3c59x: check return of pci_enable_device()
[deliverable/linux.git] / drivers / net / 3c59x.c
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 */
21
22 /*
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
25 *
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
29 */
30
31
32 #define DRV_NAME "3c59x"
33
34
35
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
41
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
62 */
63 #define tx_interrupt_mitigation 1
64
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h> /* For NR_IRQS only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
99
100 #define RUN_AT(x) (jiffies + (x))
101
102 #include <linux/delay.h>
103
104
105 static char version[] __devinitdata =
106 DRV_NAME ": Donald Becker and others.\n";
107
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111
112
113 /* Operational parameter that usually are not changed. */
114
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126
127 #define PFX DRV_NAME ": "
128
129
130
131 /*
132 Theory of Operation
133
134 I. Board Compatibility
135
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144
145 II. Board-specific settings
146
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154
155 III. Driver operation
156
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193
194 IV. Notes
195
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
201
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
212 };
213
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
227
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
233
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_1,
239
240 CH_3C905B_2,
241 CH_3C905B_FX,
242 CH_3C905C,
243 CH_3C9202,
244 CH_3C980,
245 CH_3C9805,
246
247 CH_3CSOHO100_TX,
248 CH_3C555,
249 CH_3C556,
250 CH_3C556B,
251 CH_3C575,
252
253 CH_3C575_1,
254 CH_3CCFE575,
255 CH_3CCFE575CT,
256 CH_3CCFE656,
257 CH_3CCFEM656,
258
259 CH_3CCFEM656_1,
260 CH_3C450,
261 CH_3C920,
262 CH_3C982A,
263 CH_3C982B,
264
265 CH_905BT4,
266 CH_920B_EMB_WNM,
267 };
268
269
270 /* note: this array directly indexed by above enums, and MUST
271 * be kept in sync with both the enums above, and the PCI device
272 * table below
273 */
274 static struct vortex_chip_info {
275 const char *name;
276 int flags;
277 int drv_flags;
278 int io_size;
279 } vortex_info_tbl[] __devinitdata = {
280 {"3c590 Vortex 10Mbps",
281 PCI_USES_MASTER, IS_VORTEX, 32, },
282 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
283 PCI_USES_MASTER, IS_VORTEX, 32, },
284 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
285 PCI_USES_MASTER, IS_VORTEX, 32, },
286 {"3c595 Vortex 100baseTx",
287 PCI_USES_MASTER, IS_VORTEX, 32, },
288 {"3c595 Vortex 100baseT4",
289 PCI_USES_MASTER, IS_VORTEX, 32, },
290
291 {"3c595 Vortex 100base-MII",
292 PCI_USES_MASTER, IS_VORTEX, 32, },
293 {"3c900 Boomerang 10baseT",
294 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
295 {"3c900 Boomerang 10Mbps Combo",
296 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
297 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
298 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
299 {"3c900 Cyclone 10Mbps Combo",
300 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
301
302 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
303 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
304 {"3c900B-FL Cyclone 10base-FL",
305 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
306 {"3c905 Boomerang 100baseTx",
307 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
308 {"3c905 Boomerang 100baseT4",
309 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
310 {"3c905B Cyclone 100baseTx",
311 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
312
313 {"3c905B Cyclone 10/100/BNC",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
315 {"3c905B-FX Cyclone 100baseFx",
316 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
317 {"3c905C Tornado",
318 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
319 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
320 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
321 {"3c980 Cyclone",
322 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
323
324 {"3c980C Python-T",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
326 {"3cSOHO100-TX Hurricane",
327 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
328 {"3c555 Laptop Hurricane",
329 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
330 {"3c556 Laptop Tornado",
331 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
332 HAS_HWCKSM, 128, },
333 {"3c556B Laptop Hurricane",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
335 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
336
337 {"3c575 [Megahertz] 10/100 LAN CardBus",
338 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
339 {"3c575 Boomerang CardBus",
340 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
341 {"3CCFE575BT Cyclone CardBus",
342 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
343 INVERT_LED_PWR|HAS_HWCKSM, 128, },
344 {"3CCFE575CT Tornado CardBus",
345 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
346 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
347 {"3CCFE656 Cyclone CardBus",
348 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 INVERT_LED_PWR|HAS_HWCKSM, 128, },
350
351 {"3CCFEM656B Cyclone+Winmodem CardBus",
352 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
353 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
355 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
357 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
359 {"3c920 Tornado",
360 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
361 {"3c982 Hydra Dual Port A",
362 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
363
364 {"3c982 Hydra Dual Port B",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 {"3c905B-T4",
367 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
368 {"3c920B-EMB-WNM Tornado",
369 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
370
371 {NULL,}, /* NULL terminated list. */
372 };
373
374
375 static struct pci_device_id vortex_pci_tbl[] = {
376 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
377 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
378 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
379 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
380 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
381
382 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
383 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
384 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
385 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
386 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
387
388 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
389 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
390 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
391 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
392 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
393
394 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
395 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
396 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
397 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
398 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
399 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
400
401 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
402 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
403 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
404 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
405 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
406
407 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
408 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
409 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
410 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
411 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
412
413 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
414 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
415 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
416 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
417 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
418
419 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
420 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
421
422 {0,} /* 0 terminated list. */
423 };
424 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
425
426
427 /* Operational definitions.
428 These are not used by other compilation units and thus are not
429 exported in a ".h" file.
430
431 First the windows. There are eight register windows, with the command
432 and status registers available in each.
433 */
434 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
435 #define EL3_CMD 0x0e
436 #define EL3_STATUS 0x0e
437
438 /* The top five bits written to EL3_CMD are a command, the lower
439 11 bits are the parameter, if applicable.
440 Note that 11 parameters bits was fine for ethernet, but the new chip
441 can handle FDDI length frames (~4500 octets) and now parameters count
442 32-bit 'Dwords' rather than octets. */
443
444 enum vortex_cmd {
445 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
446 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
447 UpStall = 6<<11, UpUnstall = (6<<11)+1,
448 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
449 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
450 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
451 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
452 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
453 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
454 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
455
456 /* The SetRxFilter command accepts the following classes: */
457 enum RxFilter {
458 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
459
460 /* Bits in the general status register. */
461 enum vortex_status {
462 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
463 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
464 IntReq = 0x0040, StatsFull = 0x0080,
465 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
466 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
467 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
468 };
469
470 /* Register window 1 offsets, the window used in normal operation.
471 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
472 enum Window1 {
473 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
474 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
475 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
476 };
477 enum Window0 {
478 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
479 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
480 IntrStatus=0x0E, /* Valid in all windows. */
481 };
482 enum Win0_EEPROM_bits {
483 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
484 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
485 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
486 };
487 /* EEPROM locations. */
488 enum eeprom_offset {
489 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
490 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
491 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
492 DriverTune=13, Checksum=15};
493
494 enum Window2 { /* Window 2. */
495 Wn2_ResetOptions=12,
496 };
497 enum Window3 { /* Window 3: MAC/config bits. */
498 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
499 };
500
501 #define BFEXT(value, offset, bitcount) \
502 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
503
504 #define BFINS(lhs, rhs, offset, bitcount) \
505 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
506 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
507
508 #define RAM_SIZE(v) BFEXT(v, 0, 3)
509 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
510 #define RAM_SPEED(v) BFEXT(v, 4, 2)
511 #define ROM_SIZE(v) BFEXT(v, 6, 2)
512 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
513 #define XCVR(v) BFEXT(v, 20, 4)
514 #define AUTOSELECT(v) BFEXT(v, 24, 1)
515
516 enum Window4 { /* Window 4: Xcvr/media bits. */
517 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
518 };
519 enum Win4_Media_bits {
520 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
521 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
522 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
523 Media_LnkBeat = 0x0800,
524 };
525 enum Window7 { /* Window 7: Bus Master control. */
526 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
527 Wn7_MasterStatus = 12,
528 };
529 /* Boomerang bus master control registers. */
530 enum MasterCtrl {
531 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
532 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
533 };
534
535 /* The Rx and Tx descriptor lists.
536 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
537 alignment contraint on tx_ring[] and rx_ring[]. */
538 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
539 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
540 struct boom_rx_desc {
541 u32 next; /* Last entry points to 0. */
542 s32 status;
543 u32 addr; /* Up to 63 addr/len pairs possible. */
544 s32 length; /* Set LAST_FRAG to indicate last pair. */
545 };
546 /* Values for the Rx status entry. */
547 enum rx_desc_status {
548 RxDComplete=0x00008000, RxDError=0x4000,
549 /* See boomerang_rx() for actual error bits */
550 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
551 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
552 };
553
554 #ifdef MAX_SKB_FRAGS
555 #define DO_ZEROCOPY 1
556 #else
557 #define DO_ZEROCOPY 0
558 #endif
559
560 struct boom_tx_desc {
561 u32 next; /* Last entry points to 0. */
562 s32 status; /* bits 0:12 length, others see below. */
563 #if DO_ZEROCOPY
564 struct {
565 u32 addr;
566 s32 length;
567 } frag[1+MAX_SKB_FRAGS];
568 #else
569 u32 addr;
570 s32 length;
571 #endif
572 };
573
574 /* Values for the Tx status entry. */
575 enum tx_desc_status {
576 CRCDisable=0x2000, TxDComplete=0x8000,
577 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
578 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
579 };
580
581 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
582 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
583
584 struct vortex_extra_stats {
585 unsigned long tx_deferred;
586 unsigned long tx_max_collisions;
587 unsigned long tx_multiple_collisions;
588 unsigned long tx_single_collisions;
589 unsigned long rx_bad_ssd;
590 };
591
592 struct vortex_private {
593 /* The Rx and Tx rings should be quad-word-aligned. */
594 struct boom_rx_desc* rx_ring;
595 struct boom_tx_desc* tx_ring;
596 dma_addr_t rx_ring_dma;
597 dma_addr_t tx_ring_dma;
598 /* The addresses of transmit- and receive-in-place skbuffs. */
599 struct sk_buff* rx_skbuff[RX_RING_SIZE];
600 struct sk_buff* tx_skbuff[TX_RING_SIZE];
601 unsigned int cur_rx, cur_tx; /* The next free ring entry */
602 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
603 struct net_device_stats stats; /* Generic stats */
604 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
605 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
606 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
607
608 /* PCI configuration space information. */
609 struct device *gendev;
610 void __iomem *ioaddr; /* IO address space */
611 void __iomem *cb_fn_base; /* CardBus function status addr space. */
612
613 /* Some values here only for performance evaluation and path-coverage */
614 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
615 int card_idx;
616
617 /* The remainder are related to chip state, mostly media selection. */
618 struct timer_list timer; /* Media selection timer. */
619 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
620 int options; /* User-settable misc. driver options. */
621 unsigned int media_override:4, /* Passed-in media type. */
622 default_media:4, /* Read from the EEPROM/Wn3_Config. */
623 full_duplex:1, autoselect:1,
624 bus_master:1, /* Vortex can only do a fragment bus-m. */
625 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
626 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
627 partner_flow_ctrl:1, /* Partner supports flow control */
628 has_nway:1,
629 enable_wol:1, /* Wake-on-LAN is enabled */
630 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
631 open:1,
632 medialock:1,
633 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
634 large_frames:1; /* accept large frames */
635 int drv_flags;
636 u16 status_enable;
637 u16 intr_enable;
638 u16 available_media; /* From Wn3_Options. */
639 u16 capabilities, info1, info2; /* Various, from EEPROM. */
640 u16 advertising; /* NWay media advertisement */
641 unsigned char phys[2]; /* MII device addresses. */
642 u16 deferred; /* Resend these interrupts when we
643 * bale from the ISR */
644 u16 io_size; /* Size of PCI region (for release_region) */
645 spinlock_t lock; /* Serialise access to device & its vortex_private */
646 struct mii_if_info mii; /* MII lib hooks/info */
647 };
648
649 #ifdef CONFIG_PCI
650 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
651 #else
652 #define DEVICE_PCI(dev) NULL
653 #endif
654
655 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
656
657 #ifdef CONFIG_EISA
658 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
659 #else
660 #define DEVICE_EISA(dev) NULL
661 #endif
662
663 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
664
665 /* The action to take with a media selection timer tick.
