Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-fixes
[deliverable/linux.git] / drivers / net / acenic.c
1 /*
2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3 * and other Tigon based cards.
4 *
5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
6 *
7 * Thanks to Alteon and 3Com for providing hardware and documentation
8 * enabling me to write this driver.
9 *
10 * A mailing list for discussing the use of this driver has been
11 * setup, please subscribe to the lists if you have any questions
12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13 * see how to subscribe.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 *
20 * Additional credits:
21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22 * dump support. The trace dump support has not been
23 * integrated yet however.
24 * Troy Benjegerdes: Big Endian (PPC) patches.
25 * Nate Stahl: Better out of memory handling and stats support.
26 * Aman Singla: Nasty race between interrupt handler and tx code dealing
27 * with 'testing the tx_ret_csm and setting tx_full'
28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29 * infrastructure and Sparc support
30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31 * driver under Linux/Sparc64
32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33 * ETHTOOL_GDRVINFO support
34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35 * handler and close() cleanup.
36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37 * memory mapped IO is enabled to
38 * make the driver work on RS/6000.
39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40 * where the driver would disable
41 * bus master mode if it had to disable
42 * write and invalidate.
43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44 * endian systems.
45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
46 * rx producer index when
47 * flushing the Jumbo ring.
48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
49 * driver init path.
50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
51 */
52
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
66 #include <linux/mm.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
70 #include <linux/slab.h>
71 #include <linux/prefetch.h>
72 #include <linux/if_vlan.h>
73
74 #ifdef SIOCETHTOOL
75 #include <linux/ethtool.h>
76 #endif
77
78 #include <net/sock.h>
79 #include <net/ip.h>
80
81 #include <asm/system.h>
82 #include <asm/io.h>
83 #include <asm/irq.h>
84 #include <asm/byteorder.h>
85 #include <asm/uaccess.h>
86
87
88 #define DRV_NAME "acenic"
89
90 #undef INDEX_DEBUG
91
92 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
93 #define ACE_IS_TIGON_I(ap) 0
94 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
95 #else
96 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
97 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
98 #endif
99
100 #ifndef PCI_VENDOR_ID_ALTEON
101 #define PCI_VENDOR_ID_ALTEON 0x12ae
102 #endif
103 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
104 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
106 #endif
107 #ifndef PCI_DEVICE_ID_3COM_3C985
108 #define PCI_DEVICE_ID_3COM_3C985 0x0001
109 #endif
110 #ifndef PCI_VENDOR_ID_NETGEAR
111 #define PCI_VENDOR_ID_NETGEAR 0x1385
112 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
113 #endif
114 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
115 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
116 #endif
117
118
119 /*
120 * Farallon used the DEC vendor ID by mistake and they seem not
121 * to care - stinky!
122 */
123 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
124 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
125 #endif
126 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
127 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
128 #endif
129 #ifndef PCI_VENDOR_ID_SGI
130 #define PCI_VENDOR_ID_SGI 0x10a9
131 #endif
132 #ifndef PCI_DEVICE_ID_SGI_ACENIC
133 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
134 #endif
135
136 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
137 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
139 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
142 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
143 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
144 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
145 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
147 /*
148 * Farallon used the DEC vendor ID on their cards incorrectly,
149 * then later Alteon's ID.
150 */
151 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
152 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
153 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
154 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
155 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
156 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
157 { }
158 };
159 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
160
161 #define ace_sync_irq(irq) synchronize_irq(irq)
162
163 #ifndef offset_in_page
164 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
165 #endif
166
167 #define ACE_MAX_MOD_PARMS 8
168 #define BOARD_IDX_STATIC 0
169 #define BOARD_IDX_OVERFLOW -1
170
171 #include "acenic.h"
172
173 /*
174 * These must be defined before the firmware is included.
175 */
176 #define MAX_TEXT_LEN 96*1024
177 #define MAX_RODATA_LEN 8*1024
178 #define MAX_DATA_LEN 2*1024
179
180 #ifndef tigon2FwReleaseLocal
181 #define tigon2FwReleaseLocal 0
182 #endif
183
184 /*
185 * This driver currently supports Tigon I and Tigon II based cards
186 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
187 * GA620. The driver should also work on the SGI, DEC and Farallon
188 * versions of the card, however I have not been able to test that
189 * myself.
190 *
191 * This card is really neat, it supports receive hardware checksumming
192 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
193 * firmware. Also the programming interface is quite neat, except for
194 * the parts dealing with the i2c eeprom on the card ;-)
195 *
196 * Using jumbo frames:
197 *
198 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
199 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
200 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
201 * interface number and <MTU> being the MTU value.
202 *
203 * Module parameters:
204 *
205 * When compiled as a loadable module, the driver allows for a number
206 * of module parameters to be specified. The driver supports the
207 * following module parameters:
208 *
209 * trace=<val> - Firmware trace level. This requires special traced
210 * firmware to replace the firmware supplied with
211 * the driver - for debugging purposes only.
212 *
213 * link=<val> - Link state. Normally you want to use the default link
214 * parameters set by the driver. This can be used to
215 * override these in case your switch doesn't negotiate
216 * the link properly. Valid values are:
217 * 0x0001 - Force half duplex link.
218 * 0x0002 - Do not negotiate line speed with the other end.
219 * 0x0010 - 10Mbit/sec link.
220 * 0x0020 - 100Mbit/sec link.
221 * 0x0040 - 1000Mbit/sec link.
222 * 0x0100 - Do not negotiate flow control.
223 * 0x0200 - Enable RX flow control Y
224 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
225 * Default value is 0x0270, ie. enable link+flow
226 * control negotiation. Negotiating the highest
227 * possible link speed with RX flow control enabled.
228 *
229 * When disabling link speed negotiation, only one link
230 * speed is allowed to be specified!
231 *
232 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
233 * to wait for more packets to arive before
234 * interrupting the host, from the time the first
235 * packet arrives.
236 *
237 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
238 * to wait for more packets to arive in the transmit ring,
239 * before interrupting the host, after transmitting the
240 * first packet in the ring.
241 *
242 * max_tx_desc=<val> - maximum number of transmit descriptors
243 * (packets) transmitted before interrupting the host.
244 *
245 * max_rx_desc=<val> - maximum number of receive descriptors
246 * (packets) received before interrupting the host.
247 *
248 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
249 * increments of the NIC's on board memory to be used for
250 * transmit and receive buffers. For the 1MB NIC app. 800KB
251 * is available, on the 1/2MB NIC app. 300KB is available.
252 * 68KB will always be available as a minimum for both
253 * directions. The default value is a 50/50 split.
254 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
255 * operations, default (1) is to always disable this as
256 * that is what Alteon does on NT. I have not been able
257 * to measure any real performance differences with
258 * this on my systems. Set <val>=0 if you want to
259 * enable these operations.
260 *
261 * If you use more than one NIC, specify the parameters for the
262 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
263 * run tracing on NIC #2 but not on NIC #1 and #3.
264 *
265 * TODO:
266 *
267 * - Proper multicast support.
268 * - NIC dump support.
269 * - More tuning parameters.
270 *
271 * The mini ring is not used under Linux and I am not sure it makes sense
272 * to actually use it.
273 *
274 * New interrupt handler strategy:
275 *
276 * The old interrupt handler worked using the traditional method of
277 * replacing an skbuff with a new one when a packet arrives. However
278 * the rx rings do not need to contain a static number of buffer
279 * descriptors, thus it makes sense to move the memory allocation out
280 * of the main interrupt handler and do it in a bottom half handler
281 * and only allocate new buffers when the number of buffers in the
282 * ring is below a certain threshold. In order to avoid starving the
283 * NIC under heavy load it is however necessary to force allocation
284 * when hitting a minimum threshold. The strategy for alloction is as
285 * follows:
286 *
287 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
288 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
289 * the buffers in the interrupt handler
290 * RX_RING_THRES - maximum number of buffers in the rx ring
291 * RX_MINI_THRES - maximum number of buffers in the mini ring
292 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
293 *
294 * One advantagous side effect of this allocation approach is that the
295 * entire rx processing can be done without holding any spin lock
296 * since the rx rings and registers are totally independent of the tx
297 * ring and its registers. This of course includes the kmalloc's of
298 * new skb's. Thus start_xmit can run in parallel with rx processing
299 * and the memory allocation on SMP systems.
300 *
301 * Note that running the skb reallocation in a bottom half opens up
302 * another can of races which needs to be handled properly. In
303 * particular it can happen that the interrupt handler tries to run
304 * the reallocation while the bottom half is either running on another
305 * CPU or was interrupted on the same CPU. To get around this the
306 * driver uses bitops to prevent the reallocation routines from being
307 * reentered.
308 *
309 * TX handling can also be done without holding any spin lock, wheee
310 * this is fun! since tx_ret_csm is only written to by the interrupt
311 * handler. The case to be aware of is when shutting down the device
312 * and cleaning up where it is necessary to make sure that
313 * start_xmit() is not running while this is happening. Well DaveM
314 * informs me that this case is already protected against ... bye bye
315 * Mr. Spin Lock, it was nice to know you.
316 *
317 * TX interrupts are now partly disabled so the NIC will only generate
318 * TX interrupts for the number of coal ticks, not for the number of
319 * TX packets in the queue. This should reduce the number of TX only,
320 * ie. when no RX processing is done, interrupts seen.
321 */
322
323 /*
324 * Threshold values for RX buffer allocation - the low water marks for
325 * when to start refilling the rings are set to 75% of the ring
326 * sizes. It seems to make sense to refill the rings entirely from the
327 * intrrupt handler once it gets below the panic threshold, that way
328 * we don't risk that the refilling is moved to another CPU when the
329 * one running the interrupt handler just got the slab code hot in its
330 * cache.
331 */
332 #define RX_RING_SIZE 72
333 #define RX_MINI_SIZE 64
334 #define RX_JUMBO_SIZE 48
335
336 #define RX_PANIC_STD_THRES 16
337 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
338 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
339 #define RX_PANIC_MINI_THRES 12
340 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
341 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
342 #define RX_PANIC_JUMBO_THRES 6
343 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
344 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
345
346
347 /*
348 * Size of the mini ring entries, basically these just should be big
349 * enough to take TCP ACKs
350 */
351 #define ACE_MINI_SIZE 100
352
353 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
354 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
355 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
356
357 /*
358 * There seems to be a magic difference in the effect between 995 and 996
359 * but little difference between 900 and 995 ... no idea why.
360 *
361 * There is now a default set of tuning parameters which is set, depending
362 * on whether or not the user enables Jumbo frames. It's assumed that if
363 * Jumbo frames are enabled, the user wants optimal tuning for that case.
364 */
365 #define DEF_TX_COAL 400 /* 996 */
366 #define DEF_TX_MAX_DESC 60 /* was 40 */
367 #define DEF_RX_COAL 120 /* 1000 */
368 #define DEF_RX_MAX_DESC 25
369 #define DEF_TX_RATIO 21 /* 24 */
370
371 #define DEF_JUMBO_TX_COAL 20
372 #define DEF_JUMBO_TX_MAX_DESC 60
373 #define DEF_JUMBO_RX_COAL 30
374 #define DEF_JUMBO_RX_MAX_DESC 6
375 #define DEF_JUMBO_TX_RATIO 21
376
377 #if tigon2FwReleaseLocal < 20001118
378 /*
379 * Standard firmware and early modifications duplicate
380 * IRQ load without this flag (coal timer is never reset).
381 * Note that with this flag tx_coal should be less than
382 * time to xmit full tx ring.
383 * 400usec is not so bad for tx ring size of 128.
384 */
385 #define TX_COAL_INTS_ONLY 1 /* worth it */
386 #else
387 /*
388 * With modified firmware, this is not necessary, but still useful.
