ext3: Flush disk caches on fsync when needed
[deliverable/linux.git] / drivers / net / atl1e / atl1e_main.c
1 /*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3 *
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 #include "atl1e.h"
23
24 #define DRV_VERSION "1.0.0.7-NAPI"
25
26 char atl1e_driver_name[] = "ATL1E";
27 char atl1e_driver_version[] = DRV_VERSION;
28 #define PCI_DEVICE_ID_ATTANSIC_L1E 0x1026
29 /*
30 * atl1e_pci_tbl - PCI Device ID Table
31 *
32 * Wildcard entries (PCI_ANY_ID) should come last
33 * Last entry must be all 0s
34 *
35 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
36 * Class, Class Mask, private data (not used) }
37 */
38 static struct pci_device_id atl1e_pci_tbl[] = {
39 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1E)},
40 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, 0x1066)},
41 /* required last entry */
42 { 0 }
43 };
44 MODULE_DEVICE_TABLE(pci, atl1e_pci_tbl);
45
46 MODULE_AUTHOR("Atheros Corporation, <xiong.huang@atheros.com>, Jie Yang <jie.yang@atheros.com>");
47 MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver");
48 MODULE_LICENSE("GPL");
49 MODULE_VERSION(DRV_VERSION);
50
51 static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter);
52
53 static const u16
54 atl1e_rx_page_vld_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
55 {
56 {REG_HOST_RXF0_PAGE0_VLD, REG_HOST_RXF0_PAGE1_VLD},
57 {REG_HOST_RXF1_PAGE0_VLD, REG_HOST_RXF1_PAGE1_VLD},
58 {REG_HOST_RXF2_PAGE0_VLD, REG_HOST_RXF2_PAGE1_VLD},
59 {REG_HOST_RXF3_PAGE0_VLD, REG_HOST_RXF3_PAGE1_VLD}
60 };
61
62 static const u16 atl1e_rx_page_hi_addr_regs[AT_MAX_RECEIVE_QUEUE] =
63 {
64 REG_RXF0_BASE_ADDR_HI,
65 REG_RXF1_BASE_ADDR_HI,
66 REG_RXF2_BASE_ADDR_HI,
67 REG_RXF3_BASE_ADDR_HI
68 };
69
70 static const u16
71 atl1e_rx_page_lo_addr_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
72 {
73 {REG_HOST_RXF0_PAGE0_LO, REG_HOST_RXF0_PAGE1_LO},
74 {REG_HOST_RXF1_PAGE0_LO, REG_HOST_RXF1_PAGE1_LO},
75 {REG_HOST_RXF2_PAGE0_LO, REG_HOST_RXF2_PAGE1_LO},
76 {REG_HOST_RXF3_PAGE0_LO, REG_HOST_RXF3_PAGE1_LO}
77 };
78
79 static const u16
80 atl1e_rx_page_write_offset_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
81 {
82 {REG_HOST_RXF0_MB0_LO, REG_HOST_RXF0_MB1_LO},
83 {REG_HOST_RXF1_MB0_LO, REG_HOST_RXF1_MB1_LO},
84 {REG_HOST_RXF2_MB0_LO, REG_HOST_RXF2_MB1_LO},
85 {REG_HOST_RXF3_MB0_LO, REG_HOST_RXF3_MB1_LO}
86 };
87
88 static const u16 atl1e_pay_load_size[] = {
89 128, 256, 512, 1024, 2048, 4096,
90 };
91
92 /*
93 * atl1e_irq_enable - Enable default interrupt generation settings
94 * @adapter: board private structure
95 */
96 static inline void atl1e_irq_enable(struct atl1e_adapter *adapter)
97 {
98 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
99 AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
100 AT_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
101 AT_WRITE_FLUSH(&adapter->hw);
102 }
103 }
104
105 /*
106 * atl1e_irq_disable - Mask off interrupt generation on the NIC
107 * @adapter: board private structure
108 */
109 static inline void atl1e_irq_disable(struct atl1e_adapter *adapter)
110 {
111 atomic_inc(&adapter->irq_sem);
112 AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
113 AT_WRITE_FLUSH(&adapter->hw);
114 synchronize_irq(adapter->pdev->irq);
115 }
116
117 /*
118 * atl1e_irq_reset - reset interrupt confiure on the NIC
119 * @adapter: board private structure
120 */
121 static inline void atl1e_irq_reset(struct atl1e_adapter *adapter)
122 {
123 atomic_set(&adapter->irq_sem, 0);
124 AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
125 AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
126 AT_WRITE_FLUSH(&adapter->hw);
127 }
128
129 /*
130 * atl1e_phy_config - Timer Call-back
131 * @data: pointer to netdev cast into an unsigned long
132 */
133 static void atl1e_phy_config(unsigned long data)
134 {
135 struct atl1e_adapter *adapter = (struct atl1e_adapter *) data;
136 struct atl1e_hw *hw = &adapter->hw;
137 unsigned long flags;
138
139 spin_lock_irqsave(&adapter->mdio_lock, flags);
140 atl1e_restart_autoneg(hw);
141 spin_unlock_irqrestore(&adapter->mdio_lock, flags);
142 }
143
144 void atl1e_reinit_locked(struct atl1e_adapter *adapter)
145 {
146
147 WARN_ON(in_interrupt());
148 while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
149 msleep(1);
150 atl1e_down(adapter);
151 atl1e_up(adapter);
152 clear_bit(__AT_RESETTING, &adapter->flags);
153 }
154
155 static void atl1e_reset_task(struct work_struct *work)
156 {
157 struct atl1e_adapter *adapter;
158 adapter = container_of(work, struct atl1e_adapter, reset_task);
159
160 atl1e_reinit_locked(adapter);
161 }
162
163 static int atl1e_check_link(struct atl1e_adapter *adapter)
164 {
165 struct atl1e_hw *hw = &adapter->hw;
166 struct net_device *netdev = adapter->netdev;
167 struct pci_dev *pdev = adapter->pdev;
168 int err = 0;
169 u16 speed, duplex, phy_data;
170
171 /* MII_BMSR must read twise */
172 atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
173 atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
174 if ((phy_data & BMSR_LSTATUS) == 0) {
175 /* link down */
176 if (netif_carrier_ok(netdev)) { /* old link state: Up */
177 u32 value;
178 /* disable rx */
179 value = AT_READ_REG(hw, REG_MAC_CTRL);
180 value &= ~MAC_CTRL_RX_EN;
181 AT_WRITE_REG(hw, REG_MAC_CTRL, value);
182 adapter->link_speed = SPEED_0;
183 netif_carrier_off(netdev);
184 netif_stop_queue(netdev);
185 }
186 } else {
187 /* Link Up */
188 err = atl1e_get_speed_and_duplex(hw, &speed, &duplex);
189 if (unlikely(err))
190 return err;
191
192 /* link result is our setting */
193 if (adapter->link_speed != speed ||
194 adapter->link_duplex != duplex) {
195 adapter->link_speed = speed;
196 adapter->link_duplex = duplex;
197 atl1e_setup_mac_ctrl(adapter);
198 dev_info(&pdev->dev,
199 "%s: %s NIC Link is Up<%d Mbps %s>\n",
200 atl1e_driver_name, netdev->name,
201 adapter->link_speed,
202 adapter->link_duplex == FULL_DUPLEX ?
203 "Full Duplex" : "Half Duplex");
204 }
205
206 if (!netif_carrier_ok(netdev)) {
207 /* Link down -> Up */
208 netif_carrier_on(netdev);
209 netif_wake_queue(netdev);
210 }
211 }
212 return 0;
213 }
214
215 /*
216 * atl1e_link_chg_task - deal with link change event Out of interrupt context
217 * @netdev: network interface device structure
218 */
219 static void atl1e_link_chg_task(struct work_struct *work)
220 {
221 struct atl1e_adapter *adapter;
222 unsigned long flags;
223
224 adapter = container_of(work, struct atl1e_adapter, link_chg_task);
225 spin_lock_irqsave(&adapter->mdio_lock, flags);
226 atl1e_check_link(adapter);
227 spin_unlock_irqrestore(&adapter->mdio_lock, flags);
228 }
229
230 static void atl1e_link_chg_event(struct atl1e_adapter *adapter)
231 {
232 struct net_device *netdev = adapter->netdev;
233 struct pci_dev *pdev = adapter->pdev;
234 u16 phy_data = 0;
235 u16 link_up = 0;
236
237 spin_lock(&adapter->mdio_lock);
238 atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
239 atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
240 spin_unlock(&adapter->mdio_lock);
241 link_up = phy_data & BMSR_LSTATUS;
242 /* notify upper layer link down ASAP */
243 if (!link_up) {
244 if (netif_carrier_ok(netdev)) {
245 /* old link state: Up */
246 dev_info(&pdev->dev, "%s: %s NIC Link is Down\n",
247 atl1e_driver_name, netdev->name);
248 adapter->link_speed = SPEED_0;
249 netif_stop_queue(netdev);
250 }
251 }
252 schedule_work(&adapter->link_chg_task);
253 }
254
255 static void atl1e_del_timer(struct atl1e_adapter *adapter)
256 {
257 del_timer_sync(&adapter->phy_config_timer);
258 }
259
260 static void atl1e_cancel_work(struct atl1e_adapter *adapter)
261 {
262 cancel_work_sync(&adapter->reset_task);
263 cancel_work_sync(&adapter->link_chg_task);
264 }
265
266 /*
267 * atl1e_tx_timeout - Respond to a Tx Hang
268 * @netdev: network interface device structure
269 */
270 static void atl1e_tx_timeout(struct net_device *netdev)
271 {
272 struct atl1e_adapter *adapter = netdev_priv(netdev);
273
274 /* Do the reset outside of interrupt context */
275 schedule_work(&adapter->reset_task);
276 }
277
278 /*
279 * atl1e_set_multi - Multicast and Promiscuous mode set
280 * @netdev: network interface device structure
281 *
282 * The set_multi entry point is called whenever the multicast address
283 * list or the network interface flags are updated. This routine is
284 * responsible for configuring the hardware for proper multicast,
285 * promiscuous mode, and all-multi behavior.
