (skb->len + 3) & ~3;
2205 iowrite32( vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2206 ioaddr + Wn7_MasterAddr);
2207 iowrite16(len, ioaddr + Wn7_MasterLen);
2208 vp->tx_skb = skb;
2209 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2210 /* netif_wake_queue() will be called at the DMADone interrupt. */
2211 } else {
2212 /* ... and the packet rounded to a doubleword. */
2213 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2214 dev_kfree_skb (skb);
2215 if (ioread16(ioaddr + TxFree) > 1536) {
2216 netif_start_queue (dev); /* AKPM: redundant? */
2217 } else {
2218 /* Interrupt us when the FIFO has room for max-sized packet. */
2219 netif_stop_queue(dev);
2220 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2221 }
2222 }
2223
2224 dev->trans_start = jiffies;
2225
2226 /* Clear the Tx status stack. */
2227 {
2228 int tx_status;
2229 int i = 32;
2230
2231 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2232 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2233 if (vortex_debug > 2)
2234 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2235 dev->name, tx_status);
2236 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2237 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2238 if (tx_status & 0x30) {
2239 issue_and_wait(dev, TxReset);
2240 }
2241 iowrite16(TxEnable, ioaddr + EL3_CMD);
2242 }
2243 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2244 }
2245 }
2246 return 0;
2247 }
2248
2249 static int
2250 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2251 {
2252 struct vortex_private *vp = netdev_priv(dev);
2253 void __iomem *ioaddr = vp->ioaddr;
2254 /* Calculate the next Tx descriptor entry. */
2255 int entry = vp->cur_tx % TX_RING_SIZE;
2256 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2257 unsigned long flags;
2258
2259 if (vortex_debug > 6) {
2260 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2261 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2262 dev->name, vp->cur_tx);
2263 }
2264
2265 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2266 if (vortex_debug > 0)
2267 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2268 dev->name);
2269 netif_stop_queue(dev);
2270 return 1;
2271 }
2272
2273 vp->tx_skbuff[entry] = skb;
2274
2275 vp->tx_ring[entry].next = 0;
2276 #if DO_ZEROCOPY
2277 if (skb->ip_summed != CHECKSUM_HW)
2278 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2279 else
2280 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2281
2282 if (!skb_shinfo(skb)->nr_frags) {
2283 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2284 skb->len, PCI_DMA_TODEVICE));
2285 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2286 } else {
2287 int i;
2288
2289 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2290 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2291 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2292
2293 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2294 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2295
2296 vp->tx_ring[entry].frag[i+1].addr =
2297 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2298 (void*)page_address(frag->page) + frag->page_offset,
2299 frag->size, PCI_DMA_TODEVICE));
2300
2301 if (i == skb_shinfo(skb)->nr_frags-1)
2302 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2303 else
2304 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2305 }
2306 }
2307 #else
2308 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2309 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2310 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2311 #endif
2312
2313 spin_lock_irqsave(&vp->lock, flags);
2314 /* Wait for the stall to complete. */
2315 issue_and_wait(dev, DownStall);
2316 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2317 if (ioread32(ioaddr + DownListPtr) == 0) {
2318 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2319 vp->queued_packet++;
2320 }
2321
2322 vp->cur_tx++;
2323 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2324 netif_stop_queue (dev);
2325 } else { /* Clear previous interrupt enable. */
2326 #if defined(tx_interrupt_mitigation)
2327 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2328 * were selected, this would corrupt DN_COMPLETE. No?
2329 */
2330 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2331 #endif
2332 }
2333 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2334 spin_unlock_irqrestore(&vp->lock, flags);
2335 dev->trans_start = jiffies;
2336 return 0;
2337 }
2338
2339 /* The interrupt handler does all of the Rx thread work and cleans up
2340 after the Tx thread. */
2341
2342 /*
2343 * This is the ISR for the vortex series chips.