666 Note that we deviate from the 3Com order by checking 10base2 before AUI.
667 */
668 enum xcvr_types {
669 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
670 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
671 };
672
673 static const struct media_table {
674 char *name;
675 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
676 mask:8, /* The transceiver-present bit in Wn3_Config.*/
677 next:8; /* The media type to try next. */
678 int wait; /* Time before we check media status. */
679 } media_tbl[] = {
680 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
681 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
682 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
683 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
684 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
685 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
686 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
687 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
688 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
689 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
690 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
691 };
692
693 static struct {
694 const char str[ETH_GSTRING_LEN];
695 } ethtool_stats_keys[] = {
696 { "tx_deferred" },
697 { "tx_max_collisions" },
698 { "tx_multiple_collisions" },
699 { "tx_single_collisions" },
700 { "rx_bad_ssd" },
701 };
702
703 /* number of ETHTOOL_GSTATS u64's */
704 #define VORTEX_NUM_STATS 5
705
706 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
707 int chip_idx, int card_idx);
708 static int vortex_up(struct net_device *dev);
709 static void vortex_down(struct net_device *dev, int final);
710 static int vortex_open(struct net_device *dev);
711 static void mdio_sync(void __iomem *ioaddr, int bits);
712 static int mdio_read(struct net_device *dev, int phy_id, int location);
713 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
714 static void vortex_timer(unsigned long arg);
715 static void rx_oom_timer(unsigned long arg);
716 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
717 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
718 static int vortex_rx(struct net_device *dev);
719 static int boomerang_rx(struct net_device *dev);
720 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
721 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
722 static int vortex_close(struct net_device *dev);
723 static void dump_tx_ring(struct net_device *dev);
724 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
725 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
726 static void set_rx_mode(struct net_device *dev);
727 #ifdef CONFIG_PCI
728 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
729 #endif
730 static void vortex_tx_timeout(struct net_device *dev);
731 static void acpi_set_WOL(struct net_device *dev);
732 static const struct ethtool_ops vortex_ethtool_ops;
733 static void set_8021q_mode(struct net_device *dev, int enable);
734
735 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
736 /* Option count limit only -- unlimited interfaces are supported. */
737 #define MAX_UNITS 8
738 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
739 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
740 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
741 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
742 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
743 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
744 static int global_options = -1;
745 static int global_full_duplex = -1;
746 static int global_enable_wol = -1;
747 static int global_use_mmio = -1;
748
749 /* Variables to work-around the Compaq PCI BIOS32 problem. */
750 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
751 static struct net_device *compaq_net_device;
752
753 static int vortex_cards_found;
754
755 module_param(debug, int, 0);
756 module_param(global_options, int, 0);
757 module_param_array(options, int, NULL, 0);
758 module_param(global_full_duplex, int, 0);
759 module_param_array(full_duplex, int, NULL, 0);
760 module_param_array(hw_checksums, int, NULL, 0);
761 module_param_array(flow_ctrl, int, NULL, 0);
762 module_param(global_enable_wol, int, 0);
763 module_param_array(enable_wol, int, NULL, 0);
764 module_param(rx_copybreak, int, 0);
765 module_param(max_interrupt_work, int, 0);
766 module_param(compaq_ioaddr, int, 0);
767 module_param(compaq_irq, int, 0);
768 module_param(compaq_device_id, int, 0);
769 module_param(watchdog, int, 0);
770 module_param(global_use_mmio, int, 0);
771 module_param_array(use_mmio, int, NULL, 0);
772 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
773 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
774 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
775 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
776 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
777 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
778 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
779 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
780 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
781 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
782 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
783 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
784 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
785 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
786 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
787 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
788 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
789
790 #ifdef CONFIG_NET_POLL_CONTROLLER
791 static void poll_vortex(struct net_device *dev)
792 {
793 struct vortex_private *vp = netdev_priv(dev);
794 unsigned long flags;
795 local_irq_save(flags);
796 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
797 local_irq_restore(flags);
798 }
799 #endif
800
801 #ifdef CONFIG_PM
802
803 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
804 {
805 struct net_device *dev = pci_get_drvdata(pdev);
806
807 if (dev && dev->priv) {
808 if (netif_running(dev)) {
809 netif_device_detach(dev);
810 vortex_down(dev, 1);
811 }
812 pci_save_state(pdev);
813 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
814 free_irq(dev->irq, dev);
815 pci_disable_device(pdev);
816 pci_set_power_state(pdev, pci_choose_state(pdev, state));
817 }
818 return 0;
819 }
820
821 static int vortex_resume(struct pci_dev *pdev)
822 {
823 struct net_device *dev = pci_get_drvdata(pdev);
824 struct vortex_private *vp = netdev_priv(dev);
825 int err;
826
827 if (dev && vp) {
828 pci_set_power_state(pdev, PCI_D0);
829 pci_restore_state(pdev);
830 err = pci_enable_device(pdev);
831 if (err) {
832 printk(KERN_WARNING "%s: Could not enable device \n",
833 dev->name);
834 return err;
835 }
836 pci_set_master(pdev);
837 if (request_irq(dev->irq, vp->full_bus_master_rx ?
838 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev)) {
839 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
840 pci_disable_device(pdev);
841 return -EBUSY;
842 }
843 if (netif_running(dev)) {
844 err = vortex_up(dev);
845 if (err)
846 return err;
847 else
848 netif_device_attach(dev);
849 }
850 }
851 return 0;
852 }
853
854 #endif /* CONFIG_PM */
855
856 #ifdef CONFIG_EISA
857 static struct eisa_device_id vortex_eisa_ids[] = {
858 { "TCM5920", CH_3C592 },
859 { "TCM5970", CH_3C597 },
860 { "" }
861 };
862 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
863
864 static int __init vortex_eisa_probe(struct device *device)
865 {
866 void __iomem *ioaddr;
867 struct eisa_device *edev;
868
869 edev = to_eisa_device(device);
870
871 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
872 return -EBUSY;
873
874 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
875
876 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
877 edev->id.driver_data, vortex_cards_found)) {
878 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
879 return -ENODEV;
880 }
881
882 vortex_cards_found++;
883
884 return 0;
885 }
886
887 static int __devexit vortex_eisa_remove(struct device *device)
888 {
889 struct eisa_device *edev;
890 struct net_device *dev;
891 struct vortex_private *vp;
892 void __iomem *ioaddr;
893
894 edev = to_eisa_device(device);
895 dev = eisa_get_drvdata(edev);
896
897 if (!dev) {
898 printk("vortex_eisa_remove called for Compaq device!\n");
899 BUG();
900 }
901
902 vp = netdev_priv(dev);
903 ioaddr = vp->ioaddr;
904
905 unregister_netdev(dev);
906 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
907 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
908
909 free_netdev(dev);
910 return 0;
911 }
912
913 static struct eisa_driver vortex_eisa_driver = {
914 .id_table = vortex_eisa_ids,
915 .driver = {
916 .name = "3c59x",
917 .probe = vortex_eisa_probe,
918 .remove = __devexit_p(vortex_eisa_remove)
919 }
920 };
921
922 #endif /* CONFIG_EISA */
923
924 /* returns count found (>= 0), or negative on error */
925 static int __init vortex_eisa_init(void)
926 {
927 int eisa_found = 0;
928 int orig_cards_found = vortex_cards_found;
929
930 #ifdef CONFIG_EISA
931 int err;
932
933 err = eisa_driver_register (&vortex_eisa_driver);
934 if (!err) {
935 /*
936 * Because of the way EISA bus is probed, we cannot assume
937 * any device have been found when we exit from
938 * eisa_driver_register (the bus root driver may not be
939 * initialized yet). So we blindly assume something was
940 * found, and let the sysfs magic happend...
941 */
942 eisa_found = 1;
943 }
944 #endif
945
946 /* Special code to work-around the Compaq PCI BIOS32 problem. */
947 if (compaq_ioaddr) {
948 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
949 compaq_irq, compaq_device_id, vortex_cards_found++);
950 }
951
952 return vortex_cards_found - orig_cards_found + eisa_found;
953 }
954
955 /* returns count (>= 0), or negative on error */
956 static int __devinit vortex_init_one(struct pci_dev *pdev,
957 const struct pci_device_id *ent)
958 {
959 int rc, unit, pci_bar;
960 struct vortex_chip_info *vci;
961 void __iomem *ioaddr;
962
963 /* wake up and enable device */
964 rc = pci_enable_device(pdev);
965 if (rc < 0)
966 goto out;
967
968 unit = vortex_cards_found;
969
970 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
971 /* Determine the default if the user didn't override us */
972 vci = &vortex_info_tbl[ent->driver_data];
973 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
974 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
975 pci_bar = use_mmio[unit] ? 1 : 0;
976 else
977 pci_bar = global_use_mmio ? 1 : 0;
978
979 ioaddr = pci_iomap(pdev, pci_bar, 0);
980 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
981 ioaddr = pci_iomap(pdev, 0, 0);
982
983 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
984 ent->driver_data, unit);
985 if (rc < 0) {
986 pci_disable_device(pdev);
987 goto out;
988 }
989
990 vortex_cards_found++;
991
992 out:
993 return rc;
994 }
995
996 /*
997 * Start up the PCI/EISA device which is described by *gendev.
998 * Return 0 on success.