286 */
287 static void atl1e_set_multi(struct net_device *netdev)
288 {
289 struct atl1e_adapter *adapter = netdev_priv(netdev);
290 struct atl1e_hw *hw = &adapter->hw;
291 struct dev_mc_list *mc_ptr;
292 u32 mac_ctrl_data = 0;
293 u32 hash_value;
294
295 /* Check for Promiscuous and All Multicast modes */
296 mac_ctrl_data = AT_READ_REG(hw, REG_MAC_CTRL);
297
298 if (netdev->flags & IFF_PROMISC) {
299 mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
300 } else if (netdev->flags & IFF_ALLMULTI) {
301 mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;
302 mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN;
303 } else {
304 mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
305 }
306
307 AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
308
309 /* clear the old settings from the multicast hash table */
310 AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
311 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
312
313 /* comoute mc addresses' hash value ,and put it into hash table */
314 for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
315 hash_value = atl1e_hash_mc_addr(hw, mc_ptr->dmi_addr);
316 atl1e_hash_set(hw, hash_value);
317 }
318 }
319
320 static void atl1e_vlan_rx_register(struct net_device *netdev,
321 struct vlan_group *grp)
322 {
323 struct atl1e_adapter *adapter = netdev_priv(netdev);
324 struct pci_dev *pdev = adapter->pdev;
325 u32 mac_ctrl_data = 0;
326
327 dev_dbg(&pdev->dev, "atl1e_vlan_rx_register\n");
328
329 atl1e_irq_disable(adapter);
330
331 adapter->vlgrp = grp;
332 mac_ctrl_data = AT_READ_REG(&adapter->hw, REG_MAC_CTRL);
333
334 if (grp) {
335 /* enable VLAN tag insert/strip */
336 mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
337 } else {
338 /* disable VLAN tag insert/strip */
339 mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN;
340 }
341
342 AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data);
343 atl1e_irq_enable(adapter);
344 }
345
346 static void atl1e_restore_vlan(struct atl1e_adapter *adapter)
347 {
348 struct pci_dev *pdev = adapter->pdev;
349
350 dev_dbg(&pdev->dev, "atl1e_restore_vlan !");
351 atl1e_vlan_rx_register(adapter->netdev, adapter->vlgrp);
352 }
353 /*
354 * atl1e_set_mac - Change the Ethernet Address of the NIC
355 * @netdev: network interface device structure
356 * @p: pointer to an address structure
357 *
358 * Returns 0 on success, negative on failure
359 */
360 static int atl1e_set_mac_addr(struct net_device *netdev, void *p)
361 {
362 struct atl1e_adapter *adapter = netdev_priv(netdev);
363 struct sockaddr *addr = p;
364
365 if (!is_valid_ether_addr(addr->sa_data))
366 return -EADDRNOTAVAIL;
367
368 if (netif_running(netdev))
369 return -EBUSY;
370
371 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
372 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
373
374 atl1e_hw_set_mac_addr(&adapter->hw);
375
376 return 0;
377 }
378
379 /*
380 * atl1e_change_mtu - Change the Maximum Transfer Unit
381 * @netdev: network interface device structure
382 * @new_mtu: new value for maximum frame size
383 *
384 * Returns 0 on success, negative on failure
385 */
386 static int atl1e_change_mtu(struct net_device *netdev, int new_mtu)
387 {
388 struct atl1e_adapter *adapter = netdev_priv(netdev);
389 int old_mtu = netdev->mtu;
390 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
391
392 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
393 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
394 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
395 return -EINVAL;
396 }
397 /* set MTU */
398 if (old_mtu != new_mtu && netif_running(netdev)) {
399 while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
400 msleep(1);
401 netdev->mtu = new_mtu;
402 adapter->hw.max_frame_size = new_mtu;
403 adapter->hw.rx_jumbo_th = (max_frame + 7) >> 3;
404 atl1e_down(adapter);
405 atl1e_up(adapter);
406 clear_bit(__AT_RESETTING, &adapter->flags);
407 }
408 return 0;
409 }
410
411 /*
412 * caller should hold mdio_lock
413 */
414 static int atl1e_mdio_read(struct net_device *netdev, int phy_id, int reg_num)
415 {
416 struct atl1e_adapter *adapter = netdev_priv(netdev);
417 u16 result;
418
419 atl1e_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result);
420 return result;
421 }
422
423 static void atl1e_mdio_write(struct net_device *netdev, int phy_id,
424 int reg_num, int val)
425 {
426 struct atl1e_adapter *adapter = netdev_priv(netdev);
427
428 atl1e_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val);
429 }
430
431 /*
432 * atl1e_mii_ioctl -
433 * @netdev:
434 * @ifreq:
435 * @cmd:
436 */
437 static int atl1e_mii_ioctl(struct net_device *netdev,
438 struct ifreq *ifr, int cmd)
439 {
440 struct atl1e_adapter *adapter = netdev_priv(netdev);
441 struct pci_dev *pdev = adapter->pdev;
442 struct mii_ioctl_data *data = if_mii(ifr);
443 unsigned long flags;
444 int retval = 0;
445
446 if (!netif_running(netdev))
447 return -EINVAL;
448
449 spin_lock_irqsave(&adapter->mdio_lock, flags);
450 switch (cmd) {
451 case SIOCGMIIPHY:
452 data->phy_id = 0;
453 break;
454
455 case SIOCGMIIREG:
456 if (atl1e_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
457 &data->val_out)) {
458 retval = -EIO;
459 goto out;
460 }
461 break;
462
463 case SIOCSMIIREG:
464 if (data->reg_num & ~(0x1F)) {
465 retval = -EFAULT;
466 goto out;
467 }
468
469 dev_dbg(&pdev->dev, "<atl1e_mii_ioctl> write %x %x",
470 data->reg_num, data->val_in);
471 if (atl1e_write_phy_reg(&adapter->hw,
472 data->reg_num, data->val_in)) {
473 retval = -EIO;
474 goto out;
475 }
476 break;
477
478 default:
479 retval = -EOPNOTSUPP;
480 break;
481 }
482 out:
483 spin_unlock_irqrestore(&adapter->mdio_lock, flags);
484 return retval;
485
486 }
487
488 /*
489 * atl1e_ioctl -
490 * @netdev:
491 * @ifreq:
492 * @cmd:
493 */
494 static int atl1e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
495 {
496 switch (cmd) {
497 case SIOCGMIIPHY:
498 case SIOCGMIIREG:
499 case SIOCSMIIREG:
500 return atl1e_mii_ioctl(netdev, ifr, cmd);
501 default:
502 return -EOPNOTSUPP;
503 }
504 }
505
506 static void atl1e_setup_pcicmd(struct pci_dev *pdev)
507 {
508 u16 cmd;
509
510 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
511 cmd &= ~(PCI_COMMAND_INTX_DISABLE | PCI_COMMAND_IO);
512 cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
513 pci_write_config_word(pdev, PCI_COMMAND, cmd);
514
515 /*
516 * some motherboards BIOS(PXE/EFI) driver may set PME
517 * while they transfer control to OS (Windows/Linux)
518 * so we should clear this bit before NIC work normally
519 */
520 pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
521 msleep(1);
522 }
523
524 /*
525 * atl1e_alloc_queues - Allocate memory for all rings
526 * @adapter: board private structure to initialize
527 *
528 */
529 static int __devinit atl1e_alloc_queues(struct atl1e_adapter *adapter)
530 {
531 return 0;
532 }
533
534 /*
535 * atl1e_sw_init - Initialize general software structures (struct atl1e_adapter)
536 * @adapter: board private structure to initialize
537 *
538 * atl1e_sw_init initializes the Adapter private data structure.
539 * Fields are initialized based on PCI device information and
540 * OS network device settings (MTU size).
541 */
542 static int __devinit atl1e_sw_init(struct atl1e_adapter *adapter)
543 {
544 struct atl1e_hw *hw = &adapter->hw;
545 struct pci_dev *pdev = adapter->pdev;
546 u32 phy_status_data = 0;
547
548 adapter->wol = 0;
549 adapter->link_speed = SPEED_0; /* hardware init */
550 adapter->link_duplex = FULL_DUPLEX;
551 adapter->num_rx_queues = 1;
552
553 /* PCI config space info */
554 hw->vendor_id = pdev->vendor;
555 hw->device_id = pdev->device;
556 hw->subsystem_vendor_id = pdev->subsystem_vendor;
557 hw->subsystem_id = pdev->subsystem_device;
558
559 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
560 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
561
562 phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS);
563 /* nic type */
564 if (hw->revision_id >= 0xF0) {
565 hw->nic_type = athr_l2e_revB;
566 } else {
567 if (phy_status_data & PHY_STATUS_100M)
568 hw->nic_type = athr_l1e;
569 else
570 hw->nic_type = athr_l2e_revA;
571 }
572
573 phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS);
574
575 if (phy_status_data & PHY_STATUS_EMI_CA)
576 hw->emi_ca = true;
577 else
578 hw->emi_ca = false;
579
580 hw->phy_configured = false;
581 hw->preamble_len = 7;
582 hw->max_frame_size = adapter->netdev->mtu;
583 hw->rx_jumbo_th = (hw->max_frame_size + ETH_HLEN +
584 VLAN_HLEN + ETH_FCS_LEN + 7) >> 3;
585
586 hw->rrs_type = atl1e_rrs_disable;
587 hw->indirect_tab = 0;
588 hw->base_cpu = 0;
589
590 /* need confirm */
591
592 hw->ict = 50000; /* 100ms */
593 hw->smb_timer = 200000; /* 200ms */
594 hw->tpd_burst = 5;
595 hw->rrd_thresh = 1;
596 hw->tpd_thresh = adapter->tx_ring.count / 2;
597 hw->rx_count_down = 4; /* 2us resolution */
598 hw->tx_count_down = hw->imt * 4 / 3;
599 hw->dmar_block = atl1e_dma_req_1024;
600 hw->dmaw_block = atl1e_dma_req_1024;
601 hw->dmar_dly_cnt = 15;
602 hw->dmaw_dly_cnt = 4;
603
604 if (atl1e_alloc_queues(adapter)) {
605 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
606 return -ENOMEM;
607 }
608
609 atomic_set(&adapter->irq_sem, 1);
610 spin_lock_init(&adapter->mdio_lock);
611 spin_lock_init(&adapter->tx_lock);
612
613 set_bit(__AT_DOWN, &adapter->flags);
614
615 return 0;
616 }
617
618 /*
619 * atl1e_clean_tx_ring - Free Tx-skb
620 * @adapter: board private structure
621 */
622 static void atl1e_clean_tx_ring(struct atl1e_adapter *adapter)
623 {
624 struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *)
625 &adapter->tx_ring;
626 struct atl1e_tx_buffer *tx_buffer = NULL;
627 struct pci_dev *pdev = adapter->pdev;
628 u16 index, ring_count;
629
630 if (tx_ring->desc == NULL || tx_ring->tx_buffer == NULL)
631 return;
632
633 ring_count = tx_ring->count;
634 /* first unmmap dma */
635 for (index = 0; index < ring_count; index++) {
636 tx_buffer = &tx_ring->tx_buffer[index];
637 if (tx_buffer->dma) {
638 pci_unmap_page(pdev, tx_buffer->dma,
639 tx_buffer->length, PCI_DMA_TODEVICE);
640 tx_buffer->dma = 0;
641 }
642 }
643 /* second free skb */
644 for (index = 0; index < ring_count; index++) {
645 tx_buffer = &tx_ring->tx_buffer[index];
646 if (tx_buffer->skb) {
647 dev_kfree_skb_any(tx_buffer->skb);
648 tx_buffer->skb = NULL;
649 }
650 }
651 /* Zero out Tx-buffers */
652 memset(tx_ring->desc, 0, sizeof(struct atl1e_tpd_desc) *
653 ring_count);
654 memset(tx_ring->tx_buffer, 0, sizeof(struct atl1e_tx_buffer) *
655 ring_count);
656 }
657
658 /*
659 * atl1e_clean_rx_ring - Free rx-reservation skbs
660 * @adapter: board private structure
661 */
662 static void atl1e_clean_rx_ring(struct atl1e_adapter *adapter)
663 {
664 struct atl1e_rx_ring *rx_ring =
665 (struct atl1e_rx_ring *)&adapter->rx_ring;
666 struct atl1e_rx_page_desc *rx_page_desc = rx_ring->rx_page_desc;
667 u16 i, j;
668
669
670 if (adapter->ring_vir_addr == NULL)
671 return;
672 /* Zero out the descriptor ring */
673 for (i = 0; i < adapter->num_rx_queues; i++) {
674 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
675 if (rx_page_desc[i].rx_page[j].addr != NULL) {
676 memset(rx_page_desc[i].rx_page[j].addr, 0,
677 rx_ring->real_page_size);
678 }
679 }
680 }
681 }
682
683 static void atl1e_cal_ring_size(struct atl1e_adapter *adapter, u32 *ring_size)
684 {
685 *ring_size = ((u32)(adapter->tx_ring.count *
686 sizeof(struct atl1e_tpd_desc) + 7
687 /* tx ring, qword align */