2344 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2345 */
2346
2347 static irqreturn_t
2348 vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2349 {
2350 struct net_device *dev = dev_id;
2351 struct vortex_private *vp = netdev_priv(dev);
2352 void __iomem *ioaddr;
2353 int status;
2354 int work_done = max_interrupt_work;
2355 int handled = 0;
2356
2357 ioaddr = vp->ioaddr;
2358 spin_lock(&vp->lock);
2359
2360 status = ioread16(ioaddr + EL3_STATUS);
2361
2362 if (vortex_debug > 6)
2363 printk("vortex_interrupt(). status=0x%4x\n", status);
2364
2365 if ((status & IntLatch) == 0)
2366 goto handler_exit; /* No interrupt: shared IRQs cause this */
2367 handled = 1;
2368
2369 if (status & IntReq) {
2370 status |= vp->deferred;
2371 vp->deferred = 0;
2372 }
2373
2374 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2375 goto handler_exit;
2376
2377 if (vortex_debug > 4)
2378 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2379 dev->name, status, ioread8(ioaddr + Timer));
2380
2381 do {
2382 if (vortex_debug > 5)
2383 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2384 dev->name, status);
2385 if (status & RxComplete)
2386 vortex_rx(dev);
2387
2388 if (status & TxAvailable) {
2389 if (vortex_debug > 5)
2390 printk(KERN_DEBUG " TX room bit was handled.\n");
2391 /* There's room in the FIFO for a full-sized packet. */
2392 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2393 netif_wake_queue (dev);
2394 }
2395
2396 if (status & DMADone) {
2397 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2398 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2399 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2400 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2401 if (ioread16(ioaddr + TxFree) > 1536) {
2402 /*
2403 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2404 * insufficient FIFO room, the TxAvailable test will succeed and call
2405 * netif_wake_queue()
2406 */
2407 netif_wake_queue(dev);
2408 } else { /* Interrupt when FIFO has room for max-sized packet. */
2409 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2410 netif_stop_queue(dev);
2411 }
2412 }
2413 }
2414 /* Check for all uncommon interrupts at once. */
2415 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2416 if (status == 0xffff)
2417 break;
2418 vortex_error(dev, status);
2419 }
2420
2421 if (--work_done < 0) {
2422 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2423 "%4.4x.\n", dev->name, status);
2424 /* Disable all pending interrupts. */
2425 do {
2426 vp->deferred |= status;
2427 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2428 ioaddr + EL3_CMD);
2429 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2430 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2431 /* The timer will reenable interrupts. */
2432 mod_timer(&vp->timer, jiffies + 1*HZ);
2433 break;
2434 }
2435 /* Acknowledge the IRQ. */
2436 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2437 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2438
2439 if (vortex_debug > 4)
2440 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2441 dev->name, status);
2442 handler_exit:
2443 spin_unlock(&vp->lock);
2444 return IRQ_RETVAL(handled);
2445 }
2446
2447 /*
2448 * This is the ISR for the boomerang series chips.
2449 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2450 */
2451
2452 static irqreturn_t
2453 boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2454 {
2455 struct net_device *dev = dev_id;
2456 struct vortex_private *vp = netdev_priv(dev);
2457 void __iomem *ioaddr;
2458 int status;
2459 int work_done = max_interrupt_work;
2460
2461 ioaddr = vp->ioaddr;
2462
2463 /*
2464 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2465 * and boomerang_start_xmit
2466 */
2467 spin_lock(&vp->lock);
2468
2469 status = ioread16(ioaddr + EL3_STATUS);
2470
2471 if (vortex_debug > 6)
2472 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2473
2474 if ((status & IntLatch) == 0)
2475 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2476
2477 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2478 if (vortex_debug > 1)
2479 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2480 goto handler_exit;
2481 }
2482
2483 if (status & IntReq) {
2484 status |= vp->deferred;
2485 vp->deferred = 0;
2486 }
2487
2488 if (vortex_debug > 4)
2489 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2490 dev->name, status, ioread8(ioaddr + Timer));
2491 do {
2492 if (vortex_debug > 5)
2493 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2494 dev->name, status);
2495 if (status & UpComplete) {
2496 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2497 if (vortex_debug > 5)
2498 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2499 boomerang_rx(dev);
2500 }
2501
2502 if (status & DownComplete) {
2503 unsigned int dirty_tx = vp->dirty_tx;
2504
2505 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2506 while (vp->cur_tx - dirty_tx > 0) {