389 */
390 #define TX_COAL_INTS_ONLY 1
391 #endif
392
393 #define DEF_TRACE 0
394 #define DEF_STAT (2 * TICKS_PER_SEC)
395
396
397 static int link_state[ACE_MAX_MOD_PARMS];
398 static int trace[ACE_MAX_MOD_PARMS];
399 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
400 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
401 static int max_tx_desc[ACE_MAX_MOD_PARMS];
402 static int max_rx_desc[ACE_MAX_MOD_PARMS];
403 static int tx_ratio[ACE_MAX_MOD_PARMS];
404 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
405
406 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
407 MODULE_LICENSE("GPL");
408 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
409 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
410 MODULE_FIRMWARE("acenic/tg1.bin");
411 #endif
412 MODULE_FIRMWARE("acenic/tg2.bin");
413
414 module_param_array_named(link, link_state, int, NULL, 0);
415 module_param_array(trace, int, NULL, 0);
416 module_param_array(tx_coal_tick, int, NULL, 0);
417 module_param_array(max_tx_desc, int, NULL, 0);
418 module_param_array(rx_coal_tick, int, NULL, 0);
419 module_param_array(max_rx_desc, int, NULL, 0);
420 module_param_array(tx_ratio, int, NULL, 0);
421 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
422 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
423 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
424 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
425 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
426 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
427 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
428
429
430 static const char version[] __devinitconst =
431 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
432 " http://home.cern.ch/~jes/gige/acenic.html\n";
433
434 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
435 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
436 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
437
438 static const struct ethtool_ops ace_ethtool_ops = {
439 .get_settings = ace_get_settings,
440 .set_settings = ace_set_settings,
441 .get_drvinfo = ace_get_drvinfo,
442 };
443
444 static void ace_watchdog(struct net_device *dev);
445
446 static const struct net_device_ops ace_netdev_ops = {
447 .ndo_open = ace_open,
448 .ndo_stop = ace_close,
449 .ndo_tx_timeout = ace_watchdog,
450 .ndo_get_stats = ace_get_stats,
451 .ndo_start_xmit = ace_start_xmit,
452 .ndo_set_multicast_list = ace_set_multicast_list,
453 .ndo_validate_addr = eth_validate_addr,
454 .ndo_set_mac_address = ace_set_mac_addr,
455 .ndo_change_mtu = ace_change_mtu,
456 };
457
458 static int __devinit acenic_probe_one(struct pci_dev *pdev,
459 const struct pci_device_id *id)
460 {
461 struct net_device *dev;
462 struct ace_private *ap;
463 static int boards_found;
464
465 dev = alloc_etherdev(sizeof(struct ace_private));
466 if (dev == NULL) {
467 printk(KERN_ERR "acenic: Unable to allocate "
468 "net_device structure!\n");
469 return -ENOMEM;
470 }
471
472 SET_NETDEV_DEV(dev, &pdev->dev);
473
474 ap = netdev_priv(dev);
475 ap->pdev = pdev;
476 ap->name = pci_name(pdev);
477
478 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
479 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
480
481 dev->watchdog_timeo = 5*HZ;
482
483 dev->netdev_ops = &ace_netdev_ops;
484 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
485
486 /* we only display this string ONCE */
487 if (!boards_found)
488 printk(version);
489
490 if (pci_enable_device(pdev))
491 goto fail_free_netdev;
492
493 /*
494 * Enable master mode before we start playing with the
495 * pci_command word since pci_set_master() will modify
496 * it.
497 */
498 pci_set_master(pdev);
499
500 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
501
502 /* OpenFirmware on Mac's does not set this - DOH.. */
503 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
504 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
505 "access - was not enabled by BIOS/Firmware\n",
506 ap->name);
507 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
508 pci_write_config_word(ap->pdev, PCI_COMMAND,
509 ap->pci_command);
510 wmb();
511 }
512
513 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
514 if (ap->pci_latency <= 0x40) {
515 ap->pci_latency = 0x40;
516 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
517 }
518
519 /*
520 * Remap the regs into kernel space - this is abuse of
521 * dev->base_addr since it was means for I/O port
522 * addresses but who gives a damn.
523 */
524 dev->base_addr = pci_resource_start(pdev, 0);
525 ap->regs = ioremap(dev->base_addr, 0x4000);
526 if (!ap->regs) {
527 printk(KERN_ERR "%s: Unable to map I/O register, "
528 "AceNIC %i will be disabled.\n",
529 ap->name, boards_found);
530 goto fail_free_netdev;
531 }
532
533 switch(pdev->vendor) {
534 case PCI_VENDOR_ID_ALTEON:
535 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
536 printk(KERN_INFO "%s: Farallon PN9100-T ",
537 ap->name);
538 } else {
539 printk(KERN_INFO "%s: Alteon AceNIC ",
540 ap->name);
541 }
542 break;
543 case PCI_VENDOR_ID_3COM:
544 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
545 break;
546 case PCI_VENDOR_ID_NETGEAR:
547 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
548 break;
549 case PCI_VENDOR_ID_DEC:
550 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
551 printk(KERN_INFO "%s: Farallon PN9000-SX ",
552 ap->name);
553 break;
554 }
555 case PCI_VENDOR_ID_SGI:
556 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
557 break;
558 default:
559 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
560 break;
561 }
562
563 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
564 printk("irq %d\n", pdev->irq);
565
566 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
567 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
568 printk(KERN_ERR "%s: Driver compiled without Tigon I"
569 " support - NIC disabled\n", dev->name);
570 goto fail_uninit;
571 }
572 #endif
573
574 if (ace_allocate_descriptors(dev))
575 goto fail_free_netdev;
576
577 #ifdef MODULE
578 if (boards_found >= ACE_MAX_MOD_PARMS)
579 ap->board_idx = BOARD_IDX_OVERFLOW;
580 else
581 ap->board_idx = boards_found;
582 #else
583 ap->board_idx = BOARD_IDX_STATIC;
584 #endif
585
586 if (ace_init(dev))
587 goto fail_free_netdev;
588
589 if (register_netdev(dev)) {
590 printk(KERN_ERR "acenic: device registration failed\n");
591 goto fail_uninit;
592 }
593 ap->name = dev->name;
594
595 if (ap->pci_using_dac)
596 dev->features |= NETIF_F_HIGHDMA;
597
598 pci_set_drvdata(pdev, dev);
599
600 boards_found++;
601 return 0;
602
603 fail_uninit:
604 ace_init_cleanup(dev);
605 fail_free_netdev:
606 free_netdev(dev);
607 return -ENODEV;
608 }
609
610 static void __devexit acenic_remove_one(struct pci_dev *pdev)
611 {
612 struct net_device *dev = pci_get_drvdata(pdev);
613 struct ace_private *ap = netdev_priv(dev);
614 struct ace_regs __iomem *regs = ap->regs;
615 short i;
616
617 unregister_netdev(dev);
618
619 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
620 if (ap->version >= 2)
621 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
622
623 /*
624 * This clears any pending interrupts
625 */
626 writel(1, &regs->Mb0Lo);
627 readl(&regs->CpuCtrl); /* flush */
628
629 /*
630 * Make sure no other CPUs are processing interrupts
631 * on the card before the buffers are being released.
632 * Otherwise one might experience some `interesting'
633 * effects.
634 *
635 * Then release the RX buffers - jumbo buffers were
636 * already released in ace_close().
637 */
638 ace_sync_irq(dev->irq);
639
640 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
641 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
642
643 if (skb) {
644 struct ring_info *ringp;
645 dma_addr_t mapping;
646
647 ringp = &ap->skb->rx_std_skbuff[i];
648 mapping = dma_unmap_addr(ringp, mapping);
649 pci_unmap_page(ap->pdev, mapping,
650 ACE_STD_BUFSIZE,
651 PCI_DMA_FROMDEVICE);
652
653 ap->rx_std_ring[i].size = 0;
654 ap->skb->rx_std_skbuff[i].skb = NULL;
655 dev_kfree_skb(skb);
656 }
657 }
658
659 if (ap->version >= 2) {
660 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
661 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
662
663 if (skb) {
664 struct ring_info *ringp;
665 dma_addr_t mapping;
666
667 ringp = &ap->skb->rx_mini_skbuff[i];
668 mapping = dma_unmap_addr(ringp,mapping);
669 pci_unmap_page(ap->pdev, mapping,
670 ACE_MINI_BUFSIZE,
671 PCI_DMA_FROMDEVICE);
672
673 ap->rx_mini_ring[i].size = 0;
674 ap->skb->rx_mini_skbuff[i].skb = NULL;
675 dev_kfree_skb(skb);
676 }
677 }
678 }
679
680 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
681 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
682 if (skb) {
683 struct ring_info *ringp;
684 dma_addr_t mapping;
685
686 ringp = &ap->skb->rx_jumbo_skbuff[i];
687 mapping = dma_unmap_addr(ringp, mapping);
688 pci_unmap_page(ap->pdev, mapping,
689 ACE_JUMBO_BUFSIZE,
690 PCI_DMA_FROMDEVICE);
691
692 ap->rx_jumbo_ring[i].size = 0;
693 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
694 dev_kfree_skb(skb);
695 }
696 }
697
698 ace_init_cleanup(dev);
699 free_netdev(dev);
700 }
701
702 static struct pci_driver acenic_pci_driver = {
703 .name = "acenic",
704 .id_table = acenic_pci_tbl,
705 .probe = acenic_probe_one,
706 .remove = __devexit_p(acenic_remove_one),
707 };
708
709 static int __init acenic_init(void)
710 {
711 return pci_register_driver(&acenic_pci_driver);
712 }
713
714 static void __exit acenic_exit(void)
715 {
716 pci_unregister_driver(&acenic_pci_driver);
717 }
718
719 module_init(acenic_init);
720 module_exit(acenic_exit);
721
722 static void ace_free_descriptors(struct net_device *dev)
723 {
724 struct ace_private *ap = netdev_priv(dev);
725 int size;
726
727 if (ap->rx_std_ring != NULL) {
728 size = (sizeof(struct rx_desc) *
729 (RX_STD_RING_ENTRIES +
730 RX_JUMBO_RING_ENTRIES +
731 RX_MINI_RING_ENTRIES +
732 RX_RETURN_RING_ENTRIES));
733 pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
734 ap->rx_ring_base_dma);
735 ap->rx_std_ring = NULL;
736 ap->rx_jumbo_ring = NULL;
737 ap->rx_mini_ring = NULL;
738 ap->rx_return_ring = NULL;
739 }
740 if (ap->evt_ring != NULL) {
741 size = (sizeof(struct event) * EVT_RING_ENTRIES);
742 pci_free_consistent(ap->pdev, size, ap->evt_ring,
743 ap->evt_ring_dma);
744 ap->evt_ring = NULL;
745 }
746 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
747 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
748 pci_free_consistent(ap->pdev, size, ap->tx_ring,
749 ap->tx_ring_dma);
750 }
751 ap->tx_ring = NULL;
752
753 if (ap->evt_prd != NULL) {
754 pci_free_consistent(ap->pdev, sizeof(u32),
755 (void *)ap->evt_prd, ap->evt_prd_dma);
756 ap->evt_prd = NULL;
757 }
758 if (ap->rx_ret_prd != NULL) {
759 pci_free_consistent(ap->pdev, sizeof(u32),
760 (void *)ap->rx_ret_prd,
761 ap->rx_ret_prd_dma);
762 ap->rx_ret_prd = NULL;
763 }
764 if (ap->tx_csm != NULL) {
765 pci_free_consistent(ap->pdev, sizeof(u32),
766 (void *)ap->tx_csm, ap->tx_csm_dma);
767 ap->tx_csm = NULL;
768 }
769 }
770
771
772 static int ace_allocate_descriptors(struct net_device *dev)
773 {
774 struct ace_private *ap = netdev_priv(dev);
775 int size;
776
777 size = (sizeof(struct rx_desc) *
778 (RX_STD_RING_ENTRIES +
779 RX_JUMBO_RING_ENTRIES +
780 RX_MINI_RING_ENTRIES +
781 RX_RETURN_RING_ENTRIES));
782
783 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
784 &ap->rx_ring_base_dma);
785 if (ap->rx_std_ring == NULL)
786 goto fail;
787
788 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
789 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
790 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
791
792 size = (sizeof(struct event) * EVT_RING_ENTRIES);
793
794 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
795
796 if (ap->evt_ring == NULL)
797 goto fail;
798
799 /*
800 * Only allocate a host TX ring for the Tigon II, the Tigon I
801 * has to use PCI registers for this ;-(
802 */
803 if (!ACE_IS_TIGON_I(ap)) {
804 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
805
806 ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
807 &ap->tx_ring_dma);
808
809 if (ap->tx_ring == NULL)
810 goto fail;
811 }
812
813 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
814 &ap->evt_prd_dma);
815 if (ap->evt_prd == NULL)
816 goto fail;
817
818 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
819 &ap->rx_ret_prd_dma);
820 if (ap->rx_ret_prd == NULL)
821 goto fail;
822
823 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
824 &ap->tx_csm_dma);
825 if (ap->tx_csm == NULL)
826 goto fail;
827
828 return 0;
829
830 fail:
831 /* Clean up. */
832 ace_init_cleanup(dev);
833 return 1;
834 }
835
836
837 /*
838 * Generic cleanup handling data allocated during init. Used when the
839 * module is unloaded or if an error occurs during initialization
840 */
841 static void ace_init_cleanup(struct net_device *dev)
842 {
843 struct ace_private *ap;
844
845 ap = netdev_priv(dev);
846
847 ace_free_descriptors(dev);
848
849 if (ap->info)
850 pci_free_consistent(ap->pdev, sizeof(struct ace_info),
851 ap->info, ap->info_dma);
852 kfree(ap->skb);
853 kfree(ap->trace_buf);
854
855 if (dev->irq)
856 free_irq(dev->irq, dev);
857
858 iounmap(ap->regs);
859 }
860
861
862 /*
863 * Commands are considered to be slow.