688 + adapter->rx_ring.real_page_size * AT_PAGE_NUM_PER_QUEUE *
689 adapter->num_rx_queues + 31
690 /* rx ring, 32 bytes align */
691 + (1 + AT_PAGE_NUM_PER_QUEUE * adapter->num_rx_queues) *
692 sizeof(u32) + 3));
693 /* tx, rx cmd, dword align */
694 }
695
696 static void atl1e_init_ring_resources(struct atl1e_adapter *adapter)
697 {
698 struct atl1e_tx_ring *tx_ring = NULL;
699 struct atl1e_rx_ring *rx_ring = NULL;
700
701 tx_ring = &adapter->tx_ring;
702 rx_ring = &adapter->rx_ring;
703
704 rx_ring->real_page_size = adapter->rx_ring.page_size
705 + adapter->hw.max_frame_size
706 + ETH_HLEN + VLAN_HLEN
707 + ETH_FCS_LEN;
708 rx_ring->real_page_size = roundup(rx_ring->real_page_size, 32);
709 atl1e_cal_ring_size(adapter, &adapter->ring_size);
710
711 adapter->ring_vir_addr = NULL;
712 adapter->rx_ring.desc = NULL;
713 rwlock_init(&adapter->tx_ring.tx_lock);
714
715 return;
716 }
717
718 /*
719 * Read / Write Ptr Initialize:
720 */
721 static void atl1e_init_ring_ptrs(struct atl1e_adapter *adapter)
722 {
723 struct atl1e_tx_ring *tx_ring = NULL;
724 struct atl1e_rx_ring *rx_ring = NULL;
725 struct atl1e_rx_page_desc *rx_page_desc = NULL;
726 int i, j;
727
728 tx_ring = &adapter->tx_ring;
729 rx_ring = &adapter->rx_ring;
730 rx_page_desc = rx_ring->rx_page_desc;
731
732 tx_ring->next_to_use = 0;
733 atomic_set(&tx_ring->next_to_clean, 0);
734
735 for (i = 0; i < adapter->num_rx_queues; i++) {
736 rx_page_desc[i].rx_using = 0;
737 rx_page_desc[i].rx_nxseq = 0;
738 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
739 *rx_page_desc[i].rx_page[j].write_offset_addr = 0;
740 rx_page_desc[i].rx_page[j].read_offset = 0;
741 }
742 }
743 }
744
745 /*
746 * atl1e_free_ring_resources - Free Tx / RX descriptor Resources
747 * @adapter: board private structure
748 *
749 * Free all transmit software resources
750 */
751 static void atl1e_free_ring_resources(struct atl1e_adapter *adapter)
752 {
753 struct pci_dev *pdev = adapter->pdev;
754
755 atl1e_clean_tx_ring(adapter);
756 atl1e_clean_rx_ring(adapter);
757
758 if (adapter->ring_vir_addr) {
759 pci_free_consistent(pdev, adapter->ring_size,
760 adapter->ring_vir_addr, adapter->ring_dma);
761 adapter->ring_vir_addr = NULL;
762 }
763
764 if (adapter->tx_ring.tx_buffer) {
765 kfree(adapter->tx_ring.tx_buffer);
766 adapter->tx_ring.tx_buffer = NULL;
767 }
768 }
769
770 /*
771 * atl1e_setup_mem_resources - allocate Tx / RX descriptor resources
772 * @adapter: board private structure
773 *
774 * Return 0 on success, negative on failure
775 */
776 static int atl1e_setup_ring_resources(struct atl1e_adapter *adapter)
777 {
778 struct pci_dev *pdev = adapter->pdev;
779 struct atl1e_tx_ring *tx_ring;
780 struct atl1e_rx_ring *rx_ring;
781 struct atl1e_rx_page_desc *rx_page_desc;
782 int size, i, j;
783 u32 offset = 0;
784 int err = 0;
785
786 if (adapter->ring_vir_addr != NULL)
787 return 0; /* alloced already */
788
789 tx_ring = &adapter->tx_ring;
790 rx_ring = &adapter->rx_ring;
791
792 /* real ring DMA buffer */
793
794 size = adapter->ring_size;
795 adapter->ring_vir_addr = pci_alloc_consistent(pdev,
796 adapter->ring_size, &adapter->ring_dma);
797
798 if (adapter->ring_vir_addr == NULL) {
799 dev_err(&pdev->dev, "pci_alloc_consistent failed, "
800 "size = D%d", size);
801 return -ENOMEM;
802 }
803
804 memset(adapter->ring_vir_addr, 0, adapter->ring_size);
805
806 rx_page_desc = rx_ring->rx_page_desc;
807
808 /* Init TPD Ring */
809 tx_ring->dma = roundup(adapter->ring_dma, 8);
810 offset = tx_ring->dma - adapter->ring_dma;
811 tx_ring->desc = (struct atl1e_tpd_desc *)
812 (adapter->ring_vir_addr + offset);
813 size = sizeof(struct atl1e_tx_buffer) * (tx_ring->count);
814 tx_ring->tx_buffer = kzalloc(size, GFP_KERNEL);
815 if (tx_ring->tx_buffer == NULL) {
816 dev_err(&pdev->dev, "kzalloc failed , size = D%d", size);
817 err = -ENOMEM;
818 goto failed;
819 }
820
821 /* Init RXF-Pages */
822 offset += (sizeof(struct atl1e_tpd_desc) * tx_ring->count);
823 offset = roundup(offset, 32);
824
825 for (i = 0; i < adapter->num_rx_queues; i++) {
826 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
827 rx_page_desc[i].rx_page[j].dma =
828 adapter->ring_dma + offset;
829 rx_page_desc[i].rx_page[j].addr =
830 adapter->ring_vir_addr + offset;
831 offset += rx_ring->real_page_size;
832 }
833 }
834
835 /* Init CMB dma address */
836 tx_ring->cmb_dma = adapter->ring_dma + offset;
837 tx_ring->cmb = (u32 *)(adapter->ring_vir_addr + offset);
838 offset += sizeof(u32);
839
840 for (i = 0; i < adapter->num_rx_queues; i++) {
841 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
842 rx_page_desc[i].rx_page[j].write_offset_dma =
843 adapter->ring_dma + offset;
844 rx_page_desc[i].rx_page[j].write_offset_addr =
845 adapter->ring_vir_addr + offset;
846 offset += sizeof(u32);
847 }
848 }
849
850 if (unlikely(offset > adapter->ring_size)) {
851 dev_err(&pdev->dev, "offset(%d) > ring size(%d) !!\n",
852 offset, adapter->ring_size);
853 err = -1;
854 goto failed;
855 }
856
857 return 0;
858 failed:
859 if (adapter->ring_vir_addr != NULL) {
860 pci_free_consistent(pdev, adapter->ring_size,
861 adapter->ring_vir_addr, adapter->ring_dma);
862 adapter->ring_vir_addr = NULL;
863 }
864 return err;
865 }
866
867 static inline void atl1e_configure_des_ring(const struct atl1e_adapter *adapter)
868 {
869
870 struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
871 struct atl1e_rx_ring *rx_ring =
872 (struct atl1e_rx_ring *)&adapter->rx_ring;
873 struct atl1e_tx_ring *tx_ring =
874 (struct atl1e_tx_ring *)&adapter->tx_ring;
875 struct atl1e_rx_page_desc *rx_page_desc = NULL;
876 int i, j;
877
878 AT_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
879 (u32)((adapter->ring_dma & AT_DMA_HI_ADDR_MASK) >> 32));
880 AT_WRITE_REG(hw, REG_TPD_BASE_ADDR_LO,
881 (u32)((tx_ring->dma) & AT_DMA_LO_ADDR_MASK));
882 AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u16)(tx_ring->count));
883 AT_WRITE_REG(hw, REG_HOST_TX_CMB_LO,
884 (u32)((tx_ring->cmb_dma) & AT_DMA_LO_ADDR_MASK));
885
886 rx_page_desc = rx_ring->rx_page_desc;
887 /* RXF Page Physical address / Page Length */
888 for (i = 0; i < AT_MAX_RECEIVE_QUEUE; i++) {
889 AT_WRITE_REG(hw, atl1e_rx_page_hi_addr_regs[i],
890 (u32)((adapter->ring_dma &
891 AT_DMA_HI_ADDR_MASK) >> 32));
892 for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
893 u32 page_phy_addr;
894 u32 offset_phy_addr;
895
896 page_phy_addr = rx_page_desc[i].rx_page[j].dma;
897 offset_phy_addr =
898 rx_page_desc[i].rx_page[j].write_offset_dma;
899
900 AT_WRITE_REG(hw, atl1e_rx_page_lo_addr_regs[i][j],
901 page_phy_addr & AT_DMA_LO_ADDR_MASK);
902 AT_WRITE_REG(hw, atl1e_rx_page_write_offset_regs[i][j],
903 offset_phy_addr & AT_DMA_LO_ADDR_MASK);
904 AT_WRITE_REGB(hw, atl1e_rx_page_vld_regs[i][j], 1);
905 }
906 }
907 /* Page Length */
908 AT_WRITE_REG(hw, REG_HOST_RXFPAGE_SIZE, rx_ring->page_size);
909 /* Load all of base address above */
910 AT_WRITE_REG(hw, REG_LOAD_PTR, 1);
911
912 return;
913 }
914
915 static inline void atl1e_configure_tx(struct atl1e_adapter *adapter)
916 {
917 struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
918 u32 dev_ctrl_data = 0;
919 u32 max_pay_load = 0;
920 u32 jumbo_thresh = 0;
921 u32 extra_size = 0; /* Jumbo frame threshold in QWORD unit */
922
923 /* configure TXQ param */
924 if (hw->nic_type != athr_l2e_revB) {
925 extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN;
926 if (hw->max_frame_size <= 1500) {
927 jumbo_thresh = hw->max_frame_size + extra_size;
928 } else if (hw->max_frame_size < 6*1024) {
929 jumbo_thresh =
930 (hw->max_frame_size + extra_size) * 2 / 3;
931 } else {
932 jumbo_thresh = (hw->max_frame_size + extra_size) / 2;
933 }
934 AT_WRITE_REG(hw, REG_TX_EARLY_TH, (jumbo_thresh + 7) >> 3);
935 }
936
937 dev_ctrl_data = AT_READ_REG(hw, REG_DEVICE_CTRL);
938
939 max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT)) &
940 DEVICE_CTRL_MAX_PAYLOAD_MASK;
941
942 hw->dmaw_block = min(max_pay_load, hw->dmaw_block);
943
944 max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT)) &
945 DEVICE_CTRL_MAX_RREQ_SZ_MASK;
946 hw->dmar_block = min(max_pay_load, hw->dmar_block);
947
948 if (hw->nic_type != athr_l2e_revB)
949 AT_WRITE_REGW(hw, REG_TXQ_CTRL + 2,
950 atl1e_pay_load_size[hw->dmar_block]);
951 /* enable TXQ */
952 AT_WRITE_REGW(hw, REG_TXQ_CTRL,
953 (((u16)hw->tpd_burst & TXQ_CTRL_NUM_TPD_BURST_MASK)
954 << TXQ_CTRL_NUM_TPD_BURST_SHIFT)
955 | TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN);
956 return;
957 }
958
959 static inline void atl1e_configure_rx(struct atl1e_adapter *adapter)
960 {
961 struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw;
962 u32 rxf_len = 0;
963 u32 rxf_low = 0;
964 u32 rxf_high = 0;
965 u32 rxf_thresh_data = 0;
966 u32 rxq_ctrl_data = 0;
967
968 if (hw->nic_type != athr_l2e_revB) {
969 AT_WRITE_REGW(hw, REG_RXQ_JMBOSZ_RRDTIM,
970 (u16)((hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) <<
971 RXQ_JMBOSZ_TH_SHIFT |
972 (1 & RXQ_JMBO_LKAH_MASK) <<
973 RXQ_JMBO_LKAH_SHIFT));
974
975 rxf_len = AT_READ_REG(hw, REG_SRAM_RXF_LEN);
976 rxf_high = rxf_len * 4 / 5;
977 rxf_low = rxf_len / 5;
978 rxf_thresh_data = ((rxf_high & RXQ_RXF_PAUSE_TH_HI_MASK)
979 << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
980 ((rxf_low & RXQ_RXF_PAUSE_TH_LO_MASK)
981 << RXQ_RXF_PAUSE_TH_LO_SHIFT);
982
983 AT_WRITE_REG(hw, REG_RXQ_RXF_PAUSE_THRESH, rxf_thresh_data);
984 }
985
986 /* RRS */
987 AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab);
988 AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu);
989
990 if (hw->rrs_type & atl1e_rrs_ipv4)
991 rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4;
992
993 if (hw->rrs_type & atl1e_rrs_ipv4_tcp)
994 rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4_TCP;
995
996 if (hw->rrs_type & atl1e_rrs_ipv6)
997 rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6;
998
999 if (hw->rrs_type & atl1e_rrs_ipv6_tcp)
1000 rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6_TCP;
1001
1002 if (hw->rrs_type != atl1e_rrs_disable)
1003 rxq_ctrl_data |=
1004 (RXQ_CTRL_HASH_ENABLE | RXQ_CTRL_RSS_MODE_MQUESINT);
1005
1006 rxq_ctrl_data |= RXQ_CTRL_IPV6_XSUM_VERIFY_EN | RXQ_CTRL_PBA_ALIGN_32 |
1007 RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN;
1008
1009 AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data);
1010 return;
1011 }
1012
1013 static inline void atl1e_configure_dma(struct atl1e_adapter *adapter)
1014 {
1015 struct atl1e_hw *hw = &adapter->hw;
1016 u32 dma_ctrl_data = 0;
1017
1018 dma_ctrl_data = DMA_CTRL_RXCMB_EN;
1019 dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1020 << DMA_CTRL_DMAR_BURST_LEN_SHIFT;
1021 dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1022 << DMA_CTRL_DMAW_BURST_LEN_SHIFT;
1023 dma_ctrl_data |= DMA_CTRL_DMAR_REQ_PRI | DMA_CTRL_DMAR_OUT_ORDER;
1024 dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK)
1025 << DMA_CTRL_DMAR_DLY_CNT_SHIFT;
1026 dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK)
1027 << DMA_CTRL_DMAW_DLY_CNT_SHIFT;
1028
1029 AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data);
1030 return;
1031 }
1032
1033 static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter)
1034 {
1035 u32 value;
1036 struct atl1e_hw *hw = &adapter->hw;
1037 struct net_device *netdev = adapter->netdev;
1038
1039 /* Config MAC CTRL Register */
1040 value = MAC_CTRL_TX_EN |
1041 MAC_CTRL_RX_EN ;
1042
1043 if (FULL_DUPLEX == adapter->link_duplex)
1044 value |= MAC_CTRL_DUPLX;
1045
1046 value |= ((u32)((SPEED_1000 == adapter->link_speed) ?