2507 int entry = dirty_tx % TX_RING_SIZE;
2508 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2509 if (ioread32(ioaddr + DownListPtr) ==
2510 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2511 break; /* It still hasn't been processed. */
2512 #else
2513 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2514 break; /* It still hasn't been processed. */
2515 #endif
2516
2517 if (vp->tx_skbuff[entry]) {
2518 struct sk_buff *skb = vp->tx_skbuff[entry];
2519 #if DO_ZEROCOPY
2520 int i;
2521 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2522 pci_unmap_single(VORTEX_PCI(vp),
2523 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2524 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2525 PCI_DMA_TODEVICE);
2526 #else
2527 pci_unmap_single(VORTEX_PCI(vp),
2528 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2529 #endif
2530 dev_kfree_skb_irq(skb);
2531 vp->tx_skbuff[entry] = NULL;
2532 } else {
2533 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2534 }
2535 /* vp->stats.tx_packets++; Counted below. */
2536 dirty_tx++;
2537 }
2538 vp->dirty_tx = dirty_tx;
2539 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2540 if (vortex_debug > 6)
2541 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2542 netif_wake_queue (dev);
2543 }
2544 }
2545
2546 /* Check for all uncommon interrupts at once. */
2547 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2548 vortex_error(dev, status);
2549
2550 if (--work_done < 0) {
2551 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2552 "%4.4x.\n", dev->name, status);
2553 /* Disable all pending interrupts. */
2554 do {
2555 vp->deferred |= status;
2556 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2557 ioaddr + EL3_CMD);
2558 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2559 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2560 /* The timer will reenable interrupts. */
2561 mod_timer(&vp->timer, jiffies + 1*HZ);
2562 break;
2563 }
2564 /* Acknowledge the IRQ. */
2565 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2566 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2567 iowrite32(0x8000, vp->cb_fn_base + 4);
2568
2569 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2570
2571 if (vortex_debug > 4)
2572 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2573 dev->name, status);
2574 handler_exit:
2575 spin_unlock(&vp->lock);
2576 return IRQ_HANDLED;
2577 }
2578
2579 static int vortex_rx(struct net_device *dev)
2580 {
2581 struct vortex_private *vp = netdev_priv(dev);
2582 void __iomem *ioaddr = vp->ioaddr;
2583 int i;
2584 short rx_status;
2585
2586 if (vortex_debug > 5)
2587 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2588 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2589 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2590 if (rx_status & 0x4000) { /* Error, update stats. */
2591 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2592 if (vortex_debug > 2)
2593 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2594 vp->stats.rx_errors++;
2595 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2596 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2597 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2598 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2599 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2600 } else {
2601 /* The packet length: up to 4.5K!. */
2602 int pkt_len = rx_status & 0x1fff;
2603 struct sk_buff *skb;
2604
2605 skb = dev_alloc_skb(pkt_len + 5);
2606 if (vortex_debug > 4)
2607 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2608 pkt_len, rx_status);
2609 if (skb != NULL) {
2610 skb->dev = dev;
2611 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2612 /* 'skb_put()' points to the start of sk_buff data area. */
2613 if (vp->bus_master &&
2614 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2615 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2616 pkt_len, PCI_DMA_FROMDEVICE);
2617 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2618 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2619 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2620 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2621 ;
2622 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2623 } else {
2624 ioread32_rep(ioaddr + RX_FIFO,
2625 skb_put(skb, pkt_len),
2626 (pkt_len + 3) >> 2);
2627 }
2628 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2629 skb->protocol = eth_type_trans(skb, dev);
2630 netif_rx(skb);
2631 dev->last_rx = jiffies;
2632 vp->stats.rx_packets++;
2633 /* Wait a limited time to go to next packet. */
2634 for (i = 200; i >= 0; i--)
2635 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2636 break;
2637 continue;
2638 } else if (vortex_debug > 0)
2639 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2640 "size %d.\n", dev->name, pkt_len);
2641 vp->stats.rx_dropped++;
2642 }
2643 issue_and_wait(dev, RxDiscard);
2644 }