864 */
865 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
866 {
867 u32 idx;
868
869 idx = readl(&regs->CmdPrd);
870
871 writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
872 idx = (idx + 1) % CMD_RING_ENTRIES;
873
874 writel(idx, &regs->CmdPrd);
875 }
876
877
878 static int __devinit ace_init(struct net_device *dev)
879 {
880 struct ace_private *ap;
881 struct ace_regs __iomem *regs;
882 struct ace_info *info = NULL;
883 struct pci_dev *pdev;
884 unsigned long myjif;
885 u64 tmp_ptr;
886 u32 tig_ver, mac1, mac2, tmp, pci_state;
887 int board_idx, ecode = 0;
888 short i;
889 unsigned char cache_size;
890
891 ap = netdev_priv(dev);
892 regs = ap->regs;
893
894 board_idx = ap->board_idx;
895
896 /*
897 * aman@sgi.com - its useful to do a NIC reset here to
898 * address the `Firmware not running' problem subsequent
899 * to any crashes involving the NIC
900 */
901 writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
902 readl(&regs->HostCtrl); /* PCI write posting */
903 udelay(5);
904
905 /*
906 * Don't access any other registers before this point!
907 */
908 #ifdef __BIG_ENDIAN
909 /*
910 * This will most likely need BYTE_SWAP once we switch
911 * to using __raw_writel()
912 */
913 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
914 &regs->HostCtrl);
915 #else
916 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
917 &regs->HostCtrl);
918 #endif
919 readl(&regs->HostCtrl); /* PCI write posting */
920
921 /*
922 * Stop the NIC CPU and clear pending interrupts
923 */
924 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
925 readl(&regs->CpuCtrl); /* PCI write posting */
926 writel(0, &regs->Mb0Lo);
927
928 tig_ver = readl(&regs->HostCtrl) >> 28;
929
930 switch(tig_ver){
931 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
932 case 4:
933 case 5:
934 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
935 tig_ver, ap->firmware_major, ap->firmware_minor,
936 ap->firmware_fix);
937 writel(0, &regs->LocalCtrl);
938 ap->version = 1;
939 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
940 break;
941 #endif
942 case 6:
943 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
944 tig_ver, ap->firmware_major, ap->firmware_minor,
945 ap->firmware_fix);
946 writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
947 readl(&regs->CpuBCtrl); /* PCI write posting */
948 /*
949 * The SRAM bank size does _not_ indicate the amount
950 * of memory on the card, it controls the _bank_ size!
951 * Ie. a 1MB AceNIC will have two banks of 512KB.
952 */
953 writel(SRAM_BANK_512K, &regs->LocalCtrl);
954 writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
955 ap->version = 2;
956 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
957 break;
958 default:
959 printk(KERN_WARNING " Unsupported Tigon version detected "
960 "(%i)\n", tig_ver);
961 ecode = -ENODEV;
962 goto init_error;
963 }
964
965 /*
966 * ModeStat _must_ be set after the SRAM settings as this change
967 * seems to corrupt the ModeStat and possible other registers.
968 * The SRAM settings survive resets and setting it to the same
969 * value a second time works as well. This is what caused the
970 * `Firmware not running' problem on the Tigon II.
971 */
972 #ifdef __BIG_ENDIAN
973 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
974 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
975 #else
976 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
977 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
978 #endif
979 readl(&regs->ModeStat); /* PCI write posting */
980
981 mac1 = 0;
982 for(i = 0; i < 4; i++) {
983 int t;
984
985 mac1 = mac1 << 8;
986 t = read_eeprom_byte(dev, 0x8c+i);
987 if (t < 0) {
988 ecode = -EIO;
989 goto init_error;
990 } else
991 mac1 |= (t & 0xff);
992 }
993 mac2 = 0;
994 for(i = 4; i < 8; i++) {
995 int t;
996
997 mac2 = mac2 << 8;
998 t = read_eeprom_byte(dev, 0x8c+i);
999 if (t < 0) {
1000 ecode = -EIO;
1001 goto init_error;
1002 } else
1003 mac2 |= (t & 0xff);
1004 }
1005
1006 writel(mac1, &regs->MacAddrHi);
1007 writel(mac2, &regs->MacAddrLo);
1008
1009 dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1010 dev->dev_addr[1] = mac1 & 0xff;
1011 dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1012 dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1013 dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1014 dev->dev_addr[5] = mac2 & 0xff;
1015
1016 printk("MAC: %pM\n", dev->dev_addr);
1017
1018 /*
1019 * Looks like this is necessary to deal with on all architectures,
1020 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1021 * Ie. having two NICs in the machine, one will have the cache
1022 * line set at boot time, the other will not.
1023 */
1024 pdev = ap->pdev;
1025 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1026 cache_size <<= 2;
1027 if (cache_size != SMP_CACHE_BYTES) {
1028 printk(KERN_INFO " PCI cache line size set incorrectly "
1029 "(%i bytes) by BIOS/FW, ", cache_size);
1030 if (cache_size > SMP_CACHE_BYTES)
1031 printk("expecting %i\n", SMP_CACHE_BYTES);
1032 else {
1033 printk("correcting to %i\n", SMP_CACHE_BYTES);
1034 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1035 SMP_CACHE_BYTES >> 2);
1036 }
1037 }
1038
1039 pci_state = readl(&regs->PciState);
1040 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1041 "latency: %i clks\n",
1042 (pci_state & PCI_32BIT) ? 32 : 64,
1043 (pci_state & PCI_66MHZ) ? 66 : 33,
1044 ap->pci_latency);
1045
1046 /*
1047 * Set the max DMA transfer size. Seems that for most systems
1048 * the performance is better when no MAX parameter is
1049 * set. However for systems enabling PCI write and invalidate,
1050 * DMA writes must be set to the L1 cache line size to get
1051 * optimal performance.
1052 *
1053 * The default is now to turn the PCI write and invalidate off
1054 * - that is what Alteon does for NT.
1055 */
1056 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1057 if (ap->version >= 2) {
1058 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1059 /*
1060 * Tuning parameters only supported for 8 cards
1061 */
1062 if (board_idx == BOARD_IDX_OVERFLOW ||
1063 dis_pci_mem_inval[board_idx]) {
1064 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1065 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1066 pci_write_config_word(pdev, PCI_COMMAND,
1067 ap->pci_command);
1068 printk(KERN_INFO " Disabling PCI memory "
1069 "write and invalidate\n");
1070 }
1071 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1072 printk(KERN_INFO " PCI memory write & invalidate "
1073 "enabled by BIOS, enabling counter measures\n");
1074
1075 switch(SMP_CACHE_BYTES) {
1076 case 16:
1077 tmp |= DMA_WRITE_MAX_16;
1078 break;
1079 case 32:
1080 tmp |= DMA_WRITE_MAX_32;
1081 break;
1082 case 64:
1083 tmp |= DMA_WRITE_MAX_64;
1084 break;
1085 case 128:
1086 tmp |= DMA_WRITE_MAX_128;
1087 break;
1088 default:
1089 printk(KERN_INFO " Cache line size %i not "
1090 "supported, PCI write and invalidate "
1091 "disabled\n", SMP_CACHE_BYTES);
1092 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1093 pci_write_config_word(pdev, PCI_COMMAND,
1094 ap->pci_command);
1095 }
1096 }
1097 }
1098
1099 #ifdef __sparc__
1100 /*
1101 * On this platform, we know what the best dma settings
1102 * are. We use 64-byte maximum bursts, because if we
1103 * burst larger than the cache line size (or even cross
1104 * a 64byte boundary in a single burst) the UltraSparc
1105 * PCI controller will disconnect at 64-byte multiples.
1106 *
1107 * Read-multiple will be properly enabled above, and when
1108 * set will give the PCI controller proper hints about
1109 * prefetching.
1110 */
1111 tmp &= ~DMA_READ_WRITE_MASK;
1112 tmp |= DMA_READ_MAX_64;
1113 tmp |= DMA_WRITE_MAX_64;
1114 #endif
1115 #ifdef __alpha__
1116 tmp &= ~DMA_READ_WRITE_MASK;
1117 tmp |= DMA_READ_MAX_128;
1118 /*
1119 * All the docs say MUST NOT. Well, I did.
1120 * Nothing terrible happens, if we load wrong size.
1121 * Bit w&i still works better!
1122 */
1123 tmp |= DMA_WRITE_MAX_128;
1124 #endif
1125 writel(tmp, &regs->PciState);
1126
1127 #if 0
1128 /*
1129 * The Host PCI bus controller driver has to set FBB.
1130 * If all devices on that PCI bus support FBB, then the controller
1131 * can enable FBB support in the Host PCI Bus controller (or on
1132 * the PCI-PCI bridge if that applies).
1133 * -ggg
1134 */
1135 /*
1136 * I have received reports from people having problems when this
1137 * bit is enabled.
1138 */
1139 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1140 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1141 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1142 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1143 }
1144 #endif
1145
1146 /*
1147 * Configure DMA attributes.
1148 */
1149 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1150 ap->pci_using_dac = 1;
1151 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1152 ap->pci_using_dac = 0;
1153 } else {
1154 ecode = -ENODEV;
1155 goto init_error;
1156 }
1157
1158 /*
1159 * Initialize the generic info block and the command+event rings
1160 * and the control blocks for the transmit and receive rings
1161 * as they need to be setup once and for all.
1162 */
1163 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1164 &ap->info_dma))) {
1165 ecode = -EAGAIN;
1166 goto init_error;
1167 }
1168 ap->info = info;
1169
1170 /*
1171 * Get the memory for the skb rings.