1047 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1048 MAC_CTRL_SPEED_SHIFT);
1049 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1050
1051 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1052 value |= (((u32)adapter->hw.preamble_len &
1053 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1054
1055 if (adapter->vlgrp)
1056 value |= MAC_CTRL_RMV_VLAN;
1057
1058 value |= MAC_CTRL_BC_EN;
1059 if (netdev->flags & IFF_PROMISC)
1060 value |= MAC_CTRL_PROMIS_EN;
1061 if (netdev->flags & IFF_ALLMULTI)
1062 value |= MAC_CTRL_MC_ALL_EN;
1063
1064 AT_WRITE_REG(hw, REG_MAC_CTRL, value);
1065 }
1066
1067 /*
1068 * atl1e_configure - Configure Transmit&Receive Unit after Reset
1069 * @adapter: board private structure
1070 *
1071 * Configure the Tx /Rx unit of the MAC after a reset.
1072 */
1073 static int atl1e_configure(struct atl1e_adapter *adapter)
1074 {
1075 struct atl1e_hw *hw = &adapter->hw;
1076 struct pci_dev *pdev = adapter->pdev;
1077
1078 u32 intr_status_data = 0;
1079
1080 /* clear interrupt status */
1081 AT_WRITE_REG(hw, REG_ISR, ~0);
1082
1083 /* 1. set MAC Address */
1084 atl1e_hw_set_mac_addr(hw);
1085
1086 /* 2. Init the Multicast HASH table done by set_muti */
1087
1088 /* 3. Clear any WOL status */
1089 AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
1090
1091 /* 4. Descripter Ring BaseMem/Length/Read ptr/Write ptr
1092 * TPD Ring/SMB/RXF0 Page CMBs, they use the same
1093 * High 32bits memory */
1094 atl1e_configure_des_ring(adapter);
1095
1096 /* 5. set Interrupt Moderator Timer */
1097 AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, hw->imt);
1098 AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER2_INIT, hw->imt);
1099 AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE |
1100 MASTER_CTRL_ITIMER_EN | MASTER_CTRL_ITIMER2_EN);
1101
1102 /* 6. rx/tx threshold to trig interrupt */
1103 AT_WRITE_REGW(hw, REG_TRIG_RRD_THRESH, hw->rrd_thresh);
1104 AT_WRITE_REGW(hw, REG_TRIG_TPD_THRESH, hw->tpd_thresh);
1105 AT_WRITE_REGW(hw, REG_TRIG_RXTIMER, hw->rx_count_down);
1106 AT_WRITE_REGW(hw, REG_TRIG_TXTIMER, hw->tx_count_down);
1107
1108 /* 7. set Interrupt Clear Timer */
1109 AT_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, hw->ict);
1110
1111 /* 8. set MTU */
1112 AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN +
1113 VLAN_HLEN + ETH_FCS_LEN);
1114
1115 /* 9. config TXQ early tx threshold */
1116 atl1e_configure_tx(adapter);
1117
1118 /* 10. config RXQ */
1119 atl1e_configure_rx(adapter);
1120
1121 /* 11. config DMA Engine */
1122 atl1e_configure_dma(adapter);
1123
1124 /* 12. smb timer to trig interrupt */
1125 AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, hw->smb_timer);
1126
1127 intr_status_data = AT_READ_REG(hw, REG_ISR);
1128 if (unlikely((intr_status_data & ISR_PHY_LINKDOWN) != 0)) {
1129 dev_err(&pdev->dev, "atl1e_configure failed,"
1130 "PCIE phy link down\n");
1131 return -1;
1132 }
1133
1134 AT_WRITE_REG(hw, REG_ISR, 0x7fffffff);
1135 return 0;
1136 }
1137
1138 /*
1139 * atl1e_get_stats - Get System Network Statistics
1140 * @netdev: network interface device structure
1141 *
1142 * Returns the address of the device statistics structure.
1143 * The statistics are actually updated from the timer callback.
1144 */
1145 static struct net_device_stats *atl1e_get_stats(struct net_device *netdev)
1146 {
1147 struct atl1e_adapter *adapter = netdev_priv(netdev);
1148 struct atl1e_hw_stats *hw_stats = &adapter->hw_stats;
1149 struct net_device_stats *net_stats = &netdev->stats;
1150
1151 net_stats->rx_packets = hw_stats->rx_ok;
1152 net_stats->tx_packets = hw_stats->tx_ok;
1153 net_stats->rx_bytes = hw_stats->rx_byte_cnt;
1154 net_stats->tx_bytes = hw_stats->tx_byte_cnt;
1155 net_stats->multicast = hw_stats->rx_mcast;
1156 net_stats->collisions = hw_stats->tx_1_col +
1157 hw_stats->tx_2_col * 2 +
1158 hw_stats->tx_late_col + hw_stats->tx_abort_col;
1159
1160 net_stats->rx_errors = hw_stats->rx_frag + hw_stats->rx_fcs_err +
1161 hw_stats->rx_len_err + hw_stats->rx_sz_ov +
1162 hw_stats->rx_rrd_ov + hw_stats->rx_align_err;
1163 net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov;
1164 net_stats->rx_length_errors = hw_stats->rx_len_err;
1165 net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
1166 net_stats->rx_frame_errors = hw_stats->rx_align_err;
1167 net_stats->rx_over_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;
1168
1169 net_stats->rx_missed_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;
1170
1171 net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col +
1172 hw_stats->tx_underrun + hw_stats->tx_trunc;
1173 net_stats->tx_fifo_errors = hw_stats->tx_underrun;
1174 net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1175 net_stats->tx_window_errors = hw_stats->tx_late_col;
1176
1177 return net_stats;
1178 }
1179
1180 static void atl1e_update_hw_stats(struct atl1e_adapter *adapter)
1181 {
1182 u16 hw_reg_addr = 0;
1183 unsigned long *stats_item = NULL;
1184
1185 /* update rx status */
1186 hw_reg_addr = REG_MAC_RX_STATUS_BIN;
1187 stats_item = &adapter->hw_stats.rx_ok;
1188 while (hw_reg_addr <= REG_MAC_RX_STATUS_END) {
1189 *stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr);
1190 stats_item++;
1191 hw_reg_addr += 4;
1192 }
1193 /* update tx status */
1194 hw_reg_addr = REG_MAC_TX_STATUS_BIN;
1195 stats_item = &adapter->hw_stats.tx_ok;
1196 while (hw_reg_addr <= REG_MAC_TX_STATUS_END) {
1197 *stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr);
1198 stats_item++;
1199 hw_reg_addr += 4;
1200 }
1201 }
1202
1203 static inline void atl1e_clear_phy_int(struct atl1e_adapter *adapter)
1204 {
1205 u16 phy_data;
1206
1207 spin_lock(&adapter->mdio_lock);
1208 atl1e_read_phy_reg(&adapter->hw, MII_INT_STATUS, &phy_data);
1209 spin_unlock(&adapter->mdio_lock);
1210 }
1211
1212 static bool atl1e_clean_tx_irq(struct atl1e_adapter *adapter)
1213 {
1214 struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *)
1215 &adapter->tx_ring;
1216 struct atl1e_tx_buffer *tx_buffer = NULL;
1217 u16 hw_next_to_clean = AT_READ_REGW(&adapter->hw, REG_TPD_CONS_IDX);
1218 u16 next_to_clean = atomic_read(&tx_ring->next_to_clean);
1219
1220 while (next_to_clean != hw_next_to_clean) {
1221 tx_buffer = &tx_ring->tx_buffer[next_to_clean];
1222 if (tx_buffer->dma) {
1223 pci_unmap_page(adapter->pdev, tx_buffer->dma,
1224 tx_buffer->length, PCI_DMA_TODEVICE);
1225 tx_buffer->dma = 0;
1226 }
1227
1228 if (tx_buffer->skb) {
1229 dev_kfree_skb_irq(tx_buffer->skb);
1230 tx_buffer->skb = NULL;
1231 }
1232
1233 if (++next_to_clean == tx_ring->count)
1234 next_to_clean = 0;
1235 }
1236
1237 atomic_set(&tx_ring->next_to_clean, next_to_clean);
1238
1239 if (netif_queue_stopped(adapter->netdev) &&
1240 netif_carrier_ok(adapter->netdev)) {
1241 netif_wake_queue(adapter->netdev);
1242 }
1243
1244 return true;
1245 }
1246
1247 /*
1248 * atl1e_intr - Interrupt Handler
1249 * @irq: interrupt number
1250 * @data: pointer to a network interface device structure
1251 * @pt_regs: CPU registers structure
1252 */
1253 static irqreturn_t atl1e_intr(int irq, void *data)
1254 {
1255 struct net_device *netdev = data;
1256 struct atl1e_adapter *adapter = netdev_priv(netdev);
1257 struct pci_dev *pdev = adapter->pdev;
1258 struct atl1e_hw *hw = &adapter->hw;
1259 int max_ints = AT_MAX_INT_WORK;
1260 int handled = IRQ_NONE;
1261 u32 status;
1262
1263 do {
1264 status = AT_READ_REG(hw, REG_ISR);
1265 if ((status & IMR_NORMAL_MASK) == 0 ||
1266 (status & ISR_DIS_INT) != 0) {
1267 if (max_ints != AT_MAX_INT_WORK)
1268 handled = IRQ_HANDLED;
1269 break;
1270 }
1271 /* link event */
1272 if (status & ISR_GPHY)
1273 atl1e_clear_phy_int(adapter);
1274 /* Ack ISR */
1275 AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
1276
1277 handled = IRQ_HANDLED;
1278 /* check if PCIE PHY Link down */
1279 if (status & ISR_PHY_LINKDOWN) {
1280 dev_err(&pdev->dev,
1281 "pcie phy linkdown %x\n", status);
1282 if (netif_running(adapter->netdev)) {
1283 /* reset MAC */
1284 atl1e_irq_reset(adapter);