999 *
1000 * NOTE: pdev can be NULL, for the case of a Compaq device
1001 */
1002 static int __devinit vortex_probe1(struct device *gendev,
1003 void __iomem *ioaddr, int irq,
1004 int chip_idx, int card_idx)
1005 {
1006 struct vortex_private *vp;
1007 int option;
1008 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1009 int i, step;
1010 struct net_device *dev;
1011 static int printed_version;
1012 int retval, print_info;
1013 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1014 char *print_name = "3c59x";
1015 struct pci_dev *pdev = NULL;
1016 struct eisa_device *edev = NULL;
1017
1018 if (!printed_version) {
1019 printk (version);
1020 printed_version = 1;
1021 }
1022
1023 if (gendev) {
1024 if ((pdev = DEVICE_PCI(gendev))) {
1025 print_name = pci_name(pdev);
1026 }
1027
1028 if ((edev = DEVICE_EISA(gendev))) {
1029 print_name = edev->dev.bus_id;
1030 }
1031 }
1032
1033 dev = alloc_etherdev(sizeof(*vp));
1034 retval = -ENOMEM;
1035 if (!dev) {
1036 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1037 goto out;
1038 }
1039 SET_MODULE_OWNER(dev);
1040 SET_NETDEV_DEV(dev, gendev);
1041 vp = netdev_priv(dev);
1042
1043 option = global_options;
1044
1045 /* The lower four bits are the media type. */
1046 if (dev->mem_start) {
1047 /*
1048 * The 'options' param is passed in as the third arg to the
1049 * LILO 'ether=' argument for non-modular use
1050 */
1051 option = dev->mem_start;
1052 }
1053 else if (card_idx < MAX_UNITS) {
1054 if (options[card_idx] >= 0)
1055 option = options[card_idx];
1056 }
1057
1058 if (option > 0) {
1059 if (option & 0x8000)
1060 vortex_debug = 7;
1061 if (option & 0x4000)
1062 vortex_debug = 2;
1063 if (option & 0x0400)
1064 vp->enable_wol = 1;
1065 }
1066
1067 print_info = (vortex_debug > 1);
1068 if (print_info)
1069 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1070
1071 printk(KERN_INFO "%s: 3Com %s %s at %p.\n",
1072 print_name,
1073 pdev ? "PCI" : "EISA",
1074 vci->name,
1075 ioaddr);
1076
1077 dev->base_addr = (unsigned long)ioaddr;
1078 dev->irq = irq;
1079 dev->mtu = mtu;
1080 vp->ioaddr = ioaddr;
1081 vp->large_frames = mtu > 1500;
1082 vp->drv_flags = vci->drv_flags;
1083 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1084 vp->io_size = vci->io_size;
1085 vp->card_idx = card_idx;
1086
1087 /* module list only for Compaq device */
1088 if (gendev == NULL) {
1089 compaq_net_device = dev;
1090 }
1091
1092 /* PCI-only startup logic */
1093 if (pdev) {
1094 /* EISA resources already marked, so only PCI needs to do this here */
1095 /* Ignore return value, because Cardbus drivers already allocate for us */
1096 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1097 vp->must_free_region = 1;
1098
1099 /* enable bus-mastering if necessary */
1100 if (vci->flags & PCI_USES_MASTER)
1101 pci_set_master(pdev);
1102
1103 if (vci->drv_flags & IS_VORTEX) {
1104 u8 pci_latency;
1105 u8 new_latency = 248;
1106
1107 /* Check the PCI latency value. On the 3c590 series the latency timer
1108 must be set to the maximum value to avoid data corruption that occurs
1109 when the timer expires during a transfer. This bug exists the Vortex
1110 chip only. */
1111 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1112 if (pci_latency < new_latency) {
1113 printk(KERN_INFO "%s: Overriding PCI latency"
1114 " timer (CFLT) setting of %d, new value is %d.\n",
1115 print_name, pci_latency, new_latency);
1116 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1117 }
1118 }
1119 }
1120
1121 spin_lock_init(&vp->lock);
1122 vp->gendev = gendev;
1123 vp->mii.dev = dev;
1124 vp->mii.mdio_read = mdio_read;
1125 vp->mii.mdio_write = mdio_write;
1126 vp->mii.phy_id_mask = 0x1f;
1127 vp->mii.reg_num_mask = 0x1f;
1128
1129 /* Makes sure rings are at least 16 byte aligned. */
1130 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1131 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1132 &vp->rx_ring_dma);
1133 retval = -ENOMEM;
1134 if (vp->rx_ring == 0)
1135 goto free_region;
1136
1137 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1138 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1139
1140 /* if we are a PCI driver, we store info in pdev->driver_data
1141 * instead of a module list */
1142 if (pdev)
1143 pci_set_drvdata(pdev, dev);
1144 if (edev)
1145 eisa_set_drvdata(edev, dev);
1146
1147 vp->media_override = 7;
1148 if (option >= 0) {
1149 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1150 if (vp->media_override != 7)
1151 vp->medialock = 1;
1152 vp->full_duplex = (option & 0x200) ? 1 : 0;
1153 vp->bus_master = (option & 16) ? 1 : 0;
1154 }
1155
1156 if (global_full_duplex > 0)
1157 vp->full_duplex = 1;
1158 if (global_enable_wol > 0)
1159 vp->enable_wol = 1;
1160
1161 if (card_idx < MAX_UNITS) {
1162 if (full_duplex[card_idx] > 0)
1163 vp->full_duplex = 1;
1164 if (flow_ctrl[card_idx] > 0)
1165 vp->flow_ctrl = 1;
1166 if (enable_wol[card_idx] > 0)
1167 vp->enable_wol = 1;
1168 }
1169
1170 vp->mii.force_media = vp->full_duplex;
1171 vp->options = option;
1172 /* Read the station address from the EEPROM. */
1173 EL3WINDOW(0);
1174 {
1175 int base;
1176
1177 if (vci->drv_flags & EEPROM_8BIT)
1178 base = 0x230;
1179 else if (vci->drv_flags & EEPROM_OFFSET)
1180 base = EEPROM_Read + 0x30;
1181 else
1182 base = EEPROM_Read;
1183
1184 for (i = 0; i < 0x40; i++) {
1185 int timer;
1186 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1187 /* Pause for at least 162 us. for the read to take place. */
1188 for (timer = 10; timer >= 0; timer--) {
1189 udelay(162);
1190 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1191 break;
1192 }
1193 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1194 }
1195 }
1196 for (i = 0; i < 0x18; i++)
1197 checksum ^= eeprom[i];
1198 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1199 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1200 while (i < 0x21)
1201 checksum ^= eeprom[i++];
1202 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1203 }
1204 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1205 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1206 for (i = 0; i < 3; i++)
1207 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1208 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1209 if (print_info) {
1210 for (i = 0; i < 6; i++)
1211 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1212 }
1213 /* Unfortunately an all zero eeprom passes the checksum and this
1214 gets found in the wild in failure cases. Crypto is hard 8) */
1215 if (!is_valid_ether_addr(dev->dev_addr)) {
1216 retval = -EINVAL;
1217 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1218 goto free_ring; /* With every pack */
1219 }
1220 EL3WINDOW(2);
1221 for (i = 0; i < 6; i++)
1222 iowrite8(dev->dev_addr[i], ioaddr + i);
1223
1224 if (print_info)
1225 printk(", IRQ %d\n", dev->irq);
1226 /* Tell them about an invalid IRQ. */
1227 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1228 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1229 dev->irq);
1230
1231 EL3WINDOW(4);
1232 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1233 if (print_info) {
1234 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1235 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1236 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1237 }
1238
1239
1240 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1241 unsigned short n;
1242
1243 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1244 if (!vp->cb_fn_base) {
1245 retval = -ENOMEM;
1246 goto free_ring;
1247 }
1248
1249 if (print_info) {
1250 printk(KERN_INFO "%s: CardBus functions mapped "
1251 "%16.16llx->%p\n",
1252 print_name,
1253 (unsigned long long)pci_resource_start(pdev, 2),
1254 vp->cb_fn_base);
1255 }
1256 EL3WINDOW(2);
1257
1258 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1259 if (vp->drv_flags & INVERT_LED_PWR)
1260 n |= 0x10;
1261 if (vp->drv_flags & INVERT_MII_PWR)
1262 n |= 0x4000;
1263 iowrite16(n, ioaddr + Wn2_ResetOptions);
1264 if (vp->drv_flags & WNO_XCVR_PWR) {
1265 EL3WINDOW(0);
1266 iowrite16(0x0800, ioaddr);
1267 }
1268 }
1269
1270 /* Extract our information from the EEPROM data. */
1271 vp->info1 = eeprom[13];
1272 vp->info2 = eeprom[15];
1273 vp->capabilities = eeprom[16];
1274
1275 if (vp->info1 & 0x8000) {
1276 vp->full_duplex = 1;
1277 if (print_info)
1278 printk(KERN_INFO "Full duplex capable\n");
1279 }
1280
1281 {
1282 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1283 unsigned int config;
1284 EL3WINDOW(3);
1285 vp->available_media = ioread16(ioaddr + Wn3_Options);
1286 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1287 vp->available_media = 0x40;
1288 config = ioread32(ioaddr + Wn3_Config);
1289 if (print_info) {
1290 printk(KERN_DEBUG " Internal config register is %4.4x, "
1291 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1292 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1293 8 << RAM_SIZE(config),
1294 RAM_WIDTH(config) ? "word" : "byte",
1295 ram_split[RAM_SPLIT(config)],
1296 AUTOSELECT(config) ? "autoselect/" : "",
1297 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1298 media_tbl[XCVR(config)].name);
1299 }
1300 vp->default_media = XCVR(config);
1301 if (vp->default_media == XCVR_NWAY)
1302 vp->has_nway = 1;
1303 vp->autoselect = AUTOSELECT(config);
1304 }
1305
1306 if (vp->media_override != 7) {
1307 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1308 print_name, vp->media_override,
1309 media_tbl[vp->media_override].name);
1310 dev->if_port = vp->media_override;
1311 } else
1312 dev->if_port = vp->default_media;
1313
1314 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1315 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1316 int phy, phy_idx = 0;
1317 EL3WINDOW(4);
1318 mii_preamble_required++;
1319 if (vp->drv_flags & EXTRA_PREAMBLE)
1320 mii_preamble_required++;
1321 mdio_sync(ioaddr, 32);
1322 mdio_read(dev, 24, MII_BMSR);
1323 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1324 int mii_status, phyx;
1325
1326 /*
1327 * For the 3c905CX we look at index 24 first, because it bogusly
1328 * reports an external PHY at all indices
1329 */
1330 if (phy == 0)
1331 phyx = 24;
1332 else if (phy <= 24)
1333 phyx = phy - 1;
1334 else
1335 phyx = phy;
1336 mii_status = mdio_read(dev, phyx, MII_BMSR);
1337 if (mii_status && mii_status != 0xffff) {
1338 vp->phys[phy_idx++] = phyx;
1339 if (print_info) {
1340 printk(KERN_INFO " MII transceiver found at address %d,"
1341 " status %4x.\n", phyx, mii_status);
1342 }
1343 if ((mii_status & 0x0040) == 0)
1344 mii_preamble_required++;
1345 }
1346 }
1347 mii_preamble_required--;
1348 if (phy_idx == 0) {
1349 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1350 vp->phys[0] = 24;
1351 } else {
1352 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1353 if (vp->full_duplex) {
1354 /* Only advertise the FD media types. */
1355 vp->advertising &= ~0x02A0;
1356 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1357 }
1358 }
1359 vp->mii.phy_id = vp->phys[0];
1360 }
1361
1362 if (vp->capabilities & CapBusMaster) {
1363 vp->full_bus_master_tx = 1;
1364 if (print_info) {
1365 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1366 (vp->info2 & 1) ? "early" : "whole-frame" );
1367 }
1368 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1369 vp->bus_master = 0; /* AKPM: vortex only */
1370 }
1371
1372 /* The 3c59x-specific entries in the device structure. */
1373 dev->open = vortex_open;
1374 if (vp->full_bus_master_tx) {
1375 dev->hard_start_xmit = boomerang_start_xmit;
1376 /* Actually, it still should work with iommu. */
1377 if (card_idx < MAX_UNITS &&
1378 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1379 hw_checksums[card_idx] == 1)) {
1380 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1381 }
1382 } else {
1383 dev->hard_start_xmit = vortex_start_xmit;
1384 }
1385
1386 if (print_info) {
1387 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1388 print_name,
1389 (dev->features & NETIF_F_SG) ? "en":"dis",
1390 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1391 }
1392
1393 dev->stop = vortex_close;
1394 dev->get_stats = vortex_get_stats;
1395 #ifdef CONFIG_PCI
1396 dev->do_ioctl = vortex_ioctl;
1397 #endif
1398 dev->ethtool_ops = &vortex_ethtool_ops;
1399 dev->set_multicast_list = set_rx_mode;
1400 dev->tx_timeout = vortex_tx_timeout;
1401 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1402 #ifdef CONFIG_NET_POLL_CONTROLLER