2645
2646 return 0;
2647 }
2648
2649 static int
2650 boomerang_rx(struct net_device *dev)
2651 {
2652 struct vortex_private *vp = netdev_priv(dev);
2653 int entry = vp->cur_rx % RX_RING_SIZE;
2654 void __iomem *ioaddr = vp->ioaddr;
2655 int rx_status;
2656 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2657
2658 if (vortex_debug > 5)
2659 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2660
2661 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2662 if (--rx_work_limit < 0)
2663 break;
2664 if (rx_status & RxDError) { /* Error, update stats. */
2665 unsigned char rx_error = rx_status >> 16;
2666 if (vortex_debug > 2)
2667 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2668 vp->stats.rx_errors++;
2669 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2670 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2671 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2672 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2673 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2674 } else {
2675 /* The packet length: up to 4.5K!. */
2676 int pkt_len = rx_status & 0x1fff;
2677 struct sk_buff *skb;
2678 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2679
2680 if (vortex_debug > 4)
2681 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2682 pkt_len, rx_status);
2683
2684 /* Check if the packet is long enough to just accept without
2685 copying to a properly sized skbuff. */
2686 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2687 skb->dev = dev;
2688 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2689 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2690 /* 'skb_put()' points to the start of sk_buff data area. */
2691 memcpy(skb_put(skb, pkt_len),
2692 vp->rx_skbuff[entry]->data,
2693 pkt_len);
2694 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2695 vp->rx_copy++;
2696 } else {
2697 /* Pass up the skbuff already on the Rx ring. */
2698 skb = vp->rx_skbuff[entry];
2699 vp->rx_skbuff[entry] = NULL;
2700 skb_put(skb, pkt_len);
2701 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2702 vp->rx_nocopy++;
2703 }
2704 skb->protocol = eth_type_trans(skb, dev);
2705 { /* Use hardware checksum info. */
2706 int csum_bits = rx_status & 0xee000000;
2707 if (csum_bits &&
2708 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2709 csum_bits == (IPChksumValid | UDPChksumValid))) {
2710 skb->ip_summed = CHECKSUM_UNNECESSARY;
2711 vp->rx_csumhits++;
2712 }
2713 }
2714 netif_rx(skb);
2715 dev->last_rx = jiffies;
2716 vp->stats.rx_packets++;
2717 }
2718 entry = (++vp->cur_rx) % RX_RING_SIZE;
2719 }
2720 /* Refill the Rx ring buffers. */
2721 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2722 struct sk_buff *skb;
2723 entry = vp->dirty_rx % RX_RING_SIZE;
2724 if (vp->rx_skbuff[entry] == NULL) {
2725 skb = dev_alloc_skb(PKT_BUF_SZ);
2726 if (skb == NULL) {
2727 static unsigned long last_jif;
2728 if (time_after(jiffies, last_jif + 10 * HZ)) {
2729 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2730 last_jif = jiffies;
2731 }
2732 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2733 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2734 break; /* Bad news! */
2735 }
2736 skb->dev = dev; /* Mark as being used by this device. */
2737 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2738 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2739 vp->rx_skbuff[entry] = skb;
2740 }
2741 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2742 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2743 }
2744 return 0;
2745 }
2746
2747 /*
2748 * If we've hit a total OOM refilling the Rx ring we poll once a second
2749 * for some memory. Otherwise there is no way to restart the rx process.
2750 */
2751 static void
2752 rx_oom_timer(unsigned long arg)
2753 {
2754 struct net_device *dev = (struct net_device *)arg;
2755 struct vortex_private *vp = netdev_priv(dev);
2756
2757 spin_lock_irq(&vp->lock);
2758 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2759 boomerang_rx(dev);
2760 if (vortex_debug > 1) {
2761 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2762 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2763 }
2764 spin_unlock_irq(&vp->lock);
2765 }
2766
2767 static void
2768 vortex_down(struct net_device *dev, int final_down)
2769 {
2770 struct vortex_private *vp = netdev_priv(dev);
2771 void __iomem *ioaddr = vp->ioaddr;
2772
2773 netif_stop_queue (dev);
2774
2775 del_timer_sync(&vp->rx_oom_timer);
2776 del_timer_sync(&vp->timer);
2777
2778 /* Turn off statistics ASAP. We update vp->stats below. */
2779 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2780
2781 /* Disable the receiver and transmitter. */
2782 iowrite16(RxDisable, ioaddr + EL3_CMD);
2783 iowrite16(TxDisable, ioaddr + EL3_CMD);
2784
2785 /* Disable receiving 802.1q tagged frames */
2786 set_8021q_mode(dev, 0);
2787
2788 if (dev->if_port == XCVR_10base2)
2789 /* Turn off thinnet power. Green! */