1285 schedule_work(&adapter->reset_task);
1286 break;
1287 }
1288 }
1289
1290 /* check if DMA read/write error */
1291 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
1292 dev_err(&pdev->dev,
1293 "PCIE DMA RW error (status = 0x%x)\n",
1294 status);
1295 atl1e_irq_reset(adapter);
1296 schedule_work(&adapter->reset_task);
1297 break;
1298 }
1299
1300 if (status & ISR_SMB)
1301 atl1e_update_hw_stats(adapter);
1302
1303 /* link event */
1304 if (status & (ISR_GPHY | ISR_MANUAL)) {
1305 netdev->stats.tx_carrier_errors++;
1306 atl1e_link_chg_event(adapter);
1307 break;
1308 }
1309
1310 /* transmit event */
1311 if (status & ISR_TX_EVENT)
1312 atl1e_clean_tx_irq(adapter);
1313
1314 if (status & ISR_RX_EVENT) {
1315 /*
1316 * disable rx interrupts, without
1317 * the synchronize_irq bit
1318 */
1319 AT_WRITE_REG(hw, REG_IMR,
1320 IMR_NORMAL_MASK & ~ISR_RX_EVENT);
1321 AT_WRITE_FLUSH(hw);
1322 if (likely(napi_schedule_prep(
1323 &adapter->napi)))
1324 __napi_schedule(&adapter->napi);
1325 }
1326 } while (--max_ints > 0);
1327 /* re-enable Interrupt*/
1328 AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
1329
1330 return handled;
1331 }
1332
1333 static inline void atl1e_rx_checksum(struct atl1e_adapter *adapter,
1334 struct sk_buff *skb, struct atl1e_recv_ret_status *prrs)
1335 {
1336 u8 *packet = (u8 *)(prrs + 1);
1337 struct iphdr *iph;
1338 u16 head_len = ETH_HLEN;
1339 u16 pkt_flags;
1340 u16 err_flags;
1341
1342 skb->ip_summed = CHECKSUM_NONE;
1343 pkt_flags = prrs->pkt_flag;
1344 err_flags = prrs->err_flag;
1345 if (((pkt_flags & RRS_IS_IPV4) || (pkt_flags & RRS_IS_IPV6)) &&
1346 ((pkt_flags & RRS_IS_TCP) || (pkt_flags & RRS_IS_UDP))) {
1347 if (pkt_flags & RRS_IS_IPV4) {
1348 if (pkt_flags & RRS_IS_802_3)
1349 head_len += 8;
1350 iph = (struct iphdr *) (packet + head_len);
1351 if (iph->frag_off != 0 && !(pkt_flags & RRS_IS_IP_DF))
1352 goto hw_xsum;
1353 }
1354 if (!(err_flags & (RRS_ERR_IP_CSUM | RRS_ERR_L4_CSUM))) {
1355 skb->ip_summed = CHECKSUM_UNNECESSARY;
1356 return;
1357 }
1358 }
1359
1360 hw_xsum :
1361 return;
1362 }
1363
1364 static struct atl1e_rx_page *atl1e_get_rx_page(struct atl1e_adapter *adapter,
1365 u8 que)
1366 {
1367 struct atl1e_rx_page_desc *rx_page_desc =
1368 (struct atl1e_rx_page_desc *) adapter->rx_ring.rx_page_desc;
1369 u8 rx_using = rx_page_desc[que].rx_using;
1370
1371 return (struct atl1e_rx_page *)&(rx_page_desc[que].rx_page[rx_using]);
1372 }
1373
1374 static void atl1e_clean_rx_irq(struct atl1e_adapter *adapter, u8 que,
1375 int *work_done, int work_to_do)
1376 {
1377 struct pci_dev *pdev = adapter->pdev;
1378 struct net_device *netdev = adapter->netdev;
1379 struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *)
1380 &adapter->rx_ring;
1381 struct atl1e_rx_page_desc *rx_page_desc =
1382 (struct atl1e_rx_page_desc *) rx_ring->rx_page_desc;
1383 struct sk_buff *skb = NULL;
1384 struct atl1e_rx_page *rx_page = atl1e_get_rx_page(adapter, que);
1385 u32 packet_size, write_offset;
1386 struct atl1e_recv_ret_status *prrs;
1387
1388 write_offset = *(rx_page->write_offset_addr);
1389 if (likely(rx_page->read_offset < write_offset)) {
1390 do {
1391 if (*work_done >= work_to_do)
1392 break;
1393 (*work_done)++;
1394 /* get new packet's rrs */
1395 prrs = (struct atl1e_recv_ret_status *) (rx_page->addr +
1396 rx_page->read_offset);
1397 /* check sequence number */
1398 if (prrs->seq_num != rx_page_desc[que].rx_nxseq) {
1399 dev_err(&pdev->dev,
1400 "rx sequence number"
1401 " error (rx=%d) (expect=%d)\n",
1402 prrs->seq_num,
1403 rx_page_desc[que].rx_nxseq);
1404 rx_page_desc[que].rx_nxseq++;
1405 /* just for debug use */
1406 AT_WRITE_REG(&adapter->hw, REG_DEBUG_DATA0,
1407 (((u32)prrs->seq_num) << 16) |
1408 rx_page_desc[que].rx_nxseq);
1409 goto fatal_err;
1410 }
1411 rx_page_desc[que].rx_nxseq++;
1412
1413 /* error packet */
1414 if (prrs->pkt_flag & RRS_IS_ERR_FRAME) {
1415 if (prrs->err_flag & (RRS_ERR_BAD_CRC |
1416 RRS_ERR_DRIBBLE | RRS_ERR_CODE |
1417 RRS_ERR_TRUNC)) {
1418 /* hardware error, discard this packet*/
1419 dev_err(&pdev->dev,
1420 "rx packet desc error %x\n",
1421 *((u32 *)prrs + 1));
1422 goto skip_pkt;
1423 }
1424 }
1425
1426 packet_size = ((prrs->word1 >> RRS_PKT_SIZE_SHIFT) &
1427 RRS_PKT_SIZE_MASK) - 4; /* CRC */
1428 skb = netdev_alloc_skb(netdev,
1429 packet_size + NET_IP_ALIGN);
1430 if (skb == NULL) {
1431 dev_warn(&pdev->dev, "%s: Memory squeeze,"
1432 "deferring packet.\n", netdev->name);
1433 goto skip_pkt;
1434 }
1435 skb_reserve(skb, NET_IP_ALIGN);
1436 skb->dev = netdev;
1437 memcpy(skb->data, (u8 *)(prrs + 1), packet_size);
1438 skb_put(skb, packet_size);
1439 skb->protocol = eth_type_trans(skb, netdev);
1440 atl1e_rx_checksum(adapter, skb, prrs);
1441
1442 if (unlikely(adapter->vlgrp &&
1443 (prrs->pkt_flag & RRS_IS_VLAN_TAG))) {
1444 u16 vlan_tag = (prrs->vtag >> 4) |
1445 ((prrs->vtag & 7) << 13) |
1446 ((prrs->vtag & 8) << 9);
1447 dev_dbg(&pdev->dev,
1448 "RXD VLAN TAG<RRD>=0x%04x\n",
1449 prrs->vtag);
1450 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
1451 vlan_tag);
1452 } else {
1453 netif_receive_skb(skb);
1454 }
1455
1456 skip_pkt:
1457 /* skip current packet whether it's ok or not. */
1458 rx_page->read_offset +=
1459 (((u32)((prrs->word1 >> RRS_PKT_SIZE_SHIFT) &
1460 RRS_PKT_SIZE_MASK) +
1461 sizeof(struct atl1e_recv_ret_status) + 31) &
1462 0xFFFFFFE0);
1463
1464 if (rx_page->read_offset >= rx_ring->page_size) {
1465 /* mark this page clean */
1466 u16 reg_addr;
1467 u8 rx_using;
1468
1469 rx_page->read_offset =
1470 *(rx_page->write_offset_addr) = 0;
1471 rx_using = rx_page_desc[que].rx_using;
1472 reg_addr =
1473 atl1e_rx_page_vld_regs[que][rx_using];
1474 AT_WRITE_REGB(&adapter->hw, reg_addr, 1);
1475 rx_page_desc[que].rx_using ^= 1;
1476 rx_page = atl1e_get_rx_page(adapter, que);
1477 }
1478 write_offset = *(rx_page->write_offset_addr);
1479 } while (rx_page->read_offset < write_offset);
1480 }
1481
1482 return;
1483
1484 fatal_err:
1485 if (!test_bit(__AT_DOWN, &adapter->flags))
1486 schedule_work(&adapter->reset_task);
1487 }
1488
1489 /*
1490 * atl1e_clean - NAPI Rx polling callback
1491 * @adapter: board private structure
1492 */
1493 static int atl1e_clean(struct napi_struct *napi, int budget)
1494 {
1495 struct atl1e_adapter *adapter =
1496 container_of(napi, struct atl1e_adapter, napi);
1497 struct pci_dev *pdev = adapter->pdev;
1498 u32 imr_data;
1499 int work_done = 0;
1500
1501 /* Keep link state information with original netdev */
1502 if (!netif_carrier_ok(adapter->netdev))
1503 goto quit_polling;
1504
1505 atl1e_clean_rx_irq(adapter, 0, &work_done, budget);
1506
1507 /* If no Tx and not enough Rx work done, exit the polling mode */
1508 if (work_done < budget) {
1509 quit_polling:
1510 napi_complete(napi);
1511 imr_data = AT_READ_REG(&adapter->hw, REG_IMR);
1512 AT_WRITE_REG(&adapter->hw, REG_IMR, imr_data | ISR_RX_EVENT);
1513 /* test debug */
1514 if (test_bit(__AT_DOWN, &adapter->flags)) {
1515 atomic_dec(&adapter->irq_sem);
1516 dev_err(&pdev->dev,
1517 "atl1e_clean is called when AT_DOWN\n");
1518 }
1519 /* reenable RX intr */
1520 /*atl1e_irq_enable(adapter); */
1521
1522 }
1523 return work_done;
1524 }
1525
1526 #ifdef CONFIG_NET_POLL_CONTROLLER
1527
1528 /*
1529 * Polling 'interrupt' - used by things like netconsole to send skbs
1530 * without having to re-enable interrupts. It's not called while
1531 * the interrupt routine is executing.
1532 */
1533 static void atl1e_netpoll(struct net_device *netdev)
1534 {
1535 struct atl1e_adapter *adapter = netdev_priv(netdev);
1536
1537 disable_irq(adapter->pdev->irq);
1538 atl1e_intr(adapter->pdev->irq, netdev);
1539 enable_irq(adapter->pdev->irq);
1540 }
1541 #endif
1542
1543 static inline u16 atl1e_tpd_avail(struct atl1e_adapter *adapter)
1544 {
1545 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1546 u16 next_to_use = 0;
1547 u16 next_to_clean = 0;
1548
1549 next_to_clean = atomic_read(&tx_ring->next_to_clean);
1550 next_to_use = tx_ring->next_to_use;
1551
1552 return (u16)(next_to_clean > next_to_use) ?