1403 dev->poll_controller = poll_vortex;
1404 #endif
1405 if (pdev) {
1406 vp->pm_state_valid = 1;
1407 pci_save_state(VORTEX_PCI(vp));
1408 acpi_set_WOL(dev);
1409 }
1410 retval = register_netdev(dev);
1411 if (retval == 0)
1412 return 0;
1413
1414 free_ring:
1415 pci_free_consistent(pdev,
1416 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1417 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1418 vp->rx_ring,
1419 vp->rx_ring_dma);
1420 free_region:
1421 if (vp->must_free_region)
1422 release_region(dev->base_addr, vci->io_size);
1423 free_netdev(dev);
1424 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1425 out:
1426 return retval;
1427 }
1428
1429 static void
1430 issue_and_wait(struct net_device *dev, int cmd)
1431 {
1432 struct vortex_private *vp = netdev_priv(dev);
1433 void __iomem *ioaddr = vp->ioaddr;
1434 int i;
1435
1436 iowrite16(cmd, ioaddr + EL3_CMD);
1437 for (i = 0; i < 2000; i++) {
1438 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1439 return;
1440 }
1441
1442 /* OK, that didn't work. Do it the slow way. One second */
1443 for (i = 0; i < 100000; i++) {
1444 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1445 if (vortex_debug > 1)
1446 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1447 dev->name, cmd, i * 10);
1448 return;
1449 }
1450 udelay(10);
1451 }
1452 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1453 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1454 }
1455
1456 static void
1457 vortex_set_duplex(struct net_device *dev)
1458 {
1459 struct vortex_private *vp = netdev_priv(dev);
1460 void __iomem *ioaddr = vp->ioaddr;
1461
1462 printk(KERN_INFO "%s: setting %s-duplex.\n",
1463 dev->name, (vp->full_duplex) ? "full" : "half");
1464
1465 EL3WINDOW(3);
1466 /* Set the full-duplex bit. */
1467 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1468 (vp->large_frames ? 0x40 : 0) |
1469 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1470 0x100 : 0),
1471 ioaddr + Wn3_MAC_Ctrl);
1472 }
1473
1474 static void vortex_check_media(struct net_device *dev, unsigned int init)
1475 {
1476 struct vortex_private *vp = netdev_priv(dev);
1477 unsigned int ok_to_print = 0;
1478
1479 if (vortex_debug > 3)
1480 ok_to_print = 1;
1481
1482 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1483 vp->full_duplex = vp->mii.full_duplex;
1484 vortex_set_duplex(dev);
1485 } else if (init) {
1486 vortex_set_duplex(dev);
1487 }
1488 }
1489
1490 static int
1491 vortex_up(struct net_device *dev)
1492 {
1493 struct vortex_private *vp = netdev_priv(dev);
1494 void __iomem *ioaddr = vp->ioaddr;
1495 unsigned int config;
1496 int i, mii_reg1, mii_reg5, err;
1497
1498 if (VORTEX_PCI(vp)) {
1499 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1500 if (vp->pm_state_valid)
1501 pci_restore_state(VORTEX_PCI(vp));
1502 err = pci_enable_device(VORTEX_PCI(vp));
1503 if (err) {
1504 printk(KERN_WARNING "%s: Could not enable device \n",
1505 dev->name);
1506 goto err_out;
1507 }
1508 }
1509
1510 /* Before initializing select the active media port. */
1511 EL3WINDOW(3);
1512 config = ioread32(ioaddr + Wn3_Config);
1513
1514 if (vp->media_override != 7) {
1515 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1516 dev->name, vp->media_override,
1517 media_tbl[vp->media_override].name);
1518 dev->if_port = vp->media_override;
1519 } else if (vp->autoselect) {
1520 if (vp->has_nway) {
1521 if (vortex_debug > 1)
1522 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1523 dev->name, dev->if_port);
1524 dev->if_port = XCVR_NWAY;
1525 } else {
1526 /* Find first available media type, starting with 100baseTx. */
1527 dev->if_port = XCVR_100baseTx;
1528 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1529 dev->if_port = media_tbl[dev->if_port].next;
1530 if (vortex_debug > 1)
1531 printk(KERN_INFO "%s: first available media type: %s\n",
1532 dev->name, media_tbl[dev->if_port].name);
1533 }
1534 } else {
1535 dev->if_port = vp->default_media;
1536 if (vortex_debug > 1)
1537 printk(KERN_INFO "%s: using default media %s\n",
1538 dev->name, media_tbl[dev->if_port].name);
1539 }
1540
1541 init_timer(&vp->timer);
1542 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1543 vp->timer.data = (unsigned long)dev;
1544 vp->timer.function = vortex_timer; /* timer handler */
1545 add_timer(&vp->timer);
1546
1547 init_timer(&vp->rx_oom_timer);
1548 vp->rx_oom_timer.data = (unsigned long)dev;
1549 vp->rx_oom_timer.function = rx_oom_timer;
1550
1551 if (vortex_debug > 1)
1552 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1553 dev->name, media_tbl[dev->if_port].name);
1554
1555 vp->full_duplex = vp->mii.force_media;
1556 config = BFINS(config, dev->if_port, 20, 4);
1557 if (vortex_debug > 6)
1558 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1559 iowrite32(config, ioaddr + Wn3_Config);
1560
1561 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1562 EL3WINDOW(4);
1563 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1564 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1565 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1566 vp->mii.full_duplex = vp->full_duplex;
1567
1568 vortex_check_media(dev, 1);
1569 }
1570 else
1571 vortex_set_duplex(dev);
1572
1573 issue_and_wait(dev, TxReset);
1574 /*
1575 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1576 */
1577 issue_and_wait(dev, RxReset|0x04);
1578
1579
1580 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1581
1582 if (vortex_debug > 1) {
1583 EL3WINDOW(4);
1584 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1585 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1586 }
1587
1588 /* Set the station address and mask in window 2 each time opened. */
1589 EL3WINDOW(2);
1590 for (i = 0; i < 6; i++)
1591 iowrite8(dev->dev_addr[i], ioaddr + i);
1592 for (; i < 12; i+=2)
1593 iowrite16(0, ioaddr + i);
1594
1595 if (vp->cb_fn_base) {
1596 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1597 if (vp->drv_flags & INVERT_LED_PWR)
1598 n |= 0x10;
1599 if (vp->drv_flags & INVERT_MII_PWR)
1600 n |= 0x4000;
1601 iowrite16(n, ioaddr + Wn2_ResetOptions);
1602 }
1603
1604 if (dev->if_port == XCVR_10base2)
1605 /* Start the thinnet transceiver. We should really wait 50ms...*/
1606 iowrite16(StartCoax, ioaddr + EL3_CMD);
1607 if (dev->if_port != XCVR_NWAY) {
1608 EL3WINDOW(4);
1609 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1610 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1611 }
1612
1613 /* Switch to the stats window, and clear all stats by reading. */
1614 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1615 EL3WINDOW(6);
1616 for (i = 0; i < 10; i++)
1617 ioread8(ioaddr + i);
1618 ioread16(ioaddr + 10);
1619 ioread16(ioaddr + 12);
1620 /* New: On the Vortex we must also clear the BadSSD counter. */
1621 EL3WINDOW(4);
1622 ioread8(ioaddr + 12);
1623 /* ..and on the Boomerang we enable the extra statistics bits. */
1624 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1625
1626 /* Switch to register set 7 for normal use. */
1627 EL3WINDOW(7);
1628
1629 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1630 vp->cur_rx = vp->dirty_rx = 0;
1631 /* Initialize the RxEarly register as recommended. */
1632 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1633 iowrite32(0x0020, ioaddr + PktStatus);
1634 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1635 }
1636 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1637 vp->cur_tx = vp->dirty_tx = 0;
1638 if (vp->drv_flags & IS_BOOMERANG)
1639 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1640 /* Clear the Rx, Tx rings. */
1641 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1642 vp->rx_ring[i].status = 0;
1643 for (i = 0; i < TX_RING_SIZE; i++)
1644 vp->tx_skbuff[i] = NULL;
1645 iowrite32(0, ioaddr + DownListPtr);
1646 }
1647 /* Set receiver mode: presumably accept b-case and phys addr only. */
1648 set_rx_mode(dev);
1649 /* enable 802.1q tagged frames */
1650 set_8021q_mode(dev, 1);
1651 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1652
1653 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1654 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1655 /* Allow status bits to be seen. */
1656 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1657 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1658 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1659 (vp->bus_master ? DMADone : 0);
1660 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1661 (vp->full_bus_master_rx ? 0 : RxComplete) |
1662 StatsFull | HostError | TxComplete | IntReq
1663 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1664 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1665 /* Ack all pending events, and set active indicator mask. */
1666 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1667 ioaddr + EL3_CMD);
1668 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1669 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1670 iowrite32(0x8000, vp->cb_fn_base + 4);
1671 netif_start_queue (dev);
1672 err_out:
1673 return err;
1674 }
1675
1676 static int
1677 vortex_open(struct net_device *dev)
1678 {
1679 struct vortex_private *vp = netdev_priv(dev);
1680 int i;
1681 int retval;
1682
1683 /* Use the now-standard shared IRQ implementation. */
1684 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1685 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1686 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1687 goto err;
1688 }
1689
1690 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1691 if (vortex_debug > 2)
1692 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1693 for (i = 0; i < RX_RING_SIZE; i++) {
1694 struct sk_buff *skb;
1695 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1696 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1697 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1698 skb = dev_alloc_skb(PKT_BUF_SZ);
1699 vp->rx_skbuff[i] = skb;
1700 if (skb == NULL)
1701 break; /* Bad news! */
1702 skb->dev = dev; /* Mark as being used by this device. */
1703 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1704 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1705 }
1706 if (i != RX_RING_SIZE) {
1707 int j;
1708 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1709 for (j = 0; j < i; j++) {
1710 if (vp->rx_skbuff[j]) {
1711 dev_kfree_skb(vp->rx_skbuff[j]);
1712 vp->rx_skbuff[j] = NULL;
1713 }
1714 }
1715 retval = -ENOMEM;
1716 goto err_free_irq;
1717 }
1718 /* Wrap the ring. */
1719 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1720 }
1721
1722 retval = vortex_up(dev);
1723 if (!retval)
1724 goto out;
1725
1726 err_free_irq:
1727 free_irq(dev->irq, dev);
1728 err:
1729 if (vortex_debug > 1)
1730 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1731 out:
1732 return retval;
1733 }
1734
1735 static void
1736 vortex_timer(unsigned long data)
1737 {
1738 struct net_device *dev = (struct net_device *)data;
1739 struct vortex_private *vp = netdev_priv(dev);
1740 void __iomem *ioaddr = vp->ioaddr;
1741 int next_tick = 60*HZ;
1742 int ok = 0;
1743 int media_status, old_window;
1744
1745 if (vortex_debug > 2) {
1746 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1747 dev->name, media_tbl[dev->if_port].name);
1748 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1749 }
1750
1751 disable_irq_lockdep(dev->irq);
1752 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1753 EL3WINDOW(4);
1754 media_status = ioread16(ioaddr + Wn4_Media);
1755 switch (dev->if_port) {
1756 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1757 if (media_status & Media_LnkBeat) {
1758 netif_carrier_on(dev);
1759 ok = 1;
1760 if (vortex_debug > 1)
1761 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1762 dev->name, media_tbl[dev->if_port].name, media_status);
1763 } else {
1764 netif_carrier_off(dev);
1765 if (vortex_debug > 1) {
1766 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1767 dev->name, media_tbl[dev->if_port].name, media_status);
1768 }
1769 }
1770 break;
1771 case XCVR_MII: case XCVR_NWAY:
1772 {
1773 ok = 1;
1774 spin_lock_bh(&vp->lock);
1775 vortex_check_media(dev, 0);
1776 spin_unlock_bh(&vp->lock);
1777 }
1778 break;
1779 default: /* Other media types handled by Tx timeouts. */
1780 if (vortex_debug > 1)
1781 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1782 dev->name, media_tbl[dev->if_port].name, media_status);
1783 ok = 1;
1784 }
1785