1172 */
1173 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1174 ecode = -EAGAIN;
1175 goto init_error;
1176 }
1177
1178 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1179 DRV_NAME, dev);
1180 if (ecode) {
1181 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1182 DRV_NAME, pdev->irq);
1183 goto init_error;
1184 } else
1185 dev->irq = pdev->irq;
1186
1187 #ifdef INDEX_DEBUG
1188 spin_lock_init(&ap->debug_lock);
1189 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1190 ap->last_std_rx = 0;
1191 ap->last_mini_rx = 0;
1192 #endif
1193
1194 memset(ap->info, 0, sizeof(struct ace_info));
1195 memset(ap->skb, 0, sizeof(struct ace_skb));
1196
1197 ecode = ace_load_firmware(dev);
1198 if (ecode)
1199 goto init_error;
1200
1201 ap->fw_running = 0;
1202
1203 tmp_ptr = ap->info_dma;
1204 writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1205 writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1206
1207 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1208
1209 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1210 info->evt_ctrl.flags = 0;
1211
1212 *(ap->evt_prd) = 0;
1213 wmb();
1214 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1215 writel(0, &regs->EvtCsm);
1216
1217 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1218 info->cmd_ctrl.flags = 0;
1219 info->cmd_ctrl.max_len = 0;
1220
1221 for (i = 0; i < CMD_RING_ENTRIES; i++)
1222 writel(0, &regs->CmdRng[i]);
1223
1224 writel(0, &regs->CmdPrd);
1225 writel(0, &regs->CmdCsm);
1226
1227 tmp_ptr = ap->info_dma;
1228 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1229 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1230
1231 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1232 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1233 info->rx_std_ctrl.flags =
1234 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1235
1236 memset(ap->rx_std_ring, 0,
1237 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1238
1239 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1240 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1241
1242 ap->rx_std_skbprd = 0;
1243 atomic_set(&ap->cur_rx_bufs, 0);
1244
1245 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1246 (ap->rx_ring_base_dma +
1247 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1248 info->rx_jumbo_ctrl.max_len = 0;
1249 info->rx_jumbo_ctrl.flags =
1250 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1251
1252 memset(ap->rx_jumbo_ring, 0,
1253 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1254
1255 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1256 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1257
1258 ap->rx_jumbo_skbprd = 0;
1259 atomic_set(&ap->cur_jumbo_bufs, 0);
1260
1261 memset(ap->rx_mini_ring, 0,
1262 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1263
1264 if (ap->version >= 2) {
1265 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1266 (ap->rx_ring_base_dma +
1267 (sizeof(struct rx_desc) *
1268 (RX_STD_RING_ENTRIES +
1269 RX_JUMBO_RING_ENTRIES))));
1270 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1271 info->rx_mini_ctrl.flags =
1272 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1273
1274 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1275 ap->rx_mini_ring[i].flags =
1276 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1277 } else {
1278 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1279 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1280 info->rx_mini_ctrl.max_len = 0;
1281 }
1282
1283 ap->rx_mini_skbprd = 0;
1284 atomic_set(&ap->cur_mini_bufs, 0);
1285
1286 set_aceaddr(&info->rx_return_ctrl.rngptr,
1287 (ap->rx_ring_base_dma +
1288 (sizeof(struct rx_desc) *
1289 (RX_STD_RING_ENTRIES +
1290 RX_JUMBO_RING_ENTRIES +
1291 RX_MINI_RING_ENTRIES))));
1292 info->rx_return_ctrl.flags = 0;
1293 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1294
1295 memset(ap->rx_return_ring, 0,
1296 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1297
1298 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1299 *(ap->rx_ret_prd) = 0;
1300
1301 writel(TX_RING_BASE, &regs->WinBase);
1302
1303 if (ACE_IS_TIGON_I(ap)) {
1304 ap->tx_ring = (__force struct tx_desc *) regs->Window;
1305 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1306 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1307 writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
1308
1309 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1310 } else {
1311 memset(ap->tx_ring, 0,
1312 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1313
1314 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1315 }
1316
1317 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1318 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1319
1320 /*
1321 * The Tigon I does not like having the TX ring in host memory ;-(
1322 */
1323 if (!ACE_IS_TIGON_I(ap))
1324 tmp |= RCB_FLG_TX_HOST_RING;
1325 #if TX_COAL_INTS_ONLY
1326 tmp |= RCB_FLG_COAL_INT_ONLY;
1327 #endif
1328 info->tx_ctrl.flags = tmp;
1329
1330 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1331
1332 /*
1333 * Potential item for tuning parameter
1334 */
1335 #if 0 /* NO */
1336 writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1337 writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1338 #else
1339 writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1340 writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1341 #endif
1342
1343 writel(0, &regs->MaskInt);
1344 writel(1, &regs->IfIdx);
1345 #if 0
1346 /*
1347 * McKinley boxes do not like us fiddling with AssistState
1348 * this early
1349 */
1350 writel(1, &regs->AssistState);
1351 #endif
1352
1353 writel(DEF_STAT, &regs->TuneStatTicks);
1354 writel(DEF_TRACE, &regs->TuneTrace);
1355
1356 ace_set_rxtx_parms(dev, 0);
1357
1358 if (board_idx == BOARD_IDX_OVERFLOW) {
1359 printk(KERN_WARNING "%s: more than %i NICs detected, "
1360 "ignoring module parameters!\n",
1361 ap->name, ACE_MAX_MOD_PARMS);
1362 } else if (board_idx >= 0) {
1363 if (tx_coal_tick[board_idx])
1364 writel(tx_coal_tick[board_idx],
1365 &regs->TuneTxCoalTicks);
1366 if (max_tx_desc[board_idx])
1367 writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1368
1369 if (rx_coal_tick[board_idx])
1370 writel(rx_coal_tick[board_idx],
1371 &regs->TuneRxCoalTicks);
1372 if (max_rx_desc[board_idx])
1373 writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1374
1375 if (trace[board_idx])
1376 writel(trace[board_idx], &regs->TuneTrace);
1377
1378 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1379 writel(tx_ratio[board_idx], &regs->TxBufRat);
1380 }
1381
1382 /*
1383 * Default link parameters
1384 */
1385 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1386 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1387 if(ap->version >= 2)
1388 tmp |= LNK_TX_FLOW_CTL_Y;
1389
1390 /*
1391 * Override link default parameters
1392 */
1393 if ((board_idx >= 0) && link_state[board_idx]) {
1394 int option = link_state[board_idx];
1395
1396 tmp = LNK_ENABLE;
1397
1398 if (option & 0x01) {
1399 printk(KERN_INFO "%s: Setting half duplex link\n",
1400 ap->name);
1401 tmp &= ~LNK_FULL_DUPLEX;
1402 }
1403 if (option & 0x02)
1404 tmp &= ~LNK_NEGOTIATE;
1405 if (option & 0x10)
1406 tmp |= LNK_10MB;
1407 if (option & 0x20)
1408 tmp |= LNK_100MB;
1409 if (option & 0x40)
1410 tmp |= LNK_1000MB;
1411 if ((option & 0x70) == 0) {
1412 printk(KERN_WARNING "%s: No media speed specified, "
1413 "forcing auto negotiation\n", ap->name);
1414 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1415 LNK_100MB | LNK_10MB;
1416 }
1417 if ((option & 0x100) == 0)
1418 tmp |= LNK_NEG_FCTL;
1419 else
1420 printk(KERN_INFO "%s: Disabling flow control "
1421 "negotiation\n", ap->name);
1422 if (option & 0x200)
1423 tmp |= LNK_RX_FLOW_CTL_Y;
1424 if ((option & 0x400) && (ap->version >= 2)) {
1425 printk(KERN_INFO "%s: Enabling TX flow control\n",
1426 ap->name);
1427 tmp |= LNK_TX_FLOW_CTL_Y;
1428 }
1429 }
1430
1431 ap->link = tmp;
1432 writel(tmp, &regs->TuneLink);
1433 if (ap->version >= 2)
1434 writel(tmp, &regs->TuneFastLink);
1435
1436 writel(ap->firmware_start, &regs->Pc);
1437
1438 writel(0, &regs->Mb0Lo);
1439
1440 /*
1441 * Set tx_csm before we start receiving interrupts, otherwise
1442 * the interrupt handler might think it is supposed to process
1443 * tx ints before we are up and running, which may cause a null
1444 * pointer access in the int handler.
1445 */
1446 ap->cur_rx = 0;
1447 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1448
1449 wmb();
1450 ace_set_txprd(regs, ap, 0);
1451 writel(0, &regs->RxRetCsm);
1452
1453 /*
1454 * Enable DMA engine now.
1455 * If we do this sooner, Mckinley box pukes.
1456 * I assume it's because Tigon II DMA engine wants to check
1457 * *something* even before the CPU is started.
1458 */
1459 writel(1, &regs->AssistState); /* enable DMA */
1460
1461 /*
1462 * Start the NIC CPU
1463 */
1464 writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1465 readl(&regs->CpuCtrl);
1466
1467 /*
1468 * Wait for the firmware to spin up - max 3 seconds.
1469 */
1470 myjif = jiffies + 3 * HZ;
1471 while (time_before(jiffies, myjif) && !ap->fw_running)
1472 cpu_relax();
1473
1474 if (!ap->fw_running) {
1475 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1476
1477 ace_dump_trace(ap);
1478 writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1479 readl(&regs->CpuCtrl);
1480
1481 /* aman@sgi.com - account for badly behaving firmware/NIC:
1482 * - have observed that the NIC may continue to generate
1483 * interrupts for some reason; attempt to stop it - halt
1484 * second CPU for Tigon II cards, and also clear Mb0
1485 * - if we're a module, we'll fail to load if this was
1486 * the only GbE card in the system => if the kernel does
1487 * see an interrupt from the NIC, code to handle it is
1488 * gone and OOps! - so free_irq also
1489 */
1490 if (ap->version >= 2)
1491 writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1492 &regs->CpuBCtrl);
1493 writel(0, &regs->Mb0Lo);
1494 readl(&regs->Mb0Lo);
1495
1496 ecode = -EBUSY;
1497 goto init_error;
1498 }
1499
1500 /*
1501 * We load the ring here as there seem to be no way to tell the
1502 * firmware to wipe the ring without re-initializing it.
1503 */
1504 if (!test_and_set_bit(0, &ap->std_refill_busy))
1505 ace_load_std_rx_ring(ap, RX_RING_SIZE);
1506 else
1507 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1508 ap->name);
1509 if (ap->version >= 2) {
1510 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1511 ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
1512 else
1513 printk(KERN_ERR "%s: Someone is busy refilling "
1514 "the RX mini ring\n", ap->name);
1515 }
1516 return 0;
1517
1518 init_error:
1519 ace_init_cleanup(dev);
1520 return ecode;
1521 }
1522
1523
1524 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1525 {
1526 struct ace_private *ap = netdev_priv(dev);
1527 struct ace_regs __iomem *regs = ap->regs;
1528 int board_idx = ap->board_idx;
1529
1530 if (board_idx >= 0) {
1531 if (!jumbo) {
1532 if (!tx_coal_tick[board_idx])
1533 writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1534 if (!max_tx_desc[board_idx])
1535 writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1536 if (!rx_coal_tick[board_idx])
1537 writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1538 if (!max_rx_desc[board_idx])
1539 writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1540 if (!tx_ratio[board_idx])
1541 writel(DEF_TX_RATIO, &regs->TxBufRat);
1542 } else {
1543 if (!tx_coal_tick[board_idx])
1544 writel(DEF_JUMBO_TX_COAL,
1545 &regs->TuneTxCoalTicks);
1546 if (!max_tx_desc[board_idx])
1547 writel(DEF_JUMBO_TX_MAX_DESC,
1548 &regs->TuneMaxTxDesc);
1549 if (!rx_coal_tick[board_idx])
1550 writel(DEF_JUMBO_RX_COAL,
1551 &regs->TuneRxCoalTicks);
1552 if (!max_rx_desc[board_idx])
1553 writel(DEF_JUMBO_RX_MAX_DESC,
1554 &regs->TuneMaxRxDesc);
1555 if (!tx_ratio[board_idx])
1556 writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1557 }
1558 }
1559 }
1560
1561
1562 static void ace_watchdog(struct net_device *data)
1563 {
1564 struct net_device *dev = data;
1565 struct ace_private *ap = netdev_priv(dev);
1566 struct ace_regs __iomem *regs = ap->regs;
1567
1568 /*
1569 * We haven't received a stats update event for more than 2.5
1570 * seconds and there is data in the transmit queue, thus we
1571 * assume the card is stuck.
1572 */
1573 if (*ap->tx_csm != ap->tx_ret_csm) {
1574 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1575 dev->name, (unsigned int)readl(&regs->HostCtrl));
1576 /* This can happen due to ieee flow control. */
1577 } else {
1578 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1579 dev->name);
1580 #if 0
1581 netif_wake_queue(dev);
1582 #endif
1583 }
1584 }
1585
1586
1587 static void ace_tasklet(unsigned long dev)
1588 {
1589 struct ace_private *ap = netdev_priv((struct net_device *)dev);
1590 int cur_size;
1591
1592 cur_size = atomic_read(&ap->cur_rx_bufs);
1593 if ((cur_size < RX_LOW_STD_THRES) &&
1594 !test_and_set_bit(0, &ap->std_refill_busy)) {
1595 #ifdef DEBUG
1596 printk("refilling buffers (current %i)\n", cur_size);
1597 #endif
1598 ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
1599 }
1600
1601 if (ap->version >= 2) {
1602 cur_size = atomic_read(&ap->cur_mini_bufs);
1603 if ((cur_size < RX_LOW_MINI_THRES) &&
1604 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1605 #ifdef DEBUG
1606 printk("refilling mini buffers (current %i)\n",
1607 cur_size);
1608 #endif
1609 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
1610 }
1611 }
1612
1613 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1614 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1615 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1616 #ifdef DEBUG
1617 printk("refilling jumbo buffers (current %i)\n", cur_size);
1618 #endif
1619 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
1620 }
1621 ap->tasklet_pending = 0;
1622 }
1623
1624
1625 /*
1626 * Copy the contents of the NIC's trace buffer to kernel memory.
1627 */
1628 static void ace_dump_trace(struct ace_private *ap)
1629 {
1630 #if 0
1631 if (!ap->trace_buf)
1632 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1633 return;
1634 #endif
1635 }
1636
1637
1638 /*
1639 * Load the standard rx ring.
1640 *
1641 * Loading rings is safe without holding the spin lock since this is
1642 * done only before the device is enabled, thus no interrupts are
1643 * generated and by the interrupt handler/tasklet handler.