1553 (next_to_clean - next_to_use - 1) :
1554 (tx_ring->count + next_to_clean - next_to_use - 1);
1555 }
1556
1557 /*
1558 * get next usable tpd
1559 * Note: should call atl1e_tdp_avail to make sure
1560 * there is enough tpd to use
1561 */
1562 static struct atl1e_tpd_desc *atl1e_get_tpd(struct atl1e_adapter *adapter)
1563 {
1564 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1565 u16 next_to_use = 0;
1566
1567 next_to_use = tx_ring->next_to_use;
1568 if (++tx_ring->next_to_use == tx_ring->count)
1569 tx_ring->next_to_use = 0;
1570
1571 memset(&tx_ring->desc[next_to_use], 0, sizeof(struct atl1e_tpd_desc));
1572 return (struct atl1e_tpd_desc *)&tx_ring->desc[next_to_use];
1573 }
1574
1575 static struct atl1e_tx_buffer *
1576 atl1e_get_tx_buffer(struct atl1e_adapter *adapter, struct atl1e_tpd_desc *tpd)
1577 {
1578 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1579
1580 return &tx_ring->tx_buffer[tpd - tx_ring->desc];
1581 }
1582
1583 /* Calculate the transmit packet descript needed*/
1584 static u16 atl1e_cal_tdp_req(const struct sk_buff *skb)
1585 {
1586 int i = 0;
1587 u16 tpd_req = 1;
1588 u16 fg_size = 0;
1589 u16 proto_hdr_len = 0;
1590
1591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1592 fg_size = skb_shinfo(skb)->frags[i].size;
1593 tpd_req += ((fg_size + MAX_TX_BUF_LEN - 1) >> MAX_TX_BUF_SHIFT);
1594 }
1595
1596 if (skb_is_gso(skb)) {
1597 if (skb->protocol == htons(ETH_P_IP) ||
1598 (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6)) {
1599 proto_hdr_len = skb_transport_offset(skb) +
1600 tcp_hdrlen(skb);
1601 if (proto_hdr_len < skb_headlen(skb)) {
1602 tpd_req += ((skb_headlen(skb) - proto_hdr_len +
1603 MAX_TX_BUF_LEN - 1) >>
1604 MAX_TX_BUF_SHIFT);
1605 }
1606 }
1607
1608 }
1609 return tpd_req;
1610 }
1611
1612 static int atl1e_tso_csum(struct atl1e_adapter *adapter,
1613 struct sk_buff *skb, struct atl1e_tpd_desc *tpd)
1614 {
1615 struct pci_dev *pdev = adapter->pdev;
1616 u8 hdr_len;
1617 u32 real_len;
1618 unsigned short offload_type;
1619 int err;
1620
1621 if (skb_is_gso(skb)) {
1622 if (skb_header_cloned(skb)) {
1623 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1624 if (unlikely(err))
1625 return -1;
1626 }
1627 offload_type = skb_shinfo(skb)->gso_type;
1628
1629 if (offload_type & SKB_GSO_TCPV4) {
1630 real_len = (((unsigned char *)ip_hdr(skb) - skb->data)
1631 + ntohs(ip_hdr(skb)->tot_len));
1632
1633 if (real_len < skb->len)
1634 pskb_trim(skb, real_len);
1635
1636 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
1637 if (unlikely(skb->len == hdr_len)) {
1638 /* only xsum need */
1639 dev_warn(&pdev->dev,
1640 "IPV4 tso with zero data??\n");
1641 goto check_sum;
1642 } else {
1643 ip_hdr(skb)->check = 0;
1644 ip_hdr(skb)->tot_len = 0;
1645 tcp_hdr(skb)->check = ~csum_tcpudp_magic(
1646 ip_hdr(skb)->saddr,
1647 ip_hdr(skb)->daddr,
1648 0, IPPROTO_TCP, 0);
1649 tpd->word3 |= (ip_hdr(skb)->ihl &
1650 TDP_V4_IPHL_MASK) <<
1651 TPD_V4_IPHL_SHIFT;
1652 tpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
1653 TPD_TCPHDRLEN_MASK) <<
1654 TPD_TCPHDRLEN_SHIFT;
1655 tpd->word3 |= ((skb_shinfo(skb)->gso_size) &
1656 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1657 tpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
1658 }
1659 return 0;
1660 }
1661
1662 if (offload_type & SKB_GSO_TCPV6) {
1663 real_len = (((unsigned char *)ipv6_hdr(skb) - skb->data)
1664 + ntohs(ipv6_hdr(skb)->payload_len));
1665 if (real_len < skb->len)
1666 pskb_trim(skb, real_len);
1667
1668 /* check payload == 0 byte ? */
1669 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
1670 if (unlikely(skb->len == hdr_len)) {
1671 /* only xsum need */
1672 dev_warn(&pdev->dev,
1673 "IPV6 tso with zero data??\n");
1674 goto check_sum;
1675 } else {
1676 tcp_hdr(skb)->check = ~csum_ipv6_magic(
1677 &ipv6_hdr(skb)->saddr,
1678 &ipv6_hdr(skb)->daddr,
1679 0, IPPROTO_TCP, 0);
1680 tpd->word3 |= 1 << TPD_IP_VERSION_SHIFT;
1681 hdr_len >>= 1;
1682 tpd->word3 |= (hdr_len & TPD_V6_IPHLLO_MASK) <<
1683 TPD_V6_IPHLLO_SHIFT;
1684 tpd->word3 |= ((hdr_len >> 3) &
1685 TPD_V6_IPHLHI_MASK) <<
1686 TPD_V6_IPHLHI_SHIFT;
1687 tpd->word3 |= (tcp_hdrlen(skb) >> 2 &
1688 TPD_TCPHDRLEN_MASK) <<
1689 TPD_TCPHDRLEN_SHIFT;
1690 tpd->word3 |= ((skb_shinfo(skb)->gso_size) &
1691 TPD_MSS_MASK) << TPD_MSS_SHIFT;
1692 tpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
1693 }
1694 }
1695 return 0;
1696 }
1697
1698 check_sum:
1699 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1700 u8 css, cso;
1701
1702 cso = skb_transport_offset(skb);
1703 if (unlikely(cso & 0x1)) {
1704 dev_err(&adapter->pdev->dev,
1705 "pay load offset should not ant event number\n");
1706 return -1;
1707 } else {
1708 css = cso + skb->csum_offset;
1709 tpd->word3 |= (cso & TPD_PLOADOFFSET_MASK) <<
1710 TPD_PLOADOFFSET_SHIFT;
1711 tpd->word3 |= (css & TPD_CCSUMOFFSET_MASK) <<
1712 TPD_CCSUMOFFSET_SHIFT;
1713 tpd->word3 |= 1 << TPD_CC_SEGMENT_EN_SHIFT;
1714 }
1715 }
1716
1717 return 0;
1718 }
1719
1720 static void atl1e_tx_map(struct atl1e_adapter *adapter,
1721 struct sk_buff *skb, struct atl1e_tpd_desc *tpd)
1722 {
1723 struct atl1e_tpd_desc *use_tpd = NULL;
1724 struct atl1e_tx_buffer *tx_buffer = NULL;
1725 u16 buf_len = skb->len - skb->data_len;
1726 u16 map_len = 0;
1727 u16 mapped_len = 0;
1728 u16 hdr_len = 0;
1729 u16 nr_frags;
1730 u16 f;
1731 int segment;
1732
1733 nr_frags = skb_shinfo(skb)->nr_frags;
1734 segment = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
1735 if (segment) {
1736 /* TSO */
1737 map_len = hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1738 use_tpd = tpd;
1739
1740 tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
1741 tx_buffer->length = map_len;
1742 tx_buffer->dma = pci_map_single(adapter->pdev,
1743 skb->data, hdr_len, PCI_DMA_TODEVICE);
1744 mapped_len += map_len;
1745 use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
1746 use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
1747 ((cpu_to_le32(tx_buffer->length) &
1748 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
1749 }
1750
1751 while (mapped_len < buf_len) {
1752 /* mapped_len == 0, means we should use the first tpd,
1753 which is given by caller */
1754 if (mapped_len == 0) {
1755 use_tpd = tpd;
1756 } else {
1757 use_tpd = atl1e_get_tpd(adapter);
1758 memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc));
1759 }
1760 tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
1761 tx_buffer->skb = NULL;
1762
1763 tx_buffer->length = map_len =
1764 ((buf_len - mapped_len) >= MAX_TX_BUF_LEN) ?
1765 MAX_TX_BUF_LEN : (buf_len - mapped_len);
1766 tx_buffer->dma =
1767 pci_map_single(adapter->pdev, skb->data + mapped_len,
1768 map_len, PCI_DMA_TODEVICE);
1769 mapped_len += map_len;
1770 use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
1771 use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
1772 ((cpu_to_le32(tx_buffer->length) &
1773 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
1774 }
1775
1776 for (f = 0; f < nr_frags; f++) {
1777 struct skb_frag_struct *frag;
1778 u16 i;
1779 u16 seg_num;
1780
1781 frag = &skb_shinfo(skb)->frags[f];
1782 buf_len = frag->size;
1783
1784 seg_num = (buf_len + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN;
1785 for (i = 0; i < seg_num; i++) {
1786 use_tpd = atl1e_get_tpd(adapter);
1787 memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc));
1788
1789 tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
1790 BUG_ON(tx_buffer->skb);
1791
1792 tx_buffer->skb = NULL;
1793 tx_buffer->length =
1794 (buf_len > MAX_TX_BUF_LEN) ?
1795 MAX_TX_BUF_LEN : buf_len;
1796 buf_len -= tx_buffer->length;
1797
1798 tx_buffer->dma =
1799 pci_map_page(adapter->pdev, frag->page,
1800 frag->page_offset +
1801 (i * MAX_TX_BUF_LEN),
1802 tx_buffer->length,
1803 PCI_DMA_TODEVICE);
1804 use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
1805 use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
1806 ((cpu_to_le32(tx_buffer->length) &
1807 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
1808 }
1809 }
1810
1811 if ((tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK)
1812 /* note this one is a tcp header */
1813 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
1814 /* The last tpd */
1815
1816 use_tpd->word3 |= 1 << TPD_EOP_SHIFT;
1817 /* The last buffer info contain the skb address,
1818 so it will be free after unmap */
1819 tx_buffer->skb = skb;
1820 }
1821
1822 static void atl1e_tx_queue(struct atl1e_adapter *adapter, u16 count,
1823 struct atl1e_tpd_desc *tpd)
1824 {
1825 struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1826 /* Force memory writes to complete before letting h/w
1827 * know there are new descriptors to fetch. (Only
1828 * applicable for weak-ordered memory model archs,
1829 * such as IA-64). */
1830 wmb();
1831 AT_WRITE_REG(&adapter->hw, REG_MB_TPD_PROD_IDX, tx_ring->next_to_use);
1832 }
1833
1834 static netdev_tx_t atl1e_xmit_frame(struct sk_buff *skb,
1835 struct net_device *netdev)
1836 {
1837 struct atl1e_adapter *adapter = netdev_priv(netdev);
1838 unsigned long flags;
1839 u16 tpd_req = 1;
1840 struct atl1e_tpd_desc *tpd;
1841
1842 if (test_bit(__AT_DOWN, &adapter->flags)) {
1843 dev_kfree_skb_any(skb);
1844 return NETDEV_TX_OK;
1845 }
1846
1847 if (unlikely(skb->len <= 0)) {
1848 dev_kfree_skb_any(skb);
1849 return NETDEV_TX_OK;
1850 }
1851 tpd_req = atl1e_cal_tdp_req(skb);
1852 if (!spin_trylock_irqsave(&adapter->tx_lock, flags))
1853 return NETDEV_TX_LOCKED;
1854
1855 if (atl1e_tpd_avail(adapter) < tpd_req) {
1856 /* no enough descriptor, just stop queue */
1857 netif_stop_queue(netdev);
1858 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1859 return NETDEV_TX_BUSY;
1860 }
1861
1862 tpd = atl1e_get_tpd(adapter);
1863
1864 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
1865 u16 vlan_tag = vlan_tx_tag_get(skb);
1866 u16 atl1e_vlan_tag;
1867
1868 tpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
1869 AT_VLAN_TAG_TO_TPD_TAG(vlan_tag, atl1e_vlan_tag);
1870 tpd->word2 |= (atl1e_vlan_tag & TPD_VLANTAG_MASK) <<
1871 TPD_VLAN_SHIFT;
1872 }
1873
1874 if (skb->protocol == htons(ETH_P_8021Q))
1875 tpd->word3 |= 1 << TPD_VL_TAGGED_SHIFT;
1876
1877 if (skb_network_offset(skb) != ETH_HLEN)
1878 tpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; /* 802.3 frame */
1879
1880 /* do TSO and check sum */
1881 if (atl1e_tso_csum(adapter, skb, tpd) != 0) {
1882 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1883 dev_kfree_skb_any(skb);
1884 return NETDEV_TX_OK;
1885 }
1886
1887 atl1e_tx_map(adapter, skb, tpd);
1888 atl1e_tx_queue(adapter, tpd_req, tpd);
1889
1890 netdev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1891 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1892 return NETDEV_TX_OK;
1893 }
1894
1895 static void atl1e_free_irq(struct atl1e_adapter *adapter)
1896 {
1897 struct net_device *netdev = adapter->netdev;
1898
1899 free_irq(adapter->pdev->irq, netdev);
1900
1901 if (adapter->have_msi)
1902 pci_disable_msi(adapter->pdev);
1903 }
1904
1905 static int atl1e_request_irq(struct atl1e_adapter *adapter)
1906 {
1907 struct pci_dev *pdev = adapter->pdev;
1908 struct net_device *netdev = adapter->netdev;
1909 int flags = 0;
1910 int err = 0;
1911
1912 adapter->have_msi = true;
1913 err = pci_enable_msi(adapter->pdev);
1914 if (err) {
1915 dev_dbg(&pdev->dev,
1916 "Unable to allocate MSI interrupt Error: %d\n", err);
1917 adapter->have_msi = false;
1918 } else
1919 netdev->irq = pdev->irq;
1920
1921
1922 if (!adapter->have_msi)
1923 flags |= IRQF_SHARED;
1924 err = request_irq(adapter->pdev->irq, &atl1e_intr, flags,
1925 netdev->name, netdev);
1926 if (err) {
1927 dev_dbg(&pdev->dev,
1928 "Unable to allocate interrupt Error: %d\n", err);
1929 if (adapter->have_msi)
1930 pci_disable_msi(adapter->pdev);
1931 return err;
1932 }
1933 dev_dbg(&pdev->dev, "atl1e_request_irq OK\n");
1934 return err;
1935 }
1936
1937 int atl1e_up(struct atl1e_adapter *adapter)
1938 {
1939 struct net_device *netdev = adapter->netdev;
1940 int err = 0;
1941 u32 val;
1942
1943 /* hardware has been reset, we need to reload some things */
1944 err = atl1e_init_hw(&adapter->hw);
1945 if (err) {
1946 err = -EIO;
1947 return err;
1948 }
1949 atl1e_init_ring_ptrs(adapter);
1950 atl1e_set_multi(netdev);
1951 atl1e_restore_vlan(adapter);
1952
1953 if (atl1e_configure(adapter)) {
1954 err = -EIO;
1955 goto err_up;
1956 }
1957
1958 clear_bit(__AT_DOWN, &adapter->flags);
1959 napi_enable(&adapter->napi);
1960 atl1e_irq_enable(adapter);
1961 val = AT_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1962 AT_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
1963 val | MASTER_CTRL_MANUAL_INT);
1964
1965 err_up:
1966 return err;
1967 }
1968
1969 void atl1e_down(struct atl1e_adapter *adapter)
1970 {
1971 struct net_device *netdev = adapter->netdev;
1972
1973 /* signal that we're down so the interrupt handler does not
1974 * reschedule our watchdog timer */
1975 set_bit(__AT_DOWN, &adapter->flags);
1976
1977 #ifdef NETIF_F_LLTX
1978 netif_stop_queue(netdev);
1979 #else
1980 netif_tx_disable(netdev);
1981 #endif
1982
1983 /* reset MAC to disable all RX/TX */
1984 atl1e_reset_hw(&adapter->hw);
1985 msleep(1);
1986
1987 napi_disable(&adapter->napi);
1988 atl1e_del_timer(adapter);
1989 atl1e_irq_disable(adapter);
1990
1991 netif_carrier_off(netdev);
1992 adapter->link_speed = SPEED_0;
1993 adapter->link_duplex = -1;
1994 atl1e_clean_tx_ring(adapter);
1995 atl1e_clean_rx_ring(adapter);
1996 }
1997
1998 /*
1999 * atl1e_open - Called when a network interface is made active
2000 * @netdev: network interface device structure
2001 *
2002 * Returns 0 on success, negative value on failure
2003 *
2004 * The open entry point is called when a network interface is made
2005 * active by the system (IFF_UP). At this point all resources needed
2006 * for transmit and receive operations are allocated, the interrupt
2007 * handler is registered with the OS, the watchdog timer is started,
2008 * and the stack is notified that the interface is ready.