1786 if (!netif_carrier_ok(dev))
1787 next_tick = 5*HZ;
1788
1789 if (vp->medialock)
1790 goto leave_media_alone;
1791
1792 if (!ok) {
1793 unsigned int config;
1794
1795 do {
1796 dev->if_port = media_tbl[dev->if_port].next;
1797 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1798 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1799 dev->if_port = vp->default_media;
1800 if (vortex_debug > 1)
1801 printk(KERN_DEBUG "%s: Media selection failing, using default "
1802 "%s port.\n",
1803 dev->name, media_tbl[dev->if_port].name);
1804 } else {
1805 if (vortex_debug > 1)
1806 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1807 "%s port.\n",
1808 dev->name, media_tbl[dev->if_port].name);
1809 next_tick = media_tbl[dev->if_port].wait;
1810 }
1811 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1812 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1813
1814 EL3WINDOW(3);
1815 config = ioread32(ioaddr + Wn3_Config);
1816 config = BFINS(config, dev->if_port, 20, 4);
1817 iowrite32(config, ioaddr + Wn3_Config);
1818
1819 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1820 ioaddr + EL3_CMD);
1821 if (vortex_debug > 1)
1822 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1823 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1824 }
1825
1826 leave_media_alone:
1827 if (vortex_debug > 2)
1828 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1829 dev->name, media_tbl[dev->if_port].name);
1830
1831 EL3WINDOW(old_window);
1832 enable_irq_lockdep(dev->irq);
1833 mod_timer(&vp->timer, RUN_AT(next_tick));
1834 if (vp->deferred)
1835 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1836 return;
1837 }
1838
1839 static void vortex_tx_timeout(struct net_device *dev)
1840 {
1841 struct vortex_private *vp = netdev_priv(dev);
1842 void __iomem *ioaddr = vp->ioaddr;
1843
1844 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1845 dev->name, ioread8(ioaddr + TxStatus),
1846 ioread16(ioaddr + EL3_STATUS));
1847 EL3WINDOW(4);
1848 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1849 ioread16(ioaddr + Wn4_NetDiag),
1850 ioread16(ioaddr + Wn4_Media),
1851 ioread32(ioaddr + PktStatus),
1852 ioread16(ioaddr + Wn4_FIFODiag));
1853 /* Slight code bloat to be user friendly. */
1854 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1855 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
1856 " network cable problem?\n", dev->name);
1857 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1858 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
1859 " IRQ blocked by another device?\n", dev->name);
1860 /* Bad idea here.. but we might as well handle a few events. */
1861 {
1862 /*
1863 * Block interrupts because vortex_interrupt does a bare spin_lock()
1864 */
1865 unsigned long flags;
1866 local_irq_save(flags);
1867 if (vp->full_bus_master_tx)
1868 boomerang_interrupt(dev->irq, dev);
1869 else
1870 vortex_interrupt(dev->irq, dev);
1871 local_irq_restore(flags);
1872 }
1873 }
1874
1875 if (vortex_debug > 0)
1876 dump_tx_ring(dev);
1877
1878 issue_and_wait(dev, TxReset);
1879
1880 vp->stats.tx_errors++;
1881 if (vp->full_bus_master_tx) {
1882 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
1883 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1884 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1885 ioaddr + DownListPtr);
1886 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1887 netif_wake_queue (dev);
1888 if (vp->drv_flags & IS_BOOMERANG)
1889 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1890 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1891 } else {
1892 vp->stats.tx_dropped++;
1893 netif_wake_queue(dev);
1894 }
1895
1896 /* Issue Tx Enable */
1897 iowrite16(TxEnable, ioaddr + EL3_CMD);
1898 dev->trans_start = jiffies;
1899
1900 /* Switch to register set 7 for normal use. */
1901 EL3WINDOW(7);
1902 }
1903
1904 /*
1905 * Handle uncommon interrupt sources. This is a separate routine to minimize
1906 * the cache impact.
1907 */
1908 static void
1909 vortex_error(struct net_device *dev, int status)
1910 {
1911 struct vortex_private *vp = netdev_priv(dev);
1912 void __iomem *ioaddr = vp->ioaddr;
1913 int do_tx_reset = 0, reset_mask = 0;
1914 unsigned char tx_status = 0;
1915
1916 if (vortex_debug > 2) {
1917 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
1918 }
1919
1920 if (status & TxComplete) { /* Really "TxError" for us. */
1921 tx_status = ioread8(ioaddr + TxStatus);
1922 /* Presumably a tx-timeout. We must merely re-enable. */
1923 if (vortex_debug > 2
1924 || (tx_status != 0x88 && vortex_debug > 0)) {
1925 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
1926 dev->name, tx_status);
1927 if (tx_status == 0x82) {
1928 printk(KERN_ERR "Probably a duplex mismatch. See "
1929 "Documentation/networking/vortex.txt\n");
1930 }
1931 dump_tx_ring(dev);
1932 }
1933 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
1934 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
1935 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1936 iowrite8(0, ioaddr + TxStatus);
1937 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1938 do_tx_reset = 1;
1939 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1940 do_tx_reset = 1;
1941 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1942 } else { /* Merely re-enable the transmitter. */
1943 iowrite16(TxEnable, ioaddr + EL3_CMD);
1944 }
1945 }
1946
1947 if (status & RxEarly) { /* Rx early is unused. */
1948 vortex_rx(dev);
1949 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1950 }
1951 if (status & StatsFull) { /* Empty statistics. */
1952 static int DoneDidThat;
1953 if (vortex_debug > 4)
1954 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
1955 update_stats(ioaddr, dev);
1956 /* HACK: Disable statistics as an interrupt source. */
1957 /* This occurs when we have the wrong media type! */
1958 if (DoneDidThat == 0 &&
1959 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1960 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
1961 "stats as an interrupt source.\n", dev->name);
1962 EL3WINDOW(5);
1963 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1964 vp->intr_enable &= ~StatsFull;
1965 EL3WINDOW(7);
1966 DoneDidThat++;
1967 }
1968 }
1969 if (status & IntReq) { /* Restore all interrupt sources. */
1970 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1971 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1972 }
1973 if (status & HostError) {
1974 u16 fifo_diag;
1975 EL3WINDOW(4);
1976 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
1977 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
1978 dev->name, fifo_diag);
1979 /* Adapter failure requires Tx/Rx reset and reinit. */
1980 if (vp->full_bus_master_tx) {
1981 int bus_status = ioread32(ioaddr + PktStatus);
1982 /* 0x80000000 PCI master abort. */
1983 /* 0x40000000 PCI target abort. */
1984 if (vortex_debug)
1985 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
1986
1987 /* In this case, blow the card away */
1988 /* Must not enter D3 or we can't legally issue the reset! */
1989 vortex_down(dev, 0);
1990 issue_and_wait(dev, TotalReset | 0xff);
1991 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
1992 } else if (fifo_diag & 0x0400)
1993 do_tx_reset = 1;
1994 if (fifo_diag & 0x3000) {
1995 /* Reset Rx fifo and upload logic */
1996 issue_and_wait(dev, RxReset|0x07);
1997 /* Set the Rx filter to the current state. */
1998 set_rx_mode(dev);
1999 /* enable 802.1q VLAN tagged frames */
2000 set_8021q_mode(dev, 1);
2001 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2002 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2003 }
2004 }
2005
2006 if (do_tx_reset) {
2007 issue_and_wait(dev, TxReset|reset_mask);
2008 iowrite16(TxEnable, ioaddr + EL3_CMD);
2009 if (!vp->full_bus_master_tx)
2010 netif_wake_queue(dev);
2011 }
2012 }
2013
2014 static int
2015 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2016 {
2017 struct vortex_private *vp = netdev_priv(dev);
2018 void __iomem *ioaddr = vp->ioaddr;
2019
2020 /* Put out the doubleword header... */
2021 iowrite32(skb->len, ioaddr + TX_FIFO);
2022 if (vp->bus_master) {
2023 /* Set the bus-master controller to transfer the packet. */
2024 int len = (skb->len + 3) & ~3;
2025 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2026 ioaddr + Wn7_MasterAddr);
2027 iowrite16(len, ioaddr + Wn7_MasterLen);
2028 vp->tx_skb = skb;
2029 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2030 /* netif_wake_queue() will be called at the DMADone interrupt. */
2031 } else {
2032 /* ... and the packet rounded to a doubleword. */
2033 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2034 dev_kfree_skb (skb);
2035 if (ioread16(ioaddr + TxFree) > 1536) {
2036 netif_start_queue (dev); /* AKPM: redundant? */
2037 } else {
2038 /* Interrupt us when the FIFO has room for max-sized packet. */
2039 netif_stop_queue(dev);
2040 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2041 }
2042 }
2043
2044 dev->trans_start = jiffies;
2045
2046 /* Clear the Tx status stack. */
2047 {
2048 int tx_status;
2049 int i = 32;
2050
2051 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2052 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2053 if (vortex_debug > 2)
2054 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2055 dev->name, tx_status);
2056 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2057 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2058 if (tx_status & 0x30) {
2059 issue_and_wait(dev, TxReset);
2060 }
2061 iowrite16(TxEnable, ioaddr + EL3_CMD);
2062 }
2063 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2064 }
2065 }
2066 return 0;
2067 }
2068
2069 static int
2070 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2071 {
2072 struct vortex_private *vp = netdev_priv(dev);
2073 void __iomem *ioaddr = vp->ioaddr;
2074 /* Calculate the next Tx descriptor entry. */
2075 int entry = vp->cur_tx % TX_RING_SIZE;
2076 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2077 unsigned long flags;
2078
2079 if (vortex_debug > 6) {
2080 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2081 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2082 dev->name, vp->cur_tx);
2083 }
2084
2085 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2086 if (vortex_debug > 0)
2087 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2088 dev->name);
2089 netif_stop_queue(dev);
2090 return 1;
2091 }
2092
2093 vp->tx_skbuff[entry] = skb;
2094
2095 vp->tx_ring[entry].next = 0;
2096 #if DO_ZEROCOPY
2097 if (skb->ip_summed != CHECKSUM_PARTIAL)
2098 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2099 else
2100 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2101
2102 if (!skb_shinfo(skb)->nr_frags) {
2103 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2104 skb->len, PCI_DMA_TODEVICE));
2105 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2106 } else {
2107 int i;
2108
2109 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2110 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2111 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2112
2113 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2114 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2115
2116 vp->tx_ring[entry].frag[i+1].addr =
2117 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2118 (void*)page_address(frag->page) + frag->page_offset,
2119 frag->size, PCI_DMA_TODEVICE));
2120
2121 if (i == skb_shinfo(skb)->nr_frags-1)
2122 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2123 else
2124 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2125 }
2126 }
2127 #else
2128 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2129 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2130 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2131 #endif
2132
2133 spin_lock_irqsave(&vp->lock, flags);
2134 /* Wait for the stall to complete. */
2135 issue_and_wait(dev, DownStall);
2136 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2137 if (ioread32(ioaddr + DownListPtr) == 0) {
2138 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2139 vp->queued_packet++;
2140 }
2141
2142 vp->cur_tx++;
2143 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2144 netif_stop_queue (dev);
2145 } else { /* Clear previous interrupt enable. */
2146 #if defined(tx_interrupt_mitigation)
2147 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2148 * were selected, this would corrupt DN_COMPLETE. No?