2790 iowrite16(StopCoax, ioaddr + EL3_CMD);
2791
2792 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2793
2794 update_stats(ioaddr, dev);
2795 if (vp->full_bus_master_rx)
2796 iowrite32(0, ioaddr + UpListPtr);
2797 if (vp->full_bus_master_tx)
2798 iowrite32(0, ioaddr + DownListPtr);
2799
2800 if (final_down && VORTEX_PCI(vp)) {
2801 vp->pm_state_valid = 1;
2802 pci_save_state(VORTEX_PCI(vp));
2803 acpi_set_WOL(dev);
2804 }
2805 }
2806
2807 static int
2808 vortex_close(struct net_device *dev)
2809 {
2810 struct vortex_private *vp = netdev_priv(dev);
2811 void __iomem *ioaddr = vp->ioaddr;
2812 int i;
2813
2814 if (netif_device_present(dev))
2815 vortex_down(dev, 1);
2816
2817 if (vortex_debug > 1) {
2818 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2819 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2820 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2821 " tx_queued %d Rx pre-checksummed %d.\n",
2822 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2823 }
2824
2825 #if DO_ZEROCOPY
2826 if (vp->rx_csumhits &&
2827 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2828 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2829 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2830 "not using them!\n", dev->name);
2831 }
2832 #endif
2833
2834 free_irq(dev->irq, dev);
2835
2836 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2837 for (i = 0; i < RX_RING_SIZE; i++)
2838 if (vp->rx_skbuff[i]) {
2839 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2840 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2841 dev_kfree_skb(vp->rx_skbuff[i]);
2842 vp->rx_skbuff[i] = NULL;
2843 }
2844 }
2845 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2846 for (i = 0; i < TX_RING_SIZE; i++) {
2847 if (vp->tx_skbuff[i]) {
2848 struct sk_buff *skb = vp->tx_skbuff[i];
2849 #if DO_ZEROCOPY
2850 int k;
2851
2852 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2853 pci_unmap_single(VORTEX_PCI(vp),
2854 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2855 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2856 PCI_DMA_TODEVICE);
2857 #else
2858 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2859 #endif
2860 dev_kfree_skb(skb);
2861 vp->tx_skbuff[i] = NULL;
2862 }
2863 }
2864 }
2865
2866 return 0;
2867 }
2868
2869 static void
2870 dump_tx_ring(struct net_device *dev)
2871 {
2872 if (vortex_debug > 0) {
2873 struct vortex_private *vp = netdev_priv(dev);
2874 void __iomem *ioaddr = vp->ioaddr;
2875
2876 if (vp->full_bus_master_tx) {
2877 int i;
2878 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2879
2880 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2881 vp->full_bus_master_tx,
2882 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2883 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2884 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2885 ioread32(ioaddr + DownListPtr),
2886 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2887 issue_and_wait(dev, DownStall);
2888 for (i = 0; i < TX_RING_SIZE; i++) {
2889 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2890 &vp->tx_ring[i],
2891 #if DO_ZEROCOPY
2892 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2893 #else
2894 le32_to_cpu(vp->tx_ring[i].length),
2895 #endif
2896 le32_to_cpu(vp->tx_ring[i].status));
2897 }
2898 if (!stalled)
2899 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2900 }
2901 }
2902 }
2903
2904 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2905 {
2906 struct vortex_private *vp = netdev_priv(dev);
2907 void __iomem *ioaddr = vp->ioaddr;
2908 unsigned long flags;
2909
2910 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2911 spin_lock_irqsave (&vp->lock, flags);
2912 update_stats(ioaddr, dev);
2913 spin_unlock_irqrestore (&vp->lock, flags);
2914 }
2915 return &vp->stats;
2916 }
2917
2918 /* Update statistics.
2919 Unlike with the EL3 we need not worry about interrupts changing
2920 the window setting from underneath us, but we must still guard
2921 against a race condition with a StatsUpdate interrupt updating the
2922 table. This is done by checking that the ASM (!) code generated uses
2923 atomic updates with '+='.
2924 */
2925 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2926 {
2927 struct vortex_private *vp = netdev_priv(dev);
2928 int old_window = ioread16(ioaddr + EL3_CMD);
2929
2930 if (old_window == 0xffff) /* Chip suspended or ejected. */
2931 return;
2932 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2933 /* Switch to the stats window, and read everything. */
2934 EL3WINDOW(6);
2935 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2936 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2937 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2938 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2939 vp->stats.tx_packets += ioread8(ioaddr + 6);
2940 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2941 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2942 /* Don't bother with register 9, an extension of registers 6&7.