2009 */
2010 static int atl1e_open(struct net_device *netdev)
2011 {
2012 struct atl1e_adapter *adapter = netdev_priv(netdev);
2013 int err;
2014
2015 /* disallow open during test */
2016 if (test_bit(__AT_TESTING, &adapter->flags))
2017 return -EBUSY;
2018
2019 /* allocate rx/tx dma buffer & descriptors */
2020 atl1e_init_ring_resources(adapter);
2021 err = atl1e_setup_ring_resources(adapter);
2022 if (unlikely(err))
2023 return err;
2024
2025 err = atl1e_request_irq(adapter);
2026 if (unlikely(err))
2027 goto err_req_irq;
2028
2029 err = atl1e_up(adapter);
2030 if (unlikely(err))
2031 goto err_up;
2032
2033 return 0;
2034
2035 err_up:
2036 atl1e_free_irq(adapter);
2037 err_req_irq:
2038 atl1e_free_ring_resources(adapter);
2039 atl1e_reset_hw(&adapter->hw);
2040
2041 return err;
2042 }
2043
2044 /*
2045 * atl1e_close - Disables a network interface
2046 * @netdev: network interface device structure
2047 *
2048 * Returns 0, this is not allowed to fail
2049 *
2050 * The close entry point is called when an interface is de-activated
2051 * by the OS. The hardware is still under the drivers control, but
2052 * needs to be disabled. A global MAC reset is issued to stop the
2053 * hardware, and all transmit and receive resources are freed.
2054 */
2055 static int atl1e_close(struct net_device *netdev)
2056 {
2057 struct atl1e_adapter *adapter = netdev_priv(netdev);
2058
2059 WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
2060 atl1e_down(adapter);
2061 atl1e_free_irq(adapter);
2062 atl1e_free_ring_resources(adapter);
2063
2064 return 0;
2065 }
2066
2067 static int atl1e_suspend(struct pci_dev *pdev, pm_message_t state)
2068 {
2069 struct net_device *netdev = pci_get_drvdata(pdev);
2070 struct atl1e_adapter *adapter = netdev_priv(netdev);
2071 struct atl1e_hw *hw = &adapter->hw;
2072 u32 ctrl = 0;
2073 u32 mac_ctrl_data = 0;
2074 u32 wol_ctrl_data = 0;
2075 u16 mii_advertise_data = 0;
2076 u16 mii_bmsr_data = 0;
2077 u16 mii_intr_status_data = 0;
2078 u32 wufc = adapter->wol;
2079 u32 i;
2080 #ifdef CONFIG_PM
2081 int retval = 0;
2082 #endif
2083
2084 if (netif_running(netdev)) {
2085 WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
2086 atl1e_down(adapter);
2087 }
2088 netif_device_detach(netdev);
2089
2090 #ifdef CONFIG_PM
2091 retval = pci_save_state(pdev);
2092 if (retval)
2093 return retval;
2094 #endif
2095
2096 if (wufc) {
2097 /* get link status */
2098 atl1e_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data);
2099 atl1e_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data);
2100
2101 mii_advertise_data = MII_AR_10T_HD_CAPS;
2102
2103 if ((atl1e_write_phy_reg(hw, MII_AT001_CR, 0) != 0) ||
2104 (atl1e_write_phy_reg(hw,
2105 MII_ADVERTISE, mii_advertise_data) != 0) ||
2106 (atl1e_phy_commit(hw)) != 0) {
2107 dev_dbg(&pdev->dev, "set phy register failed\n");
2108 goto wol_dis;
2109 }
2110
2111 hw->phy_configured = false; /* re-init PHY when resume */
2112
2113 /* turn on magic packet wol */
2114 if (wufc & AT_WUFC_MAG)
2115 wol_ctrl_data |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
2116
2117 if (wufc & AT_WUFC_LNKC) {
2118 /* if orignal link status is link, just wait for retrive link */
2119 if (mii_bmsr_data & BMSR_LSTATUS) {
2120 for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
2121 msleep(100);
2122 atl1e_read_phy_reg(hw, MII_BMSR,
2123 (u16 *)&mii_bmsr_data);
2124 if (mii_bmsr_data & BMSR_LSTATUS)
2125 break;
2126 }
2127
2128 if ((mii_bmsr_data & BMSR_LSTATUS) == 0)
2129 dev_dbg(&pdev->dev,
2130 "%s: Link may change"
2131 "when suspend\n",
2132 atl1e_driver_name);
2133 }
2134 wol_ctrl_data |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
2135 /* only link up can wake up */
2136 if (atl1e_write_phy_reg(hw, MII_INT_CTRL, 0x400) != 0) {
2137 dev_dbg(&pdev->dev, "%s: read write phy "
2138 "register failed.\n",
2139 atl1e_driver_name);
2140 goto wol_dis;
2141 }
2142 }
2143 /* clear phy interrupt */
2144 atl1e_read_phy_reg(hw, MII_INT_STATUS, &mii_intr_status_data);
2145 /* Config MAC Ctrl register */
2146 mac_ctrl_data = MAC_CTRL_RX_EN;
2147 /* set to 10/100M halt duplex */
2148 mac_ctrl_data |= MAC_CTRL_SPEED_10_100 << MAC_CTRL_SPEED_SHIFT;
2149 mac_ctrl_data |= (((u32)adapter->hw.preamble_len &
2150 MAC_CTRL_PRMLEN_MASK) <<
2151 MAC_CTRL_PRMLEN_SHIFT);
2152
2153 if (adapter->vlgrp)
2154 mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
2155
2156 /* magic packet maybe Broadcast&multicast&Unicast frame */
2157 if (wufc & AT_WUFC_MAG)
2158 mac_ctrl_data |= MAC_CTRL_BC_EN;
2159
2160 dev_dbg(&pdev->dev,
2161 "%s: suspend MAC=0x%x\n",
2162 atl1e_driver_name, mac_ctrl_data);
2163
2164 AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data);
2165 AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
2166 /* pcie patch */
2167 ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC);
2168 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2169 AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
2170 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2171 goto suspend_exit;
2172 }
2173 wol_dis:
2174
2175 /* WOL disabled */
2176 AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
2177
2178 /* pcie patch */
2179 ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC);
2180 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2181 AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
2182
2183 atl1e_force_ps(hw);
2184 hw->phy_configured = false; /* re-init PHY when resume */
2185
2186 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
2187
2188 suspend_exit:
2189
2190 if (netif_running(netdev))
2191 atl1e_free_irq(adapter);
2192
2193 pci_disable_device(pdev);
2194
2195 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2196
2197 return 0;
2198 }
2199
2200 #ifdef CONFIG_PM
2201 static int atl1e_resume(struct pci_dev *pdev)
2202 {
2203 struct net_device *netdev = pci_get_drvdata(pdev);
2204 struct atl1e_adapter *adapter = netdev_priv(netdev);
2205 u32 err;
2206
2207 pci_set_power_state(pdev, PCI_D0);
2208 pci_restore_state(pdev);
2209
2210 err = pci_enable_device(pdev);
2211 if (err) {
2212 dev_err(&pdev->dev, "ATL1e: Cannot enable PCI"
2213 " device from suspend\n");
2214 return err;
2215 }
2216
2217 pci_set_master(pdev);
2218
2219 AT_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
2220
2221 pci_enable_wake(pdev, PCI_D3hot, 0);
2222 pci_enable_wake(pdev, PCI_D3cold, 0);
2223
2224 AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
2225
2226 if (netif_running(netdev)) {
2227 err = atl1e_request_irq(adapter);
2228 if (err)
2229 return err;
2230 }
2231
2232 atl1e_reset_hw(&adapter->hw);
2233
2234 if (netif_running(netdev))
2235 atl1e_up(adapter);
2236
2237 netif_device_attach(netdev);
2238
2239 return 0;
2240 }
2241 #endif
2242
2243 static void atl1e_shutdown(struct pci_dev *pdev)
2244 {
2245 atl1e_suspend(pdev, PMSG_SUSPEND);
2246 }
2247
2248 static const struct net_device_ops atl1e_netdev_ops = {
2249 .ndo_open = atl1e_open,
2250 .ndo_stop = atl1e_close,
2251 .ndo_start_xmit = atl1e_xmit_frame,
2252 .ndo_get_stats = atl1e_get_stats,
2253 .ndo_set_multicast_list = atl1e_set_multi,
2254 .ndo_validate_addr = eth_validate_addr,
2255 .ndo_set_mac_address = atl1e_set_mac_addr,
2256 .ndo_change_mtu = atl1e_change_mtu,
2257 .ndo_do_ioctl = atl1e_ioctl,
2258 .ndo_tx_timeout = atl1e_tx_timeout,
2259 .ndo_vlan_rx_register = atl1e_vlan_rx_register,
2260 #ifdef CONFIG_NET_POLL_CONTROLLER
2261 .ndo_poll_controller = atl1e_netpoll,
2262 #endif
2263
2264 };
2265
2266 static int atl1e_init_netdev(struct net_device *netdev, struct pci_dev *pdev)
2267 {
2268 SET_NETDEV_DEV(netdev, &pdev->dev);
2269 pci_set_drvdata(pdev, netdev);
2270
2271 netdev->irq = pdev->irq;
2272 netdev->netdev_ops = &atl1e_netdev_ops;
2273
2274 netdev->watchdog_timeo = AT_TX_WATCHDOG;
2275 atl1e_set_ethtool_ops(netdev);
2276
2277 netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM |
2278 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2279 netdev->features |= NETIF_F_LLTX;
2280 netdev->features |= NETIF_F_TSO;
2281 netdev->features |= NETIF_F_TSO6;
2282
2283 return 0;
2284 }
2285
2286 /*
2287 * atl1e_probe - Device Initialization Routine
2288 * @pdev: PCI device information struct
2289 * @ent: entry in atl1e_pci_tbl
2290 *
2291 * Returns 0 on success, negative on failure
2292 *
2293 * atl1e_probe initializes an adapter identified by a pci_dev structure.