1644 */
1645 static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
1646 {
1647 struct ace_regs __iomem *regs = ap->regs;
1648 short i, idx;
1649
1650
1651 prefetchw(&ap->cur_rx_bufs);
1652
1653 idx = ap->rx_std_skbprd;
1654
1655 for (i = 0; i < nr_bufs; i++) {
1656 struct sk_buff *skb;
1657 struct rx_desc *rd;
1658 dma_addr_t mapping;
1659
1660 skb = dev_alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN);
1661 if (!skb)
1662 break;
1663
1664 skb_reserve(skb, NET_IP_ALIGN);
1665 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1666 offset_in_page(skb->data),
1667 ACE_STD_BUFSIZE,
1668 PCI_DMA_FROMDEVICE);
1669 ap->skb->rx_std_skbuff[idx].skb = skb;
1670 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1671 mapping, mapping);
1672
1673 rd = &ap->rx_std_ring[idx];
1674 set_aceaddr(&rd->addr, mapping);
1675 rd->size = ACE_STD_BUFSIZE;
1676 rd->idx = idx;
1677 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1678 }
1679
1680 if (!i)
1681 goto error_out;
1682
1683 atomic_add(i, &ap->cur_rx_bufs);
1684 ap->rx_std_skbprd = idx;
1685
1686 if (ACE_IS_TIGON_I(ap)) {
1687 struct cmd cmd;
1688 cmd.evt = C_SET_RX_PRD_IDX;
1689 cmd.code = 0;
1690 cmd.idx = ap->rx_std_skbprd;
1691 ace_issue_cmd(regs, &cmd);
1692 } else {
1693 writel(idx, &regs->RxStdPrd);
1694 wmb();
1695 }
1696
1697 out:
1698 clear_bit(0, &ap->std_refill_busy);
1699 return;
1700
1701 error_out:
1702 printk(KERN_INFO "Out of memory when allocating "
1703 "standard receive buffers\n");
1704 goto out;
1705 }
1706
1707
1708 static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
1709 {
1710 struct ace_regs __iomem *regs = ap->regs;
1711 short i, idx;
1712
1713 prefetchw(&ap->cur_mini_bufs);
1714
1715 idx = ap->rx_mini_skbprd;
1716 for (i = 0; i < nr_bufs; i++) {
1717 struct sk_buff *skb;
1718 struct rx_desc *rd;
1719 dma_addr_t mapping;
1720
1721 skb = dev_alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN);
1722 if (!skb)
1723 break;
1724
1725 skb_reserve(skb, NET_IP_ALIGN);
1726 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1727 offset_in_page(skb->data),
1728 ACE_MINI_BUFSIZE,
1729 PCI_DMA_FROMDEVICE);
1730 ap->skb->rx_mini_skbuff[idx].skb = skb;
1731 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1732 mapping, mapping);
1733
1734 rd = &ap->rx_mini_ring[idx];
1735 set_aceaddr(&rd->addr, mapping);
1736 rd->size = ACE_MINI_BUFSIZE;
1737 rd->idx = idx;
1738 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1739 }
1740
1741 if (!i)
1742 goto error_out;
1743
1744 atomic_add(i, &ap->cur_mini_bufs);
1745
1746 ap->rx_mini_skbprd = idx;
1747
1748 writel(idx, &regs->RxMiniPrd);
1749 wmb();
1750
1751 out:
1752 clear_bit(0, &ap->mini_refill_busy);
1753 return;
1754 error_out:
1755 printk(KERN_INFO "Out of memory when allocating "
1756 "mini receive buffers\n");
1757 goto out;
1758 }
1759
1760
1761 /*
1762 * Load the jumbo rx ring, this may happen at any time if the MTU
1763 * is changed to a value > 1500.
1764 */
1765 static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
1766 {
1767 struct ace_regs __iomem *regs = ap->regs;
1768 short i, idx;
1769
1770 idx = ap->rx_jumbo_skbprd;
1771
1772 for (i = 0; i < nr_bufs; i++) {
1773 struct sk_buff *skb;
1774 struct rx_desc *rd;
1775 dma_addr_t mapping;
1776
1777 skb = dev_alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN);
1778 if (!skb)
1779 break;
1780
1781 skb_reserve(skb, NET_IP_ALIGN);
1782 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1783 offset_in_page(skb->data),
1784 ACE_JUMBO_BUFSIZE,
1785 PCI_DMA_FROMDEVICE);
1786 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1787 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1788 mapping, mapping);
1789
1790 rd = &ap->rx_jumbo_ring[idx];
1791 set_aceaddr(&rd->addr, mapping);
1792 rd->size = ACE_JUMBO_BUFSIZE;
1793 rd->idx = idx;
1794 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1795 }
1796
1797 if (!i)
1798 goto error_out;
1799
1800 atomic_add(i, &ap->cur_jumbo_bufs);
1801 ap->rx_jumbo_skbprd = idx;
1802
1803 if (ACE_IS_TIGON_I(ap)) {
1804 struct cmd cmd;
1805 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1806 cmd.code = 0;
1807 cmd.idx = ap->rx_jumbo_skbprd;
1808 ace_issue_cmd(regs, &cmd);
1809 } else {
1810 writel(idx, &regs->RxJumboPrd);
1811 wmb();
1812 }
1813
1814 out:
1815 clear_bit(0, &ap->jumbo_refill_busy);
1816 return;
1817 error_out:
1818 if (net_ratelimit())
1819 printk(KERN_INFO "Out of memory when allocating "
1820 "jumbo receive buffers\n");
1821 goto out;
1822 }
1823
1824
1825 /*
1826 * All events are considered to be slow (RX/TX ints do not generate
1827 * events) and are handled here, outside the main interrupt handler,
1828 * to reduce the size of the handler.
1829 */
1830 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1831 {
1832 struct ace_private *ap;
1833
1834 ap = netdev_priv(dev);
1835
1836 while (evtcsm != evtprd) {
1837 switch (ap->evt_ring[evtcsm].evt) {
1838 case E_FW_RUNNING:
1839 printk(KERN_INFO "%s: Firmware up and running\n",
1840 ap->name);
1841 ap->fw_running = 1;
1842 wmb();
1843 break;
1844 case E_STATS_UPDATED:
1845 break;
1846 case E_LNK_STATE:
1847 {
1848 u16 code = ap->evt_ring[evtcsm].code;
1849 switch (code) {
1850 case E_C_LINK_UP:
1851 {
1852 u32 state = readl(&ap->regs->GigLnkState);
1853 printk(KERN_WARNING "%s: Optical link UP "
1854 "(%s Duplex, Flow Control: %s%s)\n",
1855 ap->name,
1856 state & LNK_FULL_DUPLEX ? "Full":"Half",
1857 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1858 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1859 break;
1860 }
1861 case E_C_LINK_DOWN:
1862 printk(KERN_WARNING "%s: Optical link DOWN\n",
1863 ap->name);
1864 break;
1865 case E_C_LINK_10_100:
1866 printk(KERN_WARNING "%s: 10/100BaseT link "
1867 "UP\n", ap->name);
1868 break;
1869 default:
1870 printk(KERN_ERR "%s: Unknown optical link "
1871 "state %02x\n", ap->name, code);
1872 }
1873 break;
1874 }
1875 case E_ERROR:
1876 switch(ap->evt_ring[evtcsm].code) {
1877 case E_C_ERR_INVAL_CMD:
1878 printk(KERN_ERR "%s: invalid command error\n",
1879 ap->name);
1880 break;
1881 case E_C_ERR_UNIMP_CMD:
1882 printk(KERN_ERR "%s: unimplemented command "
1883 "error\n", ap->name);
1884 break;
1885 case E_C_ERR_BAD_CFG:
1886 printk(KERN_ERR "%s: bad config error\n",
1887 ap->name);
1888 break;
1889 default:
1890 printk(KERN_ERR "%s: unknown error %02x\n",
1891 ap->name, ap->evt_ring[evtcsm].code);
1892 }
1893 break;
1894 case E_RESET_JUMBO_RNG:
1895 {
1896 int i;
1897 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1898 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1899 ap->rx_jumbo_ring[i].size = 0;
1900 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1901 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1902 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1903 }
1904 }
1905
1906 if (ACE_IS_TIGON_I(ap)) {
1907 struct cmd cmd;
1908 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1909 cmd.code = 0;
1910 cmd.idx = 0;
1911 ace_issue_cmd(ap->regs, &cmd);
1912 } else {
1913 writel(0, &((ap->regs)->RxJumboPrd));
1914 wmb();
1915 }
1916
1917 ap->jumbo = 0;
1918 ap->rx_jumbo_skbprd = 0;
1919 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1920 ap->name);
1921 clear_bit(0, &ap->jumbo_refill_busy);
1922 break;
1923 }
1924 default:
1925 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1926 ap->name, ap->evt_ring[evtcsm].evt);
1927 }
1928 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1929 }
1930
1931 return evtcsm;
1932 }
1933
1934
1935 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1936 {
1937 struct ace_private *ap = netdev_priv(dev);
1938 u32 idx;
1939 int mini_count = 0, std_count = 0;
1940
1941 idx = rxretcsm;
1942
1943 prefetchw(&ap->cur_rx_bufs);
1944 prefetchw(&ap->cur_mini_bufs);
1945
1946 while (idx != rxretprd) {
1947 struct ring_info *rip;
1948 struct sk_buff *skb;
1949 struct rx_desc *rxdesc, *retdesc;
1950 u32 skbidx;
1951 int bd_flags, desc_type, mapsize;
1952 u16 csum;
1953
1954
1955 /* make sure the rx descriptor isn't read before rxretprd */
1956 if (idx == rxretcsm)
1957 rmb();
1958
1959 retdesc = &ap->rx_return_ring[idx];
1960 skbidx = retdesc->idx;
1961 bd_flags = retdesc->flags;
1962 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1963
1964 switch(desc_type) {
1965 /*
1966 * Normal frames do not have any flags set
1967 *
1968 * Mini and normal frames arrive frequently,
1969 * so use a local counter to avoid doing
1970 * atomic operations for each packet arriving.
1971 */
1972 case 0:
1973 rip = &ap->skb->rx_std_skbuff[skbidx];
1974 mapsize = ACE_STD_BUFSIZE;
1975 rxdesc = &ap->rx_std_ring[skbidx];
1976 std_count++;
1977 break;
1978 case BD_FLG_JUMBO:
1979 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1980 mapsize = ACE_JUMBO_BUFSIZE;
1981 rxdesc = &ap->rx_jumbo_ring[skbidx];
1982 atomic_dec(&ap->cur_jumbo_bufs);
1983 break;
1984 case BD_FLG_MINI:
1985 rip = &ap->skb->rx_mini_skbuff[skbidx];
1986 mapsize = ACE_MINI_BUFSIZE;
1987 rxdesc = &ap->rx_mini_ring[skbidx];
1988 mini_count++;
1989 break;
1990 default:
1991 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1992 "returned by NIC\n", dev->name,
1993 retdesc->flags);
1994 goto error;
1995 }
1996
1997 skb = rip->skb;
1998 rip->skb = NULL;
1999 pci_unmap_page(ap->pdev,
2000 dma_unmap_addr(rip, mapping),
2001 mapsize,
2002 PCI_DMA_FROMDEVICE);
2003 skb_put(skb, retdesc->size);
2004
2005 /*
2006 * Fly baby, fly!
2007 */
2008 csum = retdesc->tcp_udp_csum;
2009
2010 skb->protocol = eth_type_trans(skb, dev);
2011
2012 /*
2013 * Instead of forcing the poor tigon mips cpu to calculate
2014 * pseudo hdr checksum, we do this ourselves.