2943 If we do use the 6&7 values the atomic update assumption above
2944 is invalid. */
2945 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2946 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2947 /* Extra stats for get_ethtool_stats() */
2948 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2949 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2950 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2951 EL3WINDOW(4);
2952 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2953
2954 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2955 + vp->xstats.tx_single_collisions
2956 + vp->xstats.tx_max_collisions;
2957
2958 {
2959 u8 up = ioread8(ioaddr + 13);
2960 vp->stats.rx_bytes += (up & 0x0f) << 16;
2961 vp->stats.tx_bytes += (up & 0xf0) << 12;
2962 }
2963
2964 EL3WINDOW(old_window >> 13);
2965 return;
2966 }
2967
2968 static int vortex_nway_reset(struct net_device *dev)
2969 {
2970 struct vortex_private *vp = netdev_priv(dev);
2971 void __iomem *ioaddr = vp->ioaddr;
2972 unsigned long flags;
2973 int rc;
2974
2975 spin_lock_irqsave(&vp->lock, flags);
2976 EL3WINDOW(4);
2977 rc = mii_nway_restart(&vp->mii);
2978 spin_unlock_irqrestore(&vp->lock, flags);
2979 return rc;
2980 }
2981
2982 static u32 vortex_get_link(struct net_device *dev)
2983 {
2984 struct vortex_private *vp = netdev_priv(dev);
2985 void __iomem *ioaddr = vp->ioaddr;
2986 unsigned long flags;
2987 int rc;
2988
2989 spin_lock_irqsave(&vp->lock, flags);
2990 EL3WINDOW(4);
2991 rc = mii_link_ok(&vp->mii);
2992 spin_unlock_irqrestore(&vp->lock, flags);
2993 return rc;
2994 }
2995
2996 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2997 {
2998 struct vortex_private *vp = netdev_priv(dev);
2999 void __iomem *ioaddr = vp->ioaddr;
3000 unsigned long flags;
3001 int rc;
3002
3003 spin_lock_irqsave(&vp->lock, flags);
3004 EL3WINDOW(4);
3005 rc = mii_ethtool_gset(&vp->mii, cmd);
3006 spin_unlock_irqrestore(&vp->lock, flags);
3007 return rc;
3008 }
3009
3010 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3011 {
3012 struct vortex_private *vp = netdev_priv(dev);
3013 void __iomem *ioaddr = vp->ioaddr;
3014 unsigned long flags;
3015 int rc;
3016
3017 spin_lock_irqsave(&vp->lock, flags);
3018 EL3WINDOW(4);
3019 rc = mii_ethtool_sset(&vp->mii, cmd);
3020 spin_unlock_irqrestore(&vp->lock, flags);
3021 return rc;
3022 }
3023
3024 static u32 vortex_get_msglevel(struct net_device *dev)
3025 {
3026 return vortex_debug;
3027 }
3028
3029 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
3030 {
3031 vortex_debug = dbg;
3032 }
3033
3034 static int vortex_get_stats_count(struct net_device *dev)
3035 {
3036 return VORTEX_NUM_STATS;
3037 }
3038
3039 static void vortex_get_ethtool_stats(struct net_device *dev,
3040 struct ethtool_stats *stats, u64 *data)
3041 {
3042 struct vortex_private *vp = netdev_priv(dev);
3043 void __iomem *ioaddr = vp->ioaddr;
3044 unsigned long flags;
3045
3046 spin_lock_irqsave(&vp->lock, flags);
3047 update_stats(ioaddr, dev);
3048 spin_unlock_irqrestore(&vp->lock, flags);
3049
3050 data[0] = vp->xstats.tx_deferred;
3051 data[1] = vp->xstats.tx_max_collisions;
3052 data[2] = vp->xstats.tx_multiple_collisions;
3053 data[3] = vp->xstats.tx_single_collisions;
3054 data[4] = vp->xstats.rx_bad_ssd;
3055 }
3056
3057
3058 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
3059 {
3060 switch (stringset) {
3061 case ETH_SS_STATS:
3062 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
3063 break;
3064 default:
3065 WARN_ON(1);
3066 break;
3067 }
3068 }
3069
3070 static void vortex_get_drvinfo(struct net_device *dev,
3071 struct ethtool_drvinfo *info)
3072 {
3073 struct vortex_private *vp = netdev_priv(dev);
3074
3075 strcpy(info->driver, DRV_NAME);
3076 strcpy(info->version, DRV_VERSION);
3077 if (VORTEX_PCI(vp)) {
3078 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3079 } else {
3080 if (VORTEX_EISA(vp))
3081 sprintf(info->bus_info, vp->gendev->bus_id);
3082 else
3083 sprintf(info->bus_info, "EISA 0x%lx %d",
3084 dev->base_addr, dev->irq);
3085 }
3086 }
3087
3088 static struct ethtool_ops vortex_ethtool_ops = {
3089 .get_drvinfo = vortex_get_drvinfo,
3090 .get_strings = vortex_get_strings,
3091 .get_msglevel = vortex_get_msglevel,
3092 .set_msglevel = vortex_set_msglevel,
3093 .get_ethtool_stats = vortex_get_ethtool_stats,
3094 .get_stats_count = vortex_get_stats_count,
3095 .get_settings = vortex_get_settings,
3096 .set_settings = vortex_set_settings,
3097 .get_link = vortex_get_link,
3098 .nway_reset = vortex_nway_reset,
3099 .get_perm_addr = ethtool_op_get_perm_addr,
3100 };
3101
3102 #ifdef CONFIG_PCI
3103 /*
3104 * Must power the device up to do MDIO operations
3105 */
3106 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3107 {
3108 int err;
3109 struct vortex_private *vp = netdev_priv(dev);
3110 void __iomem *ioaddr = vp->ioaddr;