2294 * The OS initialization, configuring of the adapter private structure,
2295 * and a hardware reset occur.
2296 */
2297 static int __devinit atl1e_probe(struct pci_dev *pdev,
2298 const struct pci_device_id *ent)
2299 {
2300 struct net_device *netdev;
2301 struct atl1e_adapter *adapter = NULL;
2302 static int cards_found;
2303
2304 int err = 0;
2305
2306 err = pci_enable_device(pdev);
2307 if (err) {
2308 dev_err(&pdev->dev, "cannot enable PCI device\n");
2309 return err;
2310 }
2311
2312 /*
2313 * The atl1e chip can DMA to 64-bit addresses, but it uses a single
2314 * shared register for the high 32 bits, so only a single, aligned,
2315 * 4 GB physical address range can be used at a time.
2316 *
2317 * Supporting 64-bit DMA on this hardware is more trouble than it's
2318 * worth. It is far easier to limit to 32-bit DMA than update
2319 * various kernel subsystems to support the mechanics required by a
2320 * fixed-high-32-bit system.
2321 */
2322 if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) ||
2323 (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)) {
2324 dev_err(&pdev->dev, "No usable DMA configuration,aborting\n");
2325 goto err_dma;
2326 }
2327
2328 err = pci_request_regions(pdev, atl1e_driver_name);
2329 if (err) {
2330 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2331 goto err_pci_reg;
2332 }
2333
2334 pci_set_master(pdev);
2335
2336 netdev = alloc_etherdev(sizeof(struct atl1e_adapter));
2337 if (netdev == NULL) {
2338 err = -ENOMEM;
2339 dev_err(&pdev->dev, "etherdev alloc failed\n");
2340 goto err_alloc_etherdev;
2341 }
2342
2343 err = atl1e_init_netdev(netdev, pdev);
2344 if (err) {
2345 dev_err(&pdev->dev, "init netdevice failed\n");
2346 goto err_init_netdev;
2347 }
2348 adapter = netdev_priv(netdev);
2349 adapter->bd_number = cards_found;
2350 adapter->netdev = netdev;
2351 adapter->pdev = pdev;
2352 adapter->hw.adapter = adapter;
2353 adapter->hw.hw_addr = pci_iomap(pdev, BAR_0, 0);
2354 if (!adapter->hw.hw_addr) {
2355 err = -EIO;
2356 dev_err(&pdev->dev, "cannot map device registers\n");
2357 goto err_ioremap;
2358 }
2359 netdev->base_addr = (unsigned long)adapter->hw.hw_addr;
2360
2361 /* init mii data */
2362 adapter->mii.dev = netdev;
2363 adapter->mii.mdio_read = atl1e_mdio_read;
2364 adapter->mii.mdio_write = atl1e_mdio_write;
2365 adapter->mii.phy_id_mask = 0x1f;
2366 adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK;
2367
2368 netif_napi_add(netdev, &adapter->napi, atl1e_clean, 64);
2369
2370 init_timer(&adapter->phy_config_timer);
2371 adapter->phy_config_timer.function = &atl1e_phy_config;
2372 adapter->phy_config_timer.data = (unsigned long) adapter;
2373
2374 /* get user settings */
2375 atl1e_check_options(adapter);
2376 /*
2377 * Mark all PCI regions associated with PCI device
2378 * pdev as being reserved by owner atl1e_driver_name
2379 * Enables bus-mastering on the device and calls
2380 * pcibios_set_master to do the needed arch specific settings
2381 */
2382 atl1e_setup_pcicmd(pdev);
2383 /* setup the private structure */
2384 err = atl1e_sw_init(adapter);
2385 if (err) {
2386 dev_err(&pdev->dev, "net device private data init failed\n");
2387 goto err_sw_init;
2388 }
2389
2390 /* Init GPHY as early as possible due to power saving issue */
2391 atl1e_phy_init(&adapter->hw);
2392 /* reset the controller to
2393 * put the device in a known good starting state */
2394 err = atl1e_reset_hw(&adapter->hw);
2395 if (err) {
2396 err = -EIO;
2397 goto err_reset;
2398 }
2399
2400 if (atl1e_read_mac_addr(&adapter->hw) != 0) {
2401 err = -EIO;
2402 dev_err(&pdev->dev, "get mac address failed\n");
2403 goto err_eeprom;
2404 }
2405
2406 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
2407 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
2408 dev_dbg(&pdev->dev, "mac address : %02x-%02x-%02x-%02x-%02x-%02x\n",
2409 adapter->hw.mac_addr[0], adapter->hw.mac_addr[1],
2410 adapter->hw.mac_addr[2], adapter->hw.mac_addr[3],
2411 adapter->hw.mac_addr[4], adapter->hw.mac_addr[5]);
2412
2413 INIT_WORK(&adapter->reset_task, atl1e_reset_task);
2414 INIT_WORK(&adapter->link_chg_task, atl1e_link_chg_task);
2415 err = register_netdev(netdev);
2416 if (err) {
2417 dev_err(&pdev->dev, "register netdevice failed\n");
2418 goto err_register;
2419 }
2420
2421 /* assume we have no link for now */
2422 netif_stop_queue(netdev);
2423 netif_carrier_off(netdev);
2424
2425 cards_found++;
2426
2427 return 0;
2428
2429 err_reset:
2430 err_register:
2431 err_sw_init:
2432 err_eeprom:
2433 iounmap(adapter->hw.hw_addr);
2434 err_init_netdev:
2435 err_ioremap:
2436 free_netdev(netdev);
2437 err_alloc_etherdev:
2438 pci_release_regions(pdev);
2439 err_pci_reg:
2440 err_dma:
2441 pci_disable_device(pdev);
2442 return err;
2443 }
2444
2445 /*
2446 * atl1e_remove - Device Removal Routine
2447 * @pdev: PCI device information struct
2448 *
2449 * atl1e_remove is called by the PCI subsystem to alert the driver
2450 * that it should release a PCI device. The could be caused by a
2451 * Hot-Plug event, or because the driver is going to be removed from
2452 * memory.
2453 */
2454 static void __devexit atl1e_remove(struct pci_dev *pdev)
2455 {
2456 struct net_device *netdev = pci_get_drvdata(pdev);
2457 struct atl1e_adapter *adapter = netdev_priv(netdev);
2458
2459 /*
2460 * flush_scheduled work may reschedule our watchdog task, so
2461 * explicitly disable watchdog tasks from being rescheduled
2462 */
2463 set_bit(__AT_DOWN, &adapter->flags);
2464
2465 atl1e_del_timer(adapter);
2466 atl1e_cancel_work(adapter);
2467
2468 unregister_netdev(netdev);
2469 atl1e_free_ring_resources(adapter);
2470 atl1e_force_ps(&adapter->hw);
2471 iounmap(adapter->hw.hw_addr);
2472 pci_release_regions(pdev);
2473 free_netdev(netdev);
2474 pci_disable_device(pdev);
2475 }
2476
2477 /*
2478 * atl1e_io_error_detected - called when PCI error is detected
2479 * @pdev: Pointer to PCI device
2480 * @state: The current pci connection state
2481 *
2482 * This function is called after a PCI bus error affecting
2483 * this device has been detected.
2484 */
2485 static pci_ers_result_t
2486 atl1e_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2487 {
2488 struct net_device *netdev = pci_get_drvdata(pdev);
2489 struct atl1e_adapter *adapter = netdev_priv(netdev);
2490
2491 netif_device_detach(netdev);
2492
2493 if (state == pci_channel_io_perm_failure)
2494 return PCI_ERS_RESULT_DISCONNECT;
2495
2496 if (netif_running(netdev))
2497 atl1e_down(adapter);
2498
2499 pci_disable_device(pdev);
2500
2501 /* Request a slot slot reset. */
2502 return PCI_ERS_RESULT_NEED_RESET;
2503 }
2504
2505 /*
2506 * atl1e_io_slot_reset - called after the pci bus has been reset.
2507 * @pdev: Pointer to PCI device
2508 *
2509 * Restart the card from scratch, as if from a cold-boot. Implementation
2510 * resembles the first-half of the e1000_resume routine.
2511 */
2512 static pci_ers_result_t atl1e_io_slot_reset(struct pci_dev *pdev)
2513 {
2514 struct net_device *netdev = pci_get_drvdata(pdev);
2515 struct atl1e_adapter *adapter = netdev_priv(netdev);
2516
2517 if (pci_enable_device(pdev)) {
2518 dev_err(&pdev->dev,
2519 "ATL1e: Cannot re-enable PCI device after reset.\n");
2520 return PCI_ERS_RESULT_DISCONNECT;
2521 }
2522 pci_set_master(pdev);
2523
2524 pci_enable_wake(pdev, PCI_D3hot, 0);
2525 pci_enable_wake(pdev, PCI_D3cold, 0);
2526
2527 atl1e_reset_hw(&adapter->hw);
2528
2529 return PCI_ERS_RESULT_RECOVERED;
2530 }
2531
2532 /*
2533 * atl1e_io_resume - called when traffic can start flowing again.
2534 * @pdev: Pointer to PCI device
2535 *
2536 * This callback is called when the error recovery driver tells us that
2537 * its OK to resume normal operation. Implementation resembles the
2538 * second-half of the atl1e_resume routine.
2539 */
2540 static void atl1e_io_resume(struct pci_dev *pdev)
2541 {
2542 struct net_device *netdev = pci_get_drvdata(pdev);
2543 struct atl1e_adapter *adapter = netdev_priv(netdev);
2544
2545 if (netif_running(netdev)) {
2546 if (atl1e_up(adapter)) {
2547 dev_err(&pdev->dev,
2548 "ATL1e: can't bring device back up after reset\n");
2549 return;
2550 }
2551 }
2552
2553 netif_device_attach(netdev);
2554 }
2555
2556 static struct pci_error_handlers atl1e_err_handler = {
2557 .error_detected = atl1e_io_error_detected,
2558 .slot_reset = atl1e_io_slot_reset,
2559 .resume = atl1e_io_resume,
2560 };
2561
2562 static struct pci_driver atl1e_driver = {
2563 .name = atl1e_driver_name,
2564 .id_table = atl1e_pci_tbl,
2565 .probe = atl1e_probe,
2566 .remove = __devexit_p(atl1e_remove),
2567 /* Power Managment Hooks */
2568 #ifdef CONFIG_PM
2569 .suspend = atl1e_suspend,
2570 .resume = atl1e_resume,
2571 #endif
2572 .shutdown = atl1e_shutdown,
2573 .err_handler = &atl1e_err_handler
2574 };
2575
2576 /*
2577 * atl1e_init_module - Driver Registration Routine
2578 *
2579 * atl1e_init_module is the first routine called when the driver is
2580 * loaded. All it does is register with the PCI subsystem.
2581 */
2582 static int __init atl1e_init_module(void)
2583 {
2584 return pci_register_driver(&atl1e_driver);
2585 }
2586
2587 /*
2588 * atl1e_exit_module - Driver Exit Cleanup Routine
2589 *
2590 * atl1e_exit_module is called just before the driver is removed
2591 * from memory.
2592 */
2593 static void __exit atl1e_exit_module(void)
2594 {
2595 pci_unregister_driver(&atl1e_driver);
2596 }
2597
2598 module_init(atl1e_init_module);
2599 module_exit(atl1e_exit_module);
This page took 0.118607 seconds and 5 git commands to generate.