2015 */
2016 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2017 skb->csum = htons(csum);
2018 skb->ip_summed = CHECKSUM_COMPLETE;
2019 } else {
2020 skb_checksum_none_assert(skb);
2021 }
2022
2023 /* send it up */
2024 if ((bd_flags & BD_FLG_VLAN_TAG))
2025 __vlan_hwaccel_put_tag(skb, retdesc->vlan);
2026 netif_rx(skb);
2027
2028 dev->stats.rx_packets++;
2029 dev->stats.rx_bytes += retdesc->size;
2030
2031 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2032 }
2033
2034 atomic_sub(std_count, &ap->cur_rx_bufs);
2035 if (!ACE_IS_TIGON_I(ap))
2036 atomic_sub(mini_count, &ap->cur_mini_bufs);
2037
2038 out:
2039 /*
2040 * According to the documentation RxRetCsm is obsolete with
2041 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2042 */
2043 if (ACE_IS_TIGON_I(ap)) {
2044 writel(idx, &ap->regs->RxRetCsm);
2045 }
2046 ap->cur_rx = idx;
2047
2048 return;
2049 error:
2050 idx = rxretprd;
2051 goto out;
2052 }
2053
2054
2055 static inline void ace_tx_int(struct net_device *dev,
2056 u32 txcsm, u32 idx)
2057 {
2058 struct ace_private *ap = netdev_priv(dev);
2059
2060 do {
2061 struct sk_buff *skb;
2062 struct tx_ring_info *info;
2063
2064 info = ap->skb->tx_skbuff + idx;
2065 skb = info->skb;
2066
2067 if (dma_unmap_len(info, maplen)) {
2068 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2069 dma_unmap_len(info, maplen),
2070 PCI_DMA_TODEVICE);
2071 dma_unmap_len_set(info, maplen, 0);
2072 }
2073
2074 if (skb) {
2075 dev->stats.tx_packets++;
2076 dev->stats.tx_bytes += skb->len;
2077 dev_kfree_skb_irq(skb);
2078 info->skb = NULL;
2079 }
2080
2081 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2082 } while (idx != txcsm);
2083
2084 if (netif_queue_stopped(dev))
2085 netif_wake_queue(dev);
2086
2087 wmb();
2088 ap->tx_ret_csm = txcsm;
2089
2090 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2091 *
2092 * We could try to make it before. In this case we would get
2093 * the following race condition: hard_start_xmit on other cpu
2094 * enters after we advanced tx_ret_csm and fills space,
2095 * which we have just freed, so that we make illegal device wakeup.
2096 * There is no good way to workaround this (at entry
2097 * to ace_start_xmit detects this condition and prevents
2098 * ring corruption, but it is not a good workaround.)
2099 *
2100 * When tx_ret_csm is advanced after, we wake up device _only_
2101 * if we really have some space in ring (though the core doing
2102 * hard_start_xmit can see full ring for some period and has to
2103 * synchronize.) Superb.
2104 * BUT! We get another subtle race condition. hard_start_xmit
2105 * may think that ring is full between wakeup and advancing
2106 * tx_ret_csm and will stop device instantly! It is not so bad.
2107 * We are guaranteed that there is something in ring, so that
2108 * the next irq will resume transmission. To speedup this we could
2109 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2110 * (see ace_start_xmit).
2111 *
2112 * Well, this dilemma exists in all lock-free devices.
2113 * We, following scheme used in drivers by Donald Becker,
2114 * select the least dangerous.
2115 * --ANK
2116 */
2117 }
2118
2119
2120 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2121 {
2122 struct net_device *dev = (struct net_device *)dev_id;
2123 struct ace_private *ap = netdev_priv(dev);
2124 struct ace_regs __iomem *regs = ap->regs;
2125 u32 idx;
2126 u32 txcsm, rxretcsm, rxretprd;
2127 u32 evtcsm, evtprd;
2128
2129 /*
2130 * In case of PCI shared interrupts or spurious interrupts,
2131 * we want to make sure it is actually our interrupt before
2132 * spending any time in here.
2133 */
2134 if (!(readl(&regs->HostCtrl) & IN_INT))
2135 return IRQ_NONE;
2136
2137 /*
2138 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2139 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2140 * writel(0, &regs->Mb0Lo).
2141 *
2142 * "IRQ avoidance" recommended in docs applies to IRQs served
2143 * threads and it is wrong even for that case.
2144 */
2145 writel(0, &regs->Mb0Lo);
2146 readl(&regs->Mb0Lo);
2147
2148 /*
2149 * There is no conflict between transmit handling in
2150 * start_xmit and receive processing, thus there is no reason
2151 * to take a spin lock for RX handling. Wait until we start
2152 * working on the other stuff - hey we don't need a spin lock
2153 * anymore.
2154 */
2155 rxretprd = *ap->rx_ret_prd;
2156 rxretcsm = ap->cur_rx;
2157
2158 if (rxretprd != rxretcsm)
2159 ace_rx_int(dev, rxretprd, rxretcsm);
2160
2161 txcsm = *ap->tx_csm;
2162 idx = ap->tx_ret_csm;
2163
2164 if (txcsm != idx) {
2165 /*
2166 * If each skb takes only one descriptor this check degenerates
2167 * to identity, because new space has just been opened.
2168 * But if skbs are fragmented we must check that this index
2169 * update releases enough of space, otherwise we just
2170 * wait for device to make more work.
2171 */
2172 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2173 ace_tx_int(dev, txcsm, idx);
2174 }
2175
2176 evtcsm = readl(&regs->EvtCsm);
2177 evtprd = *ap->evt_prd;
2178
2179 if (evtcsm != evtprd) {
2180 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2181 writel(evtcsm, &regs->EvtCsm);
2182 }
2183
2184 /*
2185 * This has to go last in the interrupt handler and run with
2186 * the spin lock released ... what lock?
2187 */
2188 if (netif_running(dev)) {
2189 int cur_size;
2190 int run_tasklet = 0;
2191
2192 cur_size = atomic_read(&ap->cur_rx_bufs);
2193 if (cur_size < RX_LOW_STD_THRES) {
2194 if ((cur_size < RX_PANIC_STD_THRES) &&
2195 !test_and_set_bit(0, &ap->std_refill_busy)) {
2196 #ifdef DEBUG
2197 printk("low on std buffers %i\n", cur_size);
2198 #endif
2199 ace_load_std_rx_ring(ap,
2200 RX_RING_SIZE - cur_size);
2201 } else
2202 run_tasklet = 1;
2203 }
2204
2205 if (!ACE_IS_TIGON_I(ap)) {
2206 cur_size = atomic_read(&ap->cur_mini_bufs);
2207 if (cur_size < RX_LOW_MINI_THRES) {
2208 if ((cur_size < RX_PANIC_MINI_THRES) &&
2209 !test_and_set_bit(0,
2210 &ap->mini_refill_busy)) {
2211 #ifdef DEBUG
2212 printk("low on mini buffers %i\n",
2213 cur_size);
2214 #endif
2215 ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
2216 } else
2217 run_tasklet = 1;
2218 }
2219 }
2220
2221 if (ap->jumbo) {
2222 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2223 if (cur_size < RX_LOW_JUMBO_THRES) {
2224 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2225 !test_and_set_bit(0,
2226 &ap->jumbo_refill_busy)){
2227 #ifdef DEBUG
2228 printk("low on jumbo buffers %i\n",
2229 cur_size);
2230 #endif
2231 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
2232 } else
2233 run_tasklet = 1;
2234 }
2235 }
2236 if (run_tasklet && !ap->tasklet_pending) {
2237 ap->tasklet_pending = 1;
2238 tasklet_schedule(&ap->ace_tasklet);
2239 }
2240 }
2241
2242 return IRQ_HANDLED;
2243 }
2244
2245 static int ace_open(struct net_device *dev)
2246 {
2247 struct ace_private *ap = netdev_priv(dev);
2248 struct ace_regs __iomem *regs = ap->regs;
2249 struct cmd cmd;
2250
2251 if (!(ap->fw_running)) {
2252 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2253 return -EBUSY;
2254 }
2255
2256 writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2257
2258 cmd.evt = C_CLEAR_STATS;
2259 cmd.code = 0;
2260 cmd.idx = 0;
2261 ace_issue_cmd(regs, &cmd);
2262
2263 cmd.evt = C_HOST_STATE;
2264 cmd.code = C_C_STACK_UP;
2265 cmd.idx = 0;
2266 ace_issue_cmd(regs, &cmd);
2267
2268 if (ap->jumbo &&
2269 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2270 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2271
2272 if (dev->flags & IFF_PROMISC) {
2273 cmd.evt = C_SET_PROMISC_MODE;
2274 cmd.code = C_C_PROMISC_ENABLE;
2275 cmd.idx = 0;
2276 ace_issue_cmd(regs, &cmd);
2277
2278 ap->promisc = 1;
2279 }else
2280 ap->promisc = 0;
2281 ap->mcast_all = 0;
2282
2283 #if 0
2284 cmd.evt = C_LNK_NEGOTIATION;
2285 cmd.code = 0;
2286 cmd.idx = 0;
2287 ace_issue_cmd(regs, &cmd);
2288 #endif
2289
2290 netif_start_queue(dev);
2291
2292 /*
2293 * Setup the bottom half rx ring refill handler
2294 */
2295 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2296 return 0;
2297 }
2298
2299
2300 static int ace_close(struct net_device *dev)
2301 {
2302 struct ace_private *ap = netdev_priv(dev);
2303 struct ace_regs __iomem *regs = ap->regs;
2304 struct cmd cmd;
2305 unsigned long flags;
2306 short i;
2307
2308 /*
2309 * Without (or before) releasing irq and stopping hardware, this
2310 * is an absolute non-sense, by the way. It will be reset instantly
2311 * by the first irq.
2312 */
2313 netif_stop_queue(dev);
2314
2315
2316 if (ap->promisc) {
2317 cmd.evt = C_SET_PROMISC_MODE;
2318 cmd.code = C_C_PROMISC_DISABLE;
2319 cmd.idx = 0;
2320 ace_issue_cmd(regs, &cmd);
2321 ap->promisc = 0;
2322 }
2323
2324 cmd.evt = C_HOST_STATE;
2325 cmd.code = C_C_STACK_DOWN;
2326 cmd.idx = 0;
2327 ace_issue_cmd(regs, &cmd);
2328
2329 tasklet_kill(&ap->ace_tasklet);
2330
2331 /*
2332 * Make sure one CPU is not processing packets while
2333 * buffers are being released by another.
2334 */
2335
2336 local_irq_save(flags);
2337 ace_mask_irq(dev);
2338
2339 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2340 struct sk_buff *skb;
2341 struct tx_ring_info *info;
2342
2343 info = ap->skb->tx_skbuff + i;
2344 skb = info->skb;
2345
2346 if (dma_unmap_len(info, maplen)) {
2347 if (ACE_IS_TIGON_I(ap)) {
2348 /* NB: TIGON_1 is special, tx_ring is in io space */
2349 struct tx_desc __iomem *tx;
2350 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2351 writel(0, &tx->addr.addrhi);
2352 writel(0, &tx->addr.addrlo);
2353 writel(0, &tx->flagsize);
2354 } else
2355 memset(ap->tx_ring + i, 0,
2356 sizeof(struct tx_desc));
2357 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2358 dma_unmap_len(info, maplen),
2359 PCI_DMA_TODEVICE);
2360 dma_unmap_len_set(info, maplen, 0);
2361 }
2362 if (skb) {
2363 dev_kfree_skb(skb);
2364 info->skb = NULL;
2365 }
2366 }
2367
2368 if (ap->jumbo) {
2369 cmd.evt = C_RESET_JUMBO_RNG;
2370 cmd.code = 0;
2371 cmd.idx = 0;
2372 ace_issue_cmd(regs, &cmd);
2373 }
2374
2375 ace_unmask_irq(dev);
2376 local_irq_restore(flags);
2377
2378 return 0;
2379 }
2380
2381
2382 static inline dma_addr_t
2383 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2384 struct sk_buff *tail, u32 idx)
2385 {
2386 dma_addr_t mapping;
2387 struct tx_ring_info *info;
2388
2389 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2390 offset_in_page(skb->data),
2391 skb->len, PCI_DMA_TODEVICE);
2392
2393 info = ap->skb->tx_skbuff + idx;
2394 info->skb = tail;
2395 dma_unmap_addr_set(info, mapping, mapping);
2396 dma_unmap_len_set(info, maplen, skb->len);
2397 return mapping;
2398 }
2399
2400
2401 static inline void
2402 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2403 u32 flagsize, u32 vlan_tag)
2404 {
2405 #if !USE_TX_COAL_NOW
2406 flagsize &= ~BD_FLG_COAL_NOW;
2407 #endif
2408
2409 if (ACE_IS_TIGON_I(ap)) {
2410 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2411 writel(addr >> 32, &io->addr.addrhi);
2412 writel(addr & 0xffffffff, &io->addr.addrlo);
2413 writel(flagsize, &io->flagsize);
2414 writel(vlan_tag, &io->vlanres);
2415 } else {
2416 desc->addr.addrhi = addr >> 32;
2417 desc->addr.addrlo = addr;
2418 desc->flagsize = flagsize;
2419 desc->vlanres = vlan_tag;
2420 }
2421 }
2422
2423
2424 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2425 struct net_device *dev)
2426 {
2427 struct ace_private *ap = netdev_priv(dev);
2428 struct ace_regs __iomem *regs = ap->regs;
2429 struct tx_desc *desc;
2430 u32 idx, flagsize;
2431 unsigned long maxjiff = jiffies + 3*HZ;
2432
2433 restart:
2434 idx = ap->tx_prd;
2435
2436 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2437 goto overflow;
2438
2439 if (!skb_shinfo(skb)->nr_frags) {
2440 dma_addr_t mapping;
2441 u32 vlan_tag = 0;
2442
2443 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2444 flagsize = (skb->len << 16) | (BD_FLG_END);
2445 if (skb->ip_summed == CHECKSUM_PARTIAL)
2446 flagsize |= BD_FLG_TCP_UDP_SUM;
2447 if (vlan_tx_tag_present(skb)) {
2448 flagsize |= BD_FLG_VLAN_TAG;
2449 vlan_tag = vlan_tx_tag_get(skb);
2450 }
2451 desc = ap->tx_ring + idx;
2452 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2453
2454 /* Look at ace_tx_int for explanations. */
2455 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2456 flagsize |= BD_FLG_COAL_NOW;
2457
2458 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2459 } else {
2460 dma_addr_t mapping;
2461 u32 vlan_tag = 0;
2462 int i, len = 0;
2463
2464 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2465 flagsize = (skb_headlen(skb) << 16);
2466 if (skb->ip_summed == CHECKSUM_PARTIAL)
2467 flagsize |= BD_FLG_TCP_UDP_SUM;
2468 if (vlan_tx_tag_present(skb)) {
2469 flagsize |= BD_FLG_VLAN_TAG;
2470 vlan_tag = vlan_tx_tag_get(skb);
2471 }
2472
2473 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2474
2475 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2476
2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 struct tx_ring_info *info;
2480
2481 len += frag->size;
2482 info = ap->skb->tx_skbuff + idx;
2483 desc = ap->tx_ring + idx;
2484
2485 mapping = pci_map_page(ap->pdev, frag->page,
2486 frag->page_offset, frag->size,
2487 PCI_DMA_TODEVICE);
2488
2489 flagsize = (frag->size << 16);
2490 if (skb->ip_summed == CHECKSUM_PARTIAL)
2491 flagsize |= BD_FLG_TCP_UDP_SUM;
2492 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2493
2494 if (i == skb_shinfo(skb)->nr_frags - 1) {
2495 flagsize |= BD_FLG_END;
2496 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2497 flagsize |= BD_FLG_COAL_NOW;
2498
2499 /*
2500 * Only the last fragment frees
2501 * the skb!