2149 */
2150 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2151 #endif
2152 }
2153 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2154 spin_unlock_irqrestore(&vp->lock, flags);
2155 dev->trans_start = jiffies;
2156 return 0;
2157 }
2158
2159 /* The interrupt handler does all of the Rx thread work and cleans up
2160 after the Tx thread. */
2161
2162 /*
2163 * This is the ISR for the vortex series chips.
2164 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2165 */
2166
2167 static irqreturn_t
2168 vortex_interrupt(int irq, void *dev_id)
2169 {
2170 struct net_device *dev = dev_id;
2171 struct vortex_private *vp = netdev_priv(dev);
2172 void __iomem *ioaddr;
2173 int status;
2174 int work_done = max_interrupt_work;
2175 int handled = 0;
2176
2177 ioaddr = vp->ioaddr;
2178 spin_lock(&vp->lock);
2179
2180 status = ioread16(ioaddr + EL3_STATUS);
2181
2182 if (vortex_debug > 6)
2183 printk("vortex_interrupt(). status=0x%4x\n", status);
2184
2185 if ((status & IntLatch) == 0)
2186 goto handler_exit; /* No interrupt: shared IRQs cause this */
2187 handled = 1;
2188
2189 if (status & IntReq) {
2190 status |= vp->deferred;
2191 vp->deferred = 0;
2192 }
2193
2194 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2195 goto handler_exit;
2196
2197 if (vortex_debug > 4)
2198 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2199 dev->name, status, ioread8(ioaddr + Timer));
2200
2201 do {
2202 if (vortex_debug > 5)
2203 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2204 dev->name, status);
2205 if (status & RxComplete)
2206 vortex_rx(dev);
2207
2208 if (status & TxAvailable) {
2209 if (vortex_debug > 5)
2210 printk(KERN_DEBUG " TX room bit was handled.\n");
2211 /* There's room in the FIFO for a full-sized packet. */
2212 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2213 netif_wake_queue (dev);
2214 }
2215
2216 if (status & DMADone) {
2217 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2218 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2219 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2220 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2221 if (ioread16(ioaddr + TxFree) > 1536) {
2222 /*
2223 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2224 * insufficient FIFO room, the TxAvailable test will succeed and call
2225 * netif_wake_queue()
2226 */
2227 netif_wake_queue(dev);
2228 } else { /* Interrupt when FIFO has room for max-sized packet. */
2229 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2230 netif_stop_queue(dev);
2231 }
2232 }
2233 }
2234 /* Check for all uncommon interrupts at once. */
2235 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2236 if (status == 0xffff)
2237 break;
2238 vortex_error(dev, status);
2239 }
2240
2241 if (--work_done < 0) {
2242 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2243 "%4.4x.\n", dev->name, status);
2244 /* Disable all pending interrupts. */
2245 do {
2246 vp->deferred |= status;
2247 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2248 ioaddr + EL3_CMD);
2249 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2250 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2251 /* The timer will reenable interrupts. */
2252 mod_timer(&vp->timer, jiffies + 1*HZ);
2253 break;
2254 }
2255 /* Acknowledge the IRQ. */
2256 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2257 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2258
2259 if (vortex_debug > 4)
2260 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2261 dev->name, status);
2262 handler_exit:
2263 spin_unlock(&vp->lock);
2264 return IRQ_RETVAL(handled);
2265 }
2266
2267 /*
2268 * This is the ISR for the boomerang series chips.
2269 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2270 */
2271
2272 static irqreturn_t
2273 boomerang_interrupt(int irq, void *dev_id)
2274 {
2275 struct net_device *dev = dev_id;
2276 struct vortex_private *vp = netdev_priv(dev);
2277 void __iomem *ioaddr;
2278 int status;
2279 int work_done = max_interrupt_work;
2280
2281 ioaddr = vp->ioaddr;
2282
2283 /*
2284 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2285 * and boomerang_start_xmit
2286 */
2287 spin_lock(&vp->lock);
2288
2289 status = ioread16(ioaddr + EL3_STATUS);
2290
2291 if (vortex_debug > 6)
2292 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2293
2294 if ((status & IntLatch) == 0)
2295 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2296
2297 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2298 if (vortex_debug > 1)
2299 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2300 goto handler_exit;
2301 }
2302
2303 if (status & IntReq) {
2304 status |= vp->deferred;
2305 vp->deferred = 0;
2306 }
2307
2308 if (vortex_debug > 4)
2309 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2310 dev->name, status, ioread8(ioaddr + Timer));
2311 do {
2312 if (vortex_debug > 5)
2313 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2314 dev->name, status);
2315 if (status & UpComplete) {
2316 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2317 if (vortex_debug > 5)
2318 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2319 boomerang_rx(dev);
2320 }
2321
2322 if (status & DownComplete) {
2323 unsigned int dirty_tx = vp->dirty_tx;
2324
2325 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2326 while (vp->cur_tx - dirty_tx > 0) {
2327 int entry = dirty_tx % TX_RING_SIZE;
2328 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2329 if (ioread32(ioaddr + DownListPtr) ==
2330 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2331 break; /* It still hasn't been processed. */
2332 #else
2333 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2334 break; /* It still hasn't been processed. */
2335 #endif
2336
2337 if (vp->tx_skbuff[entry]) {
2338 struct sk_buff *skb = vp->tx_skbuff[entry];
2339 #if DO_ZEROCOPY
2340 int i;
2341 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2342 pci_unmap_single(VORTEX_PCI(vp),
2343 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2344 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2345 PCI_DMA_TODEVICE);
2346 #else
2347 pci_unmap_single(VORTEX_PCI(vp),
2348 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2349 #endif
2350 dev_kfree_skb_irq(skb);
2351 vp->tx_skbuff[entry] = NULL;
2352 } else {
2353 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2354 }
2355 /* vp->stats.tx_packets++; Counted below. */
2356 dirty_tx++;
2357 }
2358 vp->dirty_tx = dirty_tx;
2359 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2360 if (vortex_debug > 6)
2361 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2362 netif_wake_queue (dev);
2363 }
2364 }
2365
2366 /* Check for all uncommon interrupts at once. */
2367 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2368 vortex_error(dev, status);
2369
2370 if (--work_done < 0) {
2371 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2372 "%4.4x.\n", dev->name, status);
2373 /* Disable all pending interrupts. */
2374 do {
2375 vp->deferred |= status;
2376 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2377 ioaddr + EL3_CMD);
2378 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2379 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2380 /* The timer will reenable interrupts. */
2381 mod_timer(&vp->timer, jiffies + 1*HZ);
2382 break;
2383 }
2384 /* Acknowledge the IRQ. */
2385 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2386 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2387 iowrite32(0x8000, vp->cb_fn_base + 4);
2388
2389 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2390
2391 if (vortex_debug > 4)
2392 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2393 dev->name, status);
2394 handler_exit:
2395 spin_unlock(&vp->lock);
2396 return IRQ_HANDLED;
2397 }
2398
2399 static int vortex_rx(struct net_device *dev)
2400 {
2401 struct vortex_private *vp = netdev_priv(dev);
2402 void __iomem *ioaddr = vp->ioaddr;
2403 int i;
2404 short rx_status;
2405
2406 if (vortex_debug > 5)
2407 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2408 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2409 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2410 if (rx_status & 0x4000) { /* Error, update stats. */
2411 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2412 if (vortex_debug > 2)
2413 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2414 vp->stats.rx_errors++;
2415 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2416 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2417 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2418 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2419 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2420 } else {
2421 /* The packet length: up to 4.5K!. */
2422 int pkt_len = rx_status & 0x1fff;
2423 struct sk_buff *skb;
2424
2425 skb = dev_alloc_skb(pkt_len + 5);
2426 if (vortex_debug > 4)
2427 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2428 pkt_len, rx_status);
2429 if (skb != NULL) {
2430 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2431 /* 'skb_put()' points to the start of sk_buff data area. */
2432 if (vp->bus_master &&
2433 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2434 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2435 pkt_len, PCI_DMA_FROMDEVICE);
2436 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2437 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2438 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2439 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2440 ;
2441 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2442 } else {
2443 ioread32_rep(ioaddr + RX_FIFO,
2444 skb_put(skb, pkt_len),
2445 (pkt_len + 3) >> 2);
2446 }
2447 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2448 skb->protocol = eth_type_trans(skb, dev);
2449 netif_rx(skb);
2450 dev->last_rx = jiffies;
2451 vp->stats.rx_packets++;
2452 /* Wait a limited time to go to next packet. */
2453 for (i = 200; i >= 0; i--)
2454 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2455 break;
2456 continue;
2457 } else if (vortex_debug > 0)
2458 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2459 "size %d.\n", dev->name, pkt_len);
2460 vp->stats.rx_dropped++;
2461 }
2462 issue_and_wait(dev, RxDiscard);
2463 }
2464
2465 return 0;
2466 }
2467
2468 static int
2469 boomerang_rx(struct net_device *dev)
2470 {
2471 struct vortex_private *vp = netdev_priv(dev);
2472 int entry = vp->cur_rx % RX_RING_SIZE;
2473 void __iomem *ioaddr = vp->ioaddr;
2474 int rx_status;
2475 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2476
2477 if (vortex_debug > 5)
2478 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2479
2480 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2481 if (--rx_work_limit < 0)
2482 break;
2483 if (rx_status & RxDError) { /* Error, update stats. */
2484 unsigned char rx_error = rx_status >> 16;
2485 if (vortex_debug > 2)
2486 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2487 vp->stats.rx_errors++;
2488 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2489 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2490 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2491 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2492 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2493 } else {
2494 /* The packet length: up to 4.5K!. */
2495 int pkt_len = rx_status & 0x1fff;
2496 struct sk_buff *skb;
2497 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2498
2499 if (vortex_debug > 4)
2500 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2501 pkt_len, rx_status);
2502
2503 /* Check if the packet is long enough to just accept without
2504 copying to a properly sized skbuff. */
2505 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2506 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2507 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2508 /* 'skb_put()' points to the start of sk_buff data area. */
2509 memcpy(skb_put(skb, pkt_len),
2510 vp->rx_skbuff[entry]->data,
2511 pkt_len);
2512 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2513 vp->rx_copy++;
2514 } else {
2515 /* Pass up the skbuff already on the Rx ring. */
2516 skb = vp->rx_skbuff[entry];
2517 vp->rx_skbuff[entry] = NULL;
2518 skb_put(skb, pkt_len);
2519 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2520 vp->rx_nocopy++;
2521 }
2522 skb->protocol = eth_type_trans(skb, dev);
2523 { /* Use hardware checksum info. */
2524 int csum_bits = rx_status & 0xee000000;
2525 if (csum_bits &&
2526 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2527 csum_bits == (IPChksumValid | UDPChksumValid))) {
2528 skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 vp->rx_csumhits++;
2530 }
2531 }
2532 netif_rx(skb);
2533 dev->last_rx = jiffies;
2534 vp->stats.rx_packets++;
2535 }
2536 entry = (++vp->cur_rx) % RX_RING_SIZE;
2537 }
2538 /* Refill the Rx ring buffers. */
2539 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2540 struct sk_buff *skb;
2541 entry = vp->dirty_rx % RX_RING_SIZE;
2542 if (vp->rx_skbuff[entry] == NULL) {
2543 skb = dev_alloc_skb(PKT_BUF_SZ);
2544 if (skb == NULL) {
2545 static unsigned long last_jif;
2546 if (time_after(jiffies, last_jif + 10 * HZ)) {
2547 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2548 last_jif = jiffies;
2549 }
2550 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2551 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2552 break; /* Bad news! */
2553 }
2554 skb->dev = dev; /* Mark as being used by this device. */
2555 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2556 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2557 vp->rx_skbuff[entry] = skb;
2558 }
2559 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2560 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2561 }
2562 return 0;
2563 }
2564
2565 /*
2566 * If we've hit a total OOM refilling the Rx ring we poll once a second
2567 * for some memory. Otherwise there is no way to restart the rx process.