3111 unsigned long flags;
3112 int state = 0;
3113
3114 if(VORTEX_PCI(vp))
3115 state = VORTEX_PCI(vp)->current_state;
3116
3117 /* The kernel core really should have pci_get_power_state() */
3118
3119 if(state != 0)
3120 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3121 spin_lock_irqsave(&vp->lock, flags);
3122 EL3WINDOW(4);
3123 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3124 spin_unlock_irqrestore(&vp->lock, flags);
3125 if(state != 0)
3126 pci_set_power_state(VORTEX_PCI(vp), state);
3127
3128 return err;
3129 }
3130 #endif
3131
3132
3133 /* Pre-Cyclone chips have no documented multicast filter, so the only
3134 multicast setting is to receive all multicast frames. At least
3135 the chip has a very clean way to set the mode, unlike many others. */
3136 static void set_rx_mode(struct net_device *dev)
3137 {
3138 struct vortex_private *vp = netdev_priv(dev);
3139 void __iomem *ioaddr = vp->ioaddr;
3140 int new_mode;
3141
3142 if (dev->flags & IFF_PROMISC) {
3143 if (vortex_debug > 0)
3144 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3145 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3146 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3147 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3148 } else
3149 new_mode = SetRxFilter | RxStation | RxBroadcast;
3150
3151 iowrite16(new_mode, ioaddr + EL3_CMD);
3152 }
3153
3154 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3155 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3156 Note that this must be done after each RxReset due to some backwards
3157 compatibility logic in the Cyclone and Tornado ASICs */
3158
3159 /* The Ethernet Type used for 802.1q tagged frames */
3160 #define VLAN_ETHER_TYPE 0x8100
3161
3162 static void set_8021q_mode(struct net_device *dev, int enable)
3163 {
3164 struct vortex_private *vp = netdev_priv(dev);
3165 void __iomem *ioaddr = vp->ioaddr;
3166 int old_window = ioread16(ioaddr + EL3_CMD);
3167 int mac_ctrl;
3168
3169 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3170 /* cyclone and tornado chipsets can recognize 802.1q
3171 * tagged frames and treat them correctly */
3172
3173 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3174 if (enable)
3175 max_pkt_size += 4; /* 802.1Q VLAN tag */
3176
3177 EL3WINDOW(3);
3178 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3179
3180 /* set VlanEtherType to let the hardware checksumming
3181 treat tagged frames correctly */
3182 EL3WINDOW(7);
3183 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3184 } else {
3185 /* on older cards we have to enable large frames */
3186
3187 vp->large_frames = dev->mtu > 1500 || enable;
3188
3189 EL3WINDOW(3);
3190 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3191 if (vp->large_frames)
3192 mac_ctrl |= 0x40;
3193 else
3194 mac_ctrl &= ~0x40;
3195 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3196 }
3197
3198 EL3WINDOW(old_window);
3199 }
3200 #else
3201
3202 static void set_8021q_mode(struct net_device *dev, int enable)
3203 {
3204 }
3205
3206
3207 #endif
3208
3209 /* MII transceiver control section.
3210 Read and write the MII registers using software-generated serial
3211 MDIO protocol. See the MII specifications or DP83840A data sheet
3212 for details. */
3213
3214 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3215 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3216 "overclocking" issues. */
3217 #define mdio_delay() ioread32(mdio_addr)
3218
3219 #define MDIO_SHIFT_CLK 0x01
3220 #define MDIO_DIR_WRITE 0x04
3221 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3222 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3223 #define MDIO_DATA_READ 0x02
3224 #define MDIO_ENB_IN 0x00
3225
3226 /* Generate the preamble required for initial synchronization and
3227 a few older transceivers. */
3228 static void mdio_sync(void __iomem *ioaddr, int bits)
3229 {
3230 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3231
3232 /* Establish sync by sending at least 32 logic ones. */
3233 while (-- bits >= 0) {
3234 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3235 mdio_delay();
3236 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3237 mdio_delay();
3238 }
3239 }
3240
3241 static int mdio_read(struct net_device *dev, int phy_id, int location)
3242 {
3243 int i;
3244 struct vortex_private *vp = netdev_priv(dev);
3245 void __iomem *ioaddr = vp->ioaddr;
3246 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3247 unsigned int retval = 0;
3248 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3249
3250 if (mii_preamble_required)
3251 mdio_sync(ioaddr, 32);
3252
3253 /* Shift the read command bits out. */
3254 for (i = 14; i >= 0; i--) {
3255 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3256 iowrite16(dataval, mdio_addr);
3257 mdio_delay();
3258 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3259 mdio_delay();
3260 }
3261 /* Read the two transition, 16 data, and wire-idle bits. */