2502 */
2503 info->skb = skb;
2504 } else {
2505 info->skb = NULL;
2506 }
2507 dma_unmap_addr_set(info, mapping, mapping);
2508 dma_unmap_len_set(info, maplen, frag->size);
2509 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2510 }
2511 }
2512
2513 wmb();
2514 ap->tx_prd = idx;
2515 ace_set_txprd(regs, ap, idx);
2516
2517 if (flagsize & BD_FLG_COAL_NOW) {
2518 netif_stop_queue(dev);
2519
2520 /*
2521 * A TX-descriptor producer (an IRQ) might have gotten
2522 * between, making the ring free again. Since xmit is
2523 * serialized, this is the only situation we have to
2524 * re-test.
2525 */
2526 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2527 netif_wake_queue(dev);
2528 }
2529
2530 return NETDEV_TX_OK;
2531
2532 overflow:
2533 /*
2534 * This race condition is unavoidable with lock-free drivers.
2535 * We wake up the queue _before_ tx_prd is advanced, so that we can
2536 * enter hard_start_xmit too early, while tx ring still looks closed.
2537 * This happens ~1-4 times per 100000 packets, so that we can allow
2538 * to loop syncing to other CPU. Probably, we need an additional
2539 * wmb() in ace_tx_intr as well.
2540 *
2541 * Note that this race is relieved by reserving one more entry
2542 * in tx ring than it is necessary (see original non-SG driver).
2543 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2544 * is already overkill.
2545 *
2546 * Alternative is to return with 1 not throttling queue. In this
2547 * case loop becomes longer, no more useful effects.
2548 */
2549 if (time_before(jiffies, maxjiff)) {
2550 barrier();
2551 cpu_relax();
2552 goto restart;
2553 }
2554
2555 /* The ring is stuck full. */
2556 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2557 return NETDEV_TX_BUSY;
2558 }
2559
2560
2561 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2562 {
2563 struct ace_private *ap = netdev_priv(dev);
2564 struct ace_regs __iomem *regs = ap->regs;
2565
2566 if (new_mtu > ACE_JUMBO_MTU)
2567 return -EINVAL;
2568
2569 writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2570 dev->mtu = new_mtu;
2571
2572 if (new_mtu > ACE_STD_MTU) {
2573 if (!(ap->jumbo)) {
2574 printk(KERN_INFO "%s: Enabling Jumbo frame "
2575 "support\n", dev->name);
2576 ap->jumbo = 1;
2577 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2578 ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
2579 ace_set_rxtx_parms(dev, 1);
2580 }
2581 } else {
2582 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2583 ace_sync_irq(dev->irq);
2584 ace_set_rxtx_parms(dev, 0);
2585 if (ap->jumbo) {
2586 struct cmd cmd;
2587
2588 cmd.evt = C_RESET_JUMBO_RNG;
2589 cmd.code = 0;
2590 cmd.idx = 0;
2591 ace_issue_cmd(regs, &cmd);
2592 }
2593 }
2594
2595 return 0;
2596 }
2597
2598 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2599 {
2600 struct ace_private *ap = netdev_priv(dev);
2601 struct ace_regs __iomem *regs = ap->regs;
2602 u32 link;
2603
2604 memset(ecmd, 0, sizeof(struct ethtool_cmd));
2605 ecmd->supported =
2606 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2607 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2608 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2609 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2610
2611 ecmd->port = PORT_FIBRE;
2612 ecmd->transceiver = XCVR_INTERNAL;
2613
2614 link = readl(&regs->GigLnkState);
2615 if (link & LNK_1000MB)
2616 ethtool_cmd_speed_set(ecmd, SPEED_1000);
2617 else {
2618 link = readl(&regs->FastLnkState);
2619 if (link & LNK_100MB)
2620 ethtool_cmd_speed_set(ecmd, SPEED_100);
2621 else if (link & LNK_10MB)
2622 ethtool_cmd_speed_set(ecmd, SPEED_10);
2623 else
2624 ethtool_cmd_speed_set(ecmd, 0);
2625 }
2626 if (link & LNK_FULL_DUPLEX)
2627 ecmd->duplex = DUPLEX_FULL;
2628 else
2629 ecmd->duplex = DUPLEX_HALF;
2630
2631 if (link & LNK_NEGOTIATE)
2632 ecmd->autoneg = AUTONEG_ENABLE;
2633 else
2634 ecmd->autoneg = AUTONEG_DISABLE;
2635
2636 #if 0
2637 /*
2638 * Current struct ethtool_cmd is insufficient
2639 */
2640 ecmd->trace = readl(&regs->TuneTrace);
2641
2642 ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2643 ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2644 #endif
2645 ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2646 ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2647
2648 return 0;
2649 }
2650
2651 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2652 {
2653 struct ace_private *ap = netdev_priv(dev);
2654 struct ace_regs __iomem *regs = ap->regs;
2655 u32 link, speed;
2656
2657 link = readl(&regs->GigLnkState);
2658 if (link & LNK_1000MB)
2659 speed = SPEED_1000;
2660 else {
2661 link = readl(&regs->FastLnkState);
2662 if (link & LNK_100MB)
2663 speed = SPEED_100;
2664 else if (link & LNK_10MB)
2665 speed = SPEED_10;
2666 else
2667 speed = SPEED_100;
2668 }
2669
2670 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2671 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2672 if (!ACE_IS_TIGON_I(ap))
2673 link |= LNK_TX_FLOW_CTL_Y;
2674 if (ecmd->autoneg == AUTONEG_ENABLE)
2675 link |= LNK_NEGOTIATE;
2676 if (ethtool_cmd_speed(ecmd) != speed) {
2677 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2678 switch (ethtool_cmd_speed(ecmd)) {
2679 case SPEED_1000:
2680 link |= LNK_1000MB;
2681 break;
2682 case SPEED_100:
2683 link |= LNK_100MB;
2684 break;
2685 case SPEED_10:
2686 link |= LNK_10MB;
2687 break;
2688 }
2689 }
2690
2691 if (ecmd->duplex == DUPLEX_FULL)
2692 link |= LNK_FULL_DUPLEX;
2693
2694 if (link != ap->link) {
2695 struct cmd cmd;
2696 printk(KERN_INFO "%s: Renegotiating link state\n",
2697 dev->name);
2698
2699 ap->link = link;
2700 writel(link, &regs->TuneLink);
2701 if (!ACE_IS_TIGON_I(ap))
2702 writel(link, &regs->TuneFastLink);
2703 wmb();
2704
2705 cmd.evt = C_LNK_NEGOTIATION;
2706 cmd.code = 0;
2707 cmd.idx = 0;
2708 ace_issue_cmd(regs, &cmd);
2709 }
2710 return 0;
2711 }
2712
2713 static void ace_get_drvinfo(struct net_device *dev,
2714 struct ethtool_drvinfo *info)
2715 {
2716 struct ace_private *ap = netdev_priv(dev);
2717
2718 strlcpy(info->driver, "acenic", sizeof(info->driver));
2719 snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2720 ap->firmware_major, ap->firmware_minor,
2721 ap->firmware_fix);
2722
2723 if (ap->pdev)
2724 strlcpy(info->bus_info, pci_name(ap->pdev),
2725 sizeof(info->bus_info));
2726
2727 }
2728
2729 /*
2730 * Set the hardware MAC address.
2731 */
2732 static int ace_set_mac_addr(struct net_device *dev, void *p)
2733 {
2734 struct ace_private *ap = netdev_priv(dev);
2735 struct ace_regs __iomem *regs = ap->regs;
2736 struct sockaddr *addr=p;
2737 u8 *da;
2738 struct cmd cmd;
2739
2740 if(netif_running(dev))
2741 return -EBUSY;
2742
2743 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2744
2745 da = (u8 *)dev->dev_addr;
2746
2747 writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2748 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2749 &regs->MacAddrLo);
2750
2751 cmd.evt = C_SET_MAC_ADDR;
2752 cmd.code = 0;
2753 cmd.idx = 0;
2754 ace_issue_cmd(regs, &cmd);
2755
2756 return 0;
2757 }
2758
2759
2760 static void ace_set_multicast_list(struct net_device *dev)
2761 {
2762 struct ace_private *ap = netdev_priv(dev);
2763 struct ace_regs __iomem *regs = ap->regs;
2764 struct cmd cmd;
2765
2766 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2767 cmd.evt = C_SET_MULTICAST_MODE;
2768 cmd.code = C_C_MCAST_ENABLE;
2769 cmd.idx = 0;
2770 ace_issue_cmd(regs, &cmd);
2771 ap->mcast_all = 1;
2772 } else if (ap->mcast_all) {
2773 cmd.evt = C_SET_MULTICAST_MODE;
2774 cmd.code = C_C_MCAST_DISABLE;
2775 cmd.idx = 0;
2776 ace_issue_cmd(regs, &cmd);
2777 ap->mcast_all = 0;
2778 }
2779
2780 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2781 cmd.evt = C_SET_PROMISC_MODE;
2782 cmd.code = C_C_PROMISC_ENABLE;
2783 cmd.idx = 0;
2784 ace_issue_cmd(regs, &cmd);
2785 ap->promisc = 1;
2786 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2787 cmd.evt = C_SET_PROMISC_MODE;
2788 cmd.code = C_C_PROMISC_DISABLE;
2789 cmd.idx = 0;
2790 ace_issue_cmd(regs, &cmd);
2791 ap->promisc = 0;
2792 }
2793
2794 /*
2795 * For the time being multicast relies on the upper layers
2796 * filtering it properly. The Firmware does not allow one to
2797 * set the entire multicast list at a time and keeping track of
2798 * it here is going to be messy.