2568 */
2569 static void
2570 rx_oom_timer(unsigned long arg)
2571 {
2572 struct net_device *dev = (struct net_device *)arg;
2573 struct vortex_private *vp = netdev_priv(dev);
2574
2575 spin_lock_irq(&vp->lock);
2576 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2577 boomerang_rx(dev);
2578 if (vortex_debug > 1) {
2579 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2580 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2581 }
2582 spin_unlock_irq(&vp->lock);
2583 }
2584
2585 static void
2586 vortex_down(struct net_device *dev, int final_down)
2587 {
2588 struct vortex_private *vp = netdev_priv(dev);
2589 void __iomem *ioaddr = vp->ioaddr;
2590
2591 netif_stop_queue (dev);
2592
2593 del_timer_sync(&vp->rx_oom_timer);
2594 del_timer_sync(&vp->timer);
2595
2596 /* Turn off statistics ASAP. We update vp->stats below. */
2597 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2598
2599 /* Disable the receiver and transmitter. */
2600 iowrite16(RxDisable, ioaddr + EL3_CMD);
2601 iowrite16(TxDisable, ioaddr + EL3_CMD);
2602
2603 /* Disable receiving 802.1q tagged frames */
2604 set_8021q_mode(dev, 0);
2605
2606 if (dev->if_port == XCVR_10base2)
2607 /* Turn off thinnet power. Green! */
2608 iowrite16(StopCoax, ioaddr + EL3_CMD);
2609
2610 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2611
2612 update_stats(ioaddr, dev);
2613 if (vp->full_bus_master_rx)
2614 iowrite32(0, ioaddr + UpListPtr);
2615 if (vp->full_bus_master_tx)
2616 iowrite32(0, ioaddr + DownListPtr);
2617
2618 if (final_down && VORTEX_PCI(vp)) {
2619 vp->pm_state_valid = 1;
2620 pci_save_state(VORTEX_PCI(vp));
2621 acpi_set_WOL(dev);
2622 }
2623 }
2624
2625 static int
2626 vortex_close(struct net_device *dev)
2627 {
2628 struct vortex_private *vp = netdev_priv(dev);
2629 void __iomem *ioaddr = vp->ioaddr;
2630 int i;
2631
2632 if (netif_device_present(dev))
2633 vortex_down(dev, 1);
2634
2635 if (vortex_debug > 1) {
2636 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2637 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2638 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2639 " tx_queued %d Rx pre-checksummed %d.\n",
2640 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2641 }
2642
2643 #if DO_ZEROCOPY
2644 if (vp->rx_csumhits &&
2645 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2646 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2647 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2648 "not using them!\n", dev->name);
2649 }
2650 #endif
2651
2652 free_irq(dev->irq, dev);
2653
2654 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2655 for (i = 0; i < RX_RING_SIZE; i++)
2656 if (vp->rx_skbuff[i]) {
2657 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2658 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2659 dev_kfree_skb(vp->rx_skbuff[i]);
2660 vp->rx_skbuff[i] = NULL;
2661 }
2662 }
2663 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2664 for (i = 0; i < TX_RING_SIZE; i++) {
2665 if (vp->tx_skbuff[i]) {
2666 struct sk_buff *skb = vp->tx_skbuff[i];
2667 #if DO_ZEROCOPY
2668 int k;
2669
2670 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2671 pci_unmap_single(VORTEX_PCI(vp),
2672 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2673 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2674 PCI_DMA_TODEVICE);
2675 #else
2676 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2677 #endif
2678 dev_kfree_skb(skb);
2679 vp->tx_skbuff[i] = NULL;
2680 }
2681 }
2682 }
2683
2684 return 0;
2685 }
2686
2687 static void
2688 dump_tx_ring(struct net_device *dev)
2689 {
2690 if (vortex_debug > 0) {
2691 struct vortex_private *vp = netdev_priv(dev);
2692 void __iomem *ioaddr = vp->ioaddr;
2693
2694 if (vp->full_bus_master_tx) {
2695 int i;
2696 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2697
2698 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2699 vp->full_bus_master_tx,
2700 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2701 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2702 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2703 ioread32(ioaddr + DownListPtr),
2704 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2705 issue_and_wait(dev, DownStall);
2706 for (i = 0; i < TX_RING_SIZE; i++) {
2707 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2708 &vp->tx_ring[i],
2709 #if DO_ZEROCOPY
2710 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2711 #else
2712 le32_to_cpu(vp->tx_ring[i].length),
2713 #endif
2714 le32_to_cpu(vp->tx_ring[i].status));
2715 }
2716 if (!stalled)
2717 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2718 }
2719 }
2720 }
2721
2722 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2723 {
2724 struct vortex_private *vp = netdev_priv(dev);
2725 void __iomem *ioaddr = vp->ioaddr;
2726 unsigned long flags;
2727
2728 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2729 spin_lock_irqsave (&vp->lock, flags);
2730 update_stats(ioaddr, dev);
2731 spin_unlock_irqrestore (&vp->lock, flags);
2732 }
2733 return &vp->stats;
2734 }
2735
2736 /* Update statistics.
2737 Unlike with the EL3 we need not worry about interrupts changing
2738 the window setting from underneath us, but we must still guard
2739 against a race condition with a StatsUpdate interrupt updating the
2740 table. This is done by checking that the ASM (!) code generated uses
2741 atomic updates with '+='.
2742 */
2743 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2744 {
2745 struct vortex_private *vp = netdev_priv(dev);
2746 int old_window = ioread16(ioaddr + EL3_CMD);
2747
2748 if (old_window == 0xffff) /* Chip suspended or ejected. */
2749 return;
2750 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2751 /* Switch to the stats window, and read everything. */
2752 EL3WINDOW(6);
2753 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2754 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2755 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2756 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2757 vp->stats.tx_packets += ioread8(ioaddr + 6);
2758 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2759 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2760 /* Don't bother with register 9, an extension of registers 6&7.