3262 for (i = 19; i > 0; i--) {
3263 iowrite16(MDIO_ENB_IN, mdio_addr);
3264 mdio_delay();
3265 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3266 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3267 mdio_delay();
3268 }
3269 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3270 }
3271
3272 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3273 {
3274 struct vortex_private *vp = netdev_priv(dev);
3275 void __iomem *ioaddr = vp->ioaddr;
3276 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3277 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3278 int i;
3279
3280 if (mii_preamble_required)
3281 mdio_sync(ioaddr, 32);
3282
3283 /* Shift the command bits out. */
3284 for (i = 31; i >= 0; i--) {
3285 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3286 iowrite16(dataval, mdio_addr);
3287 mdio_delay();
3288 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3289 mdio_delay();
3290 }
3291 /* Leave the interface idle. */
3292 for (i = 1; i >= 0; i--) {
3293 iowrite16(MDIO_ENB_IN, mdio_addr);
3294 mdio_delay();
3295 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3296 mdio_delay();
3297 }
3298 return;
3299 }
3300 \f
3301 /* ACPI: Advanced Configuration and Power Interface. */
3302 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3303 static void acpi_set_WOL(struct net_device *dev)
3304 {
3305 struct vortex_private *vp = netdev_priv(dev);
3306 void __iomem *ioaddr = vp->ioaddr;
3307
3308 if (vp->enable_wol) {
3309 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3310 EL3WINDOW(7);
3311 iowrite16(2, ioaddr + 0x0c);
3312 /* The RxFilter must accept the WOL frames. */
3313 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3314 iowrite16(RxEnable, ioaddr + EL3_CMD);
3315
3316 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3317
3318 /* Change the power state to D3; RxEnable doesn't take effect. */
3319 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3320 }
3321 }
3322
3323
3324 static void __devexit vortex_remove_one (struct pci_dev *pdev)
3325 {
3326 struct net_device *dev = pci_get_drvdata(pdev);
3327 struct vortex_private *vp;
3328
3329 if (!dev) {
3330 printk("vortex_remove_one called for Compaq device!\n");
3331 BUG();
3332 }
3333
3334 vp = netdev_priv(dev);
3335
3336 if (vp->cb_fn_base)
3337 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3338
3339 unregister_netdev(dev);
3340
3341 if (VORTEX_PCI(vp)) {
3342 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3343 if (vp->pm_state_valid)
3344 pci_restore_state(VORTEX_PCI(vp));
3345 pci_disable_device(VORTEX_PCI(vp));
3346 }
3347 /* Should really use issue_and_wait() here */
3348 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3349 vp->ioaddr + EL3_CMD);
3350
3351 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3352
3353 pci_free_consistent(pdev,
3354 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3355 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3356 vp->rx_ring,
3357 vp->rx_ring_dma);
3358 if (vp->must_free_region)
3359 release_region(dev->base_addr, vp->io_size);
3360 free_netdev(dev);
3361 }
3362
3363
3364 static struct pci_driver vortex_driver = {
3365 .name = "3c59x",
3366 .probe = vortex_init_one,
3367 .remove = __devexit_p(vortex_remove_one),
3368 .id_table = vortex_pci_tbl,
3369 #ifdef CONFIG_PM
3370 .suspend = vortex_suspend,
3371 .resume = vortex_resume,
3372 #endif
3373 };
3374
3375
3376 static int vortex_have_pci;
3377 static int vortex_have_eisa;
3378
3379
3380 static int __init vortex_init (void)
3381 {
3382 int pci_rc, eisa_rc;
3383
3384 pci_rc = pci_module_init(&vortex_driver);
3385 eisa_rc = vortex_eisa_init();
3386
3387 if (pci_rc == 0)
3388 vortex_have_pci = 1;
3389 if (eisa_rc > 0)
3390 vortex_have_eisa = 1;
3391
3392 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3393 }
3394
3395
3396 static void __exit vortex_eisa_cleanup (void)
3397 {
3398 struct vortex_private *vp;
3399 void __iomem *ioaddr;
3400
3401 #ifdef CONFIG_EISA
3402 /* Take care of the EISA devices */
3403 eisa_driver_unregister (&vortex_eisa_driver);
3404 #endif
3405
3406 if (compaq_net_device) {
3407 vp = compaq_net_device->priv;
3408 ioaddr = ioport_map(compaq_net_device->base_addr,
3409 VORTEX_TOTAL_SIZE);
3410
3411 unregister_netdev (compaq_net_device);
3412 iowrite16 (TotalReset, ioaddr + EL3_CMD);
3413 release_region(compaq_net_device->base_addr,
3414 VORTEX_TOTAL_SIZE);
3415
3416 free_netdev (compaq_net_device);
3417 }
3418 }
3419
3420
3421 static void __exit vortex_cleanup (void)
3422 {
3423 if (vortex_have_pci)
3424 pci_unregister_driver (&vortex_driver);
3425 if (vortex_have_eisa)
3426 vortex_eisa_cleanup ();
3427 }
3428
3429
3430 module_init(vortex_init);
3431 module_exit(vortex_cleanup);
3432
3433 \f
3434 /*
3435 * Local variables:
3436 * c-indent-level: 4
3437 * c-basic-offset: 4
3438 * tab-width: 4
3439 * End:
3440 */
This page took 0.126312 seconds and 6 git commands to generate.