2799 */
2800 if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2801 cmd.evt = C_SET_MULTICAST_MODE;
2802 cmd.code = C_C_MCAST_ENABLE;
2803 cmd.idx = 0;
2804 ace_issue_cmd(regs, &cmd);
2805 }else if (!ap->mcast_all) {
2806 cmd.evt = C_SET_MULTICAST_MODE;
2807 cmd.code = C_C_MCAST_DISABLE;
2808 cmd.idx = 0;
2809 ace_issue_cmd(regs, &cmd);
2810 }
2811 }
2812
2813
2814 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2815 {
2816 struct ace_private *ap = netdev_priv(dev);
2817 struct ace_mac_stats __iomem *mac_stats =
2818 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2819
2820 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2821 dev->stats.multicast = readl(&mac_stats->kept_mc);
2822 dev->stats.collisions = readl(&mac_stats->coll);
2823
2824 return &dev->stats;
2825 }
2826
2827
2828 static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2829 u32 dest, int size)
2830 {
2831 void __iomem *tdest;
2832 short tsize, i;
2833
2834 if (size <= 0)
2835 return;
2836
2837 while (size > 0) {
2838 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2839 min_t(u32, size, ACE_WINDOW_SIZE));
2840 tdest = (void __iomem *) &regs->Window +
2841 (dest & (ACE_WINDOW_SIZE - 1));
2842 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2843 for (i = 0; i < (tsize / 4); i++) {
2844 /* Firmware is big-endian */
2845 writel(be32_to_cpup(src), tdest);
2846 src++;
2847 tdest += 4;
2848 dest += 4;
2849 size -= 4;
2850 }
2851 }
2852 }
2853
2854
2855 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2856 {
2857 void __iomem *tdest;
2858 short tsize = 0, i;
2859
2860 if (size <= 0)
2861 return;
2862
2863 while (size > 0) {
2864 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2865 min_t(u32, size, ACE_WINDOW_SIZE));
2866 tdest = (void __iomem *) &regs->Window +
2867 (dest & (ACE_WINDOW_SIZE - 1));
2868 writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2869
2870 for (i = 0; i < (tsize / 4); i++) {
2871 writel(0, tdest + i*4);
2872 }
2873
2874 dest += tsize;
2875 size -= tsize;
2876 }
2877 }
2878
2879
2880 /*
2881 * Download the firmware into the SRAM on the NIC
2882 *
2883 * This operation requires the NIC to be halted and is performed with
2884 * interrupts disabled and with the spinlock hold.
2885 */
2886 static int __devinit ace_load_firmware(struct net_device *dev)
2887 {
2888 const struct firmware *fw;
2889 const char *fw_name = "acenic/tg2.bin";
2890 struct ace_private *ap = netdev_priv(dev);
2891 struct ace_regs __iomem *regs = ap->regs;
2892 const __be32 *fw_data;
2893 u32 load_addr;
2894 int ret;
2895
2896 if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2897 printk(KERN_ERR "%s: trying to download firmware while the "
2898 "CPU is running!\n", ap->name);
2899 return -EFAULT;
2900 }
2901
2902 if (ACE_IS_TIGON_I(ap))
2903 fw_name = "acenic/tg1.bin";
2904
2905 ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2906 if (ret) {
2907 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2908 ap->name, fw_name);
2909 return ret;
2910 }
2911
2912 fw_data = (void *)fw->data;
2913
2914 /* Firmware blob starts with version numbers, followed by
2915 load and start address. Remainder is the blob to be loaded
2916 contiguously from load address. We don't bother to represent
2917 the BSS/SBSS sections any more, since we were clearing the
2918 whole thing anyway. */
2919 ap->firmware_major = fw->data[0];
2920 ap->firmware_minor = fw->data[1];
2921 ap->firmware_fix = fw->data[2];
2922
2923 ap->firmware_start = be32_to_cpu(fw_data[1]);
2924 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2925 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2926 ap->name, ap->firmware_start, fw_name);
2927 ret = -EINVAL;
2928 goto out;
2929 }
2930
2931 load_addr = be32_to_cpu(fw_data[2]);
2932 if (load_addr < 0x4000 || load_addr >= 0x80000) {
2933 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2934 ap->name, load_addr, fw_name);
2935 ret = -EINVAL;
2936 goto out;
2937 }
2938
2939 /*
2940 * Do not try to clear more than 512KiB or we end up seeing
2941 * funny things on NICs with only 512KiB SRAM
2942 */
2943 ace_clear(regs, 0x2000, 0x80000-0x2000);
2944 ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2945 out:
2946 release_firmware(fw);
2947 return ret;
2948 }
2949
2950
2951 /*
2952 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2953 *
2954 * Accessing the EEPROM is `interesting' to say the least - don't read
2955 * this code right after dinner.
2956 *
2957 * This is all about black magic and bit-banging the device .... I
2958 * wonder in what hospital they have put the guy who designed the i2c
2959 * specs.
2960 *
2961 * Oh yes, this is only the beginning!
2962 *
2963 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2964 * code i2c readout code by beta testing all my hacks.
2965 */
2966 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
2967 {
2968 u32 local;
2969
2970 readl(&regs->LocalCtrl);
2971 udelay(ACE_SHORT_DELAY);
2972 local = readl(&regs->LocalCtrl);
2973 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2974 writel(local, &regs->LocalCtrl);
2975 readl(&regs->LocalCtrl);
2976 mb();
2977 udelay(ACE_SHORT_DELAY);
2978 local |= EEPROM_CLK_OUT;
2979 writel(local, &regs->LocalCtrl);
2980 readl(&regs->LocalCtrl);
2981 mb();
2982 udelay(ACE_SHORT_DELAY);
2983 local &= ~EEPROM_DATA_OUT;
2984 writel(local, &regs->LocalCtrl);
2985 readl(&regs->LocalCtrl);
2986 mb();
2987 udelay(ACE_SHORT_DELAY);
2988 local &= ~EEPROM_CLK_OUT;
2989 writel(local, &regs->LocalCtrl);
2990 readl(&regs->LocalCtrl);
2991 mb();
2992 }
2993
2994
2995 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2996 {
2997 short i;
2998 u32 local;
2999
3000 udelay(ACE_SHORT_DELAY);
3001 local = readl(&regs->LocalCtrl);
3002 local &= ~EEPROM_DATA_OUT;
3003 local |= EEPROM_WRITE_ENABLE;
3004 writel(local, &regs->LocalCtrl);
3005 readl(&regs->LocalCtrl);
3006 mb();
3007
3008 for (i = 0; i < 8; i++, magic <<= 1) {
3009 udelay(ACE_SHORT_DELAY);
3010 if (magic & 0x80)
3011 local |= EEPROM_DATA_OUT;
3012 else
3013 local &= ~EEPROM_DATA_OUT;
3014 writel(local, &regs->LocalCtrl);
3015 readl(&regs->LocalCtrl);
3016 mb();
3017
3018 udelay(ACE_SHORT_DELAY);
3019 local |= EEPROM_CLK_OUT;
3020 writel(local, &regs->LocalCtrl);
3021 readl(&regs->LocalCtrl);
3022 mb();
3023 udelay(ACE_SHORT_DELAY);
3024 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3025 writel(local, &regs->LocalCtrl);
3026 readl(&regs->LocalCtrl);
3027 mb();
3028 }
3029 }
3030
3031
3032 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3033 {
3034 int state;
3035 u32 local;
3036
3037 local = readl(&regs->LocalCtrl);
3038 local &= ~EEPROM_WRITE_ENABLE;
3039 writel(local, &regs->LocalCtrl);
3040 readl(&regs->LocalCtrl);
3041 mb();
3042 udelay(ACE_LONG_DELAY);
3043 local |= EEPROM_CLK_OUT;
3044 writel(local, &regs->LocalCtrl);
3045 readl(&regs->LocalCtrl);
3046 mb();
3047 udelay(ACE_SHORT_DELAY);
3048 /* sample data in middle of high clk */
3049 state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3050 udelay(ACE_SHORT_DELAY);
3051 mb();
3052 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3053 readl(&regs->LocalCtrl);
3054 mb();
3055
3056 return state;
3057 }
3058
3059
3060 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3061 {
3062 u32 local;
3063
3064 udelay(ACE_SHORT_DELAY);
3065 local = readl(&regs->LocalCtrl);
3066 local |= EEPROM_WRITE_ENABLE;
3067 writel(local, &regs->LocalCtrl);
3068 readl(&regs->LocalCtrl);
3069 mb();
3070 udelay(ACE_SHORT_DELAY);
3071 local &= ~EEPROM_DATA_OUT;
3072 writel(local, &regs->LocalCtrl);
3073 readl(&regs->LocalCtrl);
3074 mb();
3075 udelay(ACE_SHORT_DELAY);
3076 local |= EEPROM_CLK_OUT;
3077 writel(local, &regs->LocalCtrl);
3078 readl(&regs->LocalCtrl);
3079 mb();
3080 udelay(ACE_SHORT_DELAY);
3081 local |= EEPROM_DATA_OUT;
3082 writel(local, &regs->LocalCtrl);
3083 readl(&regs->LocalCtrl);
3084 mb();
3085 udelay(ACE_LONG_DELAY);
3086 local &= ~EEPROM_CLK_OUT;
3087 writel(local, &regs->LocalCtrl);
3088 mb();
3089 }
3090
3091
3092 /*
3093 * Read a whole byte from the EEPROM.
3094 */
3095 static int __devinit read_eeprom_byte(struct net_device *dev,
3096 unsigned long offset)
3097 {
3098 struct ace_private *ap = netdev_priv(dev);
3099 struct ace_regs __iomem *regs = ap->regs;
3100 unsigned long flags;
3101 u32 local;
3102 int result = 0;
3103 short i;
3104
3105 /*
3106 * Don't take interrupts on this CPU will bit banging
3107 * the %#%#@$ I2C device
3108 */
3109 local_irq_save(flags);
3110
3111 eeprom_start(regs);
3112
3113 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3114 if (eeprom_check_ack(regs)) {
3115 local_irq_restore(flags);
3116 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3117 result = -EIO;
3118 goto eeprom_read_error;
3119 }
3120
3121 eeprom_prep(regs, (offset >> 8) & 0xff);
3122 if (eeprom_check_ack(regs)) {
3123 local_irq_restore(flags);
3124 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3125 ap->name);
3126 result = -EIO;
3127 goto eeprom_read_error;
3128 }
3129
3130 eeprom_prep(regs, offset & 0xff);
3131 if (eeprom_check_ack(regs)) {
3132 local_irq_restore(flags);
3133 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3134 ap->name);
3135 result = -EIO;
3136 goto eeprom_read_error;
3137 }
3138
3139 eeprom_start(regs);
3140 eeprom_prep(regs, EEPROM_READ_SELECT);
3141 if (eeprom_check_ack(regs)) {
3142 local_irq_restore(flags);
3143 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3144 ap->name);
3145 result = -EIO;
3146 goto eeprom_read_error;
3147 }
3148
3149 for (i = 0; i < 8; i++) {
3150 local = readl(&regs->LocalCtrl);
3151 local &= ~EEPROM_WRITE_ENABLE;
3152 writel(local, &regs->LocalCtrl);
3153 readl(&regs->LocalCtrl);
3154 udelay(ACE_LONG_DELAY);
3155 mb();
3156 local |= EEPROM_CLK_OUT;
3157 writel(local, &regs->LocalCtrl);
3158 readl(&regs->LocalCtrl);
3159 mb();
3160 udelay(ACE_SHORT_DELAY);
3161 /* sample data mid high clk */
3162 result = (result << 1) |
3163 ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3164 udelay(ACE_SHORT_DELAY);
3165 mb();
3166 local = readl(&regs->LocalCtrl);
3167 local &= ~EEPROM_CLK_OUT;
3168 writel(local, &regs->LocalCtrl);
3169 readl(&regs->LocalCtrl);
3170 udelay(ACE_SHORT_DELAY);
3171 mb();
3172 if (i == 7) {
3173 local |= EEPROM_WRITE_ENABLE;
3174 writel(local, &regs->LocalCtrl);
3175 readl(&regs->LocalCtrl);
3176 mb();
3177 udelay(ACE_SHORT_DELAY);
3178 }
3179 }
3180
3181 local |= EEPROM_DATA_OUT;
3182 writel(local, &regs->LocalCtrl);
3183 readl(&regs->LocalCtrl);
3184 mb();
3185 udelay(ACE_SHORT_DELAY);
3186 writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3187 readl(&regs->LocalCtrl);
3188 udelay(ACE_LONG_DELAY);
3189 writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3190 readl(&regs->LocalCtrl);
3191 mb();
3192 udelay(ACE_SHORT_DELAY);
3193 eeprom_stop(regs);
3194
3195 local_irq_restore(flags);
3196 out:
3197 return result;
3198
3199 eeprom_read_error:
3200 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3201 ap->name, offset);
3202 goto out;
3203 }
This page took 0.124638 seconds and 5 git commands to generate.