2761 If we do use the 6&7 values the atomic update assumption above
2762 is invalid. */
2763 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2764 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2765 /* Extra stats for get_ethtool_stats() */
2766 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2767 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2768 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2769 EL3WINDOW(4);
2770 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2771
2772 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2773 + vp->xstats.tx_single_collisions
2774 + vp->xstats.tx_max_collisions;
2775
2776 {
2777 u8 up = ioread8(ioaddr + 13);
2778 vp->stats.rx_bytes += (up & 0x0f) << 16;
2779 vp->stats.tx_bytes += (up & 0xf0) << 12;
2780 }
2781
2782 EL3WINDOW(old_window >> 13);
2783 return;
2784 }
2785
2786 static int vortex_nway_reset(struct net_device *dev)
2787 {
2788 struct vortex_private *vp = netdev_priv(dev);
2789 void __iomem *ioaddr = vp->ioaddr;
2790 unsigned long flags;
2791 int rc;
2792
2793 spin_lock_irqsave(&vp->lock, flags);
2794 EL3WINDOW(4);
2795 rc = mii_nway_restart(&vp->mii);
2796 spin_unlock_irqrestore(&vp->lock, flags);
2797 return rc;
2798 }
2799
2800 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2801 {
2802 struct vortex_private *vp = netdev_priv(dev);
2803 void __iomem *ioaddr = vp->ioaddr;
2804 unsigned long flags;
2805 int rc;
2806
2807 spin_lock_irqsave(&vp->lock, flags);
2808 EL3WINDOW(4);
2809 rc = mii_ethtool_gset(&vp->mii, cmd);
2810 spin_unlock_irqrestore(&vp->lock, flags);
2811 return rc;
2812 }
2813
2814 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2815 {
2816 struct vortex_private *vp = netdev_priv(dev);
2817 void __iomem *ioaddr = vp->ioaddr;
2818 unsigned long flags;
2819 int rc;
2820
2821 spin_lock_irqsave(&vp->lock, flags);
2822 EL3WINDOW(4);
2823 rc = mii_ethtool_sset(&vp->mii, cmd);
2824 spin_unlock_irqrestore(&vp->lock, flags);
2825 return rc;
2826 }
2827
2828 static u32 vortex_get_msglevel(struct net_device *dev)
2829 {
2830 return vortex_debug;
2831 }
2832
2833 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2834 {
2835 vortex_debug = dbg;
2836 }
2837
2838 static int vortex_get_stats_count(struct net_device *dev)
2839 {
2840 return VORTEX_NUM_STATS;
2841 }
2842
2843 static void vortex_get_ethtool_stats(struct net_device *dev,
2844 struct ethtool_stats *stats, u64 *data)
2845 {
2846 struct vortex_private *vp = netdev_priv(dev);
2847 void __iomem *ioaddr = vp->ioaddr;
2848 unsigned long flags;
2849
2850 spin_lock_irqsave(&vp->lock, flags);
2851 update_stats(ioaddr, dev);
2852 spin_unlock_irqrestore(&vp->lock, flags);
2853
2854 data[0] = vp->xstats.tx_deferred;
2855 data[1] = vp->xstats.tx_max_collisions;
2856 data[2] = vp->xstats.tx_multiple_collisions;
2857 data[3] = vp->xstats.tx_single_collisions;
2858 data[4] = vp->xstats.rx_bad_ssd;
2859 }
2860
2861
2862 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2863 {
2864 switch (stringset) {
2865 case ETH_SS_STATS:
2866 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2867 break;
2868 default:
2869 WARN_ON(1);
2870 break;
2871 }
2872 }
2873
2874 static void vortex_get_drvinfo(struct net_device *dev,
2875 struct ethtool_drvinfo *info)
2876 {
2877 struct vortex_private *vp = netdev_priv(dev);
2878
2879 strcpy(info->driver, DRV_NAME);
2880 if (VORTEX_PCI(vp)) {
2881 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2882 } else {
2883 if (VORTEX_EISA(vp))
2884 sprintf(info->bus_info, vp->gendev->bus_id);
2885 else
2886 sprintf(info->bus_info, "EISA 0x%lx %d",
2887 dev->base_addr, dev->irq);
2888 }
2889 }
2890
2891 static const struct ethtool_ops vortex_ethtool_ops = {
2892 .get_drvinfo = vortex_get_drvinfo,
2893 .get_strings = vortex_get_strings,
2894 .get_msglevel = vortex_get_msglevel,
2895 .set_msglevel = vortex_set_msglevel,
2896 .get_ethtool_stats = vortex_get_ethtool_stats,
2897 .get_stats_count = vortex_get_stats_count,
2898 .get_settings = vortex_get_settings,
2899 .set_settings = vortex_set_settings,
2900 .get_link = ethtool_op_get_link,
2901 .nway_reset = vortex_nway_reset,
2902 };
2903
2904 #ifdef CONFIG_PCI
2905 /*
2906 * Must power the device up to do MDIO operations
2907 */
2908 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2909 {
2910 int err;
2911 struct vortex_private *vp = netdev_priv(dev);
2912 void __iomem *ioaddr = vp->ioaddr;
2913 unsigned long flags;
2914 int state = 0;
2915
2916 if(VORTEX_PCI(vp))
2917 state = VORTEX_PCI(vp)->current_state;
2918
2919 /* The kernel core really should have pci_get_power_state() */
2920
2921 if(state != 0)
2922 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2923 spin_lock_irqsave(&vp->lock, flags);
2924 EL3WINDOW(4);
2925 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2926 spin_unlock_irqrestore(&vp->lock, flags);
2927 if(state != 0)
2928 pci_set_power_state(VORTEX_PCI(vp), state);
2929
2930 return err;
2931 }
2932 #endif
2933
2934
2935 /* Pre-Cyclone chips have no documented multicast filter, so the only
2936 multicast setting is to receive all multicast frames. At least
2937 the chip has a very clean way to set the mode, unlike many others. */
2938 static void set_rx_mode(struct net_device *dev)
2939 {
2940 struct vortex_private *vp = netdev_priv(dev);
2941 void __iomem *ioaddr = vp->ioaddr;
2942 int new_mode;
2943
2944 if (dev->flags & IFF_PROMISC) {
2945 if (vortex_debug > 3)
2946 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
2947 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2948 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
2949 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2950 } else
2951 new_mode = SetRxFilter | RxStation | RxBroadcast;
2952
2953 iowrite16(new_mode, ioaddr + EL3_CMD);
2954 }
2955
2956 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2957 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2958 Note that this must be done after each RxReset due to some backwards
2959 compatibility logic in the Cyclone and Tornado ASICs */
2960
2961 /* The Ethernet Type used for 802.1q tagged frames */
2962 #define VLAN_ETHER_TYPE 0x8100
2963
2964 static void set_8021q_mode(struct net_device *dev, int enable)
2965 {
2966 struct vortex_private *vp = netdev_priv(dev);
2967 void __iomem *ioaddr = vp->ioaddr;
2968 int old_window = ioread16(ioaddr + EL3_CMD);
2969 int mac_ctrl;
2970
2971 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
2972 /* cyclone and tornado chipsets can recognize 802.1q
2973 * tagged frames and treat them correctly */
2974
2975 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
2976 if (enable)
2977 max_pkt_size += 4; /* 802.1Q VLAN tag */
2978
2979 EL3WINDOW(3);
2980 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
2981
2982 /* set VlanEtherType to let the hardware checksumming
2983 treat tagged frames correctly */
2984 EL3WINDOW(7);
2985 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
2986 } else {
2987 /* on older cards we have to enable large frames */
2988
2989 vp->large_frames = dev->mtu > 1500 || enable;
2990
2991 EL3WINDOW(3);
2992 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
2993 if (vp->large_frames)
2994 mac_ctrl |= 0x40;
2995 else
2996 mac_ctrl &= ~0x40;
2997 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
2998 }
2999
3000 EL3WINDOW(old_window);
3001 }
3002 #else
3003
3004 static void set_8021q_mode(struct net_device *dev, int enable)
3005 {
3006 }
3007
3008
3009 #endif
3010
3011 /* MII transceiver control section.
3012 Read and write the MII registers using software-generated serial
3013 MDIO protocol. See the MII specifications or DP83840A data sheet
3014 for details. */
3015
3016 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3017 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3018 "overclocking" issues. */
3019 #define mdio_delay() ioread32(mdio_addr)
3020
3021 #define MDIO_SHIFT_CLK 0x01
3022 #define MDIO_DIR_WRITE 0x04
3023 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3024 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3025 #define MDIO_DATA_READ 0x02
3026 #define MDIO_ENB_IN 0x00
3027
3028 /* Generate the preamble required for initial synchronization and
3029 a few older transceivers. */
3030 static void mdio_sync(void __iomem *ioaddr, int bits)
3031 {
3032 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3033
3034 /* Establish sync by sending at least 32 logic ones. */
3035 while (-- bits >= 0) {
3036 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3037 mdio_delay();
3038 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3039 mdio_delay();
3040 }
3041 }
3042
3043 static int mdio_read(struct net_device *dev, int phy_id, int location)
3044 {
3045 int i;
3046 struct vortex_private *vp = netdev_priv(dev);
3047 void __iomem *ioaddr = vp->ioaddr;
3048 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3049 unsigned int retval = 0;
3050 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3051
3052 if (mii_preamble_required)
3053 mdio_sync(ioaddr, 32);
3054
3055 /* Shift the read command bits out. */
3056 for (i = 14; i >= 0; i--) {
3057 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3058 iowrite16(dataval, mdio_addr);
3059 mdio_delay();
3060 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3061 mdio_delay();
3062 }
3063 /* Read the two transition, 16 data, and wire-idle bits. */
3064 for (i = 19; i > 0; i--) {
3065 iowrite16(MDIO_ENB_IN, mdio_addr);
3066 mdio_delay();
3067 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3068 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3069 mdio_delay();
3070 }
3071 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3072 }
3073
3074 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3075 {
3076 struct vortex_private *vp = netdev_priv(dev);
3077 void __iomem *ioaddr = vp->ioaddr;
3078 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3079 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3080 int i;
3081
3082 if (mii_preamble_required)
3083 mdio_sync(ioaddr, 32);
3084
3085 /* Shift the command bits out. */
3086 for (i = 31; i >= 0; i--) {
3087 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3088 iowrite16(dataval, mdio_addr);
3089 mdio_delay();
3090 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3091 mdio_delay();
3092 }
3093 /* Leave the interface idle. */
3094 for (i = 1; i >= 0; i--) {
3095 iowrite16(MDIO_ENB_IN, mdio_addr);
3096 mdio_delay();
3097 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3098 mdio_delay();
3099 }
3100 return;
3101 }
3102
3103 /* ACPI: Advanced Configuration and Power Interface. */
3104 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3105 static void acpi_set_WOL(struct net_device *dev)
3106 {
3107 struct vortex_private *vp = netdev_priv(dev);
3108 void __iomem *ioaddr = vp->ioaddr;
3109
3110 if (vp->enable_wol) {
3111 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3112 EL3WINDOW(7);
3113 iowrite16(2, ioaddr + 0x0c);
3114 /* The RxFilter must accept the WOL frames. */
3115 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3116 iowrite16(RxEnable, ioaddr + EL3_CMD);
3117
3118 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3119
3120 /* Change the power state to D3; RxEnable doesn't take effect. */
3121 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3122 }
3123 }
3124
3125
3126 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3127 {
3128 struct net_device *dev = pci_get_drvdata(pdev);
3129 struct vortex_private *vp;
3130
3131 if (!dev) {
3132 printk("vortex_remove_one called for Compaq device!\n");
3133 BUG();
3134 }
3135
3136 vp = netdev_priv(dev);
3137
3138 if (vp->cb_fn_base)
3139 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3140
3141 unregister_netdev(dev);
3142
3143 if (VORTEX_PCI(vp)) {
3144 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3145 if (vp->pm_state_valid)
3146 pci_restore_state(VORTEX_PCI(vp));
3147 pci_disable_device(VORTEX_PCI(vp));
3148 }
3149 /* Should really use issue_and_wait() here */
3150 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3151 vp->ioaddr + EL3_CMD);
3152
3153 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3154
3155 pci_free_consistent(pdev,
3156 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3157 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3158 vp->rx_ring,
3159 vp->rx_ring_dma);
3160 if (vp->must_free_region)
3161 release_region(dev->base_addr, vp->io_size);
3162 free_netdev(dev);
3163 }
3164
3165
3166 static struct pci_driver vortex_driver = {
3167 .name = "3c59x",
3168 .probe = vortex_init_one,
3169 .remove = __devexit_p(vortex_remove_one),
3170 .id_table = vortex_pci_tbl,
3171 #ifdef CONFIG_PM
3172 .suspend = vortex_suspend,
3173 .resume = vortex_resume,
3174 #endif
3175 };
3176
3177
3178 static int vortex_have_pci;
3179 static int vortex_have_eisa;
3180
3181
3182 static int __init vortex_init(void)
3183 {
3184 int pci_rc, eisa_rc;
3185
3186 pci_rc = pci_register_driver(&vortex_driver);
3187 eisa_rc = vortex_eisa_init();
3188
3189 if (pci_rc == 0)
3190 vortex_have_pci = 1;
3191 if (eisa_rc > 0)
3192 vortex_have_eisa = 1;
3193
3194 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3195 }
3196
3197
3198 static void __exit vortex_eisa_cleanup(void)
3199 {
3200 struct vortex_private *vp;
3201 void __iomem *ioaddr;
3202
3203 #ifdef CONFIG_EISA
3204 /* Take care of the EISA devices */
3205 eisa_driver_unregister(&vortex_eisa_driver);
3206 #endif
3207
3208 if (compaq_net_device) {
3209 vp = compaq_net_device->priv;
3210 ioaddr = ioport_map(compaq_net_device->base_addr,
3211 VORTEX_TOTAL_SIZE);
3212
3213 unregister_netdev(compaq_net_device);
3214 iowrite16(TotalReset, ioaddr + EL3_CMD);
3215 release_region(compaq_net_device->base_addr,
3216 VORTEX_TOTAL_SIZE);
3217
3218 free_netdev(compaq_net_device);
3219 }
3220 }
3221
3222
3223 static void __exit vortex_cleanup(void)
3224 {
3225 if (vortex_have_pci)
3226 pci_unregister_driver(&vortex_driver);
3227 if (vortex_have_eisa)
3228 vortex_eisa_cleanup();
3229 }
3230
3231
3232 module_init(vortex_init);
3233 module_exit(vortex_cleanup);
This page took 0.125653 seconds and 6 git commands to